

Testeando Componentes de Vue.js con
Jest
Una guía concisa y práctica para testear
componentes de Vue.js usando Jest y la librería
oficial vue-test-utils

Alex Jover Morales y Paul Melero

Este libro está a la venta en http://leanpub.com/testeando-vuejs

Esta versión se publicó en 2018-12-26

Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el
proceso de publicación. Lean Publishing es el acto de publicar un libro en progreso
usando herramientas sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 Alex Jover Morales y Paul Melero

http://leanpub.com/testeando-vuejs
http://leanpub.com/
http://leanpub.com/manifesto

Índice general

1. Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest . 1
Set up de un proyecto de ejemplo . 2
Testeando un Componente . 4
Testeando con @vue/test-utils . 8

1. Escribe tu Primer Test
Unitario de un Componente
de Vue.js con Jest

Vamos a aprender cómo escribir test unitarios con las herramientas oficiales de VueJS
y el framework Jest.

vue-test-utils¹, es la librería oficial de testing de VueJS y está basada en su predecesora
avoriaz². @EddYerburgh³ hizo un excepcional trabajo sentando las bases del testing
en Vue con dicha librería.

Jest⁴, por otro lado es un framework de testing desarrollado en Facebook, que hace
que el testing unitario sea súper asequible, con funcionalidades como:

• Casi 0-config, por defecto.
• Un “Modo interactivo”.
• Ejecutar tests en paralelo.
• Spies, stubs y mocks.
• Coverage de código.
• Introduce el concepto de Snapshot testing.
• Y aporta utilidades de Module mocking (Simulación de módulos).

Probablemente ya hayas escrito tests sin estas herramientas, usando “solamente”
Karma, Mocha, Chai, Sinon, Istanbul…, pero veréis que con Jest se facilita en gran
medida el proceso �.

¹https://github.com/vuejs/vue-test-utils
²https://github.com/eddyerburgh/avoriaz
³https://twitter.com/EddYerburgh
⁴https://facebook.github.io/jest

https://github.com/vuejs/vue-test-utils
https://github.com/eddyerburgh/avoriaz
https://twitter.com/EddYerburgh
https://facebook.github.io/jest
https://github.com/vuejs/vue-test-utils
https://github.com/eddyerburgh/avoriaz
https://twitter.com/EddYerburgh
https://facebook.github.io/jest

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 2

Set up de un proyecto de ejemplo

Para el scaffolding vamos a utilizar vue-cli⁵ y por defecto contestaremos NO a todas
las preguntas que nos aparecen. Llamaremos al proyecto “vue-test”:

npm install -g vue-cli
vue init webpack vue-test
cd vue-test

Lo siguiente será instalar algunas dependencias

Instalar dependencias
npm i -D jest vue-jest babel-jest

vue-jest⁶ se usa para que Jest entienda los archivos .vue, y babel-jest⁷ para la
integración con Babel.

Y además:

npm i -D @vue/test-utils

Vamos a añadir la siguiente configuración en nuestro package.json: (también puede
ir en su propio archivo de configuración)

...
"jest": {

"moduleNameMapper": {
"^vue$": "vue/dist/vue.common.js"

},
"moduleFileExtensions": [

"js",
"vue"

],
"transform": {
⁵https://github.com/vuejs/vue-cli
⁶https://github.com/vuejs/vue-jest
⁷https://github.com/babel/babel-jest

https://github.com/vuejs/vue-cli
https://github.com/vuejs/vue-jest
https://github.com/babel/babel-jest
https://github.com/vuejs/vue-cli
https://github.com/vuejs/vue-jest
https://github.com/babel/babel-jest

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 3

"^.+\\.js$": "<rootDir>/node_modules/babel-jest",
".*\\.(vue)$": "<rootDir>/node_modules/vue-jest"

}
}
...

moduleFileExtensions informa a Jest de qué extensiones tiene que buscar, y transform
qué preprocesador usar para cada extensión.

Y por fin, añadimos un script test al package.json:

{
"scripts": {

"test": "jest",
...

},
...

}

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 4

Testeando un Componente

Para los ejercicios, usaremos Single File Components, ya que no he probado qué tal
funciona con archivos html, css y js sueltos, así que asumimos que estarás usando
SFC también.

Crearemos un ListaMensajes.vue componente en src/components:

<template>

<li v-for="mensaje in mensajes">{{ mensaje }}

</template>

<script>
export default {

name: 'list',
props: ['mensajes']

}
</script>

Y lo añadimos al App.vue para que se utilice, de la siguiente manera:

<template>
<div id="app"><ListaMensajes :mensajes="mensajes" /></div>

</template>

<script>
import ListaMensajes from './components/ListaMensajes'

export default {
name: 'app',
data: () => ({ mensajes: ['Hola Don Pepito', 'Hola Don José'] }),
components: {
ListaMensajes

}
}

</script>

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 5

Ya tenemos, entonces, dos componentes que podríamos testear. Crearemos la carpeta
test en el directorio raíz del proyecto, y un App.test.js:

import Vue from 'vue'
import App from '../src/App'

describe('App.test.js', () => {
let cmp, vm

beforeEach(() => {
cmp = Vue.extend(App) // Crea una copia del componente original
vm = new cmp({
data: {
// Reemplazamos el estado local con datos _fake_
mensajes: ['Gatito']

}
}).$mount() // Lo instanciamos y montamos

})

it('mensajes es igual a ["Gatito"]', () => {
expect(vm.mensajes).toEqual(['Gatito'])

})
})

Ahora, si ejecutamos npm test (o npm t como atajo), los tests deberían ejecutarse
y pasar. Como vamos a estar modificando los tests, será mejor que lo ejecutemos en
watch mode:

npm t -- --watch

El problema de los componentes anidados:

El test anterior era demasiado baladí. Vamos a comprobar que el output es también
el esperado. Para ello utilizaremos la maravillosa funcionalidad de Jest que son los
Snapshots. Generarán una foto o captura (“snapshot”) del output y la compara-
rá con ulteriores ejecuciones. Para ello, añadiremos después del it() anterior en
App.test.js:

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 6

it('tiene la estructura html esperada', () => {
expect(vm.$el).toMatchSnapshot()

})

Ésto creará un archivo test/__snapshots__/App.test.js.snap. Si inspeccionamos
su contenido:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`App.test.js tiene la estructura html esperada 1`] = `
<div

id="app"
>

Gatito

</div>
`

Por si no te habías percatado, tenemos un problema aquí: el componente ListaMensajes
se ha renderizado también. Y los test unitarios tienen que ser unidades indepen-
dientes, con lo que en App.test.js intentaremos testear el componente App y no
involucrarnos con nada más.

Si no seguimos esta norma, pronto nos encontraríamos con problemas. Por ejemplo si
nuestro componente hijo (ListaMensajes en este caso) llevara a cabo side effects en
el hook de created(), como hacer una petición fetch(), o a una acción de Vuex o
que cambiara el estado local… Eso es algo que recomendaría evitar.

Por suerte, la funcionalidad del Shallow Rendering nos ayuda con este problema.

Qué es Shallow Rendering?

Shallow Rendering⁸ (“renderizado superficial”) es una técnica que nos asegura que
nuestro componente se renderizará sin hijos. Lo cuá es útil para:

⁸http://airbnb.io/enzyme/docs/api/shallow.html

http://airbnb.io/enzyme/docs/api/shallow.html
http://airbnb.io/enzyme/docs/api/shallow.html

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 7

• Testear sólo el componente que queremos testear (que es lo que viene siendo el
testing unitario).

• Evitar side effects que los componentes hijos pudieran causar, como llamadas
HTTP, acciones del store…

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 8

Testeando con @vue/test-utils

@vue/test-utils nos brinda la funcionalidad del Shallow Rendering. Podríamos re-
escribir el test anterior de la siguiente manera:

import { shallowMount } from '@vue/test-utils'
import App from '../src/App'

describe('App.test.js', () => {
let cmp

beforeEach(() => {
cmp = shallowMount(App, {
// Crea una instancia superficial del componente
data: {

mensajes: ['Gatito']
}

})
})

it('mensajes es igual a ["Gatito"]', () => {
// En cmp.vm, podemos acceder a los métodos de la instancia componente
expect(cmp.vm.mensajes).toEqual(['Gatito'])

})

it('tiene la estructura html esperada', () => {
expect(cmp.element).toMatchSnapshot()

})
})

A continuación, si todavía estamos en watching mode:

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 9

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`App.test.js tiene la estructura html esperada 1`] = `
<div

id="app"
>

<!-- -->
</div>
`

Ves? AHora ningún hijo se renderiza y hemos testeado el componente App de manera
totalmente aislada del árbol de componentes. De la misma manera, si hubiéramos
añadido algún created() o algún otro hook en los componentes hijos, no se habrían
llamado tampoco �.

Si se te despierta la curiosidad sobre cómo el shallow render se implementa, puedes
ver el código fuente⁹ y verás que básicamente está sustituyendo las claves de los
componentes.

Asimismo, puedes implementar ListaMensajes.test.js como sigue:

import { mount } from '@vue/test-utils'
import ListaMensajes from '../src/components/ListaMensajes'

describe('ListaMensajes.test.js', () => {
let cmp

beforeEach(() => {
cmp = mount(ListaMensajes, {
// Ojo: las `props` se sobreescriben con ``propsData`
propsData: {

mensajes: ['Gatito']
}

})
})

it('ha recibido ["Gatito"] como la propiedad mensajes', () => {
expect(cmp.vm.mensajes).toEqual(['Gatito'])

⁹https://github.com/vuejs/vue-test-utils/blob/dev/packages/shared/stub-components.js

https://github.com/vuejs/vue-test-utils/blob/dev/packages/shared/stub-components.js
https://github.com/vuejs/vue-test-utils/blob/dev/packages/shared/stub-components.js

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 10

})

it('tiene la estructura html esperada', () => {
expect(cmp.element).toMatchSnapshot()

})
})

Encuentra los ejemplos completos en github¹⁰.

¹⁰https://github.com/alexjoverm/vue-testing-series/tree/lesson-1

https://github.com/alexjoverm/vue-testing-series/tree/lesson-1
https://github.com/alexjoverm/vue-testing-series/tree/lesson-1

	Tabla de contenidos
	Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest
	Set up de un proyecto de ejemplo
	Testeando un Componente
	Testeando con @vue/test-utils

