

Technical Agile Coaching with
the Samman method

Emily Bache

This book is for sale at http://leanpub.com/techagilecoach

This version was published on 2023-02-16

This is a Leanpub book. Leanpub empowers authors and publishers
with the Lean Publishing process. Lean Publishing is the act of
publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book
and build traction once you do.

© 2019 - 2023 Emily Bache

http://leanpub.com/techagilecoach
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!
Please help Emily Bache by spreading the word about this book on
Twitter!

The suggested hashtag for this book is #coachingsamman.

Find out what other people are saying about the book by clicking on
this link to search for this hashtag on Twitter:

#coachingsamman

http://twitter.com
https://twitter.com/search?q=%23coachingsamman
https://twitter.com/search?q=%23coachingsamman

Also By Emily Bache
The Coding Dojo Handbook

Mocks, Fakes and Stubs

https://leanpub.com/u/emilybache
https://leanpub.com/codingdojohandbook
https://leanpub.com/mocks-fakes-stubs

Contents

Introduction . i
Samman Technical Coaching ii
Why would an organization engage in Samman Technical

Coaching? . iii
Why would you choose to coach using the Sammanmethod? iv
Elevator pitch for Samman Technical Coaching v
What is in this book . vi
How this book relates to my other books vii
Acknowledgments . viii

The purpose of Samman Coaching ix
Development techniques . ix
Levelling up a whole team together xi
Expected outcomes . xii

Part 1: Ensemble Working 1

Ensemble Primer . 3
Typist . 3
Navigator . 3
Team-members . 4
Group Discussions . 5
Facilitator . 5
Rotating roles . 5
Other ensemble roles . 6
The Coach role . 6

Final Thoughts . 7
What is the most important thing to remember? 7

CONTENTS

Where can I find out more? 7

Introduction
There are 5000 lines of code in the file of code that appears on the
screen in front of you. One of the team members, Lars, explains he
has had several bug reports connected to a few of the private functions
defined here. Lars would like there to be some unit tests for this
code. Time to roll up your sleeves and get stuck in! You spend a few
minutes discussing possible approaches with the team and decide to
try a technique they haven’t used before. The ensemble gets rolling
with you initially in the navigation role. A couple of sessions later
everyone is taking their turn and the code is starting to be covered
by tests. Lars comments he likes the feeling of freedom to change the
design and get quick feedback in the form of passing or failing tests.
It should be easier to find and fix bugs in this code now.

At the same time you are also working with a second team. Their
task is to write a completely new piece of functionality. Patrik, (a
team member), has done some experiments, sketched out an overall
approach, but he hasn’t written much code or any unit tests yet.
People in this team don’t normally use tests to help drive their design
and they are curious to try it. You facilitate a whiteboard discussion
to create a rough test list and articulate an initial goal. You set up
the ensemble timer and ask Patrik to become the navigator and begin
writing the first test.With some prompting from you, hemakes a good
start. When the timer pings he hands over to another team member.
A couple of rotations later everyone can see the test both compile and
fail. Success! The first step of TDD is complete. Making the test pass
turns out to be straightforward, so the next navigator soon moves
on to write the next test. Over the course of a few sessions Patrik and
everyone in his teamwill experience doing Test-Driven Development
in their production code. Patrik comments it was actually fun to write
the tests this way instead of afterwards.

One hour each day is set aside to do some practice and learn new
techniques. In one of these “Learning Hour” sessions both teams are
gathered and you have prepared some materials about the “Golden

Introduction ii

Rule of TDD”. You ask the group to call out five important things
to remember when doing Test-Driven Development. This is a quick
warmup to remind everyone what they already know about TDD,
and you write up what they say on the whiteboard. Nobody quite
expresses the golden rule although one person was close. You explain
the rule: Don’t create any production code without a failing test that
requires it! Next is the most fun part - writing code. Working in pairs
on a simple exercise, everyone tries to apply the golden rule. When
there are a few minutes left of the session, we stop coding to discuss
what happened. Several people found themselves writing the code
first by mistake. One person was doing well then wanted to create
new code in a refactoring step.Was that ok? A short discussion ensues.
At the end of the session everyone goes away with a sticky note or
a screenshot of the rule and homework to try the exercise again by
themselves.

Does this way of working sound interesting to you? It’s called the
Samman method and it’s a way of doing Technical Agile Coaching.
The rest of the book explains all about it.

Samman Technical Coaching

Samman Technical Coaching is a method for people who want to
make a difference and improve the way software is built. The focus
is specifically on technical practices and how people write code. The
foundation of it is cultivating good relationships with the people you
work with. The rest is about effective ways to learn from one another
and to change behaviours for the long term.

A Samman coach divides their time between several software devel-
opment teams and there are two main parts to the method:

• Learning Hour
• Ensemble Working

In the learning hour the coach uses exercises and active learning
techniques to teach the theory and practice of skills like Test-Driven
Development and Refactoring. In the Ensemble sessions the whole

Introduction iii

team collaborates together with the coach in applying agile develop-
ment techniques in their usual production codebase.

I chose the word ‘Samman’ to describe this coaching method since so
much of it involves working in an ensemble. “Ensemble” is a French
word meaning “together”. “Samman” is a Swedish word that also
means “together”. I wanted to distinguish this method from other
ways to do coaching and make it easier to search for on the internet.

Why would an organization engage in
Samman Technical Coaching?

What’s in it for them? For the organization investing in coaching?
Well ultimately, increased business agility and success. If a company
is building a software product, then the way people write code
actually matters quite a lot. Specifically:

• Good technical practices mean the organization can build new
features with a shorter lead time and higher quality. That should
mean meeting deadlines and delivering reliable software. This
brings happier customers and a successful business.

• Skilled developers will want to work for an organization with
high quality code, effective development practices and a healthy
culture.

• The company needs to avoid drowning in technical debt. If it
piles up toomuch developers will ultimately be unable to deliver
any new features in a timely or cost effective manner. That is a
serious risk for any business.

There is well respected research that shows exactly these effects. The
book Accelerate by Forsgren et al. explains the remarkable findings
from amulti-year study of software development organizations. They
studied many factors, and identified those that contribute most
strongly to business success. In particular they highlight the practice
of Continuous Delivery. That umbrella term includes several techni-
cal and organizational practices, including Test-Driven Development.

Introduction iv

In follow-up research¹ the same authors also found that technical debt
directly reduces developer productivity.

Why would you choose to coach using
the Samman method?

What’s in it for you as coach? Well, it’s the best method I know for
improving the code that gets written. Life as a developer is more fun
when the quality of the design and the tests is high. It’s easier and
faster to add functionality, please the users, meet your commitments,
keep your boss happy, all of that. Plus when the code is well-written
and the design is flexible you’re more likely to get to introduce fun
new tools and technology.

Those are all benefits of the end result - higher quality code. Benefits
for you personally doing the job as coach:

• It’s challenging and interesting. You never know what code the
team is going to put up on your screen, and you never know how
people will react when you ask them to work as an ensemble, do
TDD, refactoring etc. There is a lot of variety in the interactions
and the kinds of problems you face.

• You can have a bigger effect than you would in other roles. You
get to influence several teams over a few weeks of coaching.
Over months and years you influence several organizations.

• Teaching is inherently rewarding - witnessing someone start to
understand a new concept and recognize how they can apply it
in their work. That feeling when you see that happen. Gold.

I can’t cite statistically sound research to prove these points, unfor-
tunately. I just encourage you to try it for yourself and see if it
works. You should see improved code and happier teams following
your coaching. The other important question is whether you enjoy
working this way. I know I do.

¹https://cloud.google.com/devops/state-of-devops/

https://cloud.google.com/devops/state-of-devops/
https://cloud.google.com/devops/state-of-devops/

Introduction v

Elevator pitch for Samman Technical
Coaching

In order to be successful in modern development organizations,
software developers need new skills. These skills are not easily learnt
on a short training course or at a university. Practices like Continu-
ous Integration and Test-Driven Development require developers to
change their minute-by-minute habits and ways of working.

As with any new skills, the way to learn is through a combination
of teaching and practice. The Samman method includes a series of
short lessons called ‘learning hour’. The coach uses active learning
techniques that are proven to be more effective than lectures. We
work together on code katas and other exercises so developers both
understand the new techniques in theory and experience them in
carefully chosen examples.

The Samman coaching method is also on-the-job, together with
developers in their usual situation. In order to change the way
developers work it’s often not enough to only practice on code katas
and learn theory. The coach works together with development teams
in a structured collaboration called an ‘ensemble’. We learn how to
apply relevant techniques in the actual production code the team
works with daily.

Day in the life of a Samman Technical Coach

Right here at the start of the book I want to give you an idea of how
a typical coaching day could be structured. This is a sample agenda
for coaching 2 teams, in Sweden, where office hours are usually 8-17
and lunchtime is generally 11:30 or 12:00.

08:00 Arrive, check messages, prepare for today’s sessions
09:30 Ensemble working with first team
11:30 Lunch
13:00 Learning Hour with both teams
14:00 Short break
14:15 Ensemble working with second team

Introduction vi

16:15 Debrief, reflect, write a summary report
17:00 Go home on time!

As you can see, the bulk of your time is spent interacting with
people and writing code: Ensemble Working. The next main item
on the agenda is a one hour teaching slot, the Learning Hour. The
rest of your day is spent preparing for those sessions as well as
communicatingwith others in the organization so thewhole coaching
engagement runs smoothly.

The great privilege of a Samman coach is getting to write code for
most of the day, together with others. You work in an environment
where everybody is contributing and learning new skills. You’re using
effective technical practices and writing excellent quality code and
tests together.

What is in this book

This is designed to be a useful handbook for someone working as a
Technical Coach using the Samman method. This introduction gives
you an overview. The next chapter goes into more detail about the
purpose of the coaching - what development practices a Samman
coach promotes. The rest of the book is structured in three parts:

• Part 1: Coaching in an Ensemble - why and how.
• Part 2: Learning Hours - how to plan and execute them.
• Part 3: The overall coaching engagement and your career as a
coach.

I have deliberately gone straight into some detail about ensemble
working in the first section of the book. I wanted to start with themost
exciting, challenging, interesting parts of being a Samman technical
coach. I’d like you to get an impression of what it is like to do this
job. Perhaps a more logical place to start would have been ‘what
kind of person becomes a coach’, ‘what skills do you need’ and ‘how
to get started’. That material is in Part 3. It’s important and useful
information, but first let me tell you stories about what it’s like when
you’ve got there.

Introduction vii

Of course I won’t be offended if you choose to read the parts in
another order than I’ve set them out here. If you’re not thinking of
becoming a coach yourself but perhaps want to hire one, Part 3 might
be more interesting for you than Part 1. Choose the starting point that
works for you.

How this book relates to my other
books

I’ve been a professional software developer for over 20 years, and
during that time I’ve learnt from a lot of great people. I have also spent
a fair amount of time teaching others, particularly in a forum called
‘The Coding Dojo’. In 2011 I published “The Coding Dojo Handbook”²
which is full of advice and experiences to help other programmers to
create such a forum. That book has been moderately successful, and
many programmers have used it to set up coding dojos and improve
their skills. Now, a few years on, I’m feeling the need to write another
book.

You can see this work as an expansion of some of the ideas and
methods I wrote about in ‘The Coding Dojo Handbook’. I’ve learnt a
lot in the roughly 10 years since I wrote it. You don’t need to read that
book to understand this one, I aim for them to be complementary to
one another.

In 2011, I was full of ambition to write a book called “Mocks, Fakes
and Stubs”. Unfortunately I never found the enthusiasm needed for
finishing it, and I don’t know if it will ever be finished. What I have
found enthusiasm for though, is continuing to write code, practice
on Code Katas, and teach others. I’ve been pleased to work with
groups of developers in many contexts, from evening user-group
meetings to company trainings, even an accredited course for an
adult education college. I believe all programmers need to continue to
develop professionally, and I have been finding more effective ways
to help with that. This book is an attempt to write some of them down.

²https://leanpub.com/codingdojohandbook

https://leanpub.com/codingdojohandbook
https://leanpub.com/codingdojohandbook

Introduction viii

Acknowledgments

The main ideas in this coaching method were originally developed
by Llewellyn Falco, and I continue to learn a huge amount from
him. This all started in 2018 when I did some pair-coaching with
Llewellyn and I was impressed with the results he was seeing with
his teams. (You can read about that story towards the end of the book
in the section “How I became a Technical Coach”). I have adapted
Llewellyn’s ideas for my situation and further developed several
aspects of the coaching method. I came up with the name “Samman
Coaching”.

I’d like to thank Llewellyn Falco for so freely sharing his knowledge
and methods with me. I’d like to thank all my colleagues at ProAgile
for all their support and inspiration. I’d also like to thank all the
early readers of this book who gave me feedback, including Samuel
Ytterbrink, Olof Bjarnason, Alexandre Cuva, Per Hammer, Grzegorz
Gałęzowski, Dave Nicolette, J.B. Rainsberger, Ester Daniel Ytterbrink,
Bill Wake, Jo Van Eyck, Joe Wright, Ted M. Young, Dianing Yudono,
Lars Eckart, Clare Macrae, Heidi Helfand, Philippe Bourgau, Sam
Cranford, Thomas Sundberg. I really value you taking the time to
help me write a better book.

The purpose of Samman
Coaching
A Samman coach aims for improved development practices in the
teams they work with. This chapter explains what those practices are
and what outcomes to expect from the coaching.

Development techniques

The choice of these particular development techniques shouldn’t be
controversial, they have been used for years by Agile practitioners
and in DevOps communities. There are many books and training
videos out there explaining how to do them. Samman coaching is
a more effective method for introducing them. The next sections go
through the main practices we aim to introduce and promote.

Better unit tests

Developers should deliver a suite of automated unit tests together
with the code they write. The tests demonstrate each part of the code
works as the authors intended, and documents their assumptions. The
tests provide a safety-net for refactoring and make maintenance less
costly.

In many organizations there are explicit processes in place to ensure
that tests are written. However, many developers still struggle to
write good unit tests. Not many have received any training or
feedback about what tests should look like. In the worst case the tests
can actually increase maintenance costs without providing a useful
safety net.

The purpose of Samman Coaching x

Continuous Integration

With the rise of Agile methods, Continuous Delivery and DevOps,
development schedules are being compressed and teams are expected
to deliver working increments of software more frequently. In my
experience, the way to confidently deliver a new version of the
software every 1-2 week iteration is to integrate and test the software
at least every day, so you always have something ready. If you
want deliveries even more frequently then you need a corresponding
decrease in the length of time between integrations. In general it
means the developers should work only for a few hours between
synchronizing and integrating their code together.

In many organizations the developers are used to working alone in a
branch for days or weeks before integrating their work. They don’t
know the incremental design and refactoring techniques you need to
be able to integrate more often than that. In the worst case everything
looks fine until shortly before the intended release date, when big-
bang integration happens with a string of bug-causing, schedule-
delaying merge conflicts.

Safe refactoring in legacy code

Developers often find themselves working with code that they don’t
understand very well but that they need to change. In this situation
it’s difficult to maintain the overall health of the design and develop-
ers are tempted to make small kludgy fixes. In the long run this just
makes the problem worse. The code becomes more and more difficult
to work with and developer productivity sinks. In the worst case the
organization has to throw this code away and start again.

There are techniques which can prevent this decline. There are safe
refactorings and migrations that developers can use to get difficult
code under control. There are ways to add regression tests without
taking big risks. If developers know the techniques and can use them
skillfully then you can avoid the need for a costly re-write.

The purpose of Samman Coaching xi

Incremental and Iterative Development

These days you don’t plan the whole software up front. You deliver an
increment, get feedback and adjust your plans. In the code, developers
need to use iterative and incremental techniques to develop the
design. You can’t plan the whole architecture up front.

Many developers struggle to iterate the design of the code. They don’t
know the refactoring tools, the design patterns or the signs to look
for that a different design is needed. These are teachable skills. It
is possible to maintain a long-term cadence of regular incremental
releases each with high quality. You need great automated tests and
a culture of constant design improvement.

Levelling up a whole team together

When I first learnt to do Test-DrivenDevelopment andContinuous In-
tegration I was working in a small team on a greenfield development
project. Our culture and ways of working were aligned and we were
very effective together. Unfortunately that product was not successful
in the marketplace and I subsequently moved to another team in the
same organization.

The new team culture was very different. I continued to write
unit tests but my teammates did not. I continued to work in small
increments with frequent integration but my teammates did not. I
quickly realized this was not sustainable. The tests I wrote were
ignored or even deleted by my colleagues. I was reprimanded for
making refactorings that caused merge conflicts for others later on.
I was unhappy. They were unhappy. It didn’t last - I found myself a
new job.

Software development these days is a team sport and it doesn’t work
to only train individuals. Samman coaching aims to create a whole-
team culture shift. In the ensemble working we discuss the minutiae
of how to use new techniques in the particular situation the team
finds themselves in. We build consensus about how this team wants
to work. In the learning hours we discover what development could
be like if we used new ways of working. The team becomes aware

The purpose of Samman Coaching xii

that a different future is possible. The coach helps them gain the skills
needed to go there.

Expected outcomes

Firstly, we aim for awareness of what good unit tests look like, what
continuous integration actually is, that it’s possible to safely refactor
code you don’t initially understand. Next we aim for the insight
that successfully meeting deadlines and delivering high quality code
means learning iterative and incremental development techniques.
Teams gain new aspirations to be good at these things.

In my experience after perhaps 10-20 coaching days most teams will
have reached those insights. These are the first steps on the road to
improving the way that team works and the quality of the code they
deliver. After that, it’s about building skills and anchoring ways of
working in habits and culture.

I first learnt about the methods explained in this book through pair-
coaching with Llewellyn Falco. I was impressed with the results he
was seeing. The outcomes I observed were firstly a clear attitude
change. People wanted to learn these techniques, they saw them as
valuable. Secondly there was one team in particular where they had
become really skilled. Over the course of many days and weeks with
the coach they had changed the way they designed and built their
software. I remember sitting at the back of the room observing this
team working as an ensemble. They were working together smoothly
and productively, creating code and tests in small increments with
high quality.

Those are the outcomes you should see from Samman coaching.
Changes in attitude, increases in skill, improved code quality. Over
time, more productive development teams.

Measuring outcomes

Most people like to see hard evidence that something works before
they spend a lot of money on it. Or at least, they might let you start

The purpose of Samman Coaching xiii

coaching based on your reputation but soon afterwards they will
want evidence. Numbers help with that.

The first thing to measure is attitudes. A simple survey should suffice
to show that after the coaching developers are more enthusiastic
about using these techniques. After that you expect to see improved
code quality, increasing number of test cases, more frequent integra-
tion. Hopefully you can track those kinds of things by examining your
existing development infrastructure.

After a while of coaching you hope to see teams meeting deadlines
more reliably, reductions in production bugs, and fewer calls from
despairing developers who want to re-write the whole system from
scratch.

Ultimately you’d like to observe increased productivity. Unfortu-
nately it’s really difficult to measure the productivity of software
developers. A great deal of research has been done. I recently read
“Rethinking Productivity in Software Engineering”, a compendium of
essays from a number of researchers summarizing the state of the art
in 2019. My conclusion from reading it was that it might be possible
to measure productivity of software developers, but that it is really
difficult and probably outside the reach of most organizations I work
with.

You also need to be aware of Goodhart’s law. Anything you measure
and start to use as a target can become gamed, (ie people work to
get better numbers instead of improving anything important). Some
measurements are more susceptible to that than others. Any numbers
you gather need to be backed up by qualitative measures - talk to
people and find out if they think things really are improving or if it
just appears that way.

Part 1: Ensemble
Working

As a Samman technical coach the majority of your day is spent sitting
with teams working as an ensemble. That is:

“All the brilliant minds working together on the same thing, at the
same time, in the same space, and at the same computer - We call it
‘Mob Programming’“

– Woody Zuill

That quote is from “Mob Programming - a Whole Team Approach”³
byWoody Zuill and KevinMeadows. I originally learnt the technique
from Woody and others close to him. Over the years since then I’ve
come to prefer other words to describe it. I usually say “ensemble”
instead of “mob”. The essence of the technique is the same though.

I like the way the word “ensemble” implies friendly people collaborat-
ing, like a group of musicians. It seems to me to much better describe
what this activity is actually like in practice than the word “mob”. In
Sweden, (where I live), “mobba” actually means “to bully”. It’s not
a good association to make. Another change is I also prefer to say
“typist” instead of “driver”. I like to make it clear the person with the
keyboard is not in charge of the direction the group takes.

A note on pronunciation. “Ensemble” is originally a French word that
has been loaned into many other languages. In English I pronounce
it “on-som-bull”. Your own language may have another way to say it.

³https://leanpub.com/mobprogramming

https://leanpub.com/mobprogramming
https://leanpub.com/mobprogramming

2

This section of the book goes into some detail about what a Samman
technical coach actually does in the ensemble sessions, and why it’s
such an important part of your work.

Ensemble Primer
For those of you who have not experienced working in an ensemble,
a short introduction could be helpful here. Many programmers have
tried pair programming, and conceptually, working in an ensemble
is the same but with more people. You still have only one computer
being used to write code. Everyone present is responsible for the code
being produced, even though only one person at a time is typing.
However, for an ensemble to work smoothly you need more structure
and roles than you generally have in a pair. There are three main roles,
and you rotate roles frequently.

Typist

The typist is the person who has the keyboard and mouse. You use
the development tools and operate the computer. The important rule
here is that you are not allowed to decide what code to write or what
tests to perform. The typist listens carefully to everyone present, and
most particularly to the navigator. You enter the code the ensemble
has decided on, to the best of your ability. The navigator is usually the
spokesperson for the ensemble, but the typist may also follow advice
from other people. You can always ask questions to clarify what is
wanted and ask for more detail.

The typist should be in full control of the editor, the testing tools, the
debugger, the commandline, the refactoring shortcuts - everything
to do with operating the computer. Things like entering new code,
browsing through existing code, running tests and making commits.

Navigator

The navigator speaks for the ensemble and explains to the typist
what code they should enter into the computer. They speak in words,

Ensemble Primer 4

out loud, explaining the development activities they have in mind in
enough detail that the typist knows what to do. In this way, everyone
in the group both hears the navigator explain the work, and sees the
typist do the work.

At first this feels very strange - we are not used to talking about
code in this way. Many people don’t actually know the higher-level
vocabulary for talking about code. An inexperienced lead might say
things like “public int foo parenthesis int bar close parenthesis” when
they’d probably be better off saying “define a function called foo. It
takes one argument, an integer called bar”. You are talking to the
typist, not to a computer! They generally respond well to high-level
descriptions.

Team-members

Everyone who isn’t the typist is a co-navigator in the ensemble.
We all develop the software together. The aim is that the whole
ensemble should instruct the typist with one coherent voice. Usually
that means appointing someone to “be the navigator”. They lead the
work, they are talking and making the detailed decisions. Everyone
else is in a supporting role, quietly waiting for an opportunity to
contribute. With a more experienced ensemble, this leadership role
may not be explicitly appointed, it could simply pass fluidly between
members without any formal handovers. People chip in when they
have something valuable to contribute, and stay quiet otherwise.

Teammembers support both the typist and the navigator. If you know
a good keyboard shortcut the typist doesn’t seem to be using, you
can suggest it. If you can see a way to reduce duplication or improve
design, you can suggest it. The important thing is to choose carefully
when and how to make the suggestion. You don’t want to distract or
cause context-switching or confusion. If the typist and navigator are
getting along well doing something else, wait with your comment.

Choosing your moment to speak and knowing when it’s better to stay
silent is a really important skill. Having said that, it is important that
every member of the ensemble should follow what’s going on. You
should always feel free to ask questions so you understand the code
that’s being written. Just pick your moment wisely.

Ensemble Primer 5

Group Discussions

There will be periods when no code is being entered, and instead we
are discussing what to do. This is a normal part of coding work: we
need to agree on a goal, an approach, a design, a next test case…Many
discussions become more productive when you all stand around a
whiteboard or shared online document and can collaboratively sketch
your ideas. During these discussions you pause the ensemble roles
and let everyone take part equally. It’s wise to have a bias to action -
don’t discuss too long before returning to the ensemble and writing
some code together.

Facilitator

It’s worth remembering that working as an ensemble is a skill that
takes some time for a group to learn. It helps to have a facilitator
whose job it is to keep things working smoothly. This is usually
someone different from the typist or navigator since it’s hard to facil-
itate at the same time as doing one of those other roles. This person
will spend their time reminding people of the working agreements,
making sure roles rotate regularly, and helping the ensemble to reflect
and improve their work together.

As the ensemble gains experience the facilitator may need to inter-
vene less often. It may become a part-time position or disappear alto-
gether. To be honest, I haven’t worked with many really experienced
long-term ensembles and I’m speculating here.

Rotating roles

Most ensembles have some kind of timer that alerts the group when
it’s time to rotate roles. Many build their own - it’s a fun little piece of
software to implement. You can customize it with your own alerting
mechanism and decide exactly how intrusive it should be and what it
should suggest. Many such tools have a list of names and prompt the
next people that it’s their turn to be the navigator and typist. Other
groups have a more informal switching mechanism.

Ensemble Primer 6

Experience from many ensembles suggests it’s a good idea to ask
the person who is currently navigating to become the typist when
you rotate. As typist they have to stop leading the ensemble, and
someone else naturally then finds it easier to step into that role. Other
ensembles prefer to do it the other way around - the typist becomes
the navigator. Typing gives them a good introduction to what’s going
on and they can seamlessly take over when it’s their turn to navigate.

Other ensemble roles

As well as typist and navigator, there are other roles that people
can take as the need arises. A common one is “Researcher”. If the
ensemble gets stuck because no-one remembers the exact syntax or
library function to use, someone can offer to research it. While the
ensemble continues with some other task, the researcher gets onto
another computer and searches the internet. When they have found
something useful they could paste a link into a shared group chat,
or otherwise share it with everyone. The researcher can then take
up their normal role as an ensemble member and explain what they
found out when the group asks for it.

Another useful role to have is “Archivist”. It can be helpful to have
someone writing stuff down - decisions the group makes, alternatives
we looked at, designs we’re following. In particular the archivist
might keep track of the current goal the ensemble is working towards.
It could be written on a whiteboard in the working area, a shared
online document or noted in a ToDo list in the ensemble’s timer.

The Coach role

Now you have a basic understanding of what working in an ensemble
entails, the rest of this section of the book explains how you as a coach
can use this forum to promote better ways of working in the code.

Final Thoughts
Before I close, a few last thoughts about Samman technical coaching.

What is the most important thing to
remember?

The most important thing is that they like you. This is probably true
for all consulting. They won’t listen to you if they think you’re a
moron, or a nasty person, or a fake. Cultivating good relationships
can be hard, but it’s crucial.

Where can I find out more?

You’ll become a better coach if you spend time reflecting on your
work and explaining what you’re doing to other people. Also, listen
to other coaches explain what they do and find out what works for
them. You will hopefully find inspiration and incorporate new ideas
into your work. You could seek conversations with many different
people, for example at conferences, online ensemble programming
sessions or internet discussions.

As well as more general conversations, I’ve found it very valuable to
find one or two trusted peers who I talk with regularly. Other techni-
cal coaches doing the same work as me but in different organizations.
We can talk confidentially and compare notes. This is something I’ve
personally found very important and helpful for my career.

I would like there to be a global community of Samman technical
coaches, exchanging ideas and experiences. I’ve started a website
sammancoaching.org⁴ which I hope will become a resource for this
community. At the time of writing, I don’t yet know what this will

⁴https://sammancoaching.org

https://sammancoaching.org/
https://sammancoaching.org/

Final Thoughts 8

turn into. If you’ve read this book then perhaps you’re interested
enough to check out the site and find out what’s happened since the
book came out.

	Table of Contents
	Introduction
	Samman Technical Coaching
	Why would an organization engage in Samman Technical Coaching?
	Why would you choose to coach using the Samman method?
	Elevator pitch for Samman Technical Coaching
	What is in this book
	How this book relates to my other books
	Acknowledgments

	The purpose of Samman Coaching
	Development techniques
	Levelling up a whole team together
	Expected outcomes

	Part 1: Ensemble Working
	Ensemble Primer
	Typist
	Navigator
	Team-members
	Group Discussions
	Facilitator
	Rotating roles
	Other ensemble roles
	The Coach role

	Final Thoughts
	What is the most important thing to remember?
	Where can I find out more?

