

[image: Testeando Componentes de Vue.js con Jest]

 Testeando Componentes de Vue.js con Jest

 Una guía concisa y práctica para testear componentes de Vue.js usando Jest y la librería oficial vue-test-utils

 Alex Jover Morales y Paul Melero

 Este libro está a la venta en http://leanpub.com/testeando-vuejs

 Esta versión se publicó en 26/12/2018

 [image: publisher's logo]

 * * * * *

 Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de publicación. Lean Publishing es el acto de publicar un libro en progreso usando herramientas sencillas y muchas iteraciones para obtener feedback del lector hasta conseguir tener el libro adecuado.

 * * * * *

© 2018 Alex Jover Morales y Paul Melero

 Tabla de contenidos

 	
 1. Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest

 	
 Set up de un proyecto de ejemplo

 	
 Testeando un Componente

 	
 Testeando con @vue/test-utils

 Guide

 	
 Begin Reading

1. Escribe tu Primer Test Unitario de un Componente de Vue.js con Jest

Vamos a aprender cómo escribir test unitarios con las herramientas oficiales de VueJS y el framework Jest.

vue-test-utils, es la librería oficial de testing de VueJS y está basada en su predecesora avoriaz. @EddYerburgh hizo un excepcional trabajo sentando las bases del testing en Vue con dicha librería.

Jest, por otro lado es un framework de testing desarrollado en Facebook, que hace que el testing unitario sea súper asequible, con funcionalidades como:

 	Casi 0-config, por defecto.

 	Un “Modo interactivo”.

 	Ejecutar tests en paralelo.

 	
Spies, stubs y mocks.

 	
Coverage de código.

 	Introduce el concepto de Snapshot testing.

 	Y aporta utilidades de Module mocking (Simulación de módulos).

Probablemente ya hayas escrito tests sin estas herramientas, usando “solamente” Karma, Mocha, Chai, Sinon, Istanbul…, pero veréis que con Jest se facilita en gran medida el proceso 😉.

Set up de un proyecto de ejemplo

Para el scaffolding vamos a utilizar vue-cli y por defecto contestaremos NO a todas las preguntas que nos aparecen. Llamaremos al proyecto “vue-test”:

npm install -g vue-cli
vue init webpack vue-test
cd vue-test

Lo siguiente será instalar algunas dependencias

Instalar dependencias
npm i -D jest vue-jest babel-jest

vue-jest se usa para que Jest entienda los archivos .vue, y babel-jest para la integración con Babel.

Y además:

npm i -D @vue/test-utils

Vamos a añadir la siguiente configuración en nuestro package.json: (también puede ir en su propio archivo de configuración)

...
"jest": {
 "moduleNameMapper": {
 "^vue$": "vue/dist/vue.common.js"
 },
 "moduleFileExtensions": [
 "js",
 "vue"
],
 "transform": {
 "^.+\\.js$": "<rootDir>/node_modules/babel-jest",
 ".*\\.(vue)$": "<rootDir>/node_modules/vue-jest"
 }
}
...

moduleFileExtensions informa a Jest de qué extensiones tiene que buscar, y transform qué preprocesador usar para cada extensión.

Y por fin, añadimos un script test al package.json:

{
 "scripts": {
 "test": "jest",
 ...
 },
 ...
}

Testeando un Componente

Para los ejercicios, usaremos Single File Components, ya que no he probado qué tal funciona con archivos html, css y js sueltos, así que asumimos que estarás usando SFC también.

Crearemos un ListaMensajes.vue componente en src/components:

<template>

 <li v-for="mensaje in mensajes">{{ mensaje }}

</template>

<script>
 export default {
 name: 'list',
 props: ['mensajes']
 }
</script>

Y lo añadimos al App.vue para que se utilice, de la siguiente manera:

<template>
 <div id="app"><ListaMensajes :mensajes="mensajes" /></div>
</template>

<script>
 import ListaMensajes from './components/ListaMensajes'

 export default {
 name: 'app',
 data: () => ({ mensajes: ['Hola Don Pepito', 'Hola Don José'] }),
 components: {
 ListaMensajes
 }
 }
</script>

Ya tenemos, entonces, dos componentes que podríamos testear. Crearemos la carpeta test en el directorio raíz del proyecto, y un App.test.js:

import Vue from 'vue'
import App from '../src/App'

describe('App.test.js', () => {
 let cmp, vm

 beforeEach(() => {
 cmp = Vue.extend(App) // Crea una copia del componente original
 vm = new cmp({
 data: {
 // Reemplazamos el estado local con datos _fake_
 mensajes: ['Gatito']
 }
 }).$mount() // Lo instanciamos y montamos
 })

 it('mensajes es igual a ["Gatito"]', () => {
 expect(vm.mensajes).toEqual(['Gatito'])
 })
})

Ahora, si ejecutamos npm test (o npm t como atajo), los tests deberían ejecutarse y pasar. Como vamos a estar modificando los tests, será mejor que lo ejecutemos en watch mode:

npm t -- --watch

El problema de los componentes anidados:

El test anterior era demasiado baladí. Vamos a comprobar que el output es también el esperado. Para ello utilizaremos la maravillosa funcionalidad de Jest que son los Snapshots. Generarán una foto o captura (“snapshot”) del output y la comparará con ulteriores ejecuciones. Para ello, añadiremos después del it() anterior en App.test.js:

it('tiene la estructura html esperada', () => {
 expect(vm.$el).toMatchSnapshot()
})

Ésto creará un archivo test/__snapshots__/App.test.js.snap. Si inspeccionamos su contenido:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`App.test.js tiene la estructura html esperada 1`] = `
<div
 id="app"
>

 Gatito

</div>
`

Por si no te habías percatado, tenemos un problema aquí: el componente ListaMensajes se ha renderizado también. Y los test unitarios tienen que ser unidades independientes, con lo que en App.test.js intentaremos testear el componente App y no involucrarnos con nada más.

Si no seguimos esta norma, pronto nos encontraríamos con problemas. Por ejemplo si nuestro componente hijo (ListaMensajes en este caso) llevara a cabo side effects en el hook de created(), como hacer una petición fetch(), o a una acción de Vuex o que cambiara el estado local… Eso es algo que recomendaría evitar.

Por suerte, la funcionalidad del Shallow Rendering nos ayuda con este problema.

Qué es Shallow Rendering?

Shallow Rendering (“renderizado superficial”) es una técnica que nos asegura que nuestro componente se renderizará sin hijos. Lo cuá es útil para:

 	Testear sólo el componente que queremos testear (que es lo que viene siendo el testing unitario).

 	Evitar side effects que los componentes hijos pudieran causar, como llamadas HTTP, acciones del store…

Testeando con @vue/test-utils

@vue/test-utils nos brinda la funcionalidad del Shallow Rendering. Podríamos re-escribir el test anterior de la siguiente manera:

import { shallowMount } from '@vue/test-utils'
import App from '../src/App'

describe('App.test.js', () => {
 let cmp

 beforeEach(() => {
 cmp = shallowMount(App, {
 // Crea una instancia superficial del componente
 data: {
 mensajes: ['Gatito']
 }
 })
 })

 it('mensajes es igual a ["Gatito"]', () => {
 // En cmp.vm, podemos acceder a los métodos de la instancia componente
 expect(cmp.vm.mensajes).toEqual(['Gatito'])
 })

 it('tiene la estructura html esperada', () => {
 expect(cmp.element).toMatchSnapshot()
 })
})

A continuación, si todavía estamos en watching mode:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`App.test.js tiene la estructura html esperada 1`] = `
<div
 id="app"
>
 <!-- -->
</div>
`

Ves? AHora ningún hijo se renderiza y hemos testeado el componente App de manera totalmente aislada del árbol de componentes. De la misma manera, si hubiéramos añadido algún created() o algún otro hook en los componentes hijos, no se habrían llamado tampoco 😉.

Si se te despierta la curiosidad sobre cómo el shallow render se implementa, puedes ver el código fuente y verás que básicamente está sustituyendo las claves de los componentes.

Asimismo, puedes implementar ListaMensajes.test.js como sigue:

import { mount } from '@vue/test-utils'
import ListaMensajes from '../src/components/ListaMensajes'

describe('ListaMensajes.test.js', () => {
 let cmp

 beforeEach(() => {
 cmp = mount(ListaMensajes, {
 // Ojo: las `props` se sobreescriben con ``propsData`
 propsData: {
 mensajes: ['Gatito']
 }
 })
 })

 it('ha recibido ["Gatito"] como la propiedad mensajes', () => {
 expect(cmp.vm.mensajes).toEqual(['Gatito'])
 })

 it('tiene la estructura html esperada', () => {
 expect(cmp.element).toMatchSnapshot()
 })
})

Encuentra los ejemplos completos en github.

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
Testeando
componentes de
Vue.js
con

Jest

Revisor y
Traduccidén de Autor original
Paul Melero Alex Jover

@paul_melero @alexjoverm

