

[image: SYSMOD - The Systems Modeling Toolbox, 3rd edition]

 SYSMOD - The Systems Modeling Toolbox, 3rd edition

 Pragmatic MBSE with SysML

 Tim Weilkiens

 This book is for sale at http://leanpub.com/sysmod

 This version was published on 2020-08-01

 [image: publisher's logo]

 * * * * *

 Publishing on the Pulse of the Markets

MBSE4U is a publishing house for books about MBSE. They are intended to be regularly updated to align the content with the highly dynamic systems engineering domain.

 * * * * *

© 2013 - 2020 MBSE4U

 ISBN for EPUB version: 978-3-9822235-0-6

 ISBN for MOBI version: 978-3-9822235-1-3

 Table of Contents

 	
 About MBSE4U

 	
 About Tim Weilkiens

 	
 History and Outlook

 	
 SYSMOD Versions

 	
 SYSMOD Outlook

 	
 Preface

 	
 1. SYSMOD - The Systems Modeling Toolbox

 	
 2. Engineering for the Planet

 	
 3. SYSMOD Profile and Model Libraries

 	
 3.1 Activities

 	
 3.2 Actors

 	
 3.3 Blocks

 	
 3.4 Discipline-specific Elements

 	
 3.5 Relationships

 	
 3.6 Requirements and Risks

 	
 3.7 Test Cases

 	
 3.8 Use Cases

 	
 3.9 Variants (VAMOS stereotypes)

 	
 3.10 SYSMOD Enumerations

 	
 3.11 SYSMOD PartsCatalogue Library

 	
 3.12 SYSMOD Simulation Library

 	
 3.13 SYSMOD Engineering4Planet Library

 	
 Appendix A: Mapping ISO 15288 to SYSMOD

 	
 A.1 ISO 15288: Technical Processes

 	
 A.2 ISO 15288: Technical Management Processes

 	
 A.3 ISO 15288: Agreement Processes

 	
 A.4 ISO15288: Organizational Project-Enabling

 	
 Bibliography

 	
 Index

 	
 Notes

 Guide

 	
 Begin Reading

About MBSE4U

 [image:]

 Publishing on the Pulse of the Market

MBSE4U is a publishing organization for model-based systems engineering books that are regularly updated to follow the dynamic changes
in the MBSE community and the markets.

MBSE4U has published the following books:

 	Tim Weilkiens. SYSMOD - The Systems Modeling Toolbox - Pragmatic MBSE with SysML. 3rd edition. 2020.

 	Tim Weilkiens. The New Engineering Game. 2019.

 	Benjamin Weinert. Ein Framework zur Architekturbeschreibung von sozio-technischen maritimen Systemen. 2018. (German Edition)

 	Christian Neureiter. A Domain-Specific, Model Driven Engineering Approach for Systems Engineering in the Smart Grid. 2017.

 	Tim Weilkiens. Variant Modeling with SysML. 2016.

Please let us know if you want to write a book to be published by MBSE4U (info@mbse4u.com).
We have a lean publishing process to reward the authors well for providing their
valuable MBSE knowledge to the community.

About Tim Weilkiens

 [image:]

I am a consultant and trainer, author, publisher, lecturer, executive board member of
the German consulting and training company oose,
and active member of the OMG and INCOSE organizations.
I wrote parts of the initial SysML specification, and I am still active in the ongoing work on SysML.
I am involved in many MBSE activities, and you can meet me at many conferences on MBSE and related topics.

As a consultant, I have advised many companies in different domains. The insights into their challenges are one source of my experience that I share in my books and presentations.

I have written many books about modeling, including Systems Engineering with SysML (Morgan Kaufmann, 2008) and Model-Based System Architecture (Wiley, 2015).
I am the editor of the pragmatic and independent MBSE methodology SYSMOD – the Systems Modeling Toolbox.

You can contact me at tim@mbse4u.com and read my blog about MBSE at www.mbse4u.com.

History and Outlook

This chapter gives a brief overview of the SYSMOD version’s history and an outlook on future planned changes.

SYSMOD Versions

 	4.2 Third edition of the book SYSMOD - The Systems Modeling Toolbox. MBSE4U. 2019

 	Added chapter “Engineering for the Planet”

 	Added SYSMOD Methods: “Analyze the Problem”, “Model Risks”, “Specify Test Cases”, and “Model the Test Architecture”

 	Added SYSMOD Adoption Process

 	Added a chapter about the adoption of MBSE

 	Added a chapter about a brief introduction to SysML 1.6

 	Mapping ISO 15288 to SYSMOD

 	New OCL constraints for SYSMOD stereotypes («continuousUseCase»)

 	New StakeholderKindCategory: Other

 	Updated to SysML 1.6

 	Some minor typos and updates

 	4.1 Second edition of the book SYSMOD - The Systems Modeling Toolbox. MBSE4U. 2016

 	4.0.2 Actor stereotypes specialize SysML Block

 	4.0.1 Fixed some typos and minor changes

 	4.0 First edition of the book SYSMOD - The Systems Modeling Toolbox. MBSE4U. 2015

 	3.0 Third edition of the German book Systems Engineering mit SysML/UML. dpunkt-Verlag. 2014

 	2.0 First edition of the English book Systems Engineering with SysML/UML. Morgan Kaufman. 2008

 	1.0 First publication of SYSMOD in the German book Systems Engineering mit SysML/UML. dpunkt-Verlag. 2006

SYSMOD Outlook

 	More behavior descriptions in architecture models

 	More tools for on-site workshops to elaborate SYSMOD Products

 	Functional safety modeling

 	Methods for Collaborative Engineering

 	MBSE and Digital Twins, Data Analytics, Artificial Intelligence, and Machine Learning

 	Configuration Management

 	Framework Evaluation of MBSE Methodologies for Practitioners (FEMMP)

 	Description of SYSMOD using the Essence framework

Preface

Many years ago, I bundled modeling methods and practices to the Systems Modeling Toolbox (SYSMOD).
At the same time, I worked together with other MBSE experts on the first version of SysML 1.0 [SysML07].
SYSMOD is a discovery and not an invention. It consists of already well-known methods and practices. I am more an editor
than an author of SYSMOD and collected practices, transferred some of them from other disciplines to the
systems engineering discipline, and described the links between the practices to combine them
to a methodology. Nowadays, SYSMOD is used in many industrial projects worldwide.

In 2006, I published SYSMOD in the German book Systems Engineering mit SysML/UML (dpunkt) and 2008 in the English
edition Systems Engineering with SysML/UML [We08].
The third edition of the German book was published in 2014 [We14].
Besides SYSMOD, the books provide a comprehensive description of the SysML.
To release more regular updates, in 2015, I published the first edition of a book specifically on the SYSMOD methodology.
You are currently holding the book in your hands (or have it stored on your device or cloud).

This third edition of the book includes additional methods about problem analysis, risk management, and testing,
a chapter about SysML, and a chapter about the adoption of MBSE in an organization.

The SYSMOD Method Analyze the Problem (section 4.5)
is about an explicit rethinking of the problem statement: “Are we solving the right problem with the system?”.

The methods
Specify Test Cases (section 4.15) and
Model the Test Architecture (section 4.21) add the
important verification and validation aspect to the SYSMOD methodology.
You find a more detailed list of the changes in the history section above.

I appreciate any feedback on the book. You can reach me
by email: tim@mbse4u.com.
This book is considered to be an eBook. However, a print version of the book is also available.

I like to write books in a gender-fair language. On the other hand, I avoid cluttering the flow of reading by always using both genders in the same sentence.
Therefore, I only used one gender where it was not appropriate to use gender-neutral language.
Feel free to replace the gender with your favorite one wherever it is appropriate.

I thank my colleagues at my company for long profound discussions about MBSE.

I thank NoMagic for their support. I created the SysML diagrams in this book with their modeling tool Cameo Systems Modeler.

If you need MBSE training or consulting services, feel free to contact me. My company - the consultancy oose -
provides professional MBSE training and coachings, for example, to introduce MBSE in your organization.

 Tim Weilkiens, July 2020.

 tim@mbse4u.com

1. SYSMOD - The Systems Modeling Toolbox

SYSMOD is the abbreviation for Systems Modeling Toolbox and an MBSE methodology with a strong focus on the individual methods.
The modeling language and tools come second.
Processes in SYSMOD are guidelines and no strict rules.
It is more important
to master the craftsmanship than to follow a process.

SYSMOD works perfectly together with the OMG Systems Modeling Language (OMG SysML) [SysML19]. SysML is a general-purpose modeling language for systems engineering
and a worldwide standard. It is not mandatory to do SYSMOD with SysML. As a default, however, I would always recommend this combination.

Process, Method, and Methodology are common terms with many different meanings. SYSMOD follows the definitions given by James N. Martin [Ma96]:

 “A Process is a logical sequence of tasks performed to achieve a particular objective. A process defines “WHAT” is to be done, without specifying “HOW” each task is performed.”

 “A Method consists of techniques for performing a task, in other words, it defines the “HOW” of each task.”

Based on Jeff Estefan [Es08], a Tool facilitates the accomplishment of the methods, and
a Methodology is a consistent set of related processes, methods, and tools.

SYSMOD uses an extended version of this definition to explicitly include humans:
A methodology is a collection of processes, Methods, Products, Roles, and tools.

The tools are a set of applications, servers, interfaces, and so on, which form the System Modeling Environment (SME).

The SYSMOD toolbox consists of three main artifact kinds:

 	The SYSMOD Products are significant artifacts of the systems development like requirements or the architecture descriptions.

 	The SYSMOD Methods are best practices on how to create an SYSMOD Product.

 	The SYSMOD Roles are work descriptions of a person. A Role is responsible for SYSMOD Products and a primary or additional performer of SYSMOD Methods.

The following figure 1.1 depicts the relationships between SYSMOD Methods, Products, and Roles.

A Role is part of 0..* methodologies, is responsible
for 1..* Methods,
and supports 0..* Methods as a co-worker.

A Method is part of 0..* methodologies and has precisely one Role
that is responsible for the Method and some Roles as additional performers. Each Method requires 0..* Products
as inputs and produces 1..* Products as outputs. Exactly one Role
is responsible for a Product. A Product is part of 0..* methodologies.

 [image: Figure 1.1: Main SYSMOD Artifact Kinds]
 Figure 1.1: Main SYSMOD Artifact Kinds

A process is part of 0..* methodologies and performs 1..* methods. A tool is also part of 0..* methodologies
and facilitates 1..* Methods.

A methodology is a collection of processes, Methods, Products, Roles, and tools.

The SYSMOD Infrastructure Process (figure 3.3),
SYSMOD Analysis Process (figure 3.4), and
the SYSMOD Architecture Process (figure 3.5) demonstrate a typical logical order of execution of the SYSMOD Methods.
In practice, a project typically uses a customized set of methods
in a different order, and with many iterations and loops.

Before the book starts with the main SYSMOD content, the next chapter 2 solicits your
attention to a critical topic.
Our planet is in
bad shape, and I assume all of you would like to have a good life for yourself, your family,
your descendants, and all the life around you. It is quite evident that we must
actively do something to make that happen. We engineers must also take responsibility.
Chapter 2 deals with the responsibility of each individual engineer
and channeling engineering power for the planet.

Since the SYSMOD Processes provide a good overview of the toolbox, I start to describe SYSMOD
with the process chapter. Next, follows the
chapters about the SYSMOD Methods, Products, and Roles.
Each chapter lists the elements with a brief
description.

The Guidances chapter provides practical explanations of
how to do the modeling of the SYSMOD Methods and Products.

Examples are always helpful for a better understanding. The Examples chapter demonstrates the application
of SYSMOD with a fictitious example. Since a book is a book and a model is a model, the examples chapter can
only provide some views on the overall model. The example as a model is available as part of the
SYSMOD plugin (see www.mbse4u.com).

Chapter 9 presents the SysML profile for SYSMOD.
It describes the stereotypes that are necessary to
apply the SYSMOD concepts to a model.

Chapter 10 describes how to define a customized MBSE Methodology using SYSMOD.

Chapter 11 is about more MBSE Tools and opens additional drawers of the MBSE toolbox and presents some
helpful patterns and other practices for MBSE.

Chapter 12 provides a brief introduction to the OMG Systems Modeling Language (SysML) Version 1.6.

In the annex, you find a mapping of SYSMOD to the ISO15288 processes.

2. Engineering for the Planet

Engineers build great systems that save lives, protect the environment, provide energy, safety, mobility,
economic development, convenience, and many more. But they also build systems that kill and harm people,
destroy our environment, and do other bad things.

The people who use such systems take the primary responsibility, but the engineers who
built the systems also take part in it.
They have the expertise and can influence solutions to ensure a more sustainable future.

We are facing more and more global challenges like
climate change, increasing world population, pandemics, environmental destruction, or the possibility of an asteroid impact.

Engineering power makes the impossible possible. Engineers brought humans to the moon, which is still
unbelievable, but it was much more unthinkable in the 1960ies. The Chinese built a dam that slows down
the earth’s rotation. Regardless of if all this is good or bad, it is extremely powerful.

Regarding the critical situation of our planet, we must channelize the power of engineering for
a worth living future. Besides large planet-saving projects and heroic deeds, it is also about the many small
micro-decisions and actions of each engineer in the world that, in total, will move us in the right direction.

Let Engineering for the Planet be part of the engineering mindset, a mandatory part of standards
and policies, and part of the engineer’s toolbox full of methods & tools.

SYSMOD, for example,
provides an actor element Planet Environment associated with tasks about sustainability analysis,
and an actor category «environmentalImpact».
See section 7.8 about how to
use the Planet Environment.

X4Planet is an organization to
focus on global resources experts on saving the planet. The X stands for any domain like engineering or organizational consulting.
Join the community and
do your part. Following X4Planet
on social media is a good starting point. See www.x4planet.org
for more information.

3. SYSMOD Profile and Model Libraries

The SYSMOD Profile is a set of stereotypes adding some SYSMOD-specific elements to the SysML vocabulary.
SysML is too general to be used out-of-the-box without any extensions. For example, SysML does not provide elements for system
hierarchies like system or subsystem or different requirement kinds and additional requirement properties. See
section 12.11 for more details about profiles.

The following sections describe each SYSMOD stereotype and its formal definition
to easily define yourself an SYSMOD Profile in your modeling tool.
You can also download the SYSMOD Profile for some modeling tools from the
website www.mbse4u.com.

Alphabetical list of SYSMOD stereotypes:

 	9.2 «actuator»

 	9.2 «boundarySystem»

 	9.6 «businessRequirement»

 	9.5 «conjugated»

 	9.6 «constraintRequirement»

 	9.1 «continuousActivity»

 	9.8 «continuousUseCase»

 	9.3 «documentBlock»

 	9.3 «domainBlock»

 	9.4 «electrical»

 	9.2 «environmentalEffect»

 	9.2 «environmentalImpact»

 	9.5 «exDeriveReqt»

 	9.6 «extendedRequirement»

 	9.6 «extendedStakeholder»

 	9.7 «extendedTestCase»

 	9.2 «externalSystem»

 	9.6 «functionalRequirement»

 	9.6 «legalRequirement»

 	9.4 «mechanical»

 	9.2 «mechanicalSystem»

 	9.7 «modelTestCase»

 	9.6 «non-functionalRequirement»

 	9.6 «objective»

 	9.3 «parametricContext»

 	9.6 «performanceRequirement»

 	9.6 «performanceConstraintRequirement»

 	9.6 «physicalRequirement»

 	9.6 «reliabilityRequirement»

 	9.9 «requires»

 	9.6 «risk»

 	9.2 «sensor»

 	9.4 «software»

 	9.3 «subsystem»

 	9.6 «supportabilityRequirement»

 	9.3 «system»

 	9.3 «systemContext»

 	9.8 «systemProcess»

 	9.7 «systemTestCase»

 	9.8 «systemUseCase»

 	9.6 «usabilityRequirement»

 	9.2 «user»

 	9.3 «userInterface»

 	9.2 «userSystem»

 	9.9 «variant»

 	9.9 «variantConfiguration»

 	9.9 «variation»

 	9.5 «weightedAllocate»

 	9.5 «weightedSatisfy»

 	9.5 «weightedVerify»

 	9.9 «xor»

Alphabetical list of SYSMOD Enumerations elements:

 	9.10 EffortKind

 	9.10 ObligationKind

 	9.10 Planet Environment

 	9.10 PriorityKind

 	9.10 StabilityKind

 	9.10 StakeholderCategoryKind

SYSMOD provides some additional model libraries. They offer some useful elements and serve as an example of
what a model library can look like.

Section 9.11 describes the PartsCatalogue,
section 9.12 describes a library for simulation elements,
and section 9.13 describes the Engineering4Planet library for modeling of sustainability aspects.

3.1 Activities

The continuous activity is a marker for a Use Case Activity of a continuous
System Use Case. A constraint of the continuous use case stereotype assures
that its activity is a «continuousActivity» (see section 9.8).

Figure 9.1 depicts the definition of the SYSMOD stereotype «continuousActivity» for Activities.

 [image: Figure 9.1: SYSMOD stereotype for SysML *Activities*]
 Figure 9.1: SYSMOD stereotype for SysML Activities

3.2 Actors

SysML has only a single general model element to model the concept of an actor, i.e., an external entity that interacts with the system of interest.
Specific actor kinds like human or external systems are not part of the standard.
That is a task for profiles. The SYSMOD Profile provides a set of some specific actor kinds.
Figure 9.2 depicts the definition of the stereotypes: «user», «externalSystem»,
«environmentalEffect», «mechanicalSystem», «sensor», «actuator», «boundarySystem», «userSystem».

All stereotypes are specializations of the SysML Block.
See section 11.1: Death of the Actor for more details.
If you still want to use the SysML Actor model element, you must change the definition of the SYSMOD actor stereotypes.
Remove the generalization relationships to the SysML Block and
change the extended metaclass from Class to Actor.

For backward compatibility with older SYSMOD versions, the SYSMOD User stereotype
can also still be applied to the SysML Actor element.

 [image: Figure 9.2: SYSMOD stereotypes for SysML *Actors*]
 Figure 9.2: SYSMOD stereotypes for SysML Actors

There are three top-level actor kinds:

 	User

 	Represents a human actor. The stereotype can be used in combination with the stereotype 9.6 «extendedStakeholder».

 	Environmental effect

 	Represents a relevant effect from the environment on the system, e.g., temperature or humidity.

 	External system

 	Represents a non-human actor.

Further actor kinds are specializations of the external system actor:

 	Mechanical system

 	External system that has only mechanical interfaces to the system of interest, for example, the floor.

 	Sensor

 	External system that provides data from the environment to the system of interest.

 	Actuator

 	External system that has an effect on the environment and is controlled by the system of interest.

 	User system

 	External system that is an interface between a human and a system of interest.

 	Boundary system

 	External system that is an interface between another external system and the system of interest.

 	Environmental impact

 	Impact of the system on the environment in the sense of sustainability (see chapter 2).

The actor kinds Sensor, Actuator, User system, and Boundary system are, in particular, useful for embedded systems.
In more holistic system development,
these entities are typically part of the system of interest and are not actors.

The stereotypes also define their own notation by icons that depict the kind of system actor.
Figure 9.3 shows the icons of the SYSMOD stereotypes for actors.

 [image: Figure 9.3: Icons for SYSMOD actor stereotypes]
 Figure 9.3: Icons for SYSMOD actor stereotypes

3.3 Blocks

SYSMOD defines several stereotypes for SysML Block and InterfaceBlock.

The stereotype «userInterface» marks an interface block that specifies an interaction point
between the system and a human.
These interfaces are different from technical interfaces like an API, or a mechanical connection.
For example,
a user interface defines operations that represent the usage of a lever or button.

The stereotype «system» marks a block that represents a system.
A model can have more than
one system element. For example, a system element for the Base Architecture (see section 8.6: Example Base Architecture),
and another one for the Logical Architecture (see section 8.15: Example Logical Architecture).
Typically, all system elements are specializations of the abstract system element.
The system stereotype defines properties for
the System Idea and the Problem Statement.

To define another level of a system breakdown structure, the stereotype «subsystem» is applied
to blocks that represent system-like parts of the system.

The stereotype «systemContext» is a block that specifies the communication links between the system and
the system actors. Internal block diagrams of the system context element depict the System Context.	

The stereotype «documentBlock» represents a document and can be used as a proxy for the information
of the document in the model.
For example, a document block that represents an interface specification document and is used as the type of a port.
The property reference stores the source of the document, for example, a URL or a link to the document in a file system.

The stereotype «domainBlock» is an element of the Domain Knowledge (section 5.15).
It represents a concept of the domain
that is “known” by the system.

Figure 9.4 depicts the definitions of the SYSMOD stereotypes for SysML Blocks.

 [image: Figure 9.4: SYSMOD stereotypes for SysML *Blocks*]
 Figure 9.4: SYSMOD stereotypes for SysML Blocks

3.4 Discipline-specific Elements

As a rule of thumb, the model elements at the lowest level of the system breakdown structure
can be fully allocated to a specific engineering discipline. For example, a block that
represents a pure software, mechanical, or electrical artifact.

The SYSMOD stereotypes for
discipline-specific elements are markers for those elements. The base class is NamedElement,
i.e., the stereotypes can be applied to any model element that has a name. Typically, it is used for blocks, parts, and connectors.

The property reference stores a link to an external model or document that covers the details of the discipline-specific element.

Figure 9.5 depicts the definitions of the SYSMOD stereotypes for discipline-specific elements: «software», «mechanical», and «electrical».
You can define our own additional stereotypes if you need more discipline-specific elements.

 [image: Figure 9.5: SYSMOD stereotypes for discipline-specific Elements]
 Figure 9.5: SYSMOD stereotypes for discipline-specific Elements

3.5 Relationships

The SysML relationship Satisfy specifies that the element at the source of the relationship satisfies the requirement at the
target. It works well for one-to-one but is not precise for many-to-many relationships.

If, for example, two blocks have satisfy relationships to a single requirement in SysML (figure 9.6),
it is not specified
what that means. Does block A and B together satisfy requirement R42? Or each block alone
and the requirement R42 is satisfied twice?

 [image: Figure 9.6: Ambiguity of the satisfy relationship]
 Figure 9.6: Ambiguity of the satisfy relationship

The SYSMOD stereotype «weightedSatisfy» adds a property to the satisfy relationship that specifies the coverage of the satisfaction.
Figure 9.7 shows the same scenario of
figure 9.6 with the weighted satisfy relationship. Block A satisfies 70% and
block B 30% of the requirement R42.

 [image: Figure 9.7: Example of SYSMOD weighted satisfy relationship]
 Figure 9.7: Example of SYSMOD weighted satisfy relationship

The property coverageKind specifies if the coverage is disjunct or overlapping. Overlapping means that the elements at the source of the
«weightedSatisfy» relationships satisfy equal parts of the requirement. For example, if the requested feature should be implemented twice for redundancy reasons.
In such a case, a satisfy coverage of 70% + 30% is not a 100% coverage of the requirement. If the property coverageKind is set to disjunct,
it specifies a non-overlapping coverage. Disjunct is the default.

The same principle is applied to the SysML relationships Verify and Allocate by the SYSMOD
stereotypes «weightedVerify» and «weightedAllocate».

The SysML relationship DeriveReqt specifies that a requirement is derived from another requirement.
The SYSMOD stereotype «exDeriveReqt» adds a property to specify the model elements that
led to the derivation, for example,
architecture elements, as described in the
zigzag pattern (see section 11.6). Figure 9.8
shows an example of the extended derive relationship.

 [image: Figure 9.8: Example of SYSMOD extended derive requirement relationship]
 Figure 9.8: Example of SYSMOD extended derive requirement relationship

The SYSMOD stereotype «conjugated» is deprecated since SYSMOD v4.2 because SysML v1.6 resolved the issue
that was resolved by this stereotype for older SysML versions.
It is still part of SYSMOD
to support models that are based on SysML < v1.6. The following paragraphs explain the issue
and motivation for the stereotype.

The proxy ports of a block are typed with SysML InterfaceBlocks. To ensure that the block implements
the features specified by its ports, it typically has a generalization relationship to the interface
block (figure 9.9).

 [image: Figure 9.9: Example interface block generalization]
 Figure 9.9: Example interface block generalization

If a proxy port is connected to another port by a connector, the connected port has typically the
same type but is a conjugated port to invert the direction of the flow properties and directed features specified within the
interface block (figure 9.10).

 [image: Figure 9.10: Example connected proxy ports]
 Figure 9.10: Example connected proxy ports

The block MyBlock B should also have a generalization relationship to the proxy port type MyPort
to ensure that the specified features are implemented by MyBlock B.
However, we need a conjugated type to invert the directions of the flow properties and directed features.
The SYSMOD stereotype «conjugated» is a generalization relationship that has the same effect as the
isConjugated property of a SysML Port. The direction of the inherited directed
features is conjugated (figure 9.11).

 [image: Figure 9.11: Example conjugated generalization]
 Figure 9.11: Example conjugated generalization

SysML v1.6 does not resolve the issue by a conjugated generalization relationship but by a
special conjugated interface block. See section 12.6 for details about the SysML InterfaceBlock and ~InterfaceBlock.

Figure 9.12 depicts the definitions of the SYSMOD stereotypes for relationships.

 [image: Figure 9.12: SYSMOD stereotypes for Relationships]
 Figure 9.12: SYSMOD stereotypes for Relationships

3.6 Requirements and Risks

Figure 9.13 depicts the definition
of the SYSMOD stereotypes for requirements.

 [image: Figure 9.13: SYSMOD stereotypes for Requirements]
 Figure 9.13: SYSMOD stereotypes for Requirements

SysML provides only a general requirement model element that covers the name, ID, and the text of a requirement.
The SYSMOD stereotype «extendedRequirement» adds additional properties typically
important for Requirements:

 	Priority
 	Specifies the importance of the requirement.

 	Obligation
 	Specifies if the requirement is optional or mandatory.

 	Stability
 	Specifies if it is likely that the requirement will change in the future.

 	Risk
 	Specifies a list of risks for the implementation of the requirement.

 	Motivation
 	Specifies why the requirement is necessary.

The SYSMOD stereotype «extendedRequirement» can be applied to any model element that has a name,
for example, a state machine or a constraint block to designate that model element itself as a requirement.
It is not necessary to translate activities or state machines that represent requirements to textual requirements.

SYSMOD provides further specializations of the stereotype «extendedRequirement». They do no add more
properties, but specify each a different kind of a requirement: «functionalRequirement», «non-functionalRequirement»,
«physicalRequirement», «usabilityRequirement», «constraintRequirement», «reliabilityRequirement», «performanceRequirement»,
«legalRequirement», «businessRequirement», «supportabilityRequirement».

The SYSMOD stereotype «objective» specializes the SysML stereotype «requirement» and
represents System Objectives (section 5.6).

The stereotype «extendedStakeholder» extends the SysML Stakeholder to add additional properties that are used for the
SYSMOD Stakeholder (section 5.8).

SYSMOD extends the SysML Requirement element to provide a model element for Risks.
In the broadest sense, a Risk is a potentially undesirable situation
that must be considered by the system or systems engineering project.
The stereotype «risk» adds the following properties

 	occurrence
 	Occurrence rating of the risk, for example, 1 - 10 (10 = highest occurrence).

 	severity
 	Severity rating of the risk, for example, 1 - 10 (10 = highest severity).

 	kind
 	Classification of the risk: technical, cost, schedule, other.

Since the metaclass NamedElement of the stereotype «extendedRequirement» is abstract, you must specify
a concrete model element when you apply the stereotypes. It can be any kind of a named element.

 [image: Figure 9.14: SYSMOD stereotypes for classical textual Requirements]
 Figure 9.14: SYSMOD stereotypes for classical textual Requirements

Figure 9.14 depicts SYSMOD
requirement stereotypes that specializes the concrete SysML Requirement instead of the abstract
SysML AbstractRequirement element. The stereotypes for classical textual requirements
have the prefix txt.

Figure 9.15 depicts the SYSMOD stereotype «performanceConstraintRequirement» which specializes the
SysML AbstractRequirement and the SysML ConstraintBlock element. Figure 8.26 shows an example of how to use it.

 [image: Figure 9.15: SYSMOD stereotype for parametric-based performance requirement]
 Figure 9.15: SYSMOD stereotype for parametric-based performance requirement

3.7 Test Cases

The abstract stereotype «extendedTestCase» specializes the SysML test case
by adding the following properties. They are similar to the definitions in the
UML Testing Profile [UTP13]. If you need more test modeling features,
you should use the complete UML Testing Profile in addition to SysML and SYSMOD.

 	priority
 	Priority of the test case for test case management.

 	type
 	Type of the test case. The set of types is not predefined.

 	componentUnderTest
 	References the block that is tested by the test case, for example, the whole system or a subsystem.

The priority may be used to support test planning activities.

The type describes the type of the test case, for example, usability test or performance test.

The componentUnderTest references the block that is in the focus of the test case, for example,
the whole system itself, a subsystem, or any other block of the system architecture.

The specialized stereotype «systemTestCase» is used to specify test cases that tests the real physical system.
The stereotype «modelTestCase» is used to specify test cases that test the model, i.e., the
specification of the system.

The following figure 9.16, depicts the definition of the stereotypes.

 [image: Figure 9.16: SYSMOD stereotypes for Test Cases]
 Figure 9.16: SYSMOD stereotypes for Test Cases

3.8 Use Cases

The stereotype «systemUseCase» adds more properties to the SysML UseCase element.
A property to specify the trigger that starts the System Use Case, and a property for the result of the
System Use Case (section 5.12).

You can specify a descriptive textual trigger, or reference a signal model element as a trigger that, for example,
can be used in a state machine to trigger transitions (see figure 8.64
in section 8.18).

The stereotype «continuousUseCase» is a specialized «systemUseCase» to model a continuous behavior. A continuous
use case must own a «continuousActivity». The constraint is defined with OCL1 as follows:

context ContinuousUeCase inv ContinuousUseCaseOwnsC\
ontinuousActivity:
self.classifierBehavior.oclIsTypeOf(SYSMOD::Activit\
ies::ContinuousActivity)

The SYSMOD stereotype «systemProcess» is applied to use cases that
represent a System Process (section 5.13),
that means, a specification of the logical order of execution of Use Case Activities.

Figure 9.17 depicts the definitions of the SYSMOD stereotypes for use cases.

 [image: Figure 9.17: SYSMOD stereotypes for Use cases]
 Figure 9.17: SYSMOD stereotypes for Use cases

3.9 Variants (VAMOS stereotypes)

The modeling of variants is a topic in itself. I call the method for modeling variants with SysML VAMOS (VAriant MOdeling with SysML).
You find a detailed description of VAMOS and examples in the book
Variant Modeling with SysML2.
A brief overview is given in
section 11.5.

The SYSMOD stereotypes depicted in figure 9.18 are necessary
to model the variant modeling approach: «variationPoint», «variant», «variation»,
«variantConfiguration», «XOR», «REQUIRES», and the enumeration BindingTimeKind.

 [image: Figure 9.18: SYSMOD stereotypes for Variants]
 Figure 9.18: SYSMOD stereotypes for Variants

3.10 SYSMOD Enumerations

The SYSMOD Enumerations package contains enumeration types used by SYSMOD stereotypes:
EffortKind, ObligationKind, PriorityKind, RiskKind, StabilityKind,
and StakeholderCategoryKind (figure 9.19).

 [image: Figure 9.19: SYSMOD Profile Library: Enumerations]
 Figure 9.19: SYSMOD Profile Library: Enumerations

3.11 SYSMOD PartsCatalogue Library

The model library PartsCatalogue provides common model elements useful for system modeling. The library is
independent of the SYSMOD profile and vice versa. The library is intended to be
an example
of a model library, and not to be a complete library.

The current version of the library includes four sections: Analysis, Constraints,
Physics, and Units (figure 9.20).

 [image: Figure 9.20: SYSMOD PartsCatalogue Library]
 Figure 9.20: SYSMOD PartsCatalogue Library

The Analysis package contains an abstract block PerformanceBehaviorProperties (figure 9.21).
The properties store the minimum,
maximum, and medium duration of a behavior. The appropriate derived properties totalXXX sum up the values
of a breakdown structure, for example, an activity tree.

 [image: Figure 9.21: SYSMOD PartsCatalogue Library: Analysis]
 Figure 9.21: SYSMOD PartsCatalogue Library: Analysis

The calculation of the sums is performed by the constraint properties specified in the parametric diagram depicted
in 9.22.

 [image: Figure 9.22: SYSMOD PartsCatalogue Library: Analysis Parametrics]
 Figure 9.22: SYSMOD PartsCatalogue Library: Analysis Parametrics

The Constraints package includes two simple constraint blocks, Add and Sum (figure 9.23)
used, for example, in the Analysis package above.

 [image: Figure 9.23: SYSMOD PartsCatalogue Library: Constraints]
 Figure 9.23: SYSMOD PartsCatalogue Library: Constraints

The Physics package includes an abstract block as a base block for blocks specifying physical things with a mass
(figure 9.24).
Similar to the PerformanceBehaviorProperties block in the Analysis package, the PhysicalElement provides the
capability to sum up the masses of a breakdown structure.

 [image: Figure 9.24: SYSMOD PartsCatalogue Library: Physics]
 Figure 9.24: SYSMOD PartsCatalogue Library: Physics

Figure 9.25 shows an example of how to use the PhysicalElement. If you create an
instance specification of the block Smoke Sensor, the value property totalMass has the value 0.9 kg. Of course only,
if your modeling provides the necessary calculation capabilities.

 [image: Figure 9.25: SYSMOD PartsCatalogue Library: Physics Example]
 Figure 9.25: SYSMOD PartsCatalogue Library: Physics Example

The Units package includes only two value types specifying kilogram and timestamp values
(figure 9.26). They are used in the Physics package, and the model of the FFDS.

 [image: Figure 9.26: SYSMOD PartsCatalogue Library: Units]
 Figure 9.26: SYSMOD PartsCatalogue Library: Units

3.12 SYSMOD Simulation Library

The SYSMOD SimLib library provides some elements useful to create an
executable model (figure 9.27). The library is only a simple example
of a model library.
Typically, you need many more additional elements to create an executable system model.

The library also includes a profile with the stereotype «simElement» to tag elements in the model
that only exists to enable the model execution,
for example, an action in an activity that was modeled just for
executability (see figure 8.54).

 [image: Figure 9.27: SYSMOD Simulation Library]
 Figure 9.27: SYSMOD Simulation Library

3.13 SYSMOD Engineering4Planet Library

The SYSMOD Engineering4Planet Library provides two elements to model sustainability aspects (figure 9.28);
see also section 2.

 [image: Figure 9.28: SYSMOD Engineering4Planet Library]
 Figure 9.28: SYSMOD Engineering4Planet Library

PlanetEnvironment is an actor that, typically, should be considered in any system context.

PlanetImpact is a type of an item flow to model the impact of the system of interest on the planet.

Appendix A: Mapping ISO 15288 to SYSMOD

The following list shows a mapping of the ISO 15288 processes [ISO15288]
to the SYSMOD Methods
whereby the mapping makes no distinction between full or partial coverage:

 A.1 ISO 15288: Technical Processes

 	ISO 15288
 	SYSMOD

 	
Business Mission Analysis: Defines business or mission problem and characterize the solution space.
 	
4.5 Analyze the Problem, 4.6 Describe the System Idea and the System Objectives, 4.7 Describe the Base Architecture, 4.8 Identify Stakeholders, 4.11 Identify the System Context

 	
 	

 	
Stakeholder Needs and Requirements Definition: Define the stakeholder requirements.
 	
4.8 Identify Stakeholders, 4.10 Model Requirements, 4.11 Identify the System Context, 4.12 Identify System Use Cases, 4.13 Identify System Processes, 4.14 Model Use Case Activities, 4.15 Model the Domain Knowledge, 4.21 Define System States

 	
 	

 	
System requirements definition: Transform the stakeholder-oriented desired capabilities into a technical view of a solution.
 	
4.10 Model Requirements, 4.12 Identify System Use Cases, 4.13 Identify System Processes, 4.14 Model Use Case Activities, 4.15 Model the Domain Knowledge, 4.21 Define System States

 	
 	

 	
Architecture Definition: Create system architecture alternatives and select the most appropriate one(s).
 	
4.11 Identify the System Context, 4.17 Model the Functional Architecture, 4.18 Model the Logical Architecture, 4.20 Revise an Architecture with Scenarios, 4.21 Define System States

 	
 	

 	
Design Definition: Provide detailed information about the system for implementation aligned with the architecture.
 	
4.19 Model the Product Architecture, 4.20 Revise an Architecture with Scenarios, 4.21 Define System States

 	
 	

 	
System Analysis: Provide data to aid decision-making.
 	not explicitly covered

 	
 	

 	
Implementation: Realize a specified system element.
 	not explicitly covered

 	
 	

 	
Integration: Synthesize a set of elements into a realized system.
 	not explicitly covered

 	
 	

 	
Verification: Provide evidence that a system fulfills its requirements.
 	
4.16 Specify Test Cases, 4.22 Model the Test Architecture

 	
 	

 	
Transition: Transfer of custody of the system from development to operation organizational entities.
 	not explicitly covered

 	
 	

 	
Validation: Provide evidence that a system fulfills its intended use.
 	
4.16 Specify Test Cases, 4.22 Model the Test Architecture

 	
 	

 	
Operation: Perform operation of the system.
 	not explicitly covered

 	
 	

 	
Maintenance: Perform maintenance to sustain the system services.
 	not explicitly covered

 	
 	

 	
Disposal: End the existence of a system.
 	not explicitly covered

 A.2 ISO 15288: Technical Management Processes

 	ISO 15288
 	SYSMOD

 	
Project Planning: Produce and coordinate project plans.
 	not explicitly covered

 	
 	

 	
Project Assessment and Control: Assess and control the plans.
 	not explicitly covered

 	
 	

 	
Decision Management: Provide a framework for decisions.
 	not explicitly covered

 	
 	

 	
Risk Management: Identify and manage risks.
 	4.9 Model Risks

 	
 	

 	
Configuration Management: Manage system elements and configurations over the life cycle.
 	not explicitly covered

 	
 	

 	
Information Management: Perform and coordinate communication of information with the stakeholders.
 	not explicitly covered

 	
 	

 	
Measurement: Obtain objective data to support the quality management of the system.
 	not explicitly covered

 	
 	

 	
Quality Assurance: Ensure the application of the organization’s quality management process.
 	not explicitly covered

 A.3 ISO 15288: Agreement Processes

 	ISO 15288
 	SYSMOD

 	
Acquisition: Obtain a product or service.
 	not explicitly covered

 	
 	

 	
Supply: Provide a product or service.
 	not explicitly covered

 A.4 ISO15288: Organizational Project-Enabling

 	ISO 15288
 	SYSMOD

 	
Life Cycle Model Management: Manage life cycle models, processes, and policies.
 	not explicitly covered

 	
 	

 	
Infrastructure Management: Provide infrastructure and services to projects.
 	
4.1 Tailor the MBSE Methodology, 4.2 Set up and maintain the SME, 4.3 Deploy the MBSE Methodology

 	
 	

 	
Portfolio Management: Initiate suitable projects to meet the strategic objectives of the organization.
 	not explicitly covered

 	
 	

 	
Human Resource Management: Provide the necessary human resources.
 	4.4 Provide MBSE Training and Coaching

 	
 	

 	
Quality Management: Assure that the quality management process meets organizational and project quality objectives.
 	not explicitly covered

 	
 	

 	
Knowledge Management: Create the capability to re-apply knowledge.
 	not explicitly covered

Bibliography

[Ar65]
Bruce L. Archer. Systematic Method for Designers. Council of Industrial Design. H.M.S.O.. 1965.

[Bl56]
Benjamin S. Bloom. Taxonomy of educational objectives: The classification of educational goals. Handbook I. David McKay. 1956.

[Br09]
Tim Brown. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation. HarperBusiness. 2009.

[Cr81]
Philip B. Crosby. The Art of Getting Your Own Sweet Way. McGraw-Hill. 1981.

[DaKl14]
Matthias Dänzer, Sven Kleiner, Jesko G. Lamm, Georg Moeser, Fabian Morant, Florian Munker, Tim Weilkiens.
Funktionale Systemmodellierung nach der FAS-Methode: Auswertung von vier Industrieprojekten. Tag des Systems Engineering (TdSE) 2014. Bremen. 12. – 14. November 2014.

[De10]
John Dewey. How we think. D.C. Heath & Co. 1910.

[Es08]
Jeff A. Estefan. Survey of Model-Based Systems Engineering (MBSE) Methodologies. INCOSE MBSE Initiative. 2008.

[Gy12]
Craig Gygi, Bruce Williams, Neil DeCarlo, Stephen R. Covey. Six Sigma For Dummies. 2nd Edition. 2012.

[Ha19]
Reinhard Haberfellner, Olivier de Weck, Ernst Fricke, Siegfried Vössner. Systems Engineering - Fundamentals and Applications. Birkhäuser Basel. 2019.

[Im86]
Masaaki Imai. Kaizen: The Key to Japan’s Competitive Success. McGraw-Hill/Irwin. 1986.

[ISO15288]
ISO/IEC/IEEE 15288:2015. Systems and software engineering — System life cycle processes. 2015.

[ISO195051]
ISO/IEC 19505-1:2012. Information technology — Object Management Group Unified Modeling Language (OMG UML) — Part 1: Infrastructure. 2012.

[ISO195052]
ISO/IEC 19505-2:2012. Information technology — Object Management Group Unified Modeling Language (OMG UML) — Part 2: Superstructure. 2012.

[ISO42010]
ISO/IEC/IEEE 42010:2011. Systems and software engineering – Architecture description. 2011.

[LaWe10]
Jesko G. Lamm, Tim Weilkiens. Functional Architectures in SysML. In M. Maurer and S.-O. Schulze (eds.). Tag des Systems Engineering 2010. pp. 109–118. Carl Hanser Verlag. Munich.
Germany. November 2010.

[LaWe14]
Jesko G. Lamm, Tim Weilkiens. Method for deriving functional architectures from use cases. Systems Engineering. 17(2):225-236. 2014.

[LaM17]
Jesko G. Lamm, Andreas Mettauer, Georg Moeser, Tim Weilkiens, Albert Albers. Storyboards in der Systementwicklung: eine neue Methode und ihr Zusammenspiel mit der FAS-Methode. In S.-O. Schulze (eds.). Tag des Systems Engineering 2017. pp. 105–114. Carl Hanser Verlag. Munich.

[Le18]
Michael Lewrick, Patrick Link, Larry Leifer. The Design Thinking Playbook: Mindful Digital Transformation of Teams, Products, Services, Businesses and Ecosystems. Wiley. 2018.

[Ma96]
James N. Martin. Systems Engineering Guidebook: A Process for Developing Systems and Products. CRC Press, Inc.. 1996.

[MBSECook]
Robert Karban, Tim Weilkiens, et al.. MBSE Cookbook. http://mbse.gfse.de

[Mo98]
Niko Mohr, Jens Marcus Woehe. Widerstand erfolgreich managen: Professionelle Kommunikation in Veränderungsprojekten. Campus Verlag. 1998.

[MOF16]
Object Management Group. Meta Object Facility, Version 2.5.1. formal/19-10-01.

[OCL14]
Object Management Group. Object Constraint Language, Version 2.4. formal/14-02-03.

[Oh88]
Taiichi Ohno. Toyota Production System: Beyond Large-Scale Production. Cambridge, MA: Productivity Press. 1988.

[Oh20]
Taiichi Ohno. “Ask ‘why’ five times about every matter”. https://www.toyota-myanmar.com/about-toyota/toyota-traditions/quality/ask-why-five-times-about-every-matter. Retrieved February 2020.

[Os14]
Alexander Osterwalder, Yves Pigneur, Gregory Bernarda, Alan Smith. Value Proposition Design: How to Create Products and Services Customers Want.
John Wiley & Sons. 2014.

[Pi16]
Roman Pichler. Strategize: Product Strategy and Product Roadmap Practices for the Digital Age. Pichler Consulting. 2016.

[SE16]
BKCASE Editorial Board. 2016. The Guide to the Systems Engineering Body of Knowledge (SEBoK), v. 1.6. R.D. Adcock (EIC). Hoboken, NJ:
The Trustees of the Stevens Institute of Technology. Accessed August 2016. www.sebokwiki.org.

[SysML07]
Object Management Group. OMG Systems Modeling Language (OMG SysML), Version 1.0. formal/2007-09-01.

[SysML19]
Object Management Group. OMG Systems Modeling Language (OMG SysML), Version 1.6. formal/19-11-01.

[UML17]
Object Management Group. Unified Modeling Language (UML), Version 2.5.1. formal/17-12-05.

[UTP13]
Object Management Group. UML Testing Profile (UTP), Version 1.2. formal/2013-04-03.

[We08]
Tim Weilkiens. Systems Engineering with SysML/UML. Morgan Kaufmann. 2008.

[We14]
Tim Weilkiens. Systems Engineering mit SysML/UML. 3rd edition. dpunkt. 2014.

[We15]
Tim Weilkiens, Jesko G. Lamm, Stephan Roth, Markus Walker. Model-Based System Architecture. Wiley. 2015.

[We16]
Tim Weilkiens. Variant Modeling with SysML. MBSE4U. 2016.

[We18]
Tim Weilkiens. Alexander Huwaldt. Jürgen Mottok. Stephan Roth. Andreas Willert. Modellbasierte Softwareentwicklung für eingebettete Systeme verstehen und anwenden. dpunkt. 2018.

[Wo90]
James P. Womack, Daniel T. Jones, Daniel Roos. Machine that Changed the World. Rawson Associates. 1990.

Index

 	«~interfaceBlock»
 	304

 	«actor»
 	290

 	«actuator»
 	212

 	«allocate»
 	328

 	«block»
 	299

 	«boundarySystem»
 	212

 	«businessRequirement»
 	223

 	«conjugated»
 	219

 	«constraint»
 	321

 	«constraintRequirement»
 	223

 	«continuousActivity»
 	212, 227

 	«continuousUseCase»
 	72, 130, 227

 	«deriveReqt»
 	325

 	«documentBlock»
 	215

 	«domainBlock»
 	76, 139, 216

 	«electrical»
 	217

 	«environmentalEﬀect»
 	212

 	«equal»
 	308

 	«exDeriveReqt»
 	219

 	«extendedRequirement»
 	67, 222

 	«extendedStakeholder»
 	65, 120, 223

 	«extendedTestCase»
 	225

 	«externalSystem»
 	212

 	«full»
 	303

 	«functionalRequirement»
 	187, 223

 	«interfaceBlock»
 	304

 	«legalRequirement»
 	223

 	«mechanical»
 	217

 	«mechanicalSystem»
 	212

 	«modelTestCase»
 	78, 226

 	«non-functionalRequirement»
 	223

 	«objective»
 	62, 114, 223

 	«performanceRequirement»
 	223

 	«physicalRequirement»
 	223

 	«problem»
 	330

 	«proxy»
 	303

 	«rationale»
 	330

 	«reﬁne»
 	326

 	«reliabilityRequirement»
 	223

 	«REQUIRES»
 	228

 	«risk»
 	66, 223

 	«satisfy»
 	327

 	«sensor»
 	212

 	«simElement»
 	234

 	«software»
 	217

 	«subsystem»
 	215

 	«supportabilityRequirement»
 	223

 	«system»
 	59, 60, 69, 113, 144, 163, 215

 	«systemContext»
 	69, 126, 215

 	«systemProcess»
 	133, 227

 	«systemTestCase»
 	78, 226

 	«systemUseCase»
 	72, 130, 227

 	«trace»
 	325

 	«usabilityRequirement»
 	223

 	«use»
 	331

 	«user»
 	212

 	«userInterface»
 	215

 	«userSystem»
 	212

 	«variant»
 	228

 	«variantConﬁguration»
 	228

 	«variation»
 	228

 	«variationPoint»
 	228

 	«verify»
 	326

 	«weightedAllocate»
 	219

 	«weightedSatisfy»
 	218

 	«weightedVerify»
 	219

 	«XOR»
 	228

 	3 Amigos
 	280

 	4-layer architecture
 	286

 	6M method
 	275

 	
 	

 	A
 	

 	
 	

 	abstract requirement
 	224

 	abstract syntax
 	283

 	accept event action
 	294, 306

 	action
 	293

 	activity
 	134, 136, 211, 293

 	activity diagram
 	73, 75, 78, 136, 190, 292

 	activity ﬁnal node
 	296

 	activity parameter
 	293

 	actor
 	68, 69, 185, 212, 256, 290

 	actuator
 	214

 	adjunct property
 	75, 301

 	adoption
 	237

 	aggregation
 	300, 305

 	aggregation kind
 	300

 	agile
 	7

 	allocate
 	219, 327

 	allocation activity partition
 	328

 	alt
 	314

 	anti-pattern
 	239

 	any receive event
 	317

 	architecture kinds
 	78

 	artificial intelligence
 	14

 	assert
 	314

 	association
 	300, 304

 	asynchronous message
 	312

 	B
 	

 	
 	

 	base architecture
 	27, 62, 78, 83, 116, 124, 163, 171, 181, 246, 269, 270

 	beermat architecture
 	63, 171

 	behavior
 	302

 	behavior port
 	303

 	behavioral feature
 	302

 	bill of material
 	see BOM

 	binding connector
 	308, 320

 	binding time
 	228

 	BindingTimeKind
 	228

 	block
 	215, 298

 	block definition diagram
 	63, 69, 75, 76, 78, 81, 84, 85, 88, 117, 126, 139, 141, 144, 155, 173, 182, 198, 207, 298

 	Bloom taxonomy
 	91

 	BOM
 	263

 	Booch, Grady
 	279

 	boundary system
 	214

 	break
 	314

 	business requirement
 	223

 	
 	

 	C
 	

 	
 	

 	call behavior action
 	133, 136, 294

 	call event
 	317

 	Cameo Systems Modeler
 	159

 	center of competence
 	96

 	change event
 	317

 	change process
 	19, 238

 	choice
 	319

 	coaching
 	20

 	collaborative engineering
 	14

 	combined fragment
 	313

 	comment
 	330

 	communication
 	261

 	competency
 	91

 	componentUnderTest
 	226

 	composition
 	301, 305

 	concept model
 	41

 	concrete syntax
 	283

 	conﬁguration management
 	14, 56

 	conjugated generalization
 	220

 	conjugated port
 	303

 	conjugation
 	304

 	connector
 	308

 	consider
 	314

 	constraint
 	330

 	constraint block
 	177, 321

 	constraint parameter
 	321

 	constraint property
 	321

 	constraint requirement
 	27, 124, 223

 	containment
 	288

 	continuous activity
 	211

 	continuous use case
 	130, 227

 	control ﬂow
 	295

 	coupling
 	270

 	coverageKind
 	218

 	create message
 	312

 	critical
 	314

 	cross-cutting elements
 	329

 	
 	

 	D
 	

 	
 	

 	data analytics
 	14

 	data model
 	41

 	decision node
 	296

 	deep history
 	319

 	dependency
 	331

 	dependency management
 	289

 	deployment
 	19

 	derive
 	325

 	deriveReqt
 	219

 	Design
 	26

 	Design Thinking
 	22, 58

 	digital twin
 	14

 	discipline-specific element
 	216

 	disruptive innovation
 	28

 	do behavior
 	316

 	document block
 	215

 	domain block
 	139, 192, 216

 	domain knowledge
 	40, 75, 136, 138, 191, 216, 249, 251

 	domain object
 	40, 76

 	
 	

 	E
 	

 	
 	

 	eﬀect
 	317

 	EﬀortKind
 	229

 	electrical
 	217

 	elevator pitch
 	25, 60

 	Engineering4Planet
 	211, 234

 	entry behavior
 	316

 	entry point
 	319

 	enumeration type
 	299

 	environmental eﬀect
 	213

 	environmental impact
 	214

 	exit behavior
 	316

 	exit point
 	319

 	external system
 	213

 	
 	

 	F
 	

 	
 	

 	FAS method
 	13, 44, 80, 83, 159, 257

 	FFDS
 	159

 	ﬁnal state
 	318

 	ﬁve whys method
 	276

 	flat history
 	319

 	ﬂow property
 	303

 	Ford, Henry
 	22

 	forest ﬁre detection system
 	see FFDS

 	fork
 	319

 	fork node
 	297

 	full port
 	263, 302

 	function bucket
 	71

 	functional architecture
 	44, 78, 79, 83, 257, 270

 	functional decomposition
 	39, 74

 	functional requirement
 	36, 177, 184, 223

 	functional safety
 	14

 	
 	

 	G
 	

 	
 	

 	generalization
 	306

 	guard
 	317

 	
 	

 	H
 	

 	
 	

 	hardware-in-the-loop
 	see HIL

 	HIL
 	51

 	
 	

 	I
 	

 	
 	

 	ignore
 	314

 	import
 	289

 	INCOSE
 	282

 	inheritance
 	306

 	initial node
 	296

 	initial state
 	318

 	input pin
 	293

 	instance speciﬁcation
 	300

 	intensity model
 	see model purpose model

 	interaction
 	86, 150, 310

 	interaction operator
 	313

 	interface block
 	215, 303

 	internal block diagram
 	63, 69, 81, 84, 85, 88, 118, 127, 144, 156, 173, 181, 199, 207, 259, 307

 	ISO 15288
 	13, 333

 	ISO/IEC 2010
 	81

 	ISO/IEC/IEEE 24748-4
 	80

 	ISO/IEC/IEEE 42010:2011
 	83

 	item ﬂow
 	181, 192, 309

 	
 	

 	J
 	

 	
 	

 	Jacobson, Ivar
 	279

 	join
 	319

 	join node
 	297

 	junction
 	319

 	
 	

 	K
 	

 	
 	

 	Kaizen
 	276

 	
 	

 	L
 	

 	
 	

 	language architecture
 	283

 	lean manufacturing
 	276

 	learning curve
 	243

 	legal requirement
 	223

 	lifeline
 	311

 	logical architecture
 	45, 47, 78, 82, 84, 143, 197, 268, 270

 	loop
 	314

 	loose coupling
 	271

 	
 	

 	M
 	

 	
 	

 	machine learning
 	14

 	MARTE
 	323

 	matrix
 	62, 65, 66, 67, 72, 259

 	MBSE
 	237, 243, 262

 	MBSE Methodologist
 	96

 	MBSE4U
 	9

 	mechanical
 	217

 	mechanical system
 	213

 	merge node
 	296

 	message
 	312

 	Meta Object Facility
 	see MOF

 	metamodel
 	284

 	method
 	17, 2, 15, 107, 302

 	methodology
 	3, 16, 19, 54, 96, 237, 243

 	methodology context
 	247

 	minimal SysML
 	286

 	model
 	288

 	model library
 	56, 193, 211, 230, 233, 234, 262, 289

 	model purpose model
 	19, 261

 	model structure
 	107, 161

 	model template
 	110

 	model test case
 	43, 77, 195, 226

 	Modeling And Analysis Of Real-Time Embedded Systems
 	see MARTE

 	modeling guidance
 	107

 	modeling language
 	251

 	modeling tool
 	18, 94, 253

 	model-supported systems engineering
 	see MSSE

 	MOF
 	285

 	motivation
 	223

 	MSSE
 	261

 	multiplicity
 	301

 	
 	

 	N
 	

 	
 	

 	named element
 	216, 224

 	namespace
 	288

 	napkin architecture
 	63, 171

 	neg
 	314

 	nested property
 	320

 	non-functional requirement
 	223

 	
 	

 	O
 	

 	
 	

 	Object Constraint Language
 	see OCL

 	object ﬂow
 	295

 	Object Management Group
 	see OMG

 	Object Modeling Technique
 	see OMT

 	obligation
 	222

 	ObligationKind
 	229

 	occurrence
 	224

 	OCL
 	227, 283

 	OCUP
 	281

 	Ohno, Taiichi
 	276

 	OMG
 	280

 	OMG-Certiﬁed UML Professional
 	see OCUP

 	OMT
 	279

 	OOSE
 	279

 	OpaqueAction
 	294

 	operation
 	302

 	opt
 	314

 	output pin
 	293

 	overmodeling
 	242

 	
 	

 	P
 	

 	
 	

 	package
 	288

 	package diagram
 	107, 161, 287

 	package structure
 	107

 	par
 	314

 	parameter
 	302

 	parametric diagram
 	319

 	part property
 	300

 	parts catalogue
 	211, 230

 	performance requirement
 	177, 223

 	physical architecture
 	45, 47, 78, 81, 258

 	physical requirement
 	223

 	PhysicalElement
 	232

 	pin
 	293

 	Planet Environment
 	6, 34, 127, 235

 	Planet Impact
 	127, 235

 	port
 	263, 302

 	prioritization
 	29

 	priority
 	222, 225

 	PriorityKind
 	229

 	problem
 	22, 330

 	problem statement
 	58, 110, 162, 215, 245, 275

 	problem-solving process
 	23

 	process
 	17, 3, 7

 	process model
 	55

 	product
 	53

 	product architecture
 	47, 78, 82, 84, 147, 200, 270

 	product box
 	26, 112, 113, 272

 	product line
 	265

 	product tree
 	198

 	product vision board
 	26, 112, 113, 273

 	proﬁle
 	56, 209, 321

 	project manager
 	98

 	property
 	300

 	proxy port
 	263, 303

 	pseudostate
 	319

 	purpose-driven methodology
 	237

 	query-driven modeling
 	237

 	
 	

 	R
 	

 	
 	

 	rationale
 	330

 	reception
 	306

 	reference card
 	55

 	reference property
 	300

 	refine
 	326

 	reliability requirement
 	223

 	requirement
 	32, 66, 123, 141, 175, 222, 247, 268

 	requirements diagram
 	62, 65, 66, 67, 115, 124, 167, 169, 177, 324

 	requirements engineer
 	100, 103, 257

 	requirements management tool
 	32

 	resistance
 	239

 	result
 	36, 70

 	return message
 	313

 	Revision Task Force
 	see RTF

 	risk
 	31, 65, 121, 174, 177, 223

 	risk management
 	31, 65

 	RiskKind
 	229

 	role
 	2, 91

 	RTF
 	282

 	Rumbaugh, James
 	279

 	
 	

 	S
 	

 	
 	

 	Safety and Reliability Proﬁle
 	323

 	SAMS method
 	26, 112, 113, 274

 	satisfy
 	217, 327

 	scalability
 	109

 	scenario
 	48, 85, 149, 201

 	SEBoK
 	80, 81, 83

 	selector
 	311

 	semantics
 	283

 	send signal action
 	294, 306

 	sensor
 	213

 	seq
 	314

 	sequence diagram
 	86, 150, 202, 309

 	severity
 	224

 	signal
 	130, 306

 	signal event
 	317

 	SimLib
 	233

 	simulation
 	233, 262

 	six sigma
 	276

 	skills map
 	91

 	SMAP
 	8, 243

 	SME
 	2, 17, 55, 94, 247

 	SME Administrator
 	94

 	software
 	217

 	speciﬁcation
 	262

 	stability
 	223

 	StabilityKind
 	229

 	stakeholder
 	29, 64, 66, 114, 120, 167, 168, 223, 246

 	stakeholder requirement
 	32

 	StakeholderCategoryKind
 	229

 	StandardProﬁle
 	323

 	state
 	49, 316

 	state machine
 	50, 73, 152, 315

 	state machine diagram
 	73, 87, 152, 204, 314

 	stereotype
 	209, 252, 321

 	storyboard
 	26, 274

 	Storyboard Activity Modeling for Systems method
 	see SAMS method

 	strict
 	314

 	strong coupling
 	271

 	subsystem
 	215

 	supportability requirement
 	223

 	synchronization
 	297

 	synchronous message
 	312

 	SysML
 	18, 251, 279, 283

 	SysML diagrams
 	283

 	SysML tool
 	56

 	SYSMOD
 	15, 17

 	SYSMOD Analysis Process
 	10

 	SYSMOD Architecture Process
 	12

 	SYSMOD Infrastructure Process
 	9

 	SYSMOD Methodology Adoption Process
 	See SMAP

 	system
 	215

 	system actor
 	34, 126, 130

 	system architect
 	101, 103, 257

 	system architecture
 	34, 48, 78, 81, 84, 270

 	system boundary
 	33

 	system breakdown
 	198

 	system context
 	33, 67, 125, 180, 192, 215

 	system context diagram
 	127

 	system idea
 	25, 59, 112, 164, 215, 245, 272

 	system interface
 	34

 	system objective
 	25, 60, 113, 166, 223, 245, 272

 	system process
 	37, 72, 132, 186, 227

 	system requirement
 	32

 	system state
 	86, 151, 203

 	system tester
 	103, 104

 	system use case
 	35, 37, 39, 69, 129, 133, 183, 227

 	systems engineer
 	100, 102, 103, 104

 	Systems Engineering Body of Knowledge
 	see SEBoK

 	Systems Modeling Environment
 	see SME

 	Systems Modeling Language
 	see SysML

 	Systems Modeling Toolbox
 	see SYSMOD

 	
 	

 	T
 	

 	
 	

 	table
 	62, 65, 66, 67, 72, 120, 122, 123, 167, 169, 175, 177, 188, 195

 	tailoring
 	16

 	technical concepts
 	45

 	technical decision
 	27

 	technical principle
 	45

 	termination
 	319

 	test architecture
 	51, 78, 88, 154, 205

 	test case
 	42, 77, 88, 140, 194, 225, 326

 	time event
 	317

 	tool
 	2

 	Toyota Production System
 	see TPS

 	TPS
 	276

 	trace
 	325

 	traceability
 	261, 325

 	trade study
 	265

 	training
 	20, 57

 	transition
 	49, 87, 317

 	trigger
 	36, 70, 317

 	
 	

 	U
 	

 	
 	

 	UML
 	279, 283

 	UML 3.0
 	281

 	UML diagrams
 	280

 	UML Testing Proﬁle
 	see UTP

 	UML4SysML
 	323

 	Uniﬁed Modeling Language
 	see UML

 	unit
 	76

 	usability requirement
 	176, 223

 	usage
 	331

 	use case
 	227, 290

 	use case activity
 	39, 74, 134, 150, 184, 189, 258

 	use case diagram
 	72, 73, 130, 133, 184, 187, 195, 289

 	user
 	213

 	user interface
 	215

 	user system
 	214

 	UTP
 	51, 323

 	
 	

 	V
 	

 	
 	

 	validation
 	42, 141, 250

 	Value Proposition Design
 	26

 	value type
 	76, 299

 	VAMOS
 	51, 228, 266

 	variant
 	228

 	variant conﬁguration
 	228

 	variant modeling
 	51, 265

 	variation
 	228

 	variation point
 	228

 	verdict
 	77, 326

 	VerdictKind
 	326

 	verification
 	42, 141, 250

 	verify
 	219, 326

 	
 	

 	W
 	

 	
 	

 	waterfall
 	7

 	Weilkiens, Tim
 	11

 	
 	

 	X
 	

 	
 	

 	X4Planet
 	6

 	
 	

 	Z
 	

 	
 	

 	zigzag pattern
 	219, 268

Notes

1Object Constraint Language (OCL14).↩

2https://leanpub.com/vamos↩

OEBPS/images/leanpub_warning.png

OEBPS/images/sysmod-sim-library.png
pkg [Package] SYSMOD-SimLibrary [Overview SimLibrary])

«valueType» [E |
UCAReturnValue «profile» Timer
enuneration literals SYSMOD-SimProfile
Successful
Failed
«stereotype»
SimBement
[Element]
«block»
Timer

values
time : Real [1] = 1.0

OEBPS/images/sysmod-parts-catalogue-constraints.png
bdd [Package] Constraints [C: ints Definitions] J
«constraint» «constraint»
Add Sum
constraints constraints
{x=a+b} {s=sum(v)}
parameters paraneters
a:Real s : Real
b : Real v :Real [0..*]
x : Real

OEBPS/images/sysmod-parts-catalogue-physics.png
bdd [Package] Physics [Physics Definitions])

{union}
IphysicalPart,[0..*

«block»
PhysicalElement
constraints
Add
:Sum

values
mass : kg = {unit = kilogram}
/totalMass : kg{unit = kilogram}

7

OEBPS/images/sysmod-parts-catalogue-physics-example.png
bdd [Package]

-_Structure [

Mass Rollup])

«block»
PartsCatalogue::P ics::

[y
I

«block»
Sensor

values
id : String
value : Real

«block»

Smoke sensor

fixtune

case
{subsets physicalPart}
«block»

1

l(sub ets physicalPart}

sensorUnit
{subsets physicalPart}

Case

values
mass : kg = 0.2{redefines mass,unit = kilogram}

«block»
Attachment

«block»
Sensor unit

values

mass : kg = 0.5{redefines mass,unit = kilogram}

mass

: kg = 0.1{redefines mass,unit = kilogram}

mount body

{subsets physicalPart} l{subsets physicalPart}
«block» «block»
Mount Body
values values

mass : kg = 0.1{redefines mass,unit = kilogram}

OEBPS/images/sysmod-parts-catalogue-units.png
bdd [Package] Units [Units Definitions] J

«valueType»
Real

A

«valueType»
kg
«valueType»
quantityKind = [@mass
unit = COkilogram

OEBPS/images/sysmod-profile-enumerations.png
bdd [Package] Enumerations [SY SMOD enumerations])

«enumeration» «enumeration» «enumeration»
EffortKind ObligationKind PriorityKind
enumeration literals enumeration literals enumeration literals
High Mandatory Critical
Medium Optional High
Low Medium
Low
«valueType» «enumeration» «enumeration»
RiskKind StabilityKind StakeholderCategoryKind
enumeration literals enumeration literals enumeration literals
technical Instable Expert
cost Stable Requirement ow ner
schedule User
other Other

OEBPS/images/sysmod-parts-catalogue-overview.png
pkg [Package] PartsCatalogue [Overview PartsCatalogue])

1

1

1

Analysis

Constraints

Physics

Units

OEBPS/images/sysmod-parts-catalogue-analysis.png
bdd [Package] Analysis [Analysis Definitions])

{union}
Iperfor jorPropertiesSet0..*
«block»
Per operties
constraints
:Add
: Sum
:Add
:Sum
:Add
: Sum
values
minDuration : time[second] [1]{unit = second}
maxDuratio me[second] [1}{unit = second}
medDuratiol me[second] [1}{unit = second}
/totalMinDuration : time[second)] [1]{unit = second}
/totalMaxDuration : time[second] [1]{unit = second}
/totalMedDuration : time[second] [1]{unit = second}

OEBPS/images/sysmod-parts-catalogue-analysis-parametrics.png
Properties] J

par [Block] Per roperties [Perfor
IperformanceBehaviorPropertiesSet : ... m——— constrainty I:
: :Add
vI[0.4] :Sum s
[minburation : fmel Kl [s=sumivy] {x=atb}
«constraint» «constraint» =
V0. :Sum s :Add
|medDura(ion: i M1 } (s=sumvy (] {x=a+b}
«constraint» «constraint»
vI[0.1] :Sum s :Add |:
1 Il 1 (s=sumvy [{x=a+b}

l: X ItotalMedDuratio..

_‘a minDuration
X__1 itotaMinDuratio...

2 | medDuration : ti..

:

X__| itotalMaxDuratio..

OEBPS/images/mbse4u-logo.png
/MBSE4U

OEBPS/images/sysmod-profile-variants.png
pkg [Package] VAMOS [Variant stereotypes])

«Metaclass»
Package

I
«stereotype» «stereotype»
Variation Variant
[Package] [Package]
{MaxGreaterThanMin, {VariantOw ner}
VariationsOw nVariantPackagesOnly}
attributes
+minVariants : Integer [1] = 1
w +maxVariants : UnlimitedNatural [1] = 1
variation | 1..*
{ordered}

«stereotype» «stereotype»
VariationPoint VariantConfiguration
[NamedElement] [Class, Package]

o attributes N {ValidVariantConfigurationMaxVariants,
+bindingTime : BindingTimeKind [1..] = Undefined ValidV ariantConfigurationMinV ariants}
«Metaclass»
Constraint
{GlobalC: it
NonEmpty Constraint}
«enumeration»
] Bin imeKind
enumeration literals
«stereotype» «stereotype» DesignPhase
XOR REQUIRES ManufacturingPhase
[Constraint] [Constraint] OperationPhase
{VariantConstraintOperands} {VariantC: Dperands} L

OEBPS/images/title_page.jpg
Tim Weilkiens

SYSMOD -

The Systems Modeling Toolbox
Pragmatic MBSE with SysML

3rd edition
MBSE4U Booklet Series

LTIy .

www.model-based-systems-engineering.com

OEBPS/images/sysmod-e4p-library.png
bdd [Package] Engineering4Planet [Engineering4Planet Definitions])

«domainBlock»
Planet Impact

values

co2 : kg{unit = kilogram}

w aste : String

«environmentalimpact»
Planet Environment

OEBPS/images/sysmod-profile-disciplines.png
bdd [Package] Disciplines [Discipline Stereotypes])

«Metaclass»

UM L Standard Profile::UM L2 M etamodel::NamedElement

«stereotype»

Discipline-specific element

reference : String [0..1]

attributes

T

«stereotype»
Software

«stereotype»
Mechanical

«stereotype»
Electrical

OEBPS/images/sysmod-profile-satisfy-ambiguity.png
req [Package] Satisfy

ip [Satisfy

J

«satisfy»

«block»
A

«ExtendedRequirement»
R42

«satisfy»

«block»
B

OEBPS/images/sysmod-profile-weighted-satisfy-example.png
req [Package] Satisfy

ip [Example

y])

«w ei

«w ei isfy»
(;ve;ge: 0.7 -
coverageKind = disjunct}

«block»
A

R42 {c;/era_ge =

coverageKind = disjunct} |

«block»
B

OEBPS/images/sysmod-profile-activities.png
bdd [Package] Activities [Activity stereotypes])

«Metaclass»
Activity

«stereotype»
ContinuousActivity

OEBPS/images/sysmod-profile-actors.png
pkg [Package] Actors [Actor stereotypes])

«Metaclass»
Actor

«stereotype»
Block
A

I

«stereotype» «stereotype» «stereotype»
User ExternalSystem EnvironmentalEffect
o
yp yp «stereotype» «stereotype»
Sensor Actuator UserSystem Environmentallmpact
«stereotype» «stereotype»
MechanicalSystem BoundarySystem

OEBPS/images/sysmod-profile-actor-icons.png
uc [Package] Actors [Symbols])

X

User External System

Boundary System

Environmental Effect

User System

Mechanical System Environmental Impact

Actuator

Sensor

OEBPS/images/sysmod-profile-blocks.png
bdd [Package] Blocks [Block stereotypes])

«stereotype»
SysML::Ports &Flows:Interface Block

‘ «stereotype»

SysML:Blocks::Block

«stereotype»
System

«stereotype»
Do

«stereotype»
Domai

«stereotype»
Subsystem

«stereotype»
System Context

attributes

+systemidea : String [0..1]

attributes
+reference : String [1]

+problemStatement : String [0..1]

«stereotype»
Userinterface

OEBPS/images/mbse4u-logo.jpg

OEBPS/images/tim-weilkiens-mbse4u.png

OEBPS/images/sysmod-domain.png
bdd [Package] SYSMOD_Domain [SYSMOD Domain Know ledge])

lo.-

| «domainBlock»
Methodology 0.* 0.* | Tool Process
0. 0 0.
facilitates B> performs
0.* L 1.
i primaryPerformer responsible for B> primary Method
Role 1 1.* Method 0.~
itionalPerformer supports B>
owner (1 0. 0.
input <drequires
responsible for B product Product 0.
0. output <4 produces

1.

OEBPS/images/sysmod-profile-testcases.png
pkg [Package] Verification [Verification stereotypes])

SysML::Requirements:TestCase

«stereotype»

ExtendedTestCase

«stereotype»

-type : Strin

-priority : F'nontyKlnd [0..1]

-cormonentUnderTest Block

attributes

«stereotype»
ModelTestCase

«stereotype»
SystemTestCase

OEBPS/images/sysmod-profile-usecases.png
pkg [Package] UseCases [Use case stereotypes])

«Metaclass»
UML Standard Profile:UML2 Metamodel::UseCase

«stereotype» «stereotype»
SystemUseCase SystemProcess
attributes
+trigger : String [1]

+result : String [1]
+triggerSignal : Signal [0..1]

lll

«stereotype»
ContinuousUseCase
{ContinuousUseCaseOw nsContinuousActivity}

OEBPS/images/sysmod-profile-relationships.png
1J

«stereotypex»
SysML::Requirements::Verify

«stereotype»
SysML::Allocations::Allocate

T

il

«stereotypex»
WeightedVerify
{0 <= self.coverage and self.coverage <= 1}

«stereotypex»
WeightedAllocate
{0 <= self.coverage and self.coverage <= 1}

+coverage : Real
coverageKind : CoverageKind = disjunct

+coverage : Real

«stereotypex
SysML:Requirements::Satisfy

coverageKind : CoverageKind = disjunct
«stereotypex»
SysML::Requirements::DeriveReqt

i

«stereotypex»
Weighted Satisfy
{0 <= self.coverage and self.coverage <= 1}

attnb
+coverage : Real
coverageKind : CoverageKind = disjunct

|
T

«stereotype»
ExDeriveReqt

rationale J' 0.*

«Metaclass»
Element

«Metaclass»
Generalization

i

«stereotype»
Conjugated

«valueType»
CoverageKind

enumeration literals

disjunct

«comments

|> deprecated since SysML 1.6

OEBPS/images/sysmod-profile-requirements.png
L

«stereotypen |

Perfor ment

| «stereotypen |

pkg [Package] Requi [pes | J
«stereotyper «stereotype»
SysML SysML:Requirements::Requirement
attributes
+concern : Comment [*]
+/concernList : Comment «stereotype» «stereotype»
lr Objective Risk
attributes {self >0 and self .
«stereotype» +priority self severity > 0 and self.severity < 5)
ExtendedStakeholder attributes
attributes +occurrence : Integer
+priority : PriorityKind +severity : Integer
+effort : Effortind +kind : RiskKind
+categories : StakeholderCategoryKind [0..*]
+contact : String «stereotype» «valueType» [
SysM L::Requi :Abstr RiskKind
«stereotype» technical
P cost
ExtendedRequirement schedule
attribut other
+priority : Priority Kind
+obligation : ObligationKind
mabuny StabllllyKlnd
+risks : Risk [*]
+rrntwatl0n String
[1
«stereotype» | | «stereotype» |
Ne i irement i iren
[I 1
«stereotyper «stereotype» «stereotype» cstereotyper
Constrai il irement Suppor irement i irement
«stereotype» «stereotype»

OEBPS/images/sysmod-profile-requirements-txt.png
req |

ge] Text-based requi [Text-b:

d requirements])

«stereotype»

SysML::Requirements::Requirement

«stereotype»
txtExtendedRequirement

«stereotype»
ExtendedRequirement

|

«stereotype»
txtBusinessRequirement

«stereotype»
BusinessRequirement

«stereotype»
txtConstraintRequirement

«stereotype»
ConstraintRequirement

«stereotype»
txtFunctionalRequirement

«stereotype»
FunctionalRequirement

«stereotype»
txtLegalRequirement

«stereotype»
LegalRequirement

«stereotype»
txtPerformanceRequirement

«stereotype»
PerformanceRequirement

«stereotype»
txtPhysicalRequirement

«stereotype»
PhysicalRequirement

«stereotype»
txtReliabilityRequirement

«stereotype»
ReliabilityRequirement

«stereotype»
txtSupportabilityRequirement

«stereotype»
SupportabilityRequirement

INNNNNNEN

«stereotype»
txtUs abilityRequirement

TTTIIIT]]

«stereotype»
UsabilityRequirement

OEBPS/images/sysmod-profile-requirements-para.png
pkg [Package] Non-text-based requirements [Non-text-based requirements])

«stereotype» «stereotype»
AbstractRequirement ConstraintBlock
attributes

+Text : String [1] =

+id : String [1] = {id}

+/Derived : AbstractRequirement [*]
+/DerivedFrom : AbstractRequirement [*]
+/SatisfiedBy : NamedElement [*]
+/RefinedBy : NamedElement [*]
+/TracedTo : NamedElement [*]
+/VerifiedBy : NamedElement [*]
+/Master : AbstractRequirement

«stereotype»
PerformanceConstraintRequirement

OEBPS/images/sysmod-profile-exDeriveReqt-example.png
req [Package] Extended derive relationship [Example extended derive relationship]J

«ExtendedRequirement» «block»
R42 «w ek isfy» Subsystem X

{coverage = 1.0,
coverageKind = disjunct}
«exDeriveReqt»
I {rationale = Subsystem X}

«ExtendedRequirement»
R23

OEBPS/images/sysmod-profile-conjugated-example1.png
bdd [Package] Example Conjugated [Normal generalization])

«block» «interfaceBlock»
MyBlock A MyPort
proxy ports 7 flow properties

in portA : MyPort in value

OEBPS/images/sysmod-profile-conjugated-example2.png
ibd [Block] MyAssembly [MyAssembly])

myBlock A : MyBlock A

«proxy»
portA : MyPort

«proxy»

portB : ~MyPort myBlock B: MyBlock B

OEBPS/images/sysmod-profile-conjugated-example3.png
bdd [Package] Example Conjugated [Conjugated generalization])

«block» «interfaceBlock»
MyBlock B «conjugated» MyPort
proxy ports flow properties

out portB : ~MyPort in value

