

SYSMOD - The Systems
Modeling Toolbox, 3rd
edition
Pragmatic MBSE with SysML

Tim Weilkiens

This book is for sale at http://leanpub.com/sysmod

This version was published on 2020-08-01

ISBN 978-3-9818529-9-8

Publishing on the Pulse of the Markets

MBSE4U is a publishing house for books about MBSE. They
are intended to be regularly updated to align the content
with the highly dynamic systems engineering domain.

© 2013 - 2020 MBSE4U

http://leanpub.com/sysmod

Contents

About MBSE4U . i

About Tim Weilkiens . ii

History and Outlook . iii
SYSMOD Versions . iii
SYSMOD Outlook . iv

Preface . v

1. SYSMOD - The Systems Modeling Toolbox 1

2. Engineering for the Planet 5

3. SYSMOD Profile and Model Libraries 7
3.1 Activities . 9
3.2 Actors . 10
3.3 Blocks . 13
3.4 Discipline-specific Elements 14
3.5 Relationships 15
3.6 Requirements and Risks 20
3.7 Test Cases . 23
3.8 Use Cases . 25
3.9 Variants (VAMOS stereotypes) 26
3.10 SYSMOD Enumerations 27

CONTENTS

3.11 SYSMOD PartsCatalogue Library 28
3.12 SYSMOD Simulation Library 31
3.13 SYSMOD Engineering4Planet Library . . . 32

Appendix A: Mapping ISO 15288 to SYSMOD 34
A.1 ISO 15288: Technical Processes 34
A.2 ISO 15288: Technical Management Processes 38
A.3 ISO 15288: Agreement Processes 39
A.4 ISO15288: Organizational Project-Enabling . 39

Bibliography . 41

Index . 45

About MBSE4U

Publishing on the Pulse of the Market

MBSE4U is a publishing organization
for model-based systems engineering
books that are regularly updated to follow the dynamic
changes in the MBSE community and the markets.

MBSE4U has published the following books:

• Tim Weilkiens. SYSMOD - The Systems Modeling Tool-
box - Pragmatic MBSE with SysML. 3rd edition. 2020.

• Tim Weilkiens. The New Engineering Game. 2019.
• BenjaminWeinert. Ein Framework zur Architekturbeschrei-
bung von sozio-technischen maritimen Systemen. 2018.
(German Edition)

• Christian Neureiter. A Domain-Specific, Model Driven
Engineering Approach for Systems Engineering in the
Smart Grid. 2017.

• Tim Weilkiens. Variant Modeling with SysML. 2016.

Please let us know if you want to write a book to be published
by MBSE4U (info@mbse4u.com). We have a lean publishing
process to reward the authors well for providing their valu-
able MBSE knowledge to the community.

i

http://leanpub.com/sysmod
http://leanpub.com/sysmod
http://leanpub.com/new-engineering-game
https://mbse4u.com/product/benjamin-weinert-ein-framework-zur-architekturbeschreibung-von-sozio-technischen-maritimen-systemen-2018-print-edition/
https://mbse4u.com/product/benjamin-weinert-ein-framework-zur-architekturbeschreibung-von-sozio-technischen-maritimen-systemen-2018-print-edition/
https://mbse4u.com/product/smart-grid-architecture-model/
https://mbse4u.com/product/smart-grid-architecture-model/
https://mbse4u.com/product/smart-grid-architecture-model/
http://leanpub.com/vamos
mailto:info@mbse4u.com

About Tim Weilkiens

I am a consultant and trainer, author,
publisher, lecturer, executive board
member of the German consulting
and training company oose, and active
member of the OMG and INCOSE or-
ganizations. I wrote parts of the initial
SysML specification, and I am still ac-

tive in the ongoing work on SysML. I am involved in many
MBSE activities, and you can meet me at many conferences
on MBSE and related topics.

As a consultant, I have advised many companies in different
domains. The insights into their challenges are one source of
my experience that I share in my books and presentations.

I have written many books about modeling, including Sys-
tems Engineering with SysML (Morgan Kaufmann, 2008) and
Model-Based System Architecture (Wiley, 2015). I am the
editor of the pragmatic and independent MBSE methodology
SYSMOD – the Systems Modeling Toolbox.

You can contact me at tim@mbse4u.com and read my blog
about MBSE at www.mbse4u.com.

ii

http://leanpub.com/sysmod
mailto:tim@mbse4u.com
http://www.mbse4u.com/blog

History and Outlook
This chapter gives a brief overview of the SYSMOD version’s
history and an outlook on future planned changes.

SYSMOD Versions

• 4.2 Third edition of the book SYSMOD - The Systems
Modeling Toolbox. MBSE4U. 2019
– Added chapter “Engineering for the Planet”
– Added SYSMOD Methods: “Analyze the Problem”,
“Model Risks”, “Specify Test Cases”, and “Model the
Test Architecture”

– Added SYSMOD Adoption Process
– Added a chapter about the adoption of MBSE
– Added a chapter about a brief introduction to SysML
1.6

– Mapping ISO 15288 to SYSMOD
– NewOCL constraints for SYSMOD stereotypes («con-
tinuousUseCase»)

– New StakeholderKindCategory: Other
– Updated to SysML 1.6
– Some minor typos and updates

• 4.1 Second edition of the book SYSMOD - The Systems
Modeling Toolbox. MBSE4U. 2016

• 4.0.2 Actor stereotypes specialize SysML Block
• 4.0.1 Fixed some typos and minor changes

iii

History and Outlook iv

• 4.0 First edition of the book SYSMOD - The Systems
Modeling Toolbox. MBSE4U. 2015

• 3.0 Third edition of the German book Systems Engineer-
ing mit SysML/UML. dpunkt-Verlag. 2014

• 2.0 First edition of the English book Systems Engineering
with SysML/UML. Morgan Kaufman. 2008

• 1.0 First publication of SYSMOD in the German book
Systems Engineering mit SysML/UML. dpunkt-Verlag.
2006

SYSMOD Outlook

• More behavior descriptions in architecture models
• More tools for on-site workshops to elaborate SYSMOD
Products

• Functional safety modeling
• Methods for Collaborative Engineering
• MBSE and Digital Twins, Data Analytics, Artificial In-
telligence, and Machine Learning

• Configuration Management
• Framework Evaluation ofMBSEMethodologies for Prac-
titioners (FEMMP)

• Description of SYSMOD using the Essence framework

Preface
Many years ago, I bundled modeling methods and practices
to the Systems Modeling Toolbox (SYSMOD). At the same
time, I worked together with other MBSE experts on the first
version of SysML 1.0 [SysML07]. SYSMOD is a discovery
and not an invention. It consists of already well-known
methods and practices. I am more an editor than an author
of SYSMOD and collected practices, transferred some of them
from other disciplines to the systems engineering discipline,
and described the links between the practices to combine
them to a methodology. Nowadays, SYSMOD is used in many
industrial projects worldwide.

In 2006, I published SYSMOD in the German book Systems
Engineering mit SysML/UML (dpunkt) and 2008 in the En-
glish edition Systems Engineering with SysML/UML [We08].
The third edition of the German book was published in
2014 [We14]. Besides SYSMOD, the books provide a compre-
hensive description of the SysML. To release more regular
updates, in 2015, I published the first edition of a book
specifically on the SYSMOD methodology. You are currently
holding the book in your hands (or have it stored on your
device or cloud).

This third edition of the book includes additional methods
about problem analysis, risk management, and testing, a
chapter about SysML, and a chapter about the adoption of
MBSE in an organization.

v

Preface vi

The SYSMOD Method Analyze the Problem (section 4.5) is
about an explicit rethinking of the problem statement: “Are
we solving the right problem with the system?”.

The methods Specify Test Cases (section 4.15) and Model the
Test Architecture (section 4.21) add the important verification
and validation aspect to the SYSMOD methodology. You find
amore detailed list of the changes in the history section above.

I appreciate any feedback on the book. You can reach me by
email: tim@mbse4u.com. This book is considered to be an
eBook. However, a print version of the book is also available.

I like to write books in a gender-fair language. On the other
hand, I avoid cluttering the flow of reading by always using
both genders in the same sentence. Therefore, I only used one
gender where it was not appropriate to use gender-neutral
language. Feel free to replace the gender with your favorite
one wherever it is appropriate.

I thank my colleagues at my company for long profound
discussions about MBSE.

I thank NoMagic for their support. I created the SysML dia-
grams in this book with their modeling tool Cameo Systems
Modeler.

If you need MBSE training or consulting services, feel free to
contact me. My company - the consultancy oose - provides
professional MBSE training and coachings, for example, to
introduce MBSE in your organization.

Tim Weilkiens, July 2020.

tim@mbse4u.com

mailto:tim@mbse4u.com
http://www.oose.de/en
mailto:tim@mbse4u.com

1. SYSMOD - The
Systems Modeling
Toolbox

SYSMOD is the abbreviation for Systems Modeling Toolbox
and anMBSEmethodologywith a strong focus on the individ-
ual methods. The modeling language and tools come second.
Processes in SYSMOD are guidelines and no strict rules. It is
more important to master the craftsmanship than to follow a
process.

SYSMOD works perfectly together with the OMG Systems
Modeling Language (OMG SysML) [SysML19]. SysML is a
general-purpose modeling language for systems engineering
and aworldwide standard. It is not mandatory to do SYSMOD
with SysML. As a default, however, I would always recom-
mend this combination.

Process, Method, and Methodology are common terms with
many different meanings. SYSMOD follows the definitions
given by James N. Martin [Ma96]:

“A Process is a logical sequence of tasks performed to achieve
a particular objective. A process defines “WHAT” is to be done,
without specifying “HOW” each task is performed.”

“A Method consists of techniques for performing a task, in
other words, it defines the “HOW” of each task.”

1

SYSMOD - The Systems Modeling Toolbox 2

Based on Jeff Estefan [Es08], a Tool facilitates the accomplish-
ment of the methods, and aMethodology is a consistent set of
related processes, methods, and tools.

SYSMOD uses an extended version of this definition to ex-
plicitly include humans: A methodology is a collection of
processes, Methods, Products, Roles, and tools.

The tools are a set of applications, servers, interfaces, and so
on, which form the System Modeling Environment (SME).

The SYSMOD toolbox consists of three main artifact kinds:

• The SYSMOD Products are significant artifacts of the
systems development like requirements or the architec-
ture descriptions.

• The SYSMOD Methods are best practices on how to
create an SYSMOD Product.

• The SYSMOD Roles are work descriptions of a person. A
Role is responsible for SYSMOD Products and a primary
or additional performer of SYSMOD Methods.

The following figure 1.1 depicts the relationships between
SYSMOD Methods, Products, and Roles.

A Role is part of 0..* methodologies, is responsible for 1..*
Methods, and supports 0..* Methods as a co-worker.

A Method is part of 0..* methodologies and has precisely one
Role that is responsible for the Method and some Roles as
additional performers. Each Method requires 0..* Products as
inputs and produces 1..* Products as outputs. Exactly one
Role is responsible for a Product. A Product is part of 0..*
methodologies.

SYSMOD - The Systems Modeling Toolbox 3

Figure 1.1: Main SYSMOD Artifact Kinds

A process is part of 0..* methodologies and performs 1..* meth-
ods. A tool is also part of 0..* methodologies and facilitates 1..*
Methods.

A methodology is a collection of processes, Methods, Prod-
ucts, Roles, and tools.

The SYSMOD Infrastructure Process (figure 3.3), SYSMOD
Analysis Process (figure 3.4), and the SYSMOD Architecture
Process (figure 3.5) demonstrate a typical logical order of
execution of the SYSMOD Methods. In practice, a project
typically uses a customized set of methods in a different order,
and with many iterations and loops.

Before the book starts with the main SYSMOD content, the
next chapter 2 solicits your attention to a critical topic. Our
planet is in bad shape, and I assume all of you would like
to have a good life for yourself, your family, your descen-
dants, and all the life around you. It is quite evident that
we must actively do something to make that happen. We
engineers must also take responsibility. Chapter 2 deals with

SYSMOD - The Systems Modeling Toolbox 4

the responsibility of each individual engineer and channeling
engineering power for the planet.

Since the SYSMOD Processes provide a good overview of the
toolbox, I start to describe SYSMODwith the process chapter.
Next, follows the chapters about the SYSMOD Methods,
Products, and Roles. Each chapter lists the elements with a
brief description.

The Guidances chapter provides practical explanations of
how to do the modeling of the SYSMOD Methods and Prod-
ucts.

Examples are always helpful for a better understanding. The
Examples chapter demonstrates the application of SYSMOD
with a fictitious example. Since a book is a book and a model
is a model, the examples chapter can only provide some views
on the overall model. The example as a model is available as
part of the SYSMOD plugin (see www.mbse4u.com).

Chapter 9 presents the SysML profile for SYSMOD. It de-
scribes the stereotypes that are necessary to apply the SYS-
MOD concepts to a model.

Chapter 10 describes how to define a customized MBSE
Methodology using SYSMOD.

Chapter 11 is about more MBSE Tools and opens additional
drawers of the MBSE toolbox and presents some helpful
patterns and other practices for MBSE.

Chapter 12 provides a brief introduction to the OMG Systems
Modeling Language (SysML) Version 1.6.

In the annex, you find a mapping of SYSMOD to the ISO15288
processes.

https://www.mbse4u.com/

2. Engineering for the
Planet

Engineers build great systems that save lives, protect the
environment, provide energy, safety, mobility, economic de-
velopment, convenience, and many more. But they also build
systems that kill and harm people, destroy our environment,
and do other bad things.

The people who use such systems take the primary responsi-
bility, but the engineers who built the systems also take part
in it. They have the expertise and can influence solutions to
ensure a more sustainable future.

We are facing more and more global challenges like climate
change, increasing world population, pandemics, environ-
mental destruction, or the possibility of an asteroid impact.

Engineering power makes the impossible possible. Engineers
brought humans to the moon, which is still unbelievable, but
it was much more unthinkable in the 1960ies. The Chinese
built a dam that slows down the earth’s rotation. Regardless
of if all this is good or bad, it is extremely powerful.

Regarding the critical situation of our planet, we must chan-
nelize the power of engineering for a worth living future.
Besides large planet-saving projects and heroic deeds, it is
also about themany small micro-decisions and actions of each
engineer in the world that, in total, will move us in the right
direction.

5

Engineering for the Planet 6

Let Engineering for the Planet be part of the engineering
mindset, a mandatory part of standards and policies, and part
of the engineer’s toolbox full of methods & tools.

SYSMOD, for example, provides an actor element Planet En-
vironment associated with tasks about sustainability analysis,
and an actor category «environmentalImpact». See section 7.8
about how to use the Planet Environment.

X4Planet is an organization to focus on global resources
experts on saving the planet. The X stands for any domain like
engineering or organizational consulting. Join the community
and do your part. Following X4Planet on social media is a
good starting point. See www.x4planet.org for more informa-
tion.

https://www.x4planet.org/
https://www.x4planet.org/
https://www.x4planet.org/

3. SYSMOD Profile and
Model Libraries

The SYSMOD Profile is a set of stereotypes adding some
SYSMOD-specific elements to the SysML vocabulary. SysML
is too general to be used out-of-the-box without any ex-
tensions. For example, SysML does not provide elements
for system hierarchies like system or subsystem or different
requirement kinds and additional requirement properties. See
section 12.11 for more details about profiles.

The following sections describe each SYSMOD stereotype and
its formal definition to easily define yourself an SYSMOD
Profile in your modeling tool. You can also download the
SYSMOD Profile for some modeling tools from the website
www.mbse4u.com.

Alphabetical list of SYSMOD stereotypes:

• 9.2 «actuator»
• 9.2 «boundarySystem»
• 9.6 «businessRequirement»
• 9.5 «conjugated»
• 9.6 «constraintRequirement»
• 9.1 «continuousActivity»
• 9.8 «continuousUseCase»
• 9.3 «documentBlock»
• 9.3 «domainBlock»
• 9.4 «electrical»

7

https://www.mbse4u.com/

SYSMOD Profile and Model Libraries 8

• 9.2 «environmentalEffect»
• 9.2 «environmentalImpact»
• 9.5 «exDeriveReqt»
• 9.6 «extendedRequirement»
• 9.6 «extendedStakeholder»
• 9.7 «extendedTestCase»
• 9.2 «externalSystem»
• 9.6 «functionalRequirement»
• 9.6 «legalRequirement»
• 9.4 «mechanical»
• 9.2 «mechanicalSystem»
• 9.7 «modelTestCase»
• 9.6 «non-functionalRequirement»
• 9.6 «objective»
• 9.3 «parametricContext»
• 9.6 «performanceRequirement»
• 9.6 «performanceConstraintRequirement»
• 9.6 «physicalRequirement»
• 9.6 «reliabilityRequirement»
• 9.9 «requires»
• 9.6 «risk»
• 9.2 «sensor»
• 9.4 «software»
• 9.3 «subsystem»
• 9.6 «supportabilityRequirement»
• 9.3 «system»
• 9.3 «systemContext»
• 9.8 «systemProcess»
• 9.7 «systemTestCase»
• 9.8 «systemUseCase»
• 9.6 «usabilityRequirement»
• 9.2 «user»

SYSMOD Profile and Model Libraries 9

• 9.3 «userInterface»
• 9.2 «userSystem»
• 9.9 «variant»
• 9.9 «variantConfiguration»
• 9.9 «variation»
• 9.5 «weightedAllocate»
• 9.5 «weightedSatisfy»
• 9.5 «weightedVerify»
• 9.9 «xor»

Alphabetical list of SYSMOD Enumerations elements:

• 9.10 EffortKind
• 9.10 ObligationKind
• 9.10 Planet Environment
• 9.10 PriorityKind
• 9.10 StabilityKind
• 9.10 StakeholderCategoryKind

SYSMOD provides some additional model libraries. They
offer some useful elements and serve as an example of what
a model library can look like.

Section 9.11 describes the PartsCatalogue, section 9.12 de-
scribes a library for simulation elements, and section 9.13
describes the Engineering4Planet library for modeling of
sustainability aspects.

3.1 Activities

The continuous activity is a marker for a Use Case Activity of
a continuous System Use Case. A constraint of the continuous

SYSMOD Profile and Model Libraries 10

use case stereotype assures that its activity is a «continuous-
Activity» (see section 9.8).

Figure 9.1 depicts the definition of the SYSMOD stereotype
«continuousActivity» for Activities.

Figure 9.1: SYSMOD stereotype for SysML Activities

3.2 Actors

SysML has only a single general model element to model
the concept of an actor, i.e., an external entity that interacts
with the system of interest. Specific actor kinds like human
or external systems are not part of the standard. That is
a task for profiles. The SYSMOD Profile provides a set of
some specific actor kinds. Figure 9.2 depicts the definition of
the stereotypes: «user», «externalSystem», «environmental-
Effect», «mechanicalSystem», «sensor», «actuator», «bound-
arySystem», «userSystem».

All stereotypes are specializations of the SysML Block. See
section 11.1: Death of the Actor for more details. If you still
want to use the SysMLActor model element, youmust change
the definition of the SYSMOD actor stereotypes. Remove the
generalization relationships to the SysML Block and change
the extended metaclass from Class to Actor.

For backward compatibility with older SYSMOD versions,
the SYSMOD User stereotype can also still be applied to the

SYSMOD Profile and Model Libraries 11

SysML Actor element.

Figure 9.2: SYSMOD stereotypes for SysML Actors

There are three top-level actor kinds:

User
Represents a human actor. The stereotype can be used
in combination with the stereotype 9.6 «extendedStake-
holder».

Environmental effect
Represents a relevant effect from the environment on the
system, e.g., temperature or humidity.

External system
Represents a non-human actor.

Further actor kinds are specializations of the external system
actor:

Mechanical system
External system that has only mechanical interfaces to
the system of interest, for example, the floor.

Sensor
External system that provides data from the environ-
ment to the system of interest.

SYSMOD Profile and Model Libraries 12

Actuator
External system that has an effect on the environment
and is controlled by the system of interest.

User system
External system that is an interface between a human
and a system of interest.

Boundary system
External system that is an interface between another
external system and the system of interest.

Environmental impact
Impact of the system on the environment in the sense of
sustainability (see chapter 2).

The actor kinds Sensor, Actuator, User system, and Boundary
system are, in particular, useful for embedded systems. In
more holistic system development, these entities are typically
part of the system of interest and are not actors.

The stereotypes also define their own notation by icons that
depict the kind of system actor. Figure 9.3 shows the icons of
the SYSMOD stereotypes for actors.

Figure 9.3: Icons for SYSMOD actor stereotypes

SYSMOD Profile and Model Libraries 13

3.3 Blocks

SYSMOD defines several stereotypes for SysML Block and
InterfaceBlock.

The stereotype «userInterface» marks an interface block that
specifies an interaction point between the system and a hu-
man. These interfaces are different from technical interfaces
like an API, or a mechanical connection. For example, a user
interface defines operations that represent the usage of a lever
or button.

The stereotype «system» marks a block that represents a
system. A model can have more than one system element.
For example, a system element for the Base Architecture
(see section 8.6: Example Base Architecture), and another
one for the Logical Architecture (see section 8.15: Exam-
ple Logical Architecture). Typically, all system elements are
specializations of the abstract system element. The system
stereotype defines properties for the System Idea and the
Problem Statement.

To define another level of a system breakdown structure, the
stereotype «subsystem» is applied to blocks that represent
system-like parts of the system.

The stereotype «systemContext» is a block that specifies the
communication links between the system and the system
actors. Internal block diagrams of the system context element
depict the System Context.

The stereotype «documentBlock» represents a document and
can be used as a proxy for the information of the document
in the model. For example, a document block that represents
an interface specification document and is used as the type

SYSMOD Profile and Model Libraries 14

of a port. The property reference stores the source of the
document, for example, a URL or a link to the document in a
file system.

The stereotype «domainBlock» is an element of the Domain
Knowledge (section 5.15). It represents a concept of the do-
main that is “known” by the system.

Figure 9.4 depicts the definitions of the SYSMOD stereotypes
for SysML Blocks.

Figure 9.4: SYSMOD stereotypes for SysML Blocks

3.4 Discipline-specific Elements

As a rule of thumb, the model elements at the lowest level
of the system breakdown structure can be fully allocated to
a specific engineering discipline. For example, a block that
represents a pure software, mechanical, or electrical artifact.

The SYSMOD stereotypes for discipline-specific elements are
markers for those elements. The base class is NamedElement,
i.e., the stereotypes can be applied to any model element
that has a name. Typically, it is used for blocks, parts, and
connectors.

SYSMOD Profile and Model Libraries 15

The property reference stores a link to an external model
or document that covers the details of the discipline-specific
element.

Figure 9.5 depicts the definitions of the SYSMOD stereotypes
for discipline-specific elements: «software», «mechanical»,
and «electrical». You can define our own additional stereo-
types if you need more discipline-specific elements.

Figure 9.5: SYSMOD stereotypes for discipline-specific Elements

3.5 Relationships

The SysML relationship Satisfy specifies that the element at
the source of the relationship satisfies the requirement at the
target. It works well for one-to-one but is not precise for
many-to-many relationships.

If, for example, two blocks have satisfy relationships to a sin-
gle requirement in SysML (figure 9.6), it is not specified what
that means. Does block A and B together satisfy requirement
R42? Or each block alone and the requirement R42 is satisfied
twice?

SYSMOD Profile and Model Libraries 16

Figure 9.6: Ambiguity of the satisfy relationship

The SYSMOD stereotype «weightedSatisfy» adds a property
to the satisfy relationship that specifies the coverage of the
satisfaction. Figure 9.7 shows the same scenario of figure 9.6
with the weighted satisfy relationship. Block A satisfies 70%
and block B 30% of the requirement R42.

Figure 9.7: Example of SYSMOD weighted satisfy relationship

The property coverageKind specifies if the coverage is dis-
junct or overlapping. Overlapping means that the elements at
the source of the «weightedSatisfy» relationships satisfy equal
parts of the requirement. For example, if the requested feature
should be implemented twice for redundancy reasons. In such
a case, a satisfy coverage of 70% + 30% is not a 100% coverage
of the requirement. If the property coverageKind is set to
disjunct, it specifies a non-overlapping coverage. Disjunct is
the default.

SYSMOD Profile and Model Libraries 17

The same principle is applied to the SysML relationships
Verify and Allocate by the SYSMOD stereotypes «weighted-
Verify» and «weightedAllocate».

The SysML relationship DeriveReqt specifies that a require-
ment is derived from another requirement. The SYSMOD
stereotype «exDeriveReqt» adds a property to specify the
model elements that led to the derivation, for example, ar-
chitecture elements, as described in the zigzag pattern (see
section 11.6). Figure 9.8 shows an example of the extended
derive relationship.

Figure 9.8: Example of SYSMOD extended derive requirement relation-
ship

The SYSMOD stereotype «conjugated» is deprecated since
SYSMOD v4.2 because SysML v1.6 resolved the issue that
was resolved by this stereotype for older SysML versions. It
is still part of SYSMOD to support models that are based on
SysML < v1.6. The following paragraphs explain the issue and
motivation for the stereotype.

The proxy ports of a block are typed with SysML Interface-
Blocks. To ensure that the block implements the features spec-
ified by its ports, it typically has a generalization relationship
to the interface block (figure 9.9).

SYSMOD Profile and Model Libraries 18

Figure 9.9: Example interface block generalization

If a proxy port is connected to another port by a connector, the
connected port has typically the same type but is a conjugated
port to invert the direction of the flow properties and directed
features specified within the interface block (figure 9.10).

Figure 9.10: Example connected proxy ports

The block MyBlock B should also have a generalization re-
lationship to the proxy port type MyPort to ensure that the
specified features are implemented by MyBlock B. However,
we need a conjugated type to invert the directions of the flow
properties and directed features. The SYSMOD stereotype
«conjugated» is a generalization relationship that has the
same effect as the isConjugated property of a SysML Port.
The direction of the inherited directed features is conjugated
(figure 9.11).

SYSMOD Profile and Model Libraries 19

Figure 9.11: Example conjugated generalization

SysML v1.6 does not resolve the issue by a conjugated gen-
eralization relationship but by a special conjugated interface
block. See section 12.6 for details about the SysML Interface-
Block and ∼InterfaceBlock.

Figure 9.12 depicts the definitions of the SYSMOD stereotypes
for relationships.

Figure 9.12: SYSMOD stereotypes for Relationships

SYSMOD Profile and Model Libraries 20

3.6 Requirements and Risks

Figure 9.13 depicts the definition of the SYSMOD stereotypes
for requirements.

Figure 9.13: SYSMOD stereotypes for Requirements

SysML provides only a general requirement model element
that covers the name, ID, and the text of a requirement. The
SYSMOD stereotype «extendedRequirement» adds additional
properties typically important for Requirements:

Priority Specifies the importance of the
requirement.

Obligation Specifies if the requirement is
optional or mandatory.

SYSMOD Profile and Model Libraries 21

Stability Specifies if it is likely that the
requirement will change in the
future.

Risk Specifies a list of risks for the
implementation of the requirement.

Motivation Specifies why the requirement is
necessary.

The SYSMOD stereotype «extendedRequirement» can be ap-
plied to any model element that has a name, for example, a
state machine or a constraint block to designate that model
element itself as a requirement. It is not necessary to translate
activities or state machines that represent requirements to
textual requirements.

SYSMOD provides further specializations of the stereotype
«extendedRequirement». They do no add more properties,
but specify each a different kind of a requirement: «func-
tionalRequirement», «non-functionalRequirement», «physi-
calRequirement», «usabilityRequirement», «constraintRequire-
ment», «reliabilityRequirement», «performanceRequirement»,
«legalRequirement», «businessRequirement», «supportabili-
tyRequirement».

The SYSMOD stereotype «objective» specializes the SysML
stereotype «requirement» and represents System Objectives
(section 5.6).

The stereotype «extendedStakeholder» extends the SysML
Stakeholder to add additional properties that are used for the
SYSMOD Stakeholder (section 5.8).

SYSMOD extends the SysML Requirement element to provide
a model element for Risks. In the broadest sense, a Risk is
a potentially undesirable situation that must be considered
by the system or systems engineering project. The stereotype
«risk» adds the following properties

SYSMOD Profile and Model Libraries 22

occurrence Occurrence rating of the risk, for
example, 1 - 10 (10 = highest
occurrence).

severity Severity rating of the risk, for
example, 1 - 10 (10 = highest severity).

kind Classification of the risk: technical,
cost, schedule, other.

Since the metaclass NamedElement of the stereotype «ex-
tendedRequirement» is abstract, you must specify a concrete
model element when you apply the stereotypes. It can be any
kind of a named element.

Figure 9.14: SYSMOD stereotypes for classical textual Requirements

Figure 9.14 depicts SYSMOD requirement stereotypes that
specializes the concrete SysMLRequirement instead of the ab-
stract SysML AbstractRequirement element. The stereotypes
for classical textual requirements have the prefix txt.

SYSMOD Profile and Model Libraries 23

Figure 9.15 depicts the SYSMOD stereotype «performance-
ConstraintRequirement» which specializes the SysML Ab-
stractRequirement and the SysML ConstraintBlock element.
Figure 8.26 shows an example of how to use it.

Figure 9.15: SYSMOD stereotype for parametric-based performance re-
quirement

3.7 Test Cases

The abstract stereotype «extendedTestCase» specializes the
SysML test case by adding the following properties. They are
similar to the definitions in the UML Testing Profile [UTP13].
If you need more test modeling features, you should use
the complete UML Testing Profile in addition to SysML and
SYSMOD.

priority Priority of the test case for
test case management.

type Type of the test case. The
set of types is not
predefined.

SYSMOD Profile and Model Libraries 24

componentUnderTest References the block that is
tested by the test case, for
example, the whole system
or a subsystem.

The priority may be used to support test planning activities.

The type describes the type of the test case, for example,
usability test or performance test.

The componentUnderTest references the block that is in the
focus of the test case, for example, the whole system itself, a
subsystem, or any other block of the system architecture.

The specialized stereotype «systemTestCase» is used to spec-
ify test cases that tests the real physical system. The stereo-
type «modelTestCase» is used to specify test cases that test
the model, i.e., the specification of the system.

The following figure 9.16, depicts the definition of the stereo-
types.

Figure 9.16: SYSMOD stereotypes for Test Cases

SYSMOD Profile and Model Libraries 25

3.8 Use Cases

The stereotype «systemUseCase» adds more properties to the
SysMLUseCase element. A property to specify the trigger that
starts the System Use Case, and a property for the result of the
System Use Case (section 5.12).

You can specify a descriptive textual trigger, or reference a
signal model element as a trigger that, for example, can be
used in a state machine to trigger transitions (see figure 8.64
in section 8.18).

The stereotype «continuousUseCase» is a specialized «syste-
mUseCase» to model a continuous behavior. A continuous
use case must own a «continuousActivity». The constraint is
defined with OCL¹ as follows:

context ContinuousUeCase inv ContinuousUseCaseOwnsC\

ontinuousActivity:

self.classifierBehavior.oclIsTypeOf(SYSMOD::Activit\

ies::ContinuousActivity)

The SYSMOD stereotype «systemProcess» is applied to use
cases that represent a System Process (section 5.13), that
means, a specification of the logical order of execution of Use
Case Activities.

Figure 9.17 depicts the definitions of the SYSMOD stereotypes
for use cases.

¹Object Constraint Language (OCL14).

SYSMOD Profile and Model Libraries 26

Figure 9.17: SYSMOD stereotypes for Use cases

3.9 Variants (VAMOS stereotypes)

The modeling of variants is a topic in itself. I call the method
for modeling variants with SysML VAMOS (VAriant MOdel-
ing with SysML). You find a detailed description of VAMOS
and examples in the book Variant Modeling with SysML². A
brief overview is given in section 11.5.

The SYSMOD stereotypes depicted in figure 9.18 are nec-
essary to model the variant modeling approach: «variation-
Point», «variant», «variation», «variantConfiguration», «XOR»,
«REQUIRES», and the enumeration BindingTimeKind.

²https://leanpub.com/vamos

https://leanpub.com/vamos
https://leanpub.com/vamos

SYSMOD Profile and Model Libraries 27

Figure 9.18: SYSMOD stereotypes for Variants

3.10 SYSMOD Enumerations

The SYSMOD Enumerations package contains enumeration
types used by SYSMOD stereotypes: EffortKind,ObligationKind,
PriorityKind, RiskKind, StabilityKind, and StakeholderCate-
goryKind (figure 9.19).

SYSMOD Profile and Model Libraries 28

Figure 9.19: SYSMOD Profile Library: Enumerations

3.11 SYSMOD PartsCatalogue
Library

The model library PartsCatalogue provides common model
elements useful for system modeling. The library is indepen-
dent of the SYSMOD profile and vice versa. The library is
intended to be an example of a model library, and not to be a
complete library.

The current version of the library includes four sections:
Analysis, Constraints, Physics, and Units (figure 9.20).

Figure 9.20: SYSMOD PartsCatalogue Library

TheAnalysis package contains an abstract block Performance-
BehaviorProperties (figure 9.21). The properties store the min-
imum, maximum, and medium duration of a behavior. The

SYSMOD Profile and Model Libraries 29

appropriate derived properties totalXXX sum up the values
of a breakdown structure, for example, an activity tree.

Figure 9.21: SYSMOD PartsCatalogue Library: Analysis

The calculation of the sums is performed by the constraint
properties specified in the parametric diagram depicted in
9.22.

Figure 9.22: SYSMOD PartsCatalogue Library: Analysis Parametrics

TheConstraints package includes two simple constraint blocks,
Add and Sum (figure 9.23) used, for example, in the Analysis
package above.

SYSMOD Profile and Model Libraries 30

Figure 9.23: SYSMOD PartsCatalogue Library: Constraints

The Physics package includes an abstract block as a base block
for blocks specifying physical things with a mass (figure 9.24).
Similar to the PerformanceBehaviorProperties block in the
Analysis package, the PhysicalElement provides the capabil-
ity to sum up the masses of a breakdown structure.

Figure 9.24: SYSMOD PartsCatalogue Library: Physics

Figure 9.25 shows an example of how to use the PhysicalEle-
ment. If you create an instance specification of the block
Smoke Sensor, the value property totalMass has the value 0.9
kg. Of course only, if your modeling provides the necessary
calculation capabilities.

SYSMOD Profile and Model Libraries 31

Figure 9.25: SYSMOD PartsCatalogue Library: Physics Example

The Units package includes only two value types specifying
kilogram and timestamp values (figure 9.26). They are used in
the Physics package, and the model of the FFDS.

Figure 9.26: SYSMOD PartsCatalogue Library: Units

3.12 SYSMOD Simulation Library

The SYSMOD SimLib library provides some elements useful
to create an executable model (figure 9.27). The library is

SYSMOD Profile and Model Libraries 32

only a simple example of a model library. Typically, you
need many more additional elements to create an executable
system model.

The library also includes a profile with the stereotype«simEle-
ment» to tag elements in the model that only exists to enable
the model execution, for example, an action in an activity that
was modeled just for executability (see figure 8.54).

Figure 9.27: SYSMOD Simulation Library

3.13 SYSMOD Engineering4Planet
Library

The SYSMOD Engineering4Planet Library provides two ele-
ments to model sustainability aspects (figure 9.28); see also
section 2.

SYSMOD Profile and Model Libraries 33

Figure 9.28: SYSMOD Engineering4Planet Library

PlanetEnvironment is an actor that, typically, should be con-
sidered in any system context.

PlanetImpact is a type of an item flow to model the impact of
the system of interest on the planet.

Appendix A: Mapping
ISO 15288 to SYSMOD
The following list shows amapping of the ISO 15288 processes
[ISO15288] to the SYSMOD Methods whereby the mapping
makes no distinction between full or partial coverage:

A.1 ISO 15288: Technical
Processes

ISO 15288 SYSMOD
Business Mission
Analysis: Defines
business or mission
problem and
characterize the
solution space.

4.5 Analyze the
Problem, 4.6 Describe
the System Idea and the
System Objectives, 4.7
Describe the Base
Architecture, 4.8
Identify Stakeholders,
4.11 Identify the System
Context

34

Appendix A: Mapping ISO 15288 to SYSMOD 35

ISO 15288 SYSMOD
Stakeholder Needs and
Requirements
Definition: Define the
stakeholder
requirements.

4.8 Identify
Stakeholders, 4.10
Model Requirements,
4.11 Identify the System
Context, 4.12 Identify
System Use Cases, 4.13
Identify System
Processes, 4.14 Model
Use Case Activities, 4.15
Model the Domain
Knowledge, 4.21 Define
System States

System requirements
definition: Transform
the
stakeholder-oriented
desired capabilities into
a technical view of a
solution.

4.10 Model
Requirements, 4.12
Identify System Use
Cases, 4.13 Identify
System Processes, 4.14
Model Use Case
Activities, 4.15 Model
the Domain
Knowledge, 4.21 Define
System States

Architecture Definition:
Create system
architecture alternatives
and select the most
appropriate one(s).

4.11 Identify the System
Context, 4.17 Model the
Functional
Architecture, 4.18
Model the Logical
Architecture, 4.20
Revise an Architecture
with Scenarios, 4.21
Define System States

Appendix A: Mapping ISO 15288 to SYSMOD 36

ISO 15288 SYSMOD
Design Definition:
Provide detailed
information about the
system for
implementation aligned
with the architecture.

4.19 Model the Product
Architecture, 4.20
Revise an Architecture
with Scenarios, 4.21
Define System States

System Analysis:
Provide data to aid
decision-making.

not explicitly covered

Implementation: Realize
a specified system
element.

not explicitly covered

Integration: Synthesize
a set of elements into a
realized system.

not explicitly covered

Verification: Provide
evidence that a system
fulfills its requirements.

4.16 Specify Test Cases,
4.22 Model the Test
Architecture

Transition: Transfer of
custody of the system
from development to
operation
organizational entities.

not explicitly covered

Validation: Provide
evidence that a system
fulfills its intended use.

4.16 Specify Test Cases,
4.22 Model the Test
Architecture

Operation: Perform
operation of the system.

not explicitly covered

Appendix A: Mapping ISO 15288 to SYSMOD 37

ISO 15288 SYSMOD
Maintenance: Perform
maintenance to sustain
the system services.

not explicitly covered

Disposal: End the
existence of a system.

not explicitly covered

Appendix A: Mapping ISO 15288 to SYSMOD 38

A.2 ISO 15288: Technical
Management Processes

ISO 15288 SYSMOD
Project Planning: Produce
and coordinate project
plans.

not explicitly covered

Project Assessment and
Control: Assess and
control the plans.

not explicitly covered

Decision Management:
Provide a framework for
decisions.

not explicitly covered

Risk Management:
Identify and manage risks.

4.9 Model Risks

Configuration
Management: Manage
system elements and
configurations over the
life cycle.

not explicitly covered

Information Management:
Perform and coordinate
communication of
information with the
stakeholders.

not explicitly covered

Measurement: Obtain
objective data to support
the quality management
of the system.

not explicitly covered

Appendix A: Mapping ISO 15288 to SYSMOD 39

ISO 15288 SYSMOD

Quality Assurance: Ensure
the application of the
organization’s quality
management process.

not explicitly covered

A.3 ISO 15288: Agreement
Processes

ISO 15288 SYSMOD
Acquisition: Obtain a
product or service.

not explicitly covered

Supply: Provide a product
or service.

not explicitly covered

A.4 ISO15288: Organizational
Project-Enabling

ISO 15288 SYSMOD
Life Cycle Model
Management: Manage
life cycle models,
processes, and policies.

not explicitly covered

Infrastructure
Management: Provide
infrastructure and
services to projects.

4.1 Tailor the MBSE
Methodology, 4.2 Set up
and maintain the SME,
4.3 Deploy the MBSE
Methodology

Appendix A: Mapping ISO 15288 to SYSMOD 40

ISO 15288 SYSMOD
Portfolio Management:
Initiate suitable projects
to meet the strategic
objectives of the
organization.

not explicitly covered

Human Resource
Management: Provide
the necessary human
resources.

4.4 Provide MBSE
Training and Coaching

Quality Management:
Assure that the quality
management process
meets organizational
and project quality
objectives.

not explicitly covered

Knowledge
Management: Create
the capability to
re-apply knowledge.

not explicitly covered

Bibliography
[Ar65] Bruce L. Archer. Systematic Method for Designers.
Council of Industrial Design. H.M.S.O.. 1965.

[Bl56] Benjamin S. Bloom. Taxonomy of educational objec-
tives: The classification of educational goals. Handbook I.
David McKay. 1956.

[Br09] Tim Brown. Change by Design: How Design Thinking
Transforms Organizations and Inspires Innovation. Harper-
Business. 2009.

[Cr81] Philip B. Crosby. The Art of Getting Your Own Sweet
Way. McGraw-Hill. 1981.

[DaKl14] Matthias Dänzer, Sven Kleiner, Jesko G. Lamm,
GeorgMoeser, FabianMorant, FlorianMunker, TimWeilkiens.
Funktionale Systemmodellierung nach der FAS-Methode: Auswer-
tung von vier Industrieprojekten. Tag des Systems Engineer-
ing (TdSE) 2014. Bremen. 12. – 14. November 2014.

[De10] John Dewey. How we think. D.C. Heath & Co. 1910.

[Es08] Jeff A. Estefan. Survey of Model-Based Systems En-
gineering (MBSE) Methodologies. INCOSE MBSE Initiative.
2008.

[Gy12] Craig Gygi, Bruce Williams, Neil DeCarlo, Stephen R.
Covey. Six Sigma For Dummies. 2nd Edition. 2012.

[Ha19] Reinhard Haberfellner, Olivier de Weck, Ernst Fricke,
Siegfried Vössner. Systems Engineering - Fundamentals and

41

Bibliography 42

Applications. Birkhäuser Basel. 2019.

[Im86] Masaaki Imai. Kaizen: The Key to Japan’s Competitive
Success. McGraw-Hill/Irwin. 1986.

[ISO15288] ISO/IEC/IEEE 15288:2015. Systems and software
engineering — System life cycle processes. 2015.

[ISO195051] ISO/IEC 19505-1:2012. Information technology
— Object Management Group Unified Modeling Language
(OMG UML) — Part 1: Infrastructure. 2012.

[ISO195052] ISO/IEC 19505-2:2012. Information technology
— Object Management Group Unified Modeling Language
(OMG UML) — Part 2: Superstructure. 2012.

[ISO42010] ISO/IEC/IEEE 42010:2011. Systems and software
engineering – Architecture description. 2011.

[LaWe10] Jesko G. Lamm, Tim Weilkiens. Functional Archi-
tectures in SysML. In M. Maurer and S.-O. Schulze (eds.).
Tag des Systems Engineering 2010. pp. 109–118. Carl Hanser
Verlag. Munich. Germany. November 2010.

[LaWe14] Jesko G. Lamm, Tim Weilkiens. Method for deriv-
ing functional architectures from use cases. Systems Engi-
neering. 17(2):225-236. 2014.

[LaM17] Jesko G. Lamm, Andreas Mettauer, Georg Moeser,
Tim Weilkiens, Albert Albers. Storyboards in der Systemen-
twicklung: eine neue Methode und ihr Zusammenspiel mit
der FAS-Methode. In S.-O. Schulze (eds.). Tag des Systems
Engineering 2017. pp. 105–114. Carl Hanser Verlag. Munich.

[Le18] Michael Lewrick, Patrick Link, Larry Leifer. The De-
sign Thinking Playbook: Mindful Digital Transformation of
Teams, Products, Services, Businesses and Ecosystems. Wiley.

Bibliography 43

2018.

[Ma96] James N. Martin. Systems Engineering Guidebook:
A Process for Developing Systems and Products. CRC Press,
Inc.. 1996.

[MBSECook] Robert Karban, Tim Weilkiens, et al.. MBSE
Cookbook. http://mbse.gfse.de

[Mo98] Niko Mohr, Jens Marcus Woehe. Widerstand erfol-
greich managen: Professionelle Kommunikation in Verän-
derungsprojekten. Campus Verlag. 1998.

[MOF16] Object Management Group. Meta Object Facility,
Version 2.5.1. formal/19-10-01.

[OCL14] Object Management Group. Object Constraint Lan-
guage, Version 2.4. formal/14-02-03.

[Oh88] Taiichi Ohno. Toyota Production System: Beyond
Large-Scale Production. Cambridge, MA: Productivity Press.
1988.

[Oh20] Taiichi Ohno. “Ask ‘why’ five times about every mat-
ter”. https://www.toyota-myanmar.com/about-toyota/toyota-
traditions/quality/ask-why-five-times-about-every-matter. Re-
trieved February 2020.

[Os14] AlexanderOsterwalder, Yves Pigneur, Gregory Bernarda,
Alan Smith. Value Proposition Design: How to Create Prod-
ucts and Services Customers Want. John Wiley & Sons. 2014.

[Pi16] Roman Pichler. Strategize: Product Strategy and Prod-
uct Roadmap Practices for the Digital Age. Pichler Consult-
ing. 2016.

[SE16] BKCASE Editorial Board. 2016. The Guide to the
Systems Engineering Body of Knowledge (SEBoK), v. 1.6. R.D.

http://mbse.gfse.de/
https://www.toyota-myanmar.com/about-toyota/toyota-traditions/quality/ask-why-five-times-about-every-matter
https://www.toyota-myanmar.com/about-toyota/toyota-traditions/quality/ask-why-five-times-about-every-matter

Bibliography 44

Adcock (EIC). Hoboken, NJ: The Trustees of the Stevens Insti-
tute of Technology. AccessedAugust 2016. www.sebokwiki.org.

[SysML07] Object Management Group. OMG Systems Mod-
eling Language (OMG SysML), Version 1.0. formal/2007-09-
01.

[SysML19] Object Management Group. OMG Systems Mod-
eling Language (OMG SysML), Version 1.6. formal/19-11-01.

[UML17] Object Management Group. Unified Modeling Lan-
guage (UML), Version 2.5.1. formal/17-12-05.

[UTP13] Object Management Group. UML Testing Profile
(UTP), Version 1.2. formal/2013-04-03.

[We08] Tim Weilkiens. Systems Engineering with SysM-
L/UML. Morgan Kaufmann. 2008.

[We14] TimWeilkiens. Systems Engineeringmit SysML/UML.
3rd edition. dpunkt. 2014.

[We15] TimWeilkiens, Jesko G. Lamm, Stephan Roth, Markus
Walker. Model-Based System Architecture. Wiley. 2015.

[We16] TimWeilkiens. VariantModelingwith SysML.MBSE4U.
2016.

[We18] Tim Weilkiens. Alexander Huwaldt. Jürgen Mottok.
Stephan Roth. Andreas Willert. Modellbasierte Softwareen-
twicklung für eingebettete Systeme verstehen und anwenden.
dpunkt. 2018.

[Wo90] James P. Womack, Daniel T. Jones, Daniel Roos.
Machine that Changed the World. Rawson Associates. 1990.

Index
«∼interfaceBlock» 304
«actor» 290
«actuator» 212
«allocate» 328
«block» 299
«boundarySystem» 212
«businessRequirement» 223
«conjugated» 219
«constraint» 321
«constraintRequirement» 223
«continuousActivity» 212, 227
«continuousUseCase» 72, 130, 227
«deriveReqt» 325
«documentBlock» 215
«domainBlock» 76, 139, 216
«electrical» 217
«environmentalEffect» 212
«equal» 308
«exDeriveReqt» 219
«extendedRequirement» 67, 222
«extendedStakeholder» 65, 120, 223
«extendedTestCase» 225
«externalSystem» 212
«full» 303
«functionalRequirement» 187, 223
«interfaceBlock» 304
«legalRequirement» 223
«mechanical» 217
«mechanicalSystem» 212

45

Index 46

«modelTestCase» 78, 226
«non-functionalRequirement» 223
«objective» 62, 114, 223
«performanceRequirement» 223
«physicalRequirement» 223
«problem» 330
«proxy» 303
«rationale» 330
«refine» 326
«reliabilityRequirement» 223
«REQUIRES» 228
«risk» 66, 223
«satisfy» 327
«sensor» 212
«simElement» 234
«software» 217
«subsystem» 215
«supportabilityRequirement» 223
«system» 59, 60, 69, 113, 144, 163, 215
«systemContext» 69, 126, 215
«systemProcess» 133, 227
«systemTestCase» 78, 226
«systemUseCase» 72, 130, 227
«trace» 325
«usabilityRequirement» 223
«use» 331
«user» 212
«userInterface» 215
«userSystem» 212
«variant» 228
«variantConfiguration» 228
«variation» 228
«variationPoint» 228
«verify» 326
«weightedAllocate» 219
«weightedSatisfy» 218

Index 47

«weightedVerify» 219
«XOR» 228
3 Amigos 280
4-layer architecture 286
6M method 275

A

abstract requirement 224
abstract syntax 283
accept event action 294, 306
action 293
activity 134, 136, 211, 293
activity diagram 73, 75, 78, 136, 190, 292
activity final node 296
activity parameter 293
actor 68, 69, 185, 212, 256, 290
actuator 214
adjunct property 75, 301
adoption 237
aggregation 300, 305
aggregation kind 300
agile 7
allocate 219, 327
allocation activity partition 328
alt 314
anti-pattern 239
any receive event 317
architecture kinds 78
artificial intelligence 14
assert 314
association 300, 304
asynchronous message 312

Index 48

B

base architecture 27, 62, 78, 83, 116, 124,
163, 171, 181, 246, 269,
270

beermat architecture 63, 171
behavior 302
behavior port 303
behavioral feature 302
bill of material see BOM
binding connector 308, 320
binding time 228
BindingTimeKind 228
block 215, 298
block definition
diagram

63, 69, 75, 76, 78, 81, 84,
85, 88, 117, 126, 139, 141,
144, 155, 173, 182, 198,
207, 298

Bloom taxonomy 91
BOM 263
Booch, Grady 279
boundary system 214
break 314
business requirement 223

C

call behavior action 133, 136, 294
call event 317
Cameo Systems
Modeler

159

center of competence 96
change event 317
change process 19, 238
choice 319
coaching 20

Index 49

collaborative
engineering

14

combined fragment 313
comment 330
communication 261
competency 91
componentUnderTest 226
composition 301, 305
concept model 41
concrete syntax 283
configuration
management

14, 56

conjugated
generalization

220

conjugated port 303
conjugation 304
connector 308
consider 314
constraint 330
constraint block 177, 321
constraint parameter 321
constraint property 321
constraint requirement 27, 124, 223
containment 288
continuous activity 211
continuous use case 130, 227
control flow 295
coupling 270
coverageKind 218
create message 312
critical 314
cross-cutting elements 329

D

data analytics 14

Index 50

data model 41
decision node 296
deep history 319
dependency 331
dependency
management

289

deployment 19
derive 325
deriveReqt 219
Design 26
Design Thinking 22, 58
digital twin 14
discipline-specific
element

216

disruptive innovation 28
do behavior 316
document block 215
domain block 139, 192, 216
domain knowledge 40, 75, 136, 138, 191, 216,

249, 251
domain object 40, 76

E

effect 317
EffortKind 229
electrical 217
elevator pitch 25, 60
Engineering4Planet 211, 234
entry behavior 316
entry point 319
enumeration type 299
environmental effect 213
environmental impact 214
exit behavior 316
exit point 319

Index 51

external system 213

F

FAS method 13, 44, 80, 83, 159, 257
FFDS 159
final state 318
five whys method 276
flat history 319
flow property 303
Ford, Henry 22
forest fire detection
system

see FFDS

fork 319
fork node 297
full port 263, 302
function bucket 71
functional architecture 44, 78, 79, 83, 257, 270
functional
decomposition

39, 74

functional requirement 36, 177, 184, 223
functional safety 14

G

generalization 306
guard 317

H

hardware-in-the-loop see HIL
HIL 51

I

ignore 314

Index 52

import 289
INCOSE 282
inheritance 306
initial node 296
initial state 318
input pin 293
instance specification 300
intensity model see model purpose

model
interaction 86, 150, 310
interaction operator 313
interface block 215, 303
internal block diagram 63, 69, 81, 84, 85, 88, 118,

127, 144, 156, 173, 181,
199, 207, 259, 307

ISO 15288 13, 333
ISO/IEC 2010 81
ISO/IEC/IEEE 24748-4 80
ISO/IEC/IEEE
42010:2011

83

item flow 181, 192, 309

J

Jacobson, Ivar 279
join 319
join node 297
junction 319

K

Kaizen 276

L

language architecture 283

Index 53

lean manufacturing 276
learning curve 243
legal requirement 223
lifeline 311
logical architecture 45, 47, 78, 82, 84, 143,

197, 268, 270
loop 314
loose coupling 271

M

machine learning 14
MARTE 323
matrix 62, 65, 66, 67, 72, 259
MBSE 237, 243, 262
MBSE Methodologist 96
MBSE4U 9
mechanical 217
mechanical system 213
merge node 296
message 312
Meta Object Facility see MOF
metamodel 284
method 17, 2, 15, 107, 302
methodology 3, 16, 19, 54, 96, 237, 243
methodology context 247
minimal SysML 286
model 288
model library 56, 193, 211, 230, 233,

234, 262, 289
model purpose model 19, 261
model structure 107, 161
model template 110
model test case 43, 77, 195, 226

Index 54

Modeling And Analysis
Of Real-Time
Embedded Systems

see MARTE

modeling guidance 107
modeling language 251
modeling tool 18, 94, 253
model-supported
systems engineering

see MSSE

MOF 285
motivation 223
MSSE 261
multiplicity 301

N

named element 216, 224
namespace 288
napkin architecture 63, 171
neg 314
nested property 320
non-functional
requirement

223

O

Object Constraint
Language

see OCL

object flow 295
Object Management
Group

see OMG

Object Modeling
Technique

see OMT

obligation 222
ObligationKind 229
occurrence 224
OCL 227, 283

Index 55

OCUP 281
Ohno, Taiichi 276
OMG 280
OMG-Certified UML
Professional

see OCUP

OMT 279
OOSE 279
OpaqueAction 294
operation 302
opt 314
output pin 293
overmodeling 242

P

package 288
package diagram 107, 161, 287
package structure 107
par 314
parameter 302
parametric diagram 319
part property 300
parts catalogue 211, 230
performance
requirement

177, 223

physical architecture 45, 47, 78, 81, 258
physical requirement 223
PhysicalElement 232
pin 293
Planet Environment 6, 34, 127, 235
Planet Impact 127, 235
port 263, 302
prioritization 29
priority 222, 225
PriorityKind 229
problem 22, 330

Index 56

problem statement 58, 110, 162, 215, 245,
275

problem-solving
process

23

process 17, 3, 7
process model 55
product 53
product architecture 47, 78, 82, 84, 147, 200,

270
product box 26, 112, 113, 272
product line 265
product tree 198
product vision board 26, 112, 113, 273
profile 56, 209, 321
project manager 98
property 300
proxy port 263, 303
pseudostate 319
purpose-driven
methodology

237

query-driven modeling 237

R

rationale 330
reception 306
reference card 55
reference property 300
refine 326
reliability requirement 223
requirement 32, 66, 123, 141, 175, 222,

247, 268
requirements diagram 62, 65, 66, 67, 115, 124,

167, 169, 177, 324
requirements engineer 100, 103, 257
requirements
management tool

32

Index 57

resistance 239
result 36, 70
return message 313
Revision Task Force see RTF
risk 31, 65, 121, 174, 177, 223
risk management 31, 65
RiskKind 229
role 2, 91
RTF 282
Rumbaugh, James 279

S

Safety and Reliability
Profile

323

SAMS method 26, 112, 113, 274
satisfy 217, 327
scalability 109
scenario 48, 85, 149, 201
SEBoK 80, 81, 83
selector 311
semantics 283
send signal action 294, 306
sensor 213
seq 314
sequence diagram 86, 150, 202, 309
severity 224
signal 130, 306
signal event 317
SimLib 233
simulation 233, 262
six sigma 276
skills map 91
SMAP 8, 243
SME 2, 17, 55, 94, 247
SME Administrator 94

Index 58

software 217
specification 262
stability 223
StabilityKind 229
stakeholder 29, 64, 66, 114, 120, 167,

168, 223, 246
stakeholder
requirement

32

StakeholderCategoryKind 229
StandardProfile 323
state 49, 316
state machine 50, 73, 152, 315
state machine diagram 73, 87, 152, 204, 314
stereotype 209, 252, 321
storyboard 26, 274
Storyboard Activity
Modeling for Systems
method

see SAMS method

strict 314
strong coupling 271
subsystem 215
supportability
requirement

223

synchronization 297
synchronous message 312
SysML 18, 251, 279, 283
SysML diagrams 283
SysML tool 56
SYSMOD 15, 17
SYSMOD Analysis
Process

10

SYSMOD Architecture
Process

12

SYSMOD Infrastructure
Process

9

SYSMOD Methodology
Adoption Process

See SMAP

Index 59

system 215
system actor 34, 126, 130
system architect 101, 103, 257
system architecture 34, 48, 78, 81, 84, 270
system boundary 33
system breakdown 198
system context 33, 67, 125, 180, 192, 215
system context diagram 127
system idea 25, 59, 112, 164, 215, 245,

272
system interface 34
system objective 25, 60, 113, 166, 223, 245,

272
system process 37, 72, 132, 186, 227
system requirement 32
system state 86, 151, 203
system tester 103, 104
system use case 35, 37, 39, 69, 129, 133,

183, 227
systems engineer 100, 102, 103, 104
Systems Engineering
Body of Knowledge

see SEBoK

Systems Modeling
Environment

see SME

Systems Modeling
Language

see SysML

Systems Modeling
Toolbox

see SYSMOD

T

table 62, 65, 66, 67, 72, 120,
122, 123, 167, 169, 175,
177, 188, 195

tailoring 16
technical concepts 45
technical decision 27

Index 60

technical principle 45
termination 319
test architecture 51, 78, 88, 154, 205
test case 42, 77, 88, 140, 194, 225,

326
time event 317
tool 2
Toyota Production
System

see TPS

TPS 276
trace 325
traceability 261, 325
trade study 265
training 20, 57
transition 49, 87, 317
trigger 36, 70, 317

U

UML 279, 283
UML 3.0 281
UML diagrams 280
UML Testing Profile see UTP
UML4SysML 323
Unified Modeling
Language

see UML

unit 76
usability requirement 176, 223
usage 331
use case 227, 290
use case activity 39, 74, 134, 150, 184, 189,

258
use case diagram 72, 73, 130, 133, 184, 187,

195, 289
user 213
user interface 215
user system 214

Index 61

UTP 51, 323

V

validation 42, 141, 250
Value Proposition
Design

26

value type 76, 299
VAMOS 51, 228, 266
variant 228
variant configuration 228
variant modeling 51, 265
variation 228
variation point 228
verdict 77, 326
VerdictKind 326
verification 42, 141, 250
verify 219, 326

W

waterfall 7
Weilkiens, Tim 11

X

X4Planet 6

Z

zigzag pattern 219, 268

	Table of Contents
	About MBSE4U
	About Tim Weilkiens
	History and Outlook
	SYSMOD Versions
	SYSMOD Outlook

	Preface
	SYSMOD - The Systems Modeling Toolbox
	Engineering for the Planet
	SYSMOD Profile and Model Libraries
	Activities
	Actors
	Blocks
	Discipline-specific Elements
	Relationships
	Requirements and Risks
	Test Cases
	Use Cases
	Variants (VAMOS stereotypes)
	SYSMOD Enumerations
	SYSMOD PartsCatalogue Library
	SYSMOD Simulation Library
	SYSMOD Engineering4Planet Library

	Appendix A: Mapping ISO 15288 to SYSMOD
	A.1 ISO 15288: Technical Processes
	A.2 ISO 15288: Technical Management Processes
	A.3 ISO 15288: Agreement Processes
	A.4 ISO15288: Organizational Project-Enabling

	Bibliography
	Index

