1 We have a problem...

What is this : 89" ?

1 A String.

Yes. What does it represent?

> An eight of hearts, or 8%.

What does "7&% 64 98" represent?

3 Some others cards: 7&, 64, and 9s.

Right. And what does "A® K® Q¥ J® T®” represent?

+ It represents victory: it’s a royal flush.

What is the best hand we can do with the following: s A flush.
4424 Ko K¢ 0¢ 38 64 ?
And with 9% A® Ka K¢ 9¢ 3& 64 ? s Two pairs.

Correct. And with A& Q& Ka K¢ 9¢ 38 ?

7 Nothing, because there are less than seven cards.

And with 9% 5a ?

s Nothing, for the same reason.

That’s right.
What about K& 94 Ka K¢ 94 3& 64 ?

o It’s a full house. Say, why are you showing me all
these cards?

Because we have a problem, and I wanted to be sure
you know the basics about Poker.

10 Show me what the problem is.

We have to write a program which, given this input:

K& 94 Ka K¢ O¢ 3& 64
9% A¥ K K¢ 9¢ 34 6¢
A% Q& K& K¢ 9¢ 3a

9¢ 5Se

44 24 Ka K¢ 9¢ 34 6¢
76 Ta Ka K¢ 9¢

i These are the cards of some players in a game of
Texas Hold ’enﬂ Right?

—right — ..would output this:

K& 94 Ka K¢ 94 3& 64 Full House (winner)
9% Av Ka K¢ 94 34 64 Two Pair

A% Q& Ko K¢ 9¢ 34

9% 5e

44 24 Ka K¢ 9¢ 3% 6¢ Flush

76 Ta Ko K¢ 9¢

121 see.

What do you see?

13 Some lines are just left as they are. Some lines are
marked with the ranking of the best possible hand given
the cards on the line. The line with the best ranking is
marked as the winner.

Do you think we can solve the problem?

ISeehttp://rubyquiz.com/quiz24.html

14 Yes, I suppose, provided we have good tools.

http://rubyquiz.com/quiz24.html

2 Haskell Tools

What is the effect of this program?

main :: 10 ()
main = putStrLn "42”

is It prints the Answer to the Ultimate Question of Life,
The Universe, and Everything. It is a very simple
Haskell program.

How many functions are defined in this program?

1s Only one, called main.

What is the type of the function?

17 This function is of type IO (), which means it will
perform some input/output operations, and yield a void
result that we don’t care about.

How do we run this program?

s One way is to save it to a file, for example
answer.hs, and then launch runhaskell:

runhaskell answer.hs «
42

How do we execute some Haskell code in an interac-
tive way, without having to write a program?

1» One way is to launch ghci: and try things there:

ghci «

GHCi, http://www.haskell.org/ghc/ :? for help
6 * 7

42

sqrt 2 <«

1.4142135623730951
4 > 3
True

What other tools do we have to solve the problem?

2 Tools that we will code in Haskell, I suppose.

That is right. What is: "%’ ?

2 It’s a Char value.

What is: '&’ ?

2 It’s another Char value.

What is: "P&éa” ?

2 It’s a list of Chars, or String value.

How do you get information about the type of a value?

2+ Using :type and :info in ghciﬂ

itype ‘9’ —

'’ :: Char

itype "PhéM"
"PheA" :: [Char]
:info String <

type String = [Char]

What is the value of this expression: length " & é¢&” ? 5 4.

What is the value of: length [3,2,7,6,8] ? % 5.

What is the type of: length "@&4&” ? 27 Int.

What is the type of: length ? x[a] — IntE|

How does this Haskell expression:
length :: [a] — Int
read?

2 length is a function from list of any type, to Int.

What is the value of the expression:
words "time flies like an arrow”

30 ["time”,” flies 7, ” like 7, "an”,”arrow”].

What is the type of: words ?

st It’s a function from String to list of Strings:

:type words <«

words :: String — [String]
‘What is the value of: 4 = 5? » False.
What is the value of: 4 = 3 +1? 33 True.

2Unicode hex values for '¥’, "é&’," 4’ and ' #’ are: 2665, 2663, 2666 and 2660. Using 'H', *C’, "D’ and ’ S would also work very well.
3This is true for old versions of GHC only. The type signature of length is actually Foldable t =t a — Int. Foldable types are containers
that can be folded into a summary value ([@] is such a type).

What is the value of: 4 = 2« 1 + 1?

34 False.

What is the value of: 4 = 2 x (1 + 1)?

35 True.

What is the type of the expression 4 = 5?

36 It’s a boolean expression:

itype 4 = 5 <
4 = 5 :: Bool

Let’s create incidents. What is the value of:

‘¥ = True?

» It’s not a valid Haskell expression:

Couldn’t match expected type ‘Char’ with actual type ‘Bool’

In the second argument of ‘(==)’, namely ‘True’
In the expression: '®’ == True

What do you infer?

ss If the first argument of (=) is a Char, the second
argument should be also a Char.

What else can you infer?

» There is a function (=) that takes two arguments:

(=) 34«
False

What is the value of: (+) 4 5?

10 9.

What do you conclude?

a1 Operators are functions too.

What is the value of expression: 4 + False?

« Again, it’s not a valid expression:
No instance for (Num Bool) arising from a use of ‘+’

Possible fix: add an instance declaration for (Num Bool)
In the expression: 4 + False

But the message is different.

Let’s try to understand the message.
What is the type of (+)?

5(+) © Numa=a—a- a

Here some :info about Num:

Class Num a where

(+) a — a—a

&) a—a—a

) a—a— a

negate :: a — a

abs :: a — a

signum :: a — a
fromInteger :: Integer — a

instance Num Integer
instance Num Int
instance Num Float
instance Num Double

Explain in your own words what the error message is
about.

« There are 4 types that are instances of the class Num,
and Bool is not one of those types.

The operator (+) requires operands of a type that is
an instance of Num.

Therefore the expression: 4 + False is invalid.

Making Bool an instance of Num would make the ex-
pression a valid expression. (Although I don’t think
it’s a good idea).

What is the value of the expression: subtract 1 10 ?

45 9.

What is the value of: subtract 25 100 ?

46 75.

What is the type of: subtract 1 10 ?

7 Num a = a.

What is the type of subtract 1 ?

s Numa=—a—- a.

What is the type of subtract ?

wNuma=—a— a— a.

Let’s suppose that dec = subtract 1.
What is the value of dec 1000?

so Let’s ask:

let dec = subtract 1 «
dec 1000 <
999

We just created a new function.

Let’s create another one: inc = (+) 1.
What is the value of: inc (inc (inc 1))?

st Let’s ask again:

let inc = () 1 <«
inc (inc (inc 1)) «
4

And another one: dbl = () 2.
What is the value of dbl 6?

s2 I think I know the answer.

let dbl = (*) 2 «
dbl 6 <
12

Good. Now let’s define something new:
foo = inc o dbl.
What is the value of foo 10?7

s I have no idea. Let’s try{]

let foo = inc o dbl «
foo 10 <
21

Why is the result 21?

s« It is 10 multiplied by 2, plus 1.

What is the type of : 0 ?

*In ghci, replace o with . .

55

itype (o) «
(o) :: b >¢c) D (a—>b) >a—->c

That is the most complex function I've seen.

Suppose we have the following:

fry :: Batter — Pancake
mix :: (Flour,Milk,Egg) — Batter

s Interesting!

Then suppose we define a new function:
Ccook = fry o mix
What would be the type of this new function?

s7 | think it should be something like:

cook :: (Flour, Milk, Egg) — Pancake

How would you explain the role of o in this expres-
sion: f o g?

ss The o function takes two functions f and g and com-
pose them into a new function. Applying this new func-
tion to an argument x is the same as applying f to the
result of applying g to x.

In fewer words?

w(fog x="f(gx

Suppose we want a new function: we :: String — Int.
The job of this function is to count words in a String.

« That seems easy to do.

Create the we function in ghci.

o Here it is:

let wc = length o words <«
wc "a four words sentence" «
4

Perfect! Do you want to solve the problem?

10

« Let’s make some tea first.

3 Simple Values

How many cards are represented in this String:
"A® K® QW U9 T ?

s Five.

Does (length o words) s
give us the number of cards in s
when s is equal to "Q® #! J®” ?

o It gives us 3, but that’s not the exact number of cards
in the String.

Why not?

s Because "#!” does not represent a valid card.

Does "Q®” represent a valid card?

& Yes.

Some values of the type String can represent a valid
card, some cannot.

¢ Right.

What do we need to do with cards?

¢ Compare them, sort them, and group them.

What is the value of "49"< "5&"? o True.
What is the value of "T®"< "A&"? 70 False.
Some comparisons of cards as represented by String 7 Exactly.

work, some don’t.

11

What type could represent valid cards for all values of
this type?

2 I don’t know. Maybe we need to make our own type.

What would you call that type?

7 Card.

How would you describe the type Card in your own
words?

1+ The type Card is the set of all possible cards in the
game of Poker.

Can you give examples of values of such a type?

s Queen of Hearts, Two of Spades, Ace of Clubs, Five
of Diamonds.

What should be required for a value to be of the type
Card?

76 It should have a rank and suit.

What are the possible ranks?

7 Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten,
Jack, Queen, King, Ace.

What are the possible suits?

1 Hearts, Spades, Diamonds, Clubs.

Let’s define a new type for the suits.

7 I don’t know how to do that.

Do you know about the Bool type?

s Yes. It is defined with two boolean values: False,
True.

‘What can we do with Bool values?

st We can compare them for equality or inequality:

> False = False
True

> True /=
False

> False <
True

True

True

How is Bool defined?

s Like this:
data Bool = False | True

How do you define the type Suit?

s3 Like this, I suppose:

data Suit = Hearts | Spades | Diamonds | Clubs

What should we be able to do with values of type Suit?

s« Compare them for equality, for instance when look-
ing for a flush in a group of cards.

What does the expression: Diamonds = Diamonds

yield?

12

ss It’s an error:

No instance for (Eq Suit) arising from a use of ‘==
Possible fix: add an instance declaration for (Eq Suit)

I don’t understand.

What it means is that there are currently no rules for
comparing Suit values.

ss We didn’t define any.

If we declare the type Suit to be an instance of the class
Eq, then default rules will be used for comparing.

s7 What are those default rules?

A value is equal to itself and different from all other
values.

ss Obviously this is what we need. How do we do that?

We add a deriving clause to the declaration:

data Suit = Hearts | Spades | Diamonds | Clubs
deriving Eq

s» Great! Now we can compare values:

> Diamonds = Diamonds
True

> Diamonds = Clubs
False

Let’s define a new type for the ranks now.

o0 I think I know how to do that:

data Rank = Two | Three | Four | Five | Six | Seven |
Eight | Nine | Ten | Jack | Queen | King | Ace

Why not use numbers for the Rank values from 2 to 10?

o1 Rank is a new data type. We can create values of this
type by using data constructors. The symbols 2, 3, 4...
are already used to denote numbers, and cannot be used
as data constructors.

What should we be able do with values of type Rank?

o Compare them for equality or inequality. For exam-
ple when looking for a pair or a straight in group of
cards, or just sorting the cards by Rank value.

What does the expression: Ten < Jack yield?

o3 It’s an error again:

No instance for (Ord Rank) arising from a use of ‘<’
Possible fix: add an instance declaration for (Ord Rank)
In the expression: Ten < Jack

In that case we should declare the type to be deriving
Eq, and to be deriving Ord as well:
data Rank = Two | Three | Four | Five | Six | Seven |
Eight | Nine | Ten | Jack | Queen | King | Ace
deriving (Eq, Ord)

o Here again, we do not define the rules for comparing
values, determining which value is greater and which
is lower..

‘What is the value of: Two < Three ?

os True.

What is the value of: Ace > King ?

9 True.

13

What is the default rule for inequality?

o7 The default rule is that the first value declared is the
lower, the next one is greater, and so on.

Correct. o8 LT
What is the value of the expression:

compare 42 4807 ?

What is the value of the expression: 0 GT

compare "TIME” "FLIES” ?

Right. And of the expression:
compare King Ace ?

00 Since we correctly defined our values, it’s: LT.

What is the value of the expression: o1 It is EQ.
compare Queen Queen ?

What about compare Eight Jack ? 02 [t is LT.
And compare Five Three ? 03 It is GT.

What is the type of the value returned by compare ?

s Here’s what ghci tells us:

:info compare

class Eq a = O0Ord a where
compare :: a — a — Ordering

:info Ordering

data Ordering = LT | EQ | GT

Can you explain the compare function in your own
words?

10s compare can compare values of any type which is
deriving of both type classes Eq and Ord. The result of
the comparison is one of the three values LT, EQ, GT
meaning respectively lower than, equal, and greater
than.

What do we have so far, with regard to representing
cards in our poker hand program?

s We have our own types Suit, and Rank to represent
values that will be used for comparisons.

‘What do we still need?

107 We need to create a type Card to correctly represent
cards.

Can you define the type?

s 'm afraid I can’t. I don’t know yet how to define a
type as a combination of other types.

What is the type of the expressions :
(A’,True), (' B’,False), (' E’,True) ?

100 (Char, Bool)

14

What is the type of: ("A’,True,’a’) ?

1o (Char, Bool, Char)

What do we call such combinations of values?

m We call them tuples. When formed with two values,
we can call them pairs.

How would you describe the type (Char, Bool) in your
own words?

2 It’s a set that is a product of all possible values of
Char times all possible values of Bool.

What is the type of the expression: (Queen, Hearts) ?

3 I think it is: (Rank, Suit)

How would you describe the type (Rank, Suit) in your
own words?

s It’s the set of all possible Ranks times all possible
Suits. It’s the type we are looking for.

So how would you define the type Card?

s Exactly like this: type Card = (Rank, Suit).

How would you explain such declaration in your own
words?

s The type Card is equivalent to a fuple of Rank and
Suit.

What do we want to do with values of type Card?

117 We want to know their Rank value, so that we can
search for a pair, a straight, and so on.

We also want to know their Suit value, so that we can
search for a flush.

And and of course we want to extract Card values from
Strings.

What is the value of the expression: fst (65,”A’) ? 11s 65.
What is the value of the expression: fst (False, 42) ? 1o False
What is the type signature of the function fst ? o fst 1 (a, b) — a

Can you explain in your own words what this function
does?

21 fst takes a pair as its argument, and yields the first
element of the pair.

What is the value of the expression:
fst (Queen, Hearts) = Queen ?

122 True, of course.

How would you define a function which takes a Card
and gives its Rank, given what we now know about
tuples?

123 That’s easy:

rank :: Card — Rank
rank = fst

15

What is the value of the expression: snd (65, A’) ? 4 TA.

What is the value of the expression: snd (False, 42) ? 125 42

What is the type of snd ? nesnd (a, b) - b
snd takes a pair, and yields the second element of the
pair.

What is the value of the expression: 127 True obviously.

snd (Queen, Hearts) = Hearts ?

Define a function which takes a Card and gives its Suit. s Here it is:

suit :: Card — Suit
suit = snd

Can we determine if two Card values are equals? 19 Let’s try:

> let ¢ = (Queen,Hearts)
> let d = (King,Spades)
>c=d

False

>d /= c

True

We can.

Using your example values, can we tell if c < d ? 130 No we can’t:

No instance for (Ord Suit) arising from a use of ‘<’
Possible fix: add an instance declaration for (Ord Suit)
In the expression: c < d

Should we add an instance declaration for Suit as ghci 131 Probably not a good idea, as we will want to order

suggest? Cards based on their Rank only, not on their Rank and
Suit.

What do we have so far? 132 We have types to represent cards values, rank values,

and suit values. We also have functions on those types.

How does that help us solving our problem? 133 It gives us safety: the guarantee that we will be deal-
ing with correct values of Rank and Suit instead of pos-
sibly incorrect Chars.

16

Here is the code we have so far in order to solve our
problem:

data Suit = Hearts | Spades | Diamonds | Clubs
deriving (Eq)
data Rank = Two | Three | Four | Five | Six | Seven |
Eight | Nine | Ten | Jack | Queen | King | Ace
deriving (Eq, Ord)
type Card = (Rank, Suit)
rank :: Card — Rank

suit :: Card — Suit
rank = fst
suit = snd

Listing 1: Card.hs

How do we use this? Give some examples.

13+ Here are some examples:

> let g = (Queen, Hearts)
> let k = (King, Spades)
> let a = (Ace, Diamonds)
> let j = (Jack, Clubs)

> let z = (Ace, Hearts)

> rank q < rank k

True

> rank a > rank j

True

> rank a = rank z

True

> suit q /= suit k

True

> suit q = suit z

True

What does the type Card give us?

135 It gives us values on which we can apply two func-
tions, rank and suit.

What else do we need?

136 A function to create Card values from a String.

— Use the data construct to create a new type for the values of your specific domain.
— Values of a type deriving Eq can be compared for equality with = and /=.
— Values of a type deriving Eq,Ord can be compared for inequality with < > <= >= and compare.

— You can combine different types into one, using the tuple construct (,). Values of a tuple type can
be compared for equality if the types composing the tuple are instance of the class Eq, and the same
rule applies for inequality, with the class Ord.

— The type construct allows for the definition of a type synonym, as in type String = [Char].

17

	We have a problem...
	Haskell Tools
	Simple Values
	Drawing Cards from Strings
	Sorting & Grouping
	Categories of Hands
	Comparing Hands
	Special cases
	Testing the Rankings
	How to find a good hand
	Printing the scores

