A\ 4

Testeando
componentes de

Vue.js
cOn

Jest

Testeando Componentes de Vue.js con
Jest

Una guia concisa y practica para testear
componentes de Vue.js usando Jest y la libreria
oficial vue-test-utils

Alex Jover Morales y Paul Melero
Este libro esta a la venta en http://leanpub.com/testeando-vuejs

Esta version se publico en 2018-12-26

)

Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el
proceso de publicacion. Lean Publishing es el acto de publicar un libro en progreso
usando herramientas sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 Alex Jover Morales y Paul Melero

http://leanpub.com/testeando-vuejs
http://leanpub.com/
http://leanpub.com/manifesto

Indice general

1. Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest .
Set up de un proyectodeejemplo L L
Testeando un Componente,
Testeando con @vue/test-utils

o DN =

1. Escribe tu Primer Test
Unitario de un Componente
de Vue.js con Jest

Vamos a aprender como escribir test unitarios con las herramientas oficiales de Vue]S
y el framework Jest.

vue-test-utils’, es la libreria oficial de testing de Vue]S y esta basada en su predecesora
avoriaz’. @EddYerburgh® hizo un excepcional trabajo sentando las bases del testing
en Vue con dicha libreria.

Jest®, por otro lado es un framework de testing desarrollado en Facebook, que hace
que el testing unitario sea super asequible, con funcionalidades como:

« Casi 0-config, por defecto.

« Un “Modo interactivo”.

« Ejecutar tests en paralelo.

« Spies, stubs' y mocks.

« Coverage de codigo.

« Introduce el concepto de Snapshot testing.

« Y aporta utilidades de Module mocking (Simulaciéon de médulos).

Probablemente ya hayas escrito tests sin estas herramientas, usando “solamente”
Karma, Mocha, Chai, Sinon, Istanbul..., pero veréis que con Jest se facilita en gran
medida el proceso K.

1https:// github.com/vuejs/vue-test-utils
thtps:/ /github.com/eddyerburgh/avoriaz
3https:/ /twitter.com/EddYerburgh
4https://facebook.github.io/jest

https://github.com/vuejs/vue-test-utils
https://github.com/eddyerburgh/avoriaz
https://twitter.com/EddYerburgh
https://facebook.github.io/jest
https://github.com/vuejs/vue-test-utils
https://github.com/eddyerburgh/avoriaz
https://twitter.com/EddYerburgh
https://facebook.github.io/jest

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 2
Set up de un proyecto de ejemplo

Para el scaffolding vamos a utilizar vue-c14® y por defecto contestaremos NO a todas
las preguntas que nos aparecen. Llamaremos al proyecto “vue-test”:

npm install -g vue-cli
vue 1init webpack vue-test
cd vue-test

Lo siguiente sera instalar algunas dependencias

Instalar dependencias
npm i -D jest vue-jest babel-jest

vue-jest® se usa para que Jest entienda los archivos .vue, y babel-jest’ para la
integracion con Babel.

Y ademas:
npm i -D @vue/test-utils

Vamos a anadir la siguiente configuracion en nuestro package.json: (también puede
ir en su propio archivo de configuracion)

"jest": {
"moduleNameMapper": {
"Avues$": "vue/dist/vue.common.js"
I
"moduleFileExtensions": [
"js",
"vue"
1,

"transform": {

5https:/ /github.com/vuejs/vue-cli
6https://github.com/vuejs/vue-jest
7https:// github.com/babel/babel-jest

https://github.com/vuejs/vue-cli
https://github.com/vuejs/vue-jest
https://github.com/babel/babel-jest
https://github.com/vuejs/vue-cli
https://github.com/vuejs/vue-jest
https://github.com/babel/babel-jest

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 3

"A,+\\.js$": "<rootDir>/node_modules/babel-jest",
".x\\.(vue)$": "<rootDir>/node_modules/vue-jest"

moduleFileExtensions informa a Jest de qué extensiones tiene que buscar, y transform
qué preprocesador usar para cada extension.

Y por fin, afadimos un script test al package.json:

"scripts": {
"test": "jest",

s

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 4

Testeando un Componente

Para los ejercicios, usaremos Single File Components, ya que no he probado qué tal

funciona con archivos html, css y js sueltos, asi que asumimos que estaras usando
SFC también.

Crearemos un ListaMensajes.vue componente en src/components:

<template>

<1i v-for="mensaje in mensajes">{{ mensaje }}</1i>

</template>

<script>
export default {
name: 'list',
props: ['mensajes']
}

</script>
Y lo afiadimos al App.vue para que se utilice, de la siguiente manera:

<template>
<div id="app'"><ListaMensajes :mensajes="mensajes" /></div>
</template>

<script>
import ListaMensajes from './components/ListaMensajes'

export default {
name: 'app',
data: () => ({ mensajes: ['Hola Don Pepito', 'Hola Don José'] }),
components: {
ListaMensajes

}

</script>

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 5

Ya tenemos, entonces, dos componentes que podriamos testear. Crearemos la carpeta
test en el directorio raiz del proyecto, y un App.test.js:

import Vue from 'vue'
import App from '../src/App'

describe('App.test.js', () => {
let cmp, vm

beforeEach(() => {
cmp = Vue.extend(App) // Crea una copia del componente original
vm = new cmp({
data: {
// Reemplazamos el estado local con datos _fake_
mensajes: ['Gatito']
}

}).$mount() // Lo instanciamos y montamos

i)

it('mensajes es digual a ["Gatito"]', () => {
expect(vm.mensajes).toEqual(['Gatito'])
1)
1)

Ahora, si ejecutamos npm test (0 npm t como atajo), los tests deberian ejecutarse
y pasar. Como vamos a estar modificando los tests, sera mejor que lo ejecutemos en
watch mode:

npm t -- --watch

El problema de los componentes anidados:

El test anterior era demasiado baladi. Vamos a comprobar que el output es también
el esperado. Para ello utilizaremos la maravillosa funcionalidad de Jest que son los
Snapshots. Generaran una foto o captura (“snapshot”) del output y la compara-
ra con ulteriores ejecuciones. Para ello, anadiremos después del it() anterior en
App.test.js:

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 6

it('tiene la estructura html esperada', () => {
expect(vm.$el) .toMatchSnapshot()
1)

Esto creara un archivo test/__snapshots__/App.test.js.snap. Si inspeccionamos
su contenido:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[App.test.js tiene la estructura html esperada 1] =
<div
'id:"app"

Gatito
</1i>

</div>

Por si no te habias percatado, tenemos un problema aqui: el componente ListaMensajes
se ha renderizado también. Y los test unitarios tienen que ser unidades indepen-
dientes, con lo que en App.test.js intentaremos testear el componente App y no
involucrarnos con nada mas.

Si no seguimos esta norma, pronto nos encontrariamos con problemas. Por ejemplo si
nuestro componente hijo (ListaMensajes en este caso) llevara a cabo side effects en
el hook de created(), como hacer una peticiéon fetch(), o a una acciéon de Vuex o
que cambiara el estado local... Eso es algo que recomendaria evitar.

Por suerte, la funcionalidad del Shallow Rendering nos ayuda con este problema.

Qué es Shallow Rendering?

Shallow Rendering® (“renderizado superficial”) es una técnica que nos asegura que
nuestro componente se renderizara sin hijos. Lo cua es util para:

8http:/ /airbnb.io/enzyme/docs/api/shallow.html

http://airbnb.io/enzyme/docs/api/shallow.html
http://airbnb.io/enzyme/docs/api/shallow.html

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 7

« Testear so6lo el componente que queremos testear (que es lo que viene siendo el
testing unitario).

« Evitar side effects que los componentes hijos pudieran causar, como llamadas
HTTP, acciones del store...

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 8
Testeando con @vue/test-utils

@vue/test-utils nos brinda la funcionalidad del Shallow Rendering. Podriamos re-
escribir el test anterior de la siguiente manera:

import { shallowMount } from '@vue/test-utils'
import App from '../src/App'

describe('App.test.js', () => {
let cmp

beforeEach(() => {
cmp = shallowMount(App, {
// Crea una instancia superficial del componente
data: {
mensajes: ['Gatito']
}
1)
1)

it('mensajes es igual a ["Gatito"]', () => {
// En cmp.vm, podemos acceder a los métodos de la instancia componente
expect(cmp.vm.mensajes).toEqual(['Gatito'])

i)

it('tiene la estructura html esperada', () => {
expect(cmp.element) .toMatchSnapshot()
})
1)

A continuacion, si todavia estamos en watching mode:

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest 9

// Jest Snapshot vl1, https://goo.gl/fbAQLP

exports[App.test.js tiene la estructura html esperada 1°] =
<div
1'd:"app"

<l—= —=>
</div>

Ves? AHora ningun hijo se renderiza y hemos testeado el componente App de manera
totalmente aislada del arbol de componentes. De la misma manera, si hubiéramos
anadido algun created() o algtn otro hook en los componentes hijos, no se habrian
llamado tampoco X.

Si se te despierta la curiosidad sobre como el shallow render se implementa, puedes
ver el codigo fuente’ y veras que basicamente esta sustituyendo las claves de los
componentes.

Asimismo, puedes implementar ListaMensajes.test.js como sigue:

import { mount } from '@vue/test-utils'
import ListaMensajes from '../src/components/ListaMensajes'

describe('ListaMensajes.test.js', () => {
let cmp

beforeEach(() => {
cmp = mount(ListaMensajes, {
// O0jo: las "props’ se sobreescriben con " “propsData’
propsData: {
mensajes: ['Gatito']
}
})
})

it('ha recibido ["Gatito"] como la propiedad mensajes', () => {
expect(cmp.vm.mensajes).toEqual(['Gatito'])

9https:// github.com/vuejs/vue-test-utils/blob/dev/packages/shared/stub-components.js

https://github.com/vuejs/vue-test-utils/blob/dev/packages/shared/stub-components.js
https://github.com/vuejs/vue-test-utils/blob/dev/packages/shared/stub-components.js

Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest

i)

it('tiene la estructura html esperada', () => {
expect(cmp.element) .toMatchSnapshot()
1)
1)

Encuentra los ejemplos completos en github*’.

1Ohttps:// github.com/alexjoverm/vue-testing-series/tree/lesson-1

10

https://github.com/alexjoverm/vue-testing-series/tree/lesson-1
https://github.com/alexjoverm/vue-testing-series/tree/lesson-1

	Tabla de contenidos
	Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest
	Set up de un proyecto de ejemplo
	Testeando un Componente
	Testeando con @vue/test-utils

