Aplidhciones

Symfohy?2

1 <?php

2 // src/Acme/DemoBundle/Tests/Controller/DemoControllerTest.php
3 namespace Acmel\DemoBundlel\Tests\Controller;

4

5 use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

6

7 class DemoControllerTest extends WebTestCase

8 |

9 public function testIndex()

10 {

11 $client = static::createClient();

12

1% $crawler = $client->request(’'GET’, ’/demo/hello/Fabien’):;
14

13 $this->assertGreaterThan(

16 0,

17 $crawler->filter(’html:contains(”“Hello Fabien”) ’)->count()
18)

19 }

20 }

2014 © Fernando Arconada

Testing para Aplicaciones Symfony2

Fernando Arconada
Este libro esta a la venta en http://leanpub.com/testingsymfony2

Esta version se publico en 2015-02-23

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 - 2015 Fernando Arconada

http://leanpub.com/testingsymfony2
http://leanpub.com
http://leanpub.com/manifesto

iTwitea sobre el libro!

Por favor ayuda a Fernando Arconada hablando sobre el libro en Twitter!

El hashtag sugerido para este libro es #testingsf2.

Descubre lo que otra gente esta diciendo sobre el libro haciendo click en este enlace para buscar el

hashtag en Twitter:

https://twitter.com/search?q=#testingsf2

http://twitter.com
https://twitter.com/search?q=%23testingsf2
https://twitter.com/search?q=%23testingsf2

Indice general

Mocks, Dummies, Stubsyotros
Doubles

Escuelas o estilos de Mocking L L L Lo
De qué no hacer Test Doubles
Libreriasde Mocks L

Mocks, Dummies, Stubs y otros

En los tests normalmente nos centramos en el comportamiento de un objeto, de ahi el nombre de test
unitario, pero en el mundo real un objeto necesita de otros para realizar su funcion. Cuando estamos
haciendo testing, rapidamente acabamos incorporando a nuestro vocabulario la palabra Mocks.

Cuando estamos haciendo un test unitario y la clase que queremos testear (el SUT -Subject Under
Test-) tiene objetos colaboradores (objetos que usa para desarrollar su funcionalidad) debemos
sustituirlos por otros objetos que actian como los dobles de los actores en las peliculas para
asegurarnos el aislamiento del SUT. A estos dobles les llamamos cominmente Mocks, pero luego
acabamos escuchando palabras como Dummy y Stub y terminamos con dudas sobre lo que estamos
empleando. Voy a intentar aclarar la diferencia entre los diferentes tipos. Pero ;por qué reemplazar
los colaboradores por otros objetos falsos o dobles? - porque pueden ser costosos de crear - hacen
los tests lentos - pueden tener comportamientos que no controlamos (esto es lo mas importante) -
pueden generar otros objetos que interfieran con otros tests - necesitamos controlar el valor concreto
que devuelven para emplearlo en SUT

Doubles

Todos los colaboradores que reemplazamos por objetos “de mentira” que insertamos para controlar
el SUT son “dobles” o Doubles o Test Doubles. Un Test Double es el nombre que damos a los objetos
que reemplazan a los colaboradores. Sirve tanto para un Mock que para un Stub, asi que si tenemos
duda en una conversaciéon y no queremos hacer el ridiculo, empleando la expresiéon Test Double
acertaremos seguro. De los diferentes tipo de Test Doubles que vamos a ver a continuacion, sélo los
Mocks verifican el comportamiento. El resto de Doubles sélo verifican el estado.

Dummy

Un objeto de tipo dummy es un objeto tonto, un objeto que no vamos a usar para nada pero que
necesitamos por ejemplo para poder satisfacer las necesidades de un constructor y que luego no
vamos a utilizar.

Ejemplo de un Dummy con Prophecy para ser insertado en la clase Markdown y cumplir con los
requerimientos del constructor:

O = W N =

Mocks, Dummies, Stubs y otros 2

<?php
$eventDispatcher = $this->prophesize('MarkdownEventEventDispatcher');
$markdown = new Markdown($eventDispatcher->reveal());

Fakes

Un objeto double de tipo Fake afiade un poco mas de funcionalidad a los Dummy. Si intentamos
llamar a un método de un objeto Dummy tendremos un error. Hay veces que tenemos que poder
llamar a un método de un Dummy simplemente para que nuestro test continue y no tener un
error. Para esto estan los Fake que son Dummies con métodos, pero ojo, estos métodos no hacen
ni devuelven nada.

Ejemplo de un objeto Fake que como he dicho es como un Dummy, pero con algo mas de funciona-
lidad, en este caso se va a declarar un método para que cuando se llame internamente no de error.
El método puede ser llamado con un argumento de tipo 'Markdown\Event\EndOfLinelListener':

<?php

$eventDispatcher = $this->prophesize('Markdown\Event\EventDispatcher');
$eventDispatcher->addlListener (Argument: :type('Markdown\Event\EndOfLinelListen\

er'));

$markdown = new Markdown($eventDispatcher->reveal());

Stubs

En los Stubs lo importante es lo que devuelve la llamada a sus métodos, son una forma de garantizar
la salida de los objetos colaboradores. Por ejemplo “cuando llamo a $em->find(1) devolvera un
objeto entidad”. La finalidad de los Stubs es reemplazar una funcionalidad concreta del colaborador
para garantizar el funcionamiento del colaborador.

Con Mockery se crearia de la siguiente forma:

<?php
$miMock = m::mock('MiClase"');
$miMock->shouldReceive('readTemp')->andReturn(11);

Con PHPUnit:

D W N -

N

Mocks, Dummies, Stubs y otros 3

<?php

$miMock = $this->getMock('MiClase');
$miMock->expects($this->any())->method('readTemp')->will($this->returnValue(\

11));

Con PHPSpec y Prophecy

<?php
$miMock = $this->prophesize('MiClase');
$miMock->readTemp()->willReturn(11);

Mocks

Es un tipo de objeto Double sobre los que establecemos unas expectativas de uso y del que no nos
preocupa controlar lo que devuelve su llamada.

Por ejemplo: “espero que el objeto colaborador $em->flush() sea llamado una sola vez dentro del
SUT”, o que no sea llamado nunca, o al menos una vez, o que persist() sea llamada con un objeto
de tipo MiEntidad.

Con Mockery se crearia de la siguiente forma:

<?php
$miMock = m::mock('MiClase');
$miMock->shouldReceive('readTemp')->times(3);

Con PHPUnit:
<?php
$miMock = $this->getMock('MiClase', array('readTemp', '', false);

$miMock->expects($this->exactly(3))

Con PHPSpec y Prophecy:

<?php
$miMock = $this->prophesize('MiClase');
$miMock->readTemp()->shouldBeCalledTimes(3);

Mocks, Dummies, Stubs y otros 4

Escuelas o estilos de Mocking

Cuando hablamos de reemplazar los colaboradores de la clase a testear he dado a entender que
hay que reemplazar todos los colaboradores por algun tipo de Test Double, pero hay dos corrientes
de Mocking: la escuela clasica (escuela de Chicago) y los Mockists o Mockistas (escuela de
Londres).

La corriente clasica de mocking establece que hay que usar colaboradores que sean objetos reales
siempre que sea posible y s6lo en los casos que no se pueda o la relacion con el colaborador sea
complicada usar Test Doubles. Por el contrario, los Mockistas dicen que cuando estamos escribiendo
un test todos los colaboradores deben ser algun tipo de Test Doubles.

Ahora bien, ;qué corriente seguir? cada uno debe sentirse comodo y seguro con lo que hace asi que
no se puede imponer un estilo. Es posible que a uno le ofrezca mas confianza emplear colaboradores
reales en vez de Test Doubles.

Cuando estamos escribiendo el test y nos encontramos que la clase del SUT tiene un colaborador
debemos tomar una decision. Los Mockistas, crearan un Test Double. Los de la escuela clasica deben
decidir si el colaborador es suficientemente sencillo como para usar un objeto real o si es complicado
de emplear o tiene un comportamiento dificil de reproducir en cuyo caso emplearan un Test Double.

Si no estamos escribiendo tests para un c6digo heredado e intentamos seguir un flujo de trabajo de
TDD en el que los tests se escriben antes que el codigo es muy posible que los objetos colaboradores
todavia no existan y por lo tanto no nos quede mas remedio que emplear Test Doubles. La diferencia
es que los seguidores de la escuela clasica deberan reemplazar estos dobles por los objetos reales
cuando los hayan creado. Para evitar este trabajo la gente de la escuela clasica suele centrarse primero
en crear los objetos de dominio.

En realidad, si seguimos la corriente clasica de testing no hacemos tests unitarios sino tests de
integracion en mayor o menor medida. Esto tiene la ventaja que podemos detectar algunos errores
que se nos pueden escapar si por ejemplo no hemos escrito adecuadamente las expectativas de los
colaboradores. De todas formas aunque en los tests unitarios de los Mockistas se nos pueden escapar
algunos posible errores se puede compensar facilmente si junto a los tests unitarios ejecutamos tests
de aceptacion que atraviesan el sistema y no sélo una clase.

De qué no hacer Test Doubles

En la linea de la escuela Mockista o de Londres esta la idea de hacer Tests Doubles de todos los
objetos colaboradores de nuestro SUT. Esto no es exactamente cierto siempre, o mejor dicho, para
todo tipo de objetos.

Los Value Objects son objetos simples que no se identifican por una propiedad de identidad $id sino
por el valor de los atributos. Los podemos considerar como si fuesen tipos primitivos del lenguaje
pero adaptado a nuestro dominio.

Un ejemplo clasico son las clases que representan colores o direcciones postales.

O = W N =

Mocks, Dummies, Stubs y otros 5

<?php
$color1l = new Color('Rojo'); //Color es un Value Object

$color2 = new Color('Rojo');
$color1 == $color2; // true
$color1 === $color2; // false, igualdad no significa identidad

De estos Value Object no necesitamos hacer Doubles puesto que los podemos crear sin ningtn tipo
de complicacion ni sobrecoste y debemos tratarlos como primitivas del lenguaje.

Otro tipo de objetos colaboradores para los que no debemos hacer Test Doubles son los objetos que
no podemos modificar. Concretamente las librerias de terceros [Growing Object-Oriented Software
Guided by Tests, capitulo 8]. El feedback que obtenemos de los tests no lo podemos trasladar a
un refactoring de la libreria. Aunque dispongamos del cédigo fuente no es conveniente modificar
objetos de terceros. Ademas no podemos tener total seguridad de que el Double que creemos imite
perfectamente el comportamiento de la libreria incluso tras una actualizacion. Para integrar librerias
de terceros en nuestro codigo debemos hacerlos mediante una capa de adaptacion e interfaces que
representen la relacion de nuestra logica de negocio con el mundo exterior.

Objetos
i
ke de
Aplicacién

'
N

Adapter
/ API de
Terceros

Integracion de librerias de terceros

Probaremos el comportamiento de estas librerias de terceros mediante tests de integracion en los
que sustituiremos nuestros propios objetos de aplicaciéon por Doubles para mantener la filosofia de
aislamiento y repetibilidad.

Hay una excepcion y es que cuando el comportamiento de la libreria sea complicado de reproducir
en los tests de integracion, como por ejemplo puede ser el caso de una cache, es preferible emplear
un Double en su lugar.

0 N O O b W N =~

[OGN
O O b WON OO O

Mocks, Dummies, Stubs y otros 6

Librerias de Mocks

Ahora que mas o menos tenemos claro qué son los Mocks, Stubs y allegados hay que ver como los
creamos en nuestros tests. Para ello tenemos diversas posibilidades.

PHPUnit

La primera opcidn es no usar ninguna libreria, porque casi seguro que ya estaremos usando PHPUnit*
para nuestros tests. A fin de cuentas es la referencia para el testing con PHP. Un Mock o un Stub
con PHPUnit se crea de la siguiente forma:

<?php
$emMock = $this->getMock(' \Doctrine\ORM\EntityManager",
array('getRepository', 'getClassMetadata', 'persist', 'flush'), array(), '',6\
false);

$emMock - >expects($this->any())

->method('getRepository")
->will($this->returnValue(new FakeRepository()));
$emMock - >expects($this->any())
->method('getClassMetadata')
->will($this->returnValue((object)array('name' => 'aClass')));
$emMock - >expects($this->any())

->method('persist')
->will($this->returnValue(null));

$emMock - >expects($this->any())

->method (' flush')
>will($this->returnValue(null));

Usar PHPUnit para esta labor tiene los siguientes inconvenientes:

« Hay que escribir demasiado codigo.
« No queda clara cual es la diferencia entre Mocks y Stubs.

Mockery

Mockery?® es posiblemente la libreria méas usada en PHP para crear Mocks y Stubs. Realmente
simplifica mucho la tarea de escribir codigo y lo hace mas legible. El mismo ejemplo de antes en
PHPUnit escrito con Mockery seria asi:

"http://phpunit.de/
®https://github.com/padraic/mockery

http://phpunit.de/
https://github.com/padraic/mockery
http://phpunit.de/
https://github.com/padraic/mockery

0 N O O & W N =~

N B 1 N 1 s s s
© © 0 3 O O b W N~ O O

Mocks, Dummies, Stubs y otros 7

<?php
$emMock = \Mockery: :mock('\Doctrine\ORM\EntityManager',
array(
'getRepository' => new FakeRepository(),
'getClassMetadata' => (object)array('name' => 'aClass'),
'persist' => null,
"flush' => null,
));

Ademas de ser muchisimo mas claro y comodo, Mockery ofrece muchas otras facilidades.

Integrar Mockery en PHPUnit es muy sencillo:

<?php
use \Mockery as m;

class TemperatureTest extends PHPUnit_Framework_TestCase

{
public function tearDown()
{
m::close();
}
public function testGetsAverageTemperatureFromThreeServiceReadings()
{
$service = m::mock('service');
$service->shouldReceive('readTemp')->times(3)->andReturn(10, 12, 14);
$temperature = new Temperature($service);
$this->assertbEquals(12, $temperature->average());
}
}

La parte importante de la integracion es el método tearDown(). La llamada estatica am: :close()
limpia el contenedor de Mockery para ese test y ejecuta las tareas de verificaciéon necesarias para
revisar las expectativas.

Prophecy

Es una libreria de mocking bastante nueva creada expresamente para satisfacer las necesidades de
PHPSpec2. Respecto a Mockery notaremos que cambia la sintaxis que a mi entender es muy clara y

0 N O Ol & W N =~

Y SN
0 3 O O b ON -~ O

Mocks, Dummies, Stubs y otros 8

legible. Hay otras diferencias mas importantes respecto a Mockery, pero voy a reservar un apartado
entero para esto a continuacion.

Lo que nos debe quedar claro es que si nos decantamos por PHPSpec2, aunque podemos usar
Mockery u otra libreria, Prophecy® es la libreria en la que se van a centrar los desarrolladores y
por lo tanto donde encontraremos mas soporte y garantia de continuidad.

AspectMock

Esta libreria se ha creado dentro del framework de testing de Codeception. Se basa en las libreria de
AQOP GoAOP* y podemos hacer cosas como crear doubles de métodos estaticos.

Un ejemplo de test con AspectMock usado dentro de PHPUnit:

<?php
use AspectMock\Test as test;

class UserTest extends \PHPUnit_Framework_TestCase

{
protected function tearDown()
{
test::clean(); // remove all registered test doubles
}
public function testDoubleClass()
{
$user = test::double('demo\UserModel', ['save' => null]);
\demo\UserModel: :tableName();
\demo\UserModel: :tableName();
$user->verifylnvokedMultipleTimes('tableName',2);
}
}

La principal ventaja de AspectMock® es que podemos emplearlo para hacer mocks de casi cualquier
codigo PHP. No siempre nos enfrentamos con software bien estructurado y que haya sido creado
teniendo en cuenta el testing. Es posible que queremos hacer tests del algo que nunca escuch6 hablar
de inyeccion de dependencias.

*https://github.com/phpspec/prophecy
“https://github.com/lisachenko/go-aop-php
*https://github.com/Codeception/AspectMock

https://github.com/phpspec/prophecy
https://github.com/lisachenko/go-aop-php
https://github.com/Codeception/AspectMock
https://github.com/phpspec/prophecy
https://github.com/lisachenko/go-aop-php
https://github.com/Codeception/AspectMock

© 00 39 O O b W N =

[S
B W N -~

N O O B W N -

Mocks, Dummies, Stubs y otros 9

Diferencia conceptual entre Mockery y Prophecy

Traduccién/adaptacion del post de Konstantin Kudryashov @everzet http://everzet.com/post/72910908762/
conceptual-difference-between-mockery-and-prophecy

La idea del articulo es explicar la diferencia sintactica y de implementacién entre ambas librerias.
Conceptualmente y en contraposiciéon con Mockery, Prophecy prioriza los mensajes de los objetos
(como se comunican los objetos) sobre la estructura (cuando se comunican los objetos)

Un ejemplo:

<?php
interface User
{
public function getRating();
public function setRating($rating);

}
class UserRatingCalculator
{
public function increaseUserRating(User $user, $add = 1)
{
$user->setRating($user->getRating() + $add);
}
}

Es mas o menos una variacion del ejemplo de la calculadora. El test con Mockery seria algo asi:

<?php

$user = Mockery: :mock('User");
$user->shouldReceive('getRating')->andReturn(2);
$user->shouldReceive('setRating')->with(4)->once();

$calc = new UserRatingCalculator();
$calc->increaseUserRating($user->mock(), 2);

El test con Prophecy seria este:

http://everzet.com/post/72910908762/conceptual-difference-between-mockery-and-prophecy
http://everzet.com/post/72910908762/conceptual-difference-between-mockery-and-prophecy

~N O O B W N -

0 N O O & W N =~

O S SO Y
N O O b WO N~ OO O

Mocks, Dummies, Stubs y otros 10

<?php

$user = $prophet->prophesize('User');
$user->getRating()->willReturn(2);
$user->setRating(4)->shouldBeCalled();

$calc = new UserRatingCalculator();
$calc->increaselUserRating($user->reveal (), 2);

Excepto por pequerias diferencias ambos tests parecen iguales. Compliquemos un poco maés las cosas.
Digamos que ahora queremos disparar un evento antes y después de un cambio en el rating. La nueva
calculadora seria esta:

<?php
class UserRatingCalculator

{

private $dispatcher;

public function __construct(EventDispatcher $dispatcher)

{
$this->dispatcher = $dispatcher;
}
public function increaseUserRating(User $user, $add = 1)
{
$this->dispatcher->userRatingIncreasing($user->getRating());
$user->setRating($user->getRating() + $add);
$this->dispatcher->userRatingIncreased($user->getRating());
}

Ahora necesitamos verificar qué evento es disparado con un argumento especifico. En Mockery el
test seria este:

, O O 0 9 O O b W N =~

[ENEN

0 N O O b W N =~

_ e o
W N~ OO O

Mocks, Dummies, Stubs y otros 11

<?php

$user = Mockery: :mock('User");
$user->shouldReceive('getRating')->andReturn(2, 2, 4);
$user->shouldReceive('setRating')->with(4)->once();

$disp = Mockery: :mock('EventDispatcher');
$disp->shouldReceive('userRatingIncreasing')->with(2)->once();
$disp->shouldReceive('userRatinglncreased')->with(4)->once();

$calc = new UserRatingCalculator($disp->mock());
$calc->increaseUserRating($user->mock(), 2);

La clave esta en fijarse como se ha hecho el stub del método getRating() con tres valores de retorno
consecutivos. A esto de le llama structure binding, fijacion a la estructura del codigo, significa
que los tests son dependientes de como el codigo esta escrito (estructurado), hay tres llamadas
consecutivas en ese orden para devolver esos valores.

Con Prophecy la solucion es diferente:

<?php
$user = $prophet->prophesize('User');
$user->getRating()->willReturn(2);
$user->setRating(Argument: :type('integer'))->will(function($rating) {
$this->getRating()->willReturn($rating);
})->shouldBeCalled();

$disp = $prophet->prophesize('EventDispatcher');
$disp->userRatingIncreasing(2)->shouldBeCalled();
$disp->userRatingIncreased(4)->shouldBeCalled();

$calc = new UserRatingCalculator($disp->reveal());
$calc->increaseUserRating($user->reveal (), 2);

Prophecy usa un enfoque tipo message binding (orientado el mensaje), que significa que el
comportamiento del método no cambia en el tiempo, sino es cambiado por el otro método.

;Cudl es la diferencia real entre el enfoque de ambas librerias? Consideremos un cambio en la
calculadora:

[ENEN

, O O 0 9 O O b W N =~

Mocks, Dummies, Stubs y otros 12

<?php

public function increaseUserRating(User $user, $add = 1)

{
$initialRating = $user->getRating();
$this->dispatcher->userRatinglncreasing($initialRating);

$user->setRating($initialRating + $add);

$resultingRating = $user->getRating();
$this->dispatcher->userRatinglncreased($resultingRating);

Simplemente hemos puesto el rating inicial en una variable local $initialRating por clarificar el
cddigo. El problema es que este pequefio cambio hace que se rompa el test hecho con Mockery
puesto que ahora hay sélo dos llamadas a getRating() en vez de tres. Si los test estan asociados a
la estructura y esta cambia entonces el test falla.

En el caso de Prophecy el test inicial sigue pasando porque el test se ha creado centrado en los
mensajes que se pasan entre los objetos y esto no ha cambiado.

La diferencia conceptual no esta en como escribir los tests, sino cuando hay que corregirlos. Mockery
te puede poner en la situacion en la que tengas que rehacer los tests simplemente porque has hecho
un refactoring que afecta a la estructura. Prophecy postula que en este caso el test no deberia fallar
porque el comportamiento de los objetos sigue siendo el mismo.

Qué libreria de Mocking elegir

Un pequerio arbol de decision nos puede asistir a la hora de elegir una libreria de Mocking

Mocks, Dummies, Stubs y otros 13

$Que
libreria de
Mocking?

¢ Codigo
heredado?
(Hacemos
TDD?

Si Mo

/

Framewaork

AspectMock
pe xUnit

PHPUnit,
PHPSpec Codeception

\

Prophecy Mockery

Arbol de decision de libreria de mocking

Este arbol refleja lo que lo elegiria, es posible que haya gente que no emplearia Prophecy por ser muy
nueva y porque Mockery tiene mucha comunidad y es muy sencilla de integrar en casi cualquier
contexto de testing. Lo que tengo claro es que no emplearia el sistema de Mocking de PHPUnit
porque hay que escribir demasiado codigo y es dificil de leer.

	Tabla de contenidos
	Mocks, Dummies, Stubs y otros
	Doubles
	Dummy
	Fakes
	Stubs
	Mocks
	Escuelas o estilos de Mocking
	De qué no hacer Test Doubles
	Librerías de Mocks

