

Taming Thymeleaf
(Sample)

Practical Guide to building a web application with Spring Boot
and Thymeleaf

Wim Deblauwe

Version 1.0.0-SNAPSHOT, 2020-12-26

Table of Contents
Sample introduction . 1

1. Thymeleaf introduction . 2

1.1. What is Thymeleaf? . 2

1.2. Writing our first template. 2

1.3. Writing our first controller . 5

1.4. Thymeleaf expressions. 8

1.4.1. Variables . 8

1.4.2. Text . 9

1.4.3. Selected objects . 10

1.4.4. Link to URLs . 10

1.4.5. Literal substitutions. 11

1.4.6. Expression inlining . 11

1.5. Thymeleaf attributes . 12

1.5.1. Element text content. 12

1.5.2. Element id attribute . 12

1.5.3. Conditional inclusion . 12

1.5.4. Conditional exclusion . 13

1.5.5. Iteration . 13

1.6. Preprocessing . 14

1.7. Summary . 14

Closing . 16

Sample introduction
This book is an excerpt from the Taming Thymeleaf book by Wim Deblauwe.

See the full table of contents and get the book at https://leanpub.com/taming-thymeleaf

Find Wim at @wimdeblauwe on Twitter or email him at wim.deblauwe@gmail.com if you have any
questions.

Taming Thymeleaf (Sample)

Sample introduction | 1

https://leanpub.com/taming-thymeleaf
https://twitter.com/wimdeblauwe
https://twitter.com/wimdeblauwe
mailto:wim.deblauwe@gmail.com

Chapter 1. Thymeleaf introduction

1.1. What is Thymeleaf?
Thymeleaf is a server-side Java template engine that can be used in web and standalone
environments. It is mainly used for HTML, but can also be used for XML, JavaScript, CSS or plain text.

Thymeleaf templates are plain HTML files and are stored in the src/main/resources/templates
folder in a Spring Boot application. [1]

This diagram shows how server-side rendering works:

Browser

Browser

Application

Application

Thymeleaf Engine

Thymeleaf Engine

GET /

Find Controller that matches

with / and build the Model

Find the Thymeleaf template

that matches

Generate HTML using the template

and the Model

return HTML page

return HTML page

1. The browser starts by doing a GET request over the network to the server where the application
runs.

2. The application will match the requested path of the URL to a Controller. This is a piece of
software in our application that will build a kind of Map of java objects that will be used by the
template during rendering. We call this map the Model.

3. The application finds the Thymeleaf template to use for rendering.

4. The application uses the Thymeleaf engine (also running inside the application) to combine the
template with the Java objects in the model. This results in an HTML page.

5. The application returns the generated HTML page to the browser where the browser renders it.

1.2. Writing our first template
Let’s dive right in, building our first template. Starting from the Spring Boot project we created, we add

a new HTML page at src/main/resources/templates called index.html:

Taming Thymeleaf (Sample)

2 | Chapter 1. Thymeleaf introduction

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Taming Thymeleaf</title>
</head>
<body>
<h1>Taming Thymeleaf</h1>
<div>This is a thymeleaf page</div>
</body>
</html>

Start the Spring Boot application and open http://localhost:8080 in your browser. The result should be
similar to this:

Figure 1. Thymeleaf rendering plain HTML page

Of course, there is currently nothing on the page where Thymeleaf actually has to do something. Let’s
put the template engine to work.

Update the index.html page to this:

Taming Thymeleaf (Sample)

Chapter 1. Thymeleaf introduction | 3

http://localhost:8080

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org" ①
 lang="en">
<head>
 <meta charset="UTF-8">
 <title>Taming Thymeleaf</title>
</head>
<body>
<h1>Taming Thymeleaf</h1>
<div th:text="|Sum of 2 + 2 = ${ 2 + 2 }|"></div> ②
</body>
</html>

① Thymeleaf th: namespace declaration. Thymeleaf adds custom tags and attributes to HTML. To
avoid naming conflicts and for clarity, those tags and attributes are put in an XML namespace.

② Use a Thymeleaf expression via the th:text attribute. Thymeleaf will first evaluate the expression

inside the attribute and put the result as the body of the <div> tag that contains the th:text
attribute.

Restart the application and refresh the browser:

Taming Thymeleaf (Sample)

4 | Chapter 1. Thymeleaf introduction

https://en.wikipedia.org/wiki/XML_namespace

Figure 2. Thymeleaf rendering summation expression

Use the 'View source' functionality of your browser to see the exact HTML that Thymeleaf has
rendered.

Natural templates

Thymeleaf uses natural templates. These are HTML files where the basic structure is still normal
HTML tags, but where the dynamic behaviour is defined by Thymeleaf attributes.

The advantage here is that the styling could be done outside of the running application, which
might be easier for a designer.


We will set up a live-reload system for the running application later so we don’t
need to use static templates for styling, while still having a very fast
development cycle.

1.3. Writing our first controller
Our template so far was nice, but not very useful. We obviously want the page to render stuff from

Taming Thymeleaf (Sample)

Chapter 1. Thymeleaf introduction | 5

our application. Let’s do that next.

We are using Thymeleaf with Spring MVC. MVC is an acronym for Model View Controller. It is a well-
known design pattern. You can find more information about it at Model–view–controller on Wikipedia.

There are 3 parts in the pattern:

• The View part is what we have already done when we created our index.html template. It is the
visual part of the design pattern.

• The Controller is what we are going to create next. The controller is responsible for fetching the
data from the application, and showing the correct view according to the requested URL. It usually
has no actual business logic, but delegates to other components in the application.

• The Model is the object that the controller passes to the view with the data to be used for the
rendering of the template.

A controller in Spring MVC is a simple Java class that is annotated with @Controller:

package com.tamingthymeleaf.application;

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;

import java.util.List;

@Controller ①
@RequestMapping("/") ②
public class RootController {

 @GetMapping ③
 public String index(Model model) { ④
 model.addAttribute("pageTitle", "Taming Thymeleaf"); ⑤
 model.addAttribute("scientists", List.of("Albert Einstein",
 "Niels Bohr",
 "James Clerk Maxwell")); ⑥
 return "index"; ⑦
 }
}

① The @Controller annotation indicates to Spring Boot that this class is a controller. The
component scanning will automatically create an instance of this class and add it to the Spring
Context.

② The @RequestMapping annotation sets the root path of the URL for all methods of the class.

③ GetMapping indicates that an HTTP GET will call this method. Note that the name of the method

(index in the example) really does not matter at all for the working of the application.

④ Controller methods can declare parameters of certain types that Spring MVC will inject with the

proper instances. We will later see some other examples, but Model is one of the most important
ones. It allows adding attributes that Thymeleaf can use to render the data.

Taming Thymeleaf (Sample)

6 | Chapter 1. Thymeleaf introduction

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://www.baeldung.com/spring-component-scanning

⑤ We add a simple String value under the pageTitle key to the model.

⑥ We can also add complex objects or collections to the model.

⑦ The return value of a controller method has a few options. One of the simplest ones is to return a

String. The value will be interpreted as the path to the template. With default Spring Boot, this is

relative to the src/main/resources/templates directory.

Component scanning

Spring heavily utilizes something called component scanning. At startup, Spring will search for

classes on the classpath that are annotated with certain annotations like @Component,

@Configuration, @Controller, @Service, @Repository, …

When it finds those, it will automatically register them in the context by creating an instance,
and injecting any declared dependencies (in the constructor usually).

See https://www.baeldung.com/spring-component-scanning for more details.

With this controller in place, we can update the template:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org"
 lang="en">
<head>
 <meta charset="UTF-8">
 <title>Taming Thymeleaf</title>
</head>
<body>
<h1 th:text="${pageTitle}">Taming Thymeleaf</h1> ①
<div>

 <li th:each="scientist : ${scientists}"> ②

</div>
</body>
</html>

① Use the pageTitle model attribute. Note that the actual text Taming Thymeleaf inside the <h1>

tag does not matter at all. Thymeleaf will overwrite it with the contents of pageTitle.

② Use the th:each tag to loop over our collection of scientists.

Start the application and refresh the browser:

Taming Thymeleaf (Sample)

Chapter 1. Thymeleaf introduction | 7

https://www.baeldung.com/spring-component-scanning

Figure 3. Using a controller to supply data to the view

1.4. Thymeleaf expressions
The expression inside the th:* HTML attributes are OGNL (Object-Graph Navigation Language)
expression by default. However, in a Spring Boot application, those are SpringEL (Spring Expression
Language) expressions. Luckely, for most cases, the syntax is exactly the same.

1.4.1. Variables

When a Thymeleaf template gets processed, the application will put variables in the context via the

controller. Those variables can be referenced in the templates via the ${…} syntax.

For example:

<div th:text="${username}"></div>

Suppose there is a String in the Thymeleaf context with the name username that has the value John
Doe, then the HTML will be rendered as:

Taming Thymeleaf (Sample)

8 | Chapter 1. Thymeleaf introduction

http://commons.apache.org/proper/commons-ognl/

<div>John Doe</div>

The variable in the context does not need to be a String. Other types will have their toString()
method invoked.

The Thymeleaf variable syntax is not limited to the exact object that is placed on the context. We can
call methods:

<div th:text="${user.getName()}"></div>

Or if the method name adheres to the JavaBean specification, we can simulate property access:

<div th:text="${user.name}"></div>

Map

If the object in the context is a Map, then dot notation can be used to access a value via its key:

<div th:text="${capitalsOfTheWorld.Belgium}"></div>

Alternatively, use the bracket syntax. For certain keys (E.g. if they contain spaces) you will need to use
the bracket syntax:

<div th:text="${capitalsOfTheWorld['The Netherlands']}"></div>

Array or List

Collections that allow indexed access can be used like this:

<div th:text="${vehiclesList[0].name}"></div>

1.4.2. Text

Most applications will require that they can be translated into the language of the user. Even if it is not
a requirement at the start, you probably want to do this in case it ever becomes a requirement.

The syntax for this is:

<h1 th:text="#{dashboard.title}"></h1>

By default, Spring Boot will pick up translations from a

src/main/resources/messages.properties file.

Taming Thymeleaf (Sample)

Chapter 1. Thymeleaf introduction | 9

https://www.oracle.com/technetwork/articles/javaee/spec-136004.html

src/main/resources/messages.properties

dashboard.title=Dashboard

Additional languages can be added by adding another such file, but postfixing the file name with the

locale. For example, use messages_nl.properties for Dutch translations.

1.4.3. Selected objects

Thymeleaf has a kind of shortcut syntax in case you need to use many properties of a single object.
Suppose you have a template that displays information about a car like this:

<div>
 <p>Brand: </p>
 <p>Type: </p>
 <p>Fuel: </p>
 <p>Color: </p>
</div>

You can avoid the duplication of the car variable by selecting the variable with the th:object
attribute and refer to the properties of the selected object using the *{…} syntax:

<div th:object="${car}">
 <p>Brand: </p>
 <p>Type: </p>
 <p>Fuel: </p>
 <p>Color: </p>
</div>

 If there is no object selected, then ${…} and *{…} are equivalent.

1.4.4. Link to URLs

What would a web application be without URLs? It would have be very simple I guess.

As URLs are so important, there is a special syntax for them: @{…}

This can be used for an absolute URL:

<a th:href="@{https://www.google.com/search?q=thymeleaf">

or a relative URL:

<a th:href="@{/users}">

Taming Thymeleaf (Sample)

10 | Chapter 1. Thymeleaf introduction

We can also use variables inside those links.

This is equivalent to the first example, given searchTerm is a context variable that contains the

thymeleaf string.

<a th:href="@{https://www.google.com/search(q=${searchTerm})">

If the variable is not referenced in the URL itself, it is added as a query parameter. If it is referenced, it
can be used as a path variable:

<!-- Will output '/users/123/edit' -->
<a th:href="@{/users/{userId}/edit(userId=${user.id})">

1.4.5. Literal substitutions

If you need to combine a string literal with a variable, you can do something like this:

<div th:id="'container-' + ${index}"></div>

Thymeleaf has a shortcut syntax that is equivalent using the pipe (|) symbol:

<div th:id="|container-${index}|"></div>

1.4.6. Expression inlining

Instead of using th:* tags to use variables, it might be desirable at times to directly put a variable
result in HTML. This is possible in Thymeleaf using expression inlining.

For example:

The total price is [[${totalPrice}]]

This will render to:

The total price is € 5.00

This is equivalent of:

The total price is € 19.99

The final rendering in that case (Given totalPrice is € 5.00):

Taming Thymeleaf (Sample)

Chapter 1. Thymeleaf introduction | 11

The total price is € 5.00

1.5. Thymeleaf attributes
The Thymeleaf expressions we just saw can be used inside Thymeleaf attributes. For example, the

th:text attribute is one of those. This section will show the most important ones.

1.5.1. Element text content

th:text will place the result of the expression inside the tag it is declared on.

For example:

<div th:text="${username}">Bob</div>

Will render as:

<div>Jane</div>

Given the username variable in the context contains Jane.

1.5.2. Element id attribute

th:id will add an id attribute with the result of the expression on the tag it is declared on.

For example:

<div th:id="|container-${userId}|"></div>

Will render as:

<div id="container-1"></div>

Given the userId variable in the context contains 1.

1.5.3. Conditional inclusion

th:if will render the tag it is declared on only if the expression evaluates to true.

For example:

<div th:if="${user.followerCount > 10}">You are famous</div>

Taming Thymeleaf (Sample)

12 | Chapter 1. Thymeleaf introduction

Will render as:

<div>You are famous</div>

Given the user.followerCount variable in the context a value greater than 10. If the variable is less

than 10, the <div> will not be rendered in the output.

1.5.4. Conditional exclusion

th:unless will render the tag it is declared on only if the expression evaluates to false.

For example:

<div th:unless="${user.followerCount > 0}">You have no followers currently.</div>

Will render as:

<div>You have no followers currently</div>

Given the user.followerCount variable in the context is exactly 0. If the variable is greater than 0,

the <div> will not be rendered in the output.



Thymeleaf has no if/else statement, but this can be easily done by combining

th:if with th:unless. For example:

<div th:if="${user.followerCount > 0}">You have followers currently.</div>
<div th:unless="${user.followerCount > 0}">You have no followers
currently.</div>

Either the first <div> or the 2nd one will be rendered depending on the value of

user.followerCount.

1.5.5. Iteration

th:each allows iterating over a collection. It will create as many tags as there are items in the
collection.

For example:

 <li th:each="scientist : ${scientists}" th:text="${scientist.name}">

Will render as:

Taming Thymeleaf (Sample)

Chapter 1. Thymeleaf introduction | 13

 Marie Curie
 Erwin Schrödinger
 Max Planck

Given the scientists variable in the context references a collection of objects that have a name
property.



Thymeleaf will do the "right thing" you expect in the above example and first

evaluate the th:each and then the th:text. There is a defined precedence in the
attribute processing that ensures the proper order. See Attribute Precedence on the
Thymeleaf website for the exact details.

1.6. Preprocessing
Thymeleaf has a preprocessing expression. This allows to first execute the preprocessing and use the
result of that in the final rendering of the templates.

This will be especially useful for [Fragments] which we will cover later.

As a simple example, consider this snippet:

<h1 th:text="#{__${title}__}"></h1>

Thymeleaf will first substitute ${title} with the value of that parameter. Assume users.title for
example.

This will turn the template into the following:

<h1 th:text="#{users.title}"></h1>

In a 2nd step, Thymeleaf will now execute the th:text and search for the translation key (Due to #{…
}) of users.title and display that in the <h1>.

Final result:

<h1>Users</h1>

1.7. Summary
In this chapter, you learned:

• Thymeleaf templating basics including expressions and attributes.

• Using a controller to pass data from the application to the view.

Taming Thymeleaf (Sample)

14 | Chapter 1. Thymeleaf introduction

https://www.thymeleaf.org/doc/tutorials/3.0/usingthymeleaf.html#attribute-precedence

[1] If you want to use another directory,see Changing the Thymeleaf Template Directory in Spring Boot for more info on how to do
that.

Taming Thymeleaf (Sample)

Chapter 1. Thymeleaf introduction | 15

https://www.baeldung.com/spring-thymeleaf-template-directory

Closing
I hope you enjoyed this free sample of the Taming Thymleaf book.

Keep your learning going by getting the full book at https://leanpub.com/taming-thymeleaf

Happy coding!

Taming Thymeleaf (Sample)

16 | Closing

https://leanpub.com/taming-thymeleaf

	Taming Thymeleaf (Sample): Practical Guide to building a web application with Spring Boot and Thymeleaf
	Table of Contents
	Sample introduction
	Chapter 1. Thymeleaf introduction
	1.1. What is Thymeleaf?
	1.2. Writing our first template
	1.3. Writing our first controller
	1.4. Thymeleaf expressions
	1.4.1. Variables
	1.4.2. Text
	1.4.3. Selected objects
	1.4.4. Link to URLs
	1.4.5. Literal substitutions
	1.4.6. Expression inlining

	1.5. Thymeleaf attributes
	1.5.1. Element text content
	1.5.2. Element id attribute
	1.5.3. Conditional inclusion
	1.5.4. Conditional exclusion
	1.5.5. Iteration

	1.6. Preprocessing
	1.7. Summary

	Closing

