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MBSE4U is a publishing organization /MBSE4U

for model-based systems engineering
books that are regularly updated to follow the dynamic
changes in the MBSE community and the markets.
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About Tim Weilkiens

I am a consultant and trainer, author,
publisher, lecturer, executive board
member of the German consulting
and training company oose, and active
member of the OMG and INCOSE or-
ganizations. [ wrote parts of the initial
SysML specification, and I am still ac-
tive in the ongoing work on SysML. I am involved in many
MBSE activities, and you can meet me at many conferences
on MBSE and related topics.

As a consultant, I have advised many companies in different
domains. The insights into their challenges are one source of
my experience that I share in my books and presentations.

I have written many books about modeling, including Sys-
tems Engineering with SysML (Morgan Kaufmann, 2008) and
Model-Based System Architecture (Wiley, 2015). I am the
editor of the pragmatic and independent MBSE methodology
SYSMOD - the Systems Modeling Toolbox.

You can contact me at tim@mbse4u.com and read my blog
about MBSE at www.mbse4u.com.
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History and Outlook

This chapter gives a brief overview of the SYSMOD version’s
history and an outlook on future planned changes.

SYSMOD Versions

« 4.2 Third edition of the book SYSMOD - The Systems
Modeling Toolbox. MBSE4U. 2019
— Added chapter “Engineering for the Planet”
— Added SYSMOD Methods: “Analyze the Problem”,
“Model Risks”, “Specify Test Cases”, and “Model the
Test Architecture”
— Added SYSMOD Adoption Process
— Added a chapter about the adoption of MBSE
Added a chapter about a brief introduction to SysML
1.6
Mapping ISO 15288 to SYSMOD
New OCL constraints for SYSMOD stereotypes («con-
tinuousUseCase»)
New StakeholderKindCategory: Other
Updated to SysML 1.6
— Some minor typos and updates
« 4.1 Second edition of the book SYSMOD - The Systems
Modeling Toolbox. MBSE4U. 2016
+ 4.0.2 Actor stereotypes specialize SysML Block
+ 4.0.1 Fixed some typos and minor changes

iii
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« 4.0 First edition of the book SYSMOD - The Systems
Modeling Toolbox. MBSE4U. 2015

« 3.0 Third edition of the German book Systems Engineer-
ing mit SysML/UML. dpunkt-Verlag. 2014

« 2.0 First edition of the English book Systems Engineering
with SysML/UML. Morgan Kaufman. 2008

« 1.0 First publication of SYSMOD in the German book
Systems Engineering mit SysML/UML. dpunkt-Verlag.
2006

SYSMOD Outlook

« More behavior descriptions in architecture models

« More tools for on-site workshops to elaborate SYSMOD
Products

« Functional safety modeling

+ Methods for Collaborative Engineering

« MBSE and Digital Twins, Data Analytics, Artificial In-
telligence, and Machine Learning

« Configuration Management

« Framework Evaluation of MBSE Methodologies for Prac-
titioners (FEMMP)

« Description of SYSMOD using the Essence framework



Preface

Many years ago, I bundled modeling methods and practices
to the Systems Modeling Toolbox (SYSMOD). At the same
time, I worked together with other MBSE experts on the first
version of SysML 1.0 [SysML07]. SYSMOD is a discovery
and not an invention. It consists of already well-known
methods and practices. I am more an editor than an author
of SYSMOD and collected practices, transferred some of them
from other disciplines to the systems engineering discipline,
and described the links between the practices to combine
them to a methodology. Nowadays, SYSMOD is used in many
industrial projects worldwide.

In 2006, I published SYSMOD in the German book Systems
Engineering mit SysML/UML (dpunkt) and 2008 in the En-
glish edition Systems Engineering with SysML/UML [We08].
The third edition of the German book was published in
2014 [We14]. Besides SYSMOD, the books provide a compre-
hensive description of the SysML. To release more regular
updates, in 2015, I published the first edition of a book
specifically on the SYSMOD methodology. You are currently
holding the book in your hands (or have it stored on your
device or cloud).

This third edition of the book includes additional methods
about problem analysis, risk management, and testing, a
chapter about SysML, and a chapter about the adoption of
MBSE in an organization.



Preface vi

The SYSMOD Method Analyze the Problem (section 4.5) is
about an explicit rethinking of the problem statement: “Are
we solving the right problem with the system?”.

The methods Specify Test Cases (section 4.15) and Model the
Test Architecture (section 4.21) add the important verification
and validation aspect to the SYSMOD methodology. You find
amore detailed list of the changes in the history section above.

[ appreciate any feedback on the book. You can reach me by
email: tim@mbse4u.com. This book is considered to be an
eBook. However, a print version of the book is also available.

I like to write books in a gender-fair language. On the other
hand, I avoid cluttering the flow of reading by always using
both genders in the same sentence. Therefore, I only used one
gender where it was not appropriate to use gender-neutral
language. Feel free to replace the gender with your favorite
one wherever it is appropriate.

I thank my colleagues at my company for long profound
discussions about MBSE.

I thank NoMagic for their support. I created the SysML dia-
grams in this book with their modeling tool Cameo Systems
Modeler.

If you need MBSE training or consulting services, feel free to
contact me. My company - the consultancy oose - provides
professional MBSE training and coachings, for example, to
introduce MBSE in your organization.

Tim Weilkiens, Fuly 2020.

tim@mbse4u.com
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1. SYSMOD - The
Systems Modeling
Toolbox

SYSMOD is the abbreviation for Systems Modeling Toolbox
and an MBSE methodology with a strong focus on the individ-
ual methods. The modeling language and tools come second.
Processes in SYSMOD are guidelines and no strict rules. It is
more important to master the craftsmanship than to follow a
process.

SYSMOD works perfectly together with the OMG Systems
Modeling Language (OMG SysML) [SysML19]. SysML is a
general-purpose modeling language for systems engineering
and a worldwide standard. It is not mandatory to do SYSMOD
with SysML. As a default, however, I would always recom-
mend this combination.

Process, Method, and Methodology are common terms with
many different meanings. SYSMOD follows the definitions
given by James N. Martin [Ma96]:

“A Process is a logical sequence of tasks performed to achieve
a particular objective. A process defines “WHAT” is to be done,
without specifying “HOW” each task is performed.”

“A Method consists of techniques for performing a task, in
other words, it defines the “HOW” of each task.”
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Based on Jeft Estefan [Es08], a Tool facilitates the accomplish-
ment of the methods, and a Methodology is a consistent set of
related processes, methods, and tools.

SYSMOD uses an extended version of this definition to ex-
plicitly include humans: A methodology is a collection of
processes, Methods, Products, Roles, and tools.

The tools are a set of applications, servers, interfaces, and so
on, which form the System Modeling Environment (SME).

The SYSMOD toolbox consists of three main artifact kinds:

« The SYSMOD Products are significant artifacts of the
systems development like requirements or the architec-
ture descriptions.

« The SYSMOD Methods are best practices on how to
create an SYSMOD Product.

« The SYSMOD Roles are work descriptions of a person. A
Role is responsible for SYSMOD Products and a primary
or additional performer of SYSMOD Methods.

The following figure 1.1 depicts the relationships between
SYSMOD Methods, Products, and Roles.

A Role is part of 0.” methodologies, is responsible for 1.”
Methods, and supports 0." Methods as a co-worker.

A Method is part of 0. methodologies and has precisely one
Role that is responsible for the Method and some Roles as
additional performers. Each Method requires 0. Products as
inputs and produces 1.* Products as outputs. Exactly one
Role is responsible for a Product. A Product is part of 0.”
methodologies.
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bdd [Package] SYSMOD_Domain [ SYSMOD Domain Know ledge ])

Jo.s
[ «domainBlock» | ’ «domainBlock» ‘

«domainBlock»

Methodology 0.+ 0. | Tool Process
o+ 0. 0.*
facilitates B> performs
0.* 1. 1.%
«domainBlock» primaryPerformer responsible for B> primaryMethod «domainBlock»
Role 1 1. Method 0.~
additionalPerformer supports B> additionalMethod
owner |1 0. 0.
< requires
«domainBlock» input
responsible for B> proguct Product
0.. output < produces
|O.." 1.

Figure 1.1: Main SYSMOD Artifact Kinds

A process is part of 0..” methodologies and performs 1. meth-
ods. A tool is also part of 0. methodologies and facilitates 1..*
Methods.

A methodology is a collection of processes, Methods, Prod-
ucts, Roles, and tools.

The SYSMOD Infrastructure Process (figure 3.3), SYSMOD
Analysis Process (figure 3.4), and the SYSMOD Architecture
Process (figure 3.5) demonstrate a typical logical order of
execution of the SYSMOD Methods. In practice, a project
typically uses a customized set of methods in a different order,
and with many iterations and loops.

Before the book starts with the main SYSMOD content, the
next chapter 2 solicits your attention to a critical topic. Our
planet is in bad shape, and I assume all of you would like
to have a good life for yourself, your family, your descen-
dants, and all the life around you. It is quite evident that
we must actively do something to make that happen. We
engineers must also take responsibility. Chapter 2 deals with
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the responsibility of each individual engineer and channeling
engineering power for the planet.

Since the SYSMOD Processes provide a good overview of the
toolbox, I start to describe SYSMOD with the process chapter.
Next, follows the chapters about the SYSMOD Methods,
Products, and Roles. Each chapter lists the elements with a
brief description.

The Guidances chapter provides practical explanations of
how to do the modeling of the SYSMOD Methods and Prod-
ucts.

Examples are always helpful for a better understanding. The
Examples chapter demonstrates the application of SYSMOD
with a fictitious example. Since a book is a book and a model
is a model, the examples chapter can only provide some views
on the overall model. The example as a model is available as
part of the SYSMOD plugin (see www.mbse4u.com).

Chapter 9 presents the SysML profile for SYSMOD. It de-
scribes the stereotypes that are necessary to apply the SYS-
MOD concepts to a model.

Chapter 10 describes how to define a customized MBSE
Methodology using SYSMOD.

Chapter 11 is about more MBSE Tools and opens additional
drawers of the MBSE toolbox and presents some helpful
patterns and other practices for MBSE.

Chapter 12 provides a brief introduction to the OMG Systems
Modeling Language (SysML) Version 1.6.

In the annex, you find a mapping of SYSMOD to the ISO15288
processes.


https://www.mbse4u.com/

2. Engineering for the
Planet

Engineers build great systems that save lives, protect the
environment, provide energy, safety, mobility, economic de-
velopment, convenience, and many more. But they also build
systems that kill and harm people, destroy our environment,

and do other bad things.

The people who use such systems take the primary responsi-
bility, but the engineers who built the systems also take part
in it. They have the expertise and can influence solutions to
ensure a more sustainable future.

We are facing more and more global challenges like climate
change, increasing world population, pandemics, environ-
mental destruction, or the possibility of an asteroid impact.

Engineering power makes the impossible possible. Engineers
brought humans to the moon, which is still unbelievable, but
it was much more unthinkable in the 1960ies. The Chinese
built a dam that slows down the earth’s rotation. Regardless
of if all this is good or bad, it is extremely powerful.

Regarding the critical situation of our planet, we must chan-
nelize the power of engineering for a worth living future.
Besides large planet-saving projects and heroic deeds, it is
also about the many small micro-decisions and actions of each
engineer in the world that, in total, will move us in the right
direction.
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Let Engineering for the Planet be part of the engineering
mindset, a mandatory part of standards and policies, and part
of the engineer’s toolbox full of methods & tools.

SYSMOD, for example, provides an actor element Planet En-
vironment associated with tasks about sustainability analysis,
and an actor category «environmentallmpacts. See section 7.8
about how to use the Planet Environment.

X4Planet is an organization to focus on global resources
experts on saving the planet. The X stands for any domain like
engineering or organizational consulting. Join the community
and do your part. Following X4Planet on social media is a
good starting point. See www.x4planet.org for more informa-
tion.


https://www.x4planet.org/
https://www.x4planet.org/
https://www.x4planet.org/

3. SYSMOD Profile and
Model Libraries

The SYSMOD Profile is a set of stereotypes adding some
SYSMOD-specific elements to the SysML vocabulary. SysML
is too general to be used out-of-the-box without any ex-
tensions. For example, SysML does not provide elements
for system hierarchies like system or subsystem or different
requirement kinds and additional requirement properties. See
section 12.11 for more details about profiles.

The following sections describe each SYSMOD stereotype and
its formal definition to easily define yourself an SYSMOD
Profile in your modeling tool. You can also download the
SYSMOD Profile for some modeling tools from the website
www.mbse4u.com.

Alphabetical list of SYSMOD stereotypes:

¢ 9.2 «actuator»

« 9.2 «boundarySystem»

* 9.6 «businessRequirement»
* 9.5 «conjugated»

+ 9.6 «constraintRequirement»
* 9.1 «continuousActivity»

+ 9.8 «continuousUseCase»

* 9.3 «documentBlock»

* 9.3 «domainBlock»

* 9.4 «electrical»


https://www.mbse4u.com/

SYSMOD Profile and Model Libraries

* 9.2 «environmentalEffect»

« 9.2 «environmentallmpact»

* 9.5 «exDeriveReqt»

« 9.6 «extendedRequirement»

* 9.6 «extendedStakeholders»

« 9.7 «extendedTestCase»

« 9.2 «externalSystem»

* 9.6 «functionalRequirement»

* 9.6 «legalRequirement»

* 9.4 «<mechanical»

* 9.2 «mechanicalSystem»

* 9.7 «<modelTestCase»

* 9.6 «non-functionalRequirements»
* 9.6 «objective»

+ 9.3 «parametricContext»

* 9.6 «performanceRequirement»
* 9.6 «performanceConstraintRequirement»
* 9.6 «physicalRequirements»

« 9.6 «reliabilityRequirement»

» 9.9 «requires»

« 9.6 «risk»

» 9.2 «sensor»

* 9.4 «software»

* 9.3 «subsystems»

* 9.6 «supportabilityRequirement»
* 9.3 «system»

+ 9.3 «systemContext»

+ 9.8 «systemProcess»

+ 9.7 «systemTestCase»

+ 9.8 «systemUseCase»

« 9.6 «usabilityRequirement»

» 9.2 «user»
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* 9.3 «userlnterface»

+ 9.2 «userSystem»

» 9.9 «variant»

* 9.9 «variantConfigurations
9.9 «variation»

« 9.5 «weightedAllocate»

* 9.5 «weightedSatisfy»

« 9.5 «weightedVerify»

* 9.9 «xor»

Alphabetical list of SYSMOD Enumerations elements:

+ 9.10 EffortKind

+ 9.10 ObligationKind

+ 9.10 Planet Environment

« 9.10 PriorityKind

9.10 StabilityKind

« 9.10 StakeholderCategoryKind

SYSMOD provides some additional model libraries. They
offer some useful elements and serve as an example of what
a model library can look like.

Section 9.11 describes the PartsCatalogue, section 9.12 de-
scribes a library for simulation elements, and section 9.13
describes the Engineering4Planet library for modeling of
sustainability aspects.

3.1 Activities

The continuous activity is a marker for a Use Case Activity of
a continuous System Use Case. A constraint of the continuous
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use case stereotype assures that its activity is a «continuous-
Activity» (see section 9.8).

Figure 9.1 depicts the definition of the SYSMOD stereotype
«continuousActivity» for Activities.

bdd [Package] Activities [ Activity stereotypes ])

«Metaclass»
Activity

«stereotype»
ContinuousActivity

Figure 9.1: SYSMOD stereotype for SysML Activities

3.2 Actors

SysML has only a single general model element to model
the concept of an actor, i.e., an external entity that interacts
with the system of interest. Specific actor kinds like human
or external systems are not part of the standard. That is
a task for profiles. The SYSMOD Profile provides a set of
some specific actor kinds. Figure 9.2 depicts the definition of
the stereotypes: «users», «externalSystem», «environmental-
Effect», «<mechanicalSystems, «sensor», «actuator», «bound-
arySystems, «userSystem».

All stereotypes are specializations of the SysML Block. See
section 11.1: Death of the Actor for more details. If you still
want to use the SysML Actor model element, you must change
the definition of the SYSMOD actor stereotypes. Remove the
generalization relationships to the SysML Block and change
the extended metaclass from Class to Actor.

For backward compatibility with older SYSMOD versions,
the SYSMOD User stereotype can also still be applied to the
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SysML Actor element.

pkg [Package] Actors [ Actor stereotypes ])

«Metaclass» «stereotype»
Actor Block
A

«stereotype» «stereotype»
User ExternalSystem

«stereotype»
EnvironmentalEffect
A

| [ |

«stereotype» «stereotype» «stereotype» «stereotype»
Sensor Actuator UserSystem Environmentallmpact

«stereotype» «stereotype»
MechanicalSystem BoundarySystem

Figure 9.2: SYSMOD stereotypes for SysML Actors

There are three top-level actor kinds:

User
Represents a human actor. The stereotype can be used
in combination with the stereotype 9.6 «extendedStake-
holders.

Environmental effect
Represents a relevant effect from the environment on the
system, e.g., temperature or humidity.

External system
Represents a non-human actor.

Further actor kinds are specializations of the external system
actor:

Mechanical system
External system that has only mechanical interfaces to
the system of interest, for example, the floor.

Sensor
External system that provides data from the environ-
ment to the system of interest.
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Actuator
External system that has an effect on the environment
and is controlled by the system of interest.
User system
External system that is an interface between a human
and a system of interest.
Boundary system
External system that is an interface between another
external system and the system of interest.
Environmental impact
Impact of the system on the environment in the sense of
sustainability (see chapter 2).

The actor kinds Sensor, Actuator, User system, and Boundary
system are, in particular, useful for embedded systems. In
more holistic system development, these entities are typically
part of the system of interest and are not actors.

The stereotypes also define their own notation by icons that
depict the kind of system actor. Figure 9.3 shows the icons of
the SYSMOD stereotypes for actors.

uc [Package] Actors [ Symbols ])

¢ 0 O

User External System Envir tal Effect M ical System Environmental Impact
Boundary System User System Actuator Sensor

Figure 9.3: Icons for SYSMOD actor stereotypes
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3.3 Blocks

SYSMOD defines several stereotypes for SysML Block and
InterfaceBlock.

The stereotype «userInterface» marks an interface block that
specifies an interaction point between the system and a hu-
man. These interfaces are different from technical interfaces
like an API, or a mechanical connection. For example, a user
interface defines operations that represent the usage of a lever
or button.

The stereotype «system» marks a block that represents a
system. A model can have more than one system element.
For example, a system element for the Base Architecture
(see section 8.6: Example Base Architecture), and another
one for the Logical Architecture (see section 8.15: Exam-
ple Logical Architecture). Typically, all system elements are
specializations of the abstract system element. The system
stereotype defines properties for the System Idea and the
Problem Statement.

To define another level of a system breakdown structure, the
stereotype «subsystem» is applied to blocks that represent
system-like parts of the system.

The stereotype «systemContext» is a block that specifies the
communication links between the system and the system
actors. Internal block diagrams of the system context element
depict the System Context.

The stereotype «documentBlock» represents a document and
can be used as a proxy for the information of the document
in the model. For example, a document block that represents
an interface specification document and is used as the type
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of a port. The property reference stores the source of the
document, for example, a URL or a link to the document in a
file system.

The stereotype «domainBlocks is an element of the Domain
Knowledge (section 5.15). It represents a concept of the do-
main that is “known” by the system.

Figure 9.4 depicts the definitions of the SYSMOD stereotypes
for SysML Blocks.

bdd [Package] Blocks [ Block stereotypes ])

«stereotype»
SysML::Blocks::Block

«stereotype»
SysML::Ports&Flows:Interface Block
A

[ [ [ [

«stereotype» «stereotype» «stereotype» | |«stereotype»
System DocumentBlock Dom ainBlock Subsystem

«stereotype»
System Context

+systemidea : String [0..1] +referénce String [1]
+problemStatement : String [0..1]

«stereotype»
Userinterface

Figure 9.4: SYSMOD stereotypes for SysML Blocks

3.4 Discipline-specific Elements

As a rule of thumb, the model elements at the lowest level
of the system breakdown structure can be fully allocated to
a specific engineering discipline. For example, a block that
represents a pure software, mechanical, or electrical artifact.

The SYSMOD stereotypes for discipline-specific elements are
markers for those elements. The base class is NamedElement,
i.e., the stereotypes can be applied to any model element
that has a name. Typically, it is used for blocks, parts, and
connectors.
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The property reference stores a link to an external model
or document that covers the details of the discipline-specific
element.

Figure 9.5 depicts the definitions of the SYSMOD stereotypes
for discipline-specific elements: «software», «mechanicals,
and «electrical». You can define our own additional stereo-
types if you need more discipline-specific elements.

bdd [Package] Disciplines [ Discipline Stereotypes ])

«Metaclass»
UM L Standard Profile::UM L2 M etamodel::NamedElement

I

«stereotype»
Discipline-specific element

reference : String [0..1]

T
[ | |

«stereotype» «stereotype» «stereotype»
Software Mechanical Electrical

Figure 9.5: SYSMOD stereotypes for discipline-specific Elements

3.5 Relationships

The SysML relationship Satisfy specifies that the element at
the source of the relationship satisfies the requirement at the
target. It works well for one-to-one but is not precise for
many-to-many relationships.

If, for example, two blocks have satisfy relationships to a sin-
gle requirement in SysML (figure 9.6), it is not specified what
that means. Does block A and B together satisfy requirement
R42? Or each block alone and the requirement R42 is satisfied
twice?
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req [Package] Satisfy relationship [ Satisfy ambiguity ])

«satisfy» «ExtendedRequirement» «satisfy»
R42 -

«block» «block»
A B

Figure 9.6: Ambiguity of the satisfy relationship

The SYSMOD stereotype «weightedSatisfy» adds a property
to the satisfy relationship that specifies the coverage of the
satisfaction. Figure 9.7 shows the same scenario of figure 9.6
with the weighted satisfy relationship. Block A satisfies 70%
and block B 30% of the requirement R42.

req [Package] Satisfy relationship [ Example WeightedSatisfy ])

«w eightedSatisfy» | «ExtendedRequirement» «w eightedSatisfy»
" (coverage =0.7, R42 (coverage = 0.3,

coverageKind = disjunct} coverageKind = disjunct} |
|
|
|

«block» «block»
A B

Figure 9.7: Example of SYSMOD weighted satisfy relationship

The property coverageKind specifies if the coverage is dis-
junct or overlapping. Overlapping means that the elements at
the source of the «weightedSatisfy» relationships satisfy equal
parts of the requirement. For example, if the requested feature
should be implemented twice for redundancy reasons. In such
a case, a satisfy coverage of 70% + 30% is not a 100% coverage
of the requirement. If the property coverageKind is set to
disjunct, it specifies a non-overlapping coverage. Disjunct is
the default.
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The same principle is applied to the SysML relationships
Verify and Allocate by the SYSMOD stereotypes «weighted-
Verify» and «weightedAllocate».

The SysML relationship DeriveReqt specifies that a require-
ment is derived from another requirement. The SYSMOD
stereotype «exDeriveReqt» adds a property to specify the
model elements that led to the derivation, for example, ar-
chitecture elements, as described in the zigzag pattern (see
section 11.6). Figure 9.8 shows an example of the extended
derive relationship.

req [Package] Extended derive relationship [ Example extended derive relationship ]J

«ExtendedRequirement»
Raz «w eightedSatisfy» Subsystem X

{coverage = 1.0,
| coverageKind = disjunct}
«exDeriveReqt»
I {rationale = Subsystem X}

«ExtendedRequirement»
R23

Figure 9.8: Example of SYSMOD extended derive requirement relation-
ship

The SYSMOD stereotype «conjugated» is deprecated since
SYSMOD v4.2 because SysML v1.6 resolved the issue that
was resolved by this stereotype for older SysML versions. It
is still part of SYSMOD to support models that are based on
SysML < v1.6. The following paragraphs explain the issue and
motivation for the stereotype.

The proxy ports of a block are typed with SysML Interface-
Blocks. To ensure that the block implements the features spec-
ified by its ports, it typically has a generalization relationship
to the interface block (figure 9.9).
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bdd [Package] Example Conjugated [ Normal generalization ])

«block» «interfaceBlock»
MyBlock A MyPort

in portA : MyPort in value

Figure 9.9: Example interface block generalization

If a proxy port is connected to another port by a connector, the
connected port has typically the same type but is a conjugated
port to invert the direction of the flow properties and directed
features specified within the interface block (figure 9.10).

ibd [Block] MyAssembly [ MyAssembly ])

«proxy» «proxy»

myBlock A : MyBlock A portA : MyPort portB : ~MyPort

myBlock B: MyBlock B

Figure 9.10: Example connected proxy ports

The block MyBlock B should also have a generalization re-
lationship to the proxy port type MyPort to ensure that the
specified features are implemented by MyBlock B. However,
we need a conjugated type to invert the directions of the flow
properties and directed features. The SYSMOD stereotype
«conjugated» is a generalization relationship that has the
same effect as the isConjugated property of a SysML Port.
The direction of the inherited directed features is conjugated
(figure 9.11).
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bdd [Package] Example Conjugated [ Conjugated generalization ])

«block» «interfaceBlock»
MyBlock B «conjugated» MyPort
proxy ports 7] flow properties

out portB : ~MyPort in value

Figure 9.11: Example conjugated generalization

SysML v1.6 does not resolve the issue by a conjugated gen-
eralization relationship but by a special conjugated interface
block. See section 12.6 for details about the SysML Interface-
Block and ~InterfaceBlock.

Figure 9.12 depicts the definitions of the SYSMOD stereotypes
for relationships.

Weighted Satisfy
{0 <= self.coverage and self.coverage <= 1}

pkg [Package] i ypes ] J
«stereotype» «stereotype»
SysML::Requirements:Verify SysML::Allocations::Allocate
«stereotype» «stereotype»
WeightedVerify WeightedAllocate
{0 <= self.coverage and self.coverage <= 1} {0 <= self.coverage and self.coverage <= 1}
+coverage : Real ) +coverage : Real ‘
coverageKind : CoverageKind = disjunct coverageKind : CoverageKind = disjunct
«stereotype» «stereotype»
SysML::Requirements::Satisfy SysML::Requirements::DeriveReqt
T tereotypex
' «sf
astereotypex | ExDeriveReqt

rationale l 0.*

+coverage : Real ) Y
coverageKind : CoverageKind = disjunct ’ «2:7::13:» ‘
lueTypes
Met o
«Metaciasss CoverageKind
Generalization —
d;’sp‘mi:lrb o
«stereotypex» — «comment»
Conjugated deprecated since SysML 1.6

Figure 9.12: SYSMOD stereotypes for Relationships
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3.6 Requirements and Risks

Figure 9.13 depicts the definition of the SYSMOD stereotypes
for requirements.

pkg ! ge] Requir [ Req stereotypes ])

«stereotypen «stereotype»
SysML:ModelBements::Stakeholder | |SysML:Requirements::Requirement

+concern : Comment [*]

+/concernList : Comment «stereotype» «stereotype»
ér Objective Risk

attributes {self.occurence > 0 and self.occurence < 5,

«stereotype» +priority self.severity > 0 and self.severity < 5}

ExtendedStakeholder attribut

+occurrence : Integer
+severity : Integer
+kind : RiskKind

+priority : PriorityKind
+effort : Effortkind
+categories : StakeholderCategoryKind [0.."]

+contact : String «stereotype» «valueType» [E]
SysM L::Requil ::Abstr: i RiskKind
technical
«stereotype» cost
ExtendedRequirement schedule
attributes other
+priority : PriorityKind

+obligation : ObligationKind
+stabilty : StabiltyKind
+risks : Risk [*]
+motivation : String

T

[ 1

«stereotypen | | «stereotype» |
N i irement { irement
[ I I 1
«stereotyper «stereotype» «stereotypen «stereotype»
ConstraintRequirement ilityRequirement SupportabilityRequirement ReliabilityRequirement
«stereotype» «stereotype» «stereotype» «stereotype»
L il i i Perfor irement i i

Figure 9.13: SYSMOD stereotypes for Requirements

SysML provides only a general requirement model element
that covers the name, ID, and the text of a requirement. The
SYSMOD stereotype «extendedRequirement» adds additional
properties typically important for Requirements:

Priority Specifies the importance of the

requirement.
Obligation  Specifies if the requirement is

optional or mandatory.
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Stability Specifies if it is likely that the
requirement will change in the

future.
Risk Specifies a list of risks for the

implementation of the requirement.
Motivation Specifies why the requirement is

necessary.

The SYSMOD stereotype «extendedRequirement» can be ap-
plied to any model element that has a name, for example, a
state machine or a constraint block to designate that model
element itself as a requirement. It is not necessary to translate
activities or state machines that represent requirements to
textual requirements.

SYSMOD provides further specializations of the stereotype
«extendedRequirement». They do no add more properties,
but specify each a different kind of a requirement: «func-
tionalRequirements», «non-functionalRequirements, «physi-
calRequirements, «usabilityRequirementy», «constraintRequire-
menty, «reliabilityRequirements, «performanceRequirement,
«legalRequirement», «businessRequirements, «supportabili-
tyRequirement».

The SYSMOD stereotype «objective» specializes the SysML
stereotype «requirement» and represents System Objectives
(section 5.6).

The stereotype «extendedStakeholder» extends the SysML
Stakeholder to add additional properties that are used for the
SYSMOD Stakeholder (section 5.8).

SYSMOD extends the SysML Requirement element to provide
a model element for Risks. In the broadest sense, a Risk is
a potentially undesirable situation that must be considered
by the system or systems engineering project. The stereotype
«risk» adds the following properties
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occurrence  Occurrence rating of the risk, for
example, 1 - 10 (10 = highest

occurrence).
severity Severity rating of the risk, for
example, 1 - 10 (10 = highest severity).
kind Classification of the risk: technical,

cost, schedule, other.

Since the metaclass NamedElement of the stereotype «ex-
tendedRequirement» is abstract, you must specify a concrete
model element when you apply the stereotypes. It can be any
kind of a named element.

req [Package] Text-based requirements [ Text-based requirements ])

«stereotype»
SysML::Requirements::Requirement

«stereotype»
txtExtendedRequirement

«stereotype»
ExtendedRequirement

|

TTTIIITT] 1

«stereotype»
txtBusinessRequirement

«stereotype»
BusinessRequirement

«stereotype»
txtConstraintRequirement

«stereotype»
ConstraintRequirement

«stereotype»
txtFunctionalRequirement

«stereotype»
FunctionalRequirement

«stereotype»
txtLegalRequirement

«stereotype»
LegalRequirement

«stereotype»
txtPerformanceRequirement

«stereotype»
PerformanceRequirement

«stereotype»
txtPhysicalRequirement

«stereotype»
PhysicalRequirement

«stereotype»
ReliabilityRequirement

«stereotype»
txtReliabilityRequirement

«stereotype»
txtSupportabilityRequirement

«stereotype»
SupportabilityRequirement

«stereotype»
txtUs abilityRequirement

«stereotype»
UsabilityRequirement

INNNNNNEN

Figure 9.14: SYSMOD stereotypes for classical textual Requirements

Figure 9.14 depicts SYSMOD requirement stereotypes that
specializes the concrete SysML Requirement instead of the ab-
stract SysML AbstractRequirement element. The stereotypes
for classical textual requirements have the prefix fxt.
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Figure 9.15 depicts the SYSMOD stereotype «performance-
ConstraintRequirement» which specializes the SysML Ab-
stractRequirement and the SysML ConstraintBlock element.
Figure 8.26 shows an example of how to use it.

pkg [Package] Non-text-based requirements [ Non-text-based requirements ])

«stereotype» «stereotype»
AbstractRequirement ConstraintBlock
attributes
+Text : String [1] =
+Id : String [1] = {id}

+/Derived : AbstractRequirement [*]
+/DerivedFrom : AbstractRequirement [*]
+/SatisfiedBy : NamedElement [*]
+/RefinedBy : NamedElement [*]
+/TracedTo : NamedElement [*]
+\VerifiedBy : NamedBlement [*]
+/Master : AbstractRequirement

«stereotype»
PerformanceConstraintRequirement

Figure 9.15: SYSMOD stereotype for parametric-based performance re-
quirement

3.7 Test Cases

The abstract stereotype «extendedTestCase» specializes the
SysML test case by adding the following properties. They are
similar to the definitions in the UML Testing Profile [UTP13].
If you need more test modeling features, you should use
the complete UML Testing Profile in addition to SysML and
SYSMOD.

priority Priority of the test case for
test case management.
type Type of the test case. The

set of types is not
predefined.
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componentUnderTest References the block that is
tested by the test case, for
example, the whole system
or a subsystem.

The priority may be used to support test planning activities.

The type describes the type of the test case, for example,
usability test or performance test.

The componentUnderTest references the block that is in the
focus of the test case, for example, the whole system itself, a
subsystem, or any other block of the system architecture.

The specialized stereotype «systemTestCase» is used to spec-
ify test cases that tests the real physical system. The stereo-
type «modelTestCase» is used to specify test cases that test
the model, i.e., the specification of the system.

The following figure 9.16, depicts the definition of the stereo-
types.

pkg [Package] Verification[ Verification stereotypes ])

«stereotype»
SysML:Requirements:TestCase

«stereotype»
ExtendedTestCase

priority : PriorityKind [0..1]
-type : String
-componentUnderTest : Block

Hﬁ

«stereotype» «stereotype»
ModelTestCase SystemTestCase

Figure 9.16: SYSMOD stereotypes for Test Cases
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3.8 Use Cases

The stereotype «systemUseCase» adds more properties to the
SysML UseCase element. A property to specify the trigger that
starts the System Use Case, and a property for the result of the
System Use Case (section 5.12).

You can specify a descriptive textual trigger, or reference a
signal model element as a trigger that, for example, can be
used in a state machine to trigger transitions (see figure 8.64
in section 8.18).

The stereotype «continuousUseCase» is a specialized «syste-
mUseCase» to model a continuous behavior. A continuous
use case must own a «continuousActivity». The constraint is
defined with OCL' as follows:

context ContinuousUeCase inv ContinuousUseCaseOwnsC\
ontinuousActivity:
self.classifierBehavior.oclIsTypeOf(SYSMOD: :Activit\
ies::ContinuousActivity)

The SYSMOD stereotype «systemProcess» is applied to use
cases that represent a System Process (section 5.13), that
means, a specification of the logical order of execution of Use
Case Activities.

Figure 9.17 depicts the definitions of the SYSMOD stereotypes
for use cases.

'Object Constraint Language (OCL14).
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pkg [Package] UseCases [ Use case stereotypes ])

«Metaclass»
UML Standard Profile::UML2 Metamodel::UseCase

«stereotype» «stereotype»
SystemUseCase SystemProcess

+rigger : String [1]
+result : String [1]
+triggerSignal : Signal [0..1]

lll

«stereotype»

ContinuousUseCase
{ContinuousUseCaseOw nsContinuousActivity}

Figure 9.17: SYSMOD stereotypes for Use cases

3.9 Variants (VAMOS stereotypes)

The modeling of variants is a topic in itself. I call the method
for modeling variants with SysML VAMOS (VAriant MOdel-
ing with SysML). You find a detailed description of VAMOS
and examples in the book Variant Modeling with SysML*. A
brief overview is given in section 11.5.

The SYSMOD stereotypes depicted in figure 9.18 are nec-
essary to model the variant modeling approach: «variation-
Point», «variant», «variation», «variantConfiguration», «XOR»,
«REQUIRES», and the enumeration BindingTimeKind.

*https://leanpub.com/vamos
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pkg [Package] VAMOS [ Variant stereotypes ])

«Metaclass»
Package

[ 1

«stereotype» «stereotype»
Variation Variant
[Package] [Package]

{MaxGreaterThanMin, {VariantOw ner}

VariationsOw nVariantPackagesOnly}

«Metaclass» +minVariants : Integer [1] = 1
+maxVariants : UnlimitedNatural [1] = 1
1.%

variation
{ordered}
«stereotype» «stereotype»
VariationPoint VariantConfiguration
[NamedElement] [Class, Package]
- attributes . {ValidVariantConfigurationMaxVariants,
+bindingTime : BindingTimeKind [1..*] = Undefined ValidVariantConfigurationMinV ariants}
«Metaclass»
Constraint
{GlobalConstraintWit
NonEmpty Constraint}
f «enumeration»
| l BindingTimeKind
«stereotype» «stereotype» coumetion lterals
yp! Y P! DesignPhase
XOR REQUIRES ManufacturingPhase
[Constraint] [Constraint] OperationPhase
{VariantConstraintOperands} {VariantConstraintOperands} Undefined

Figure 9.18: SYSMOD stereotypes for Variants

3.10 SYSMOD Enumerations

The SYSMOD Enumerations package contains enumeration
types used by SYSMOD stereotypes: EffortKind, ObligationKind,
PriorityKind, RiskKind, StabilityKind, and StakeholderCate-
goryKind (figure 9.19).
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bdd [Package] Enumerations [ SYSMOD enumerations ])
«enumeration» «enumeration» «enumeration»
EffortKind ObligationKind PriorityKind
High o o Manda’torryr o Criical ‘ o
Medium Optional High
Low Medium
Low
«valueType» «enumeration» «enumeration»
RiskKind StabilityKind StakeholderCategoryKind
enume: er enumeration literals enume erals
technical Instable Expert
cost Stable Requirement ow ner
schedule er
other Other

Figure 9.19: SYSMOD Profile Library: Enumerations

3.11 SYSMOD PartsCatalogue
Library

The model library PartsCatalogue provides common model
elements useful for system modeling. The library is indepen-
dent of the SYSMOD profile and vice versa. The library is
intended to be an example of a model library, and not to be a

complete library.

The current version of the library includes four sections:
Analysis, Constraints, Physics, and Units (figure 9.20).

pkg [Package] PartsCatalogue [ Overview PartsCatalogue ])

1

1 1

Analysis

Constraints

Units

Figure 9.20: SYSMOD PartsCatalogue Library

The Analysis package contains an abstract block Performance-
BehaviorProperties (figure 9.21). The properties store the min-
imum, maximum, and medium duration of a behavior. The
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appropriate derived properties totalXXX sum up the values
of a breakdown structure, for example, an activity tree.

bdd [Package] Analysis [ Analysis Definitions ])

{union}
/performanceBehaviorPropertiesSet, 0..*

«block»
PerformanceBehaviorProperties

constraints
:Add
:Sum
: Add
Sum
:Add
Sum

minDuration : time[second] [1]{unit = second}
maxDuration : time[second] [1]{unit = second}
medDuration : time[second] [1]{unit = second}
totalMinDuration : time[second] [1]{unit = second}
‘totalMaxDuration : time[second] [1]{unit = second}
‘totalMedDuration : time[second] [1]{unit = second}

T

Figure 9.21: SYSMOD PartsCatalogue Library: Analysis

The calculation of the sums is performed by the constraint

properties specified in the parametric diagram depicted in
9.22.

par [Block] Per Properties [ Perfor Properties ] J
IperformanceBehaviorPropertiesSet : . «constraint» «constraint» E_‘a minDuration : ti...
V0.1 :Sum sb Add
| minDuration : time[ a1 | ] (s=sumvy [ {x=atb}

| Cl X__1 itotaMinDuratio...

«constraint» wonstrants ) 8
VoA :Sum s b :Add
|medDuration: i 1011 | (s=sumv)y (| {x=a+b}
E X ItotalMedDuratio...

«constraint» «constraint» Ol a
v[0.4] :Sum s b :Add
|maxDuration: imel: a1 1] | 1 (s=sumvy [ {x=a+b}
l: X ItotalMaxDuratio...

Figure 9.22: SYSMOD PartsCatalogue Library: Analysis Parametrics

The Constraints package includes two simple constraint blocks,
Add and Sum (figure 9.23) used, for example, in the Analysis
package above.
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bdd [Package] Constraints [ Constraints Definitions ])

«constraint» «constraint»
Add Sum

earny (s=sum(v)}

parameters parameters
a:Real s : Real

b : Real v :Real [0..*]
x : Real

Figure 9.23: SYSMOD PartsCatalogue Library: Constraints

The Physics package includes an abstract block as a base block
for blocks specifying physical things with a mass (figure 9.24).
Similar to the PerformanceBehaviorProperties block in the
Analysis package, the PhysicalElement provides the capabil-
ity to sum up the masses of a breakdown structure.

bdd [Package] Physics [ Physics Definitions ])

{union}
/physicalPart [0..*

«block»
PhysicalElement

Add
: Sum

values
mass : kg = {unit = kilogram}
‘totalMass : kg{unit = kilogram}

7

Figure 9.24: SYSMOD PartsCatalogue Library: Physics

Figure 9.25 shows an example of how to use the PhysicalEle-
ment. If you create an instance specification of the block
Smoke Sensor, the value property fotalMass has the value 0.9
kg. Of course only, if your modeling provides the necessary
calculation capabilities.
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bdd [Package] Sir or_Structure [ Mass Rollup ])
«block»
PartsCatalogue::Physics::Phy
I
«block»
Sensor
values
id : String
value : Real
«block»
Smoke sensor
fixtune
case {subgets physicalPart} sensorUnit
{subsets physicalPart} 1 {subsets physicalPart}
«block» «block» «block»
Case Attachment Sensor unit
mass : kg = 0. Z{redefyme; mass,unit = kilogram} mass : kg = 0. 5{redefu‘7evs‘ mass,unit = kilogram}
mount ? body
{subsets physicalPart} {subsets physicalPart}
«block» «block»
Mount Body
mass : kg = 0.1{redef; reé mass,unit = kilogram} mass : kg =0 1(rede‘:m‘e§‘ mass,unit = kilogram}

Figure 9.25: SYSMOD PartsCatalogue Library: Physics Example

The Units package includes only two value types specifying

kilogram and timestamp values (figure 9.26). They are used in
the Physics package, and the model of the FFDS.

bdd [Package] Units [ Units Definitions ])

«valueType»
Real

A

«valueType»
kg

quantityKind = [Amass
unit = COkilogram

«valueType»
DateTime

Figure 9.26: SYSMOD PartsCatalogue Library: Units

3.12 SYSMOD Simulation Library

The SYSMOD SimLib library provides some elements useful
to create an executable model (figure 9.27). The library is
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only a simple example of a model library. Typically, you
need many more additional elements to create an executable
system model.

The library also includes a profile with the stereotype «simEle-
ment» to tag elements in the model that only exists to enable
the model execution, for example, an action in an activity that
was modeled just for executability (see figure 8.54).

pkg [Package] SYSMOD-SimLibrary [ Overview SimLibrary ])

«alueType»  [H ]

UCAReturnValue «profile» Timer
) SYSMOD-SimProfile

Successful

Failed -
«signal»
«stereotype» TimerSignal

SimElement
[Element]

«block»
Timer

time : Real [1] = 1.0

Figure 9.27: SYSMOD Simulation Library

3.13 SYSMOD Engineering4Planet
Library

The SYSMOD Engineering4Planet Library provides two ele-
ments to model sustainability aspects (figure 9.28); see also
section 2.
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bdd [Package] Engineering4Planet [ Engineering4Planet Definitions ])

«domainBlock»
Planet Impact

02 : kg{unit = kilogram}
w aste : String

«environmentalimpact»
Planet Environment

Figure 9.28: SYSMOD Engineering4Planet Library

PlanetEnvironment is an actor that, typically, should be con-

sidered in any system context.

PlanetImpact is a type of an item flow to model the impact of
the system of interest on the planet.



Appendix A: Mapping
ISO 15288 to SYSMOD

The following list shows a mapping of the ISO 15288 processes
[ISO15288] to the SYSMOD Methods whereby the mapping
makes no distinction between full or partial coverage:

A.11SO 15288: Technical

Processes

ISO 15288 SYSMOD

Business Mission 4.5 Analyze the

Analysis: Defines Problem, 4.6 Describe

business or mission the System Idea and the

problem and System Objectives, 4.7

characterize the Describe the Base

solution space. Architecture, 4.8
Identify Stakeholders,
4.11 Identify the System
Context

34
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ISO 15288 SYSMOD

Stakeholder Needs and 4.8 Identify
Requirements Stakeholders, 4.10
Definition: Define the Model Requirements,
stakeholder 4.11 Identify the System
requirements. Context, 4.12 Identify

System requirements
definition: Transform
the
stakeholder-oriented
desired capabilities into
a technical view of a
solution.

Architecture Definition:
Create system
architecture alternatives
and select the most
appropriate one(s).

System Use Cases, 4.13
Identify System
Processes, 4.14 Model
Use Case Activities, 4.15
Model the Domain
Knowledge, 4.21 Define
System States

4.10 Model
Requirements, 4.12
Identify System Use
Cases, 4.13 Identify
System Processes, 4.14
Model Use Case
Activities, 4.15 Model
the Domain
Knowledge, 4.21 Define
System States

4.11 Identify the System
Context, 4.17 Model the
Functional
Architecture, 4.18
Model the Logical
Architecture, 4.20
Revise an Architecture
with Scenarios, 4.21
Define System States

35
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Appendix A: Mapping ISO 15288 to SYSMOD

SYSMOD

Design Definition:
Provide detailed
information about the
system for
implementation aligned
with the architecture.

System Analysis:
Provide data to aid
decision-making.

Implementation: Realize
a specified system
element.

Integration: Synthesize
a set of elements into a
realized system.

Verification: Provide
evidence that a system
fulfills its requirements.

Transition: Transfer of
custody of the system
from development to
operation
organizational entities.

Validation: Provide
evidence that a system
fulfills its intended use.

Operation: Perform
operation of the system.

4.19 Model the Product
Architecture, 4.20
Revise an Architecture
with Scenarios, 4.21
Define System States

not explicitly covered

not explicitly covered

not explicitly covered

4.16 Specify Test Cases,
4.22 Model the Test
Architecture

not explicitly covered

4.16 Specify Test Cases,
4.22 Model the Test
Architecture

not explicitly covered
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ISO 15288 SYSMOD

Maintenance: Perform  not explicitly covered
maintenance to sustain
the system services.

Disposal: End the not explicitly covered
existence of a system.

37



Appendix A: Mapping ISO 15288 to SYSMOD

A.2 1SO 15288: Technical
Management Processes

ISO 15288 SYSMOD

Project Planning: Produce  not explicitly covered
and coordinate project
plans.

Project Assessment and not explicitly covered
Control: Assess and
control the plans.

Decision Management: not explicitly covered
Provide a framework for

decisions.

Risk Management: 4.9 Model Risks

Identify and manage risks.

Configuration not explicitly covered
Management: Manage

system elements and

configurations over the

life cycle.

Information Management:  not explicitly covered
Perform and coordinate

communication of

information with the

stakeholders.

Measurement: Obtain not explicitly covered
objective data to support

the quality management

of the system.
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ISO 15288 SYSMOD

Quality Assurance: Ensure  not explicitly covered
the application of the
organization’s quality
management process.

A.31SO 15288: Agreement
Processes

ISO 15288 SYSMOD
Acquisition: Obtain a not explicitly covered
product or service.

Supply: Provide a product  not explicitly covered
or service.

A.4 1SO15288: Organizational
Project-Enabling

ISO 15288 SYSMOD

Life Cycle Model not explicitly covered
Management: Manage

life cycle models,

processes, and policies.

Infrastructure 4.1 Tailor the MBSE
Management: Provide Methodology, 4.2 Set up
infrastructure and and maintain the SME,
services to projects. 4.3 Deploy the MBSE

Methodology
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ISO 15288

SYSMOD

Portfolio Management:
Initiate suitable projects
to meet the strategic
objectives of the
organization.

Human Resource
Management: Provide
the necessary human
resources.

Quality Management:
Assure that the quality
management process
meets organizational
and project quality
objectives.

Knowledge
Management: Create
the capability to
re-apply knowledge.

not explicitly covered

4.4 Provide MBSE
Training and Coaching

not explicitly covered

not explicitly covered
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