
掌握SwiftUI技术核⼼知识
⼀、引⾔

1.1 SwiftUI 的发展背景与意义

在移动应⽤开发领域，随着⽤户对应⽤体验要求的不断提⾼，以及苹果设备⽣态系统的持续扩展，传统的 UI 开发
框架逐渐显露出⼀些局限性。苹果公司为了满⾜现代应⽤开发的需求，在 2019 年的全球开发者⼤会（WWDC）上
推出了 SwiftUI，这⼀全新的⽤户界⾯构建框架迅速在 iOS 开发社区引发了⼴泛关注。

在 SwiftUI 诞⽣之前，iOS 开发者主要依赖 UIKit 框架进⾏应⽤界⾯开发。UIKit 采⽤的是命令式编程范式，开发者
需要编写⼤量的代码来创建、配置和管理⽤户界⾯元素，从视图的布局、事件处理到状态管理，每⼀个细节都需要
⼿动操作。这种⽅式虽然赋予了开发者⾼度的控制权，但也使得代码变得冗⻓复杂，维护成本⾼昂。特别是在处理
复杂界⾯和频繁的需求变更时，UIKit 的局限性愈发明显。例如，当需要调整⼀个视图的布局时，开发者不仅要修
改视图的约束条件，还可能需要⼿动更新相关的事件处理逻辑，稍有不慎就可能引⼊新的问题。

SwiftUI 的出现，为 iOS 应⽤开发带来了⾰命性的变化。它基于 Swift 语⾔构建，采⽤声明式编程⻛格，让开发者
能够以⼀种更加简洁、直观的⽅式描述⽤户界⾯。在 SwiftUI 中，开发者只需描述界⾯ “是什么样⼦”，⽽⽆需关⼼
“如何去构建”，框架会⾃动处理界⾯的渲染和更新。这种编程⽅式极⼤地简化了界⾯开发流程，提⾼了开发效率。
例如，创建⼀个简单的包含⽂本和按钮的界⾯，在 UIKit 中可能需要数⼗⾏代码来完成，⽽在 SwiftUI 中，只需⼏
⾏代码即可实现：

除了简洁的语法，SwiftUI 还具有强⼤的跨平台特性。它能够⽆缝地在 iOS、macOS、watchOS 和 tvOS 等多个苹
果平台上运⾏，这意味着开发者可以使⽤同⼀套代码库为不同设备创建⼀致的⽤户体验，⼤⼤减少了开发和维护的
⼯作量。同时，SwiftUI 对动态类型和暗⿊模式的原⽣⽀持，也使得应⽤能够更好地适应不同⽤户的偏好和设备环
境。

SwiftUI 的推出，不仅为开发者提供了⼀种更⾼效、更灵活的界⾯开发⼯具，也推动了整个苹果⽣态应⽤开发的创
新和发展。它降低了开发⻔槛，吸引了更多的开发者投身于苹果平台的应⽤开发，促进了应⽤的多样性和质量提
升。随着 SwiftUI 的不断发展和完善，它在苹果应⽤开发领域的地位⽇益重要，成为了现代 iOS 应⽤开发不可或缺
的⼀部分。

1.2 研究⽬的与内容概述

本⽂旨在深⼊研究 SwiftUI 技术的核⼼知识，为开发者全⾯掌握这⼀现代 UI 框架提供系统的理论和实践指导。随
着 SwiftUI 在 iOS 应⽤开发领域的⼴泛应⽤，深⼊了解其核⼼技术对于提升开发效率、优化⽤户体验具有重要意
义。

VStack {

 Text("Hello, SwiftUI!")
 .font(.largeTitle)

 Button("Tap Me") {
 // 按钮点击后的操作
 }
}

第 1 ⻚ / 共 97 ⻚

在 SwiftUI 基础部分，将详细介绍视图（View）作为构建⽤户界⾯基本单元的重要性，以及 Text、Image、
Button、List、ScrollView 等基本组件的使⽤⽅法。同时，深⼊探讨 HStack、VStack、ZStack 等布局⽅式，它们
为开发者提供了灵活的界⾯排列⽅案，能够轻松适应不同设备和屏幕尺⼨的需求。Spacer、Divider、Padding 等
修饰符（Modifiers）则进⼀步丰富了界⾯的设计，开发者可以通过这些修饰符调整组件的间距、添加分隔线以及
设置内边距等。此外，还将重点讲解视图样式修改的相关修饰符，如.font () ⽤于设置字体样
式、.foregroundColor () 改变前景⾊、.background () 设置背景颜⾊、.frame () 调整视图⼤⼩、.clipShape () 裁剪
形状、.opacity () 调整透明度以及.shadow () 添加阴影效果等，这些修饰符使得开发者能够创建出⾼度个性化和美
观的⽤户界⾯。

状态管理是 SwiftUI 开发中的关键环节，@State ⽤于管理视图内部的简单状态，当状态发⽣变化时，视图会⾃动
更新，确保界⾯与数据的⼀致性。@Binding 则在⽗⼦视图之间的数据传递中发ഀ重要作⽤，它允许⼦视图修改⽗
视图传递过来的数据，实现双向数据绑定。@ObservedObject ⽤于绑定可观察对象，当可观察对象的属性发⽣变
化时，与之绑定的视图会⾃动更新。@StateObject ⽤于创建并持有 ObservableObject 实例，确保实例在视图的
⽣命周期内始终存在。@EnvironmentObject 则实现了在整个应⽤范围内共享数据，⽅便不同视图之间的数据交
互。@AppStorage 和 @SceneStorage ⽤于存储轻量级数据，开发者可以使⽤它们将数据持久化到设备存储中，
以便在应⽤下次启动时能够恢复数据。

在数据流与持久化⽅⾯，SwiftData（iOS 17+）作为新⼀代的数据存储框架，具有简洁⾼效的特点。@Model ⽤于
定义数据模型，开发者可以通过它描述数据的结构和属性。ModelContext ⽤于进⾏数据操作，如保存、删除和查
询数据等。FetchDescriptor 则提供了强⼤的查询功能，开发者可以根据特定的条件从数据存储中获取所需的数
据。在 SwiftData 之前，Core Data 是 iOS 应⽤开发中常⽤的数据库⽅案，它提供了⼀套完整的数据管理体系，包
括数据存储、对象关系映射和数据持久化等功能。UserDefaults 适⽤于⼩型数据存储，它提供了⼀种简单的⽅式
来存储和读取应⽤的偏好设置和少量数据。CloudKit ⽤于 iCloud 同步，使得应⽤的数据能够在⽤户的不同设备之
间保持同步。FileManager 则⽤于存储本地⽂件，开发者可以使⽤它在设备的⽂件系统中创建、读取、写⼊和删除
⽂件。

视图构建与组件化是提⾼开发效率和代码可维护性的重要⼿段。通过提取⼦视图，开发者可以将复杂视图拆分为可
复⽤组件，减少代码冗余，提⾼代码的可读性和可维护性。使⽤ ViewBuilder 可以创建动态视图，根据不同的条件
和数据⽣成不同的视图结构。环境值（@Environment）⽤于全局状态管理，开发者可以通过它在整个应⽤中传递
和共享⼀些全局的状态和配置信息。PreferenceKey 和 GeometryReader 则为⾃定义布局提供了强⼤的⽀持，开
发者可以根据⾃⼰的需求实现独特的布局效果。

动画与过渡能够为应⽤增添⽣动和流畅的⽤户体验。隐式动画通过.animation () 和.transition () 实现，当视图的属
性发⽣变化时，动画会⾃动触发，使界⾯的变化更加⾃然和流畅。显式动画则通过 withAnimation {} 代码块来实
现，开发者可以在其中精确控制动画的开始、结束和执⾏过程。⾃定义动画可以通过 Animation 结构体来实现，
如.easeInOut、.spring () 等，这些动画效果可以根据具体需求进⾏调整和组合，创造出丰富多样的动画效果。匹
配⼏何效果（MatchedGeometryEffect）则在不同视图间进⾏动画过渡，实现视图之间的平滑切换和过渡效果。

⼿势与交互是提升应⽤交互性的关键。TapGesture ⽤于处理点击⼿势，开发者可以通过它实现按钮点击、视图点
击等交互操作。LongPressGesture ⽤于⻓按⼿势，可⽤于实现⻓按复制、删除等功能。DragGesture ⽤于拖拽⼿
势，使⽤户能够通过拖动视图来完成⼀些操作，如移动图标、调整视图位置等。MagnificationGesture ⽤于缩放⼿
势，常⽤于实现图⽚缩放、地图缩放等功能。RotationGesture ⽤于旋转⼿势，可⽤于实现图⽚旋转、界⾯旋转等
效果。组合⼿势则允许开发者将多个⼿势进⾏嵌套与组合，实现更复杂的交互操作，如同时⽀持点击和拖拽的视
图。

视图导航是应⽤中常⻅的功能，NavigationStack（iOS 16+）提供了⼀种简单⽽强⼤的⽅式来管理视图的导航层
级，开发者可以轻松实现⻚⾯的跳转、返回和导航栏的定制。NavigationLink ⽤于实现⻚⾯之间的跳转，它可以根
据⽤户的操作触发⻚⾯切换。TabView ⽤于创建选项卡，使⽤户能够在不同的功能⻚⾯之间快速切换。Sheet 视图
弹出⽤于显示临时的信息或操作⾯板，FullScreenCover ⽤于全屏弹出视图，常⽤于展示重要的内容或进⾏全屏操
作。Popover ⽤于弹出菜单，提供额外的操作选项。深层链接（Deep Linking）则⽤于处理外部导航，使应⽤能够

第 2 ⻚ / 共 97 ⻚

通过链接直接跳转到特定的⻚⾯或功能。

并发与异步在现代应⽤开发中⾄关重要，Async/Await ⽤于处理异步任务，开发者可以使⽤它以⼀种简洁的⽅式编
写异步代码，避免回调地狱。Task 和 TaskGroup ⽤于并发任务，能够同时执⾏多个任务，提⾼应⽤的性能和响应
速度。Actors ⽤于进⾏线程安全的数据访问，确保在多线程环境下数据的⼀致性和安全性。Combine 框架（如果
仍然使⽤）则提供了⼀种响应式编程的⽅式，⽤于处理异步事件和数据流，它可以将多个异步操作组合在⼀起，实
现复杂的业务逻辑。

UIKit 互操作使得开发者能够在 SwiftUI 应⽤中嵌⼊ UIKit 组件，或者在 UIKit 应⽤中使⽤ SwiftUI 视图。通过使⽤
UIViewControllerRepresentable 和 UIViewRepresentable，开发者可以将 UIKit 的视图控制器和视图嵌⼊到
SwiftUI 中，实现两者的⽆缝结合。UIHostingController 则⽤于在 UIKit 中嵌⼊ SwiftUI 视图，为 UIKit 应⽤带来
SwiftUI 的强⼤功能。Coordinator 模式⽤于处理代理回调，确保在 UIKit 和 SwiftUI 之间的交互能够正确地处理事
件和数据传递。

最后，将重点介绍 iOS 18 相关新特性，包括 Speech 识别 API（实时语⾳识别与翻译），它为应⽤增添了实时语⾳
交互和翻译的能⼒，拓宽了应⽤的功能边界。新的 AI 相关 API 则为开发者提供了更多利⽤⼈⼯智能技术的机会，
如智能推荐、图像识别等。改进的 SwiftUI 动画使得动画效果更加流畅和⾃然，提升了⽤户体验。Vision 框架增强
（图像识别、⼿势检测等）进⼀步丰富了应⽤对图像和⼿势的处理能⼒，为开发者创造更具创新性的应⽤提供了⽀
持。

⼆、SwiftUI 基础

2.1 视图（View）体系

在 SwiftUI 中，视图（View）是构建⽤户界⾯的基本单元，是整个框架的核⼼概念。视图代表了屏幕上可⻅的元
素，它可以是⼀个简单的⽂本标签、⼀个按钮，也可以是⼀个复杂的包含多个⼦视图的容器。SwiftUI 中的视图采
⽤了⼀种声明式的编程⻛格，开发者只需描述视图的外观和布局，⽽⽆需关⼼具体的绘制和更新过程，这使得界⾯
开发变得更加简洁和直观。

从本质上讲，视图是⼀个遵循 View协议的类型。 View协议定义了⼀个 body属性，该属性返回⼀个包含视图内容
的 some View类型。例如，下⾯的代码定义了⼀个简单的⽂本视图：

在这个例⼦中， MyTextView结构体遵循了 View协议，并实现了 body属性，返回了⼀个 Text视图。 Text视图
是 SwiftUI 中⽤于显示⽂本的基本组件，它接受⼀个字符串参数，并将其显示在屏幕上。

视图可以包含其他视图作为⼦视图，通过这种⽅式可以构建出复杂的⽤户界⾯。例如，下⾯的代码定义了⼀个包含
⽂本和按钮的视图：

struct MyTextView: View {

 var body: some View {
 Text("This is a text view")
 }
}

第 3 ⻚ / 共 97 ⻚

在这个例⼦中， MyContentView视图包含了⼀个 VStack视图作为容器。 VStack是 SwiftUI 中的⼀种布局容器，
它会将其⼦视图垂直排列。 VStack包含了⼀个 Text视图和⼀个 Button视图， Text视图⽤于显示欢迎信息，
Button视图⽤于响应⽤户的点击操作。通过这种嵌套的⽅式，开发者可以轻松地构建出层次结构清晰的⽤户界
⾯。

视图还具有可组合性，这意味着可以将多个简单的视图组合成⼀个复杂的视图，并且可以在不同的地⽅复⽤这些视
图。例如，可以将上述的 MyTextView和 Button组合成⼀个新的视图：

在这个例⼦中， MyCombinedView视图复⽤了之前定义的 MyTextView视图，并添加了⼀个新的按钮。这种可组合
性⼤⼤提⾼了代码的复⽤性和可维护性，使得开发者能够更加⾼效地构建⽤户界⾯。

视图在 SwiftUI 构建⽤户界⾯中处于核⼼地位，它不仅是界⾯元素的抽象表示，还通过声明式编程和可组合性的特
点，为开发者提供了⼀种简洁、⾼效的⽅式来创建和管理⽤户界⾯。掌握视图的概念和使⽤⽅法，是深⼊学习
SwiftUI 的基础。

2.2 基本组件解析

2.2.1 Text 组件

Text 组件是 SwiftUI 中⽤于显示⽂本的基本组件，它在构建⽤户界⾯时起着⾄关重要的作⽤，为⽤户提供直观的信
息展示。通过 Text 组件，开发者可以轻松地将各种⽂本内容呈现在应⽤界⾯上，⽆论是简单的标签、提示信息，
还是复杂的段落⽂本。

struct MyContentView: View {

 var body: some View {
 VStack {
 Text("Welcome to my app")
 .font(.title)

 Button("Click me") {
 // 按钮点击后的操作
 }
 }
 }
}

struct MyCombinedView: View {

 var body: some View {
 VStack {
 MyTextView()
 Button("Another button") {
 // 按钮点击后的操作
 }
 }
 }
}

第 4 ⻚ / 共 97 ⻚

在使⽤ Text 组件时，设置⽂本样式是常⻅的操作。通过.font () 修饰符，开发者可以精确地控制⽂本的字体样式。
例如，使⽤ .font(.title)可以将⽂本设置为标题样式，字体较⼤且具有突出的视觉效果，适⽤于⻚⾯的主要标
题；⽽ .font(.system(size: 16))则可以将字体⼤⼩设置为 16 号，⽤于正⽂内容的显示，保证⽂本的可读性和
整体界⾯的协调性。此外，还可以通过 .fontWeight(.bold)使⽂本加粗，增强⽂本的视觉强调，突出重要信息；
使⽤ .italic()使⽂本变为斜体，为⽂本增添独特的⻛格。

⽂本颜⾊的设置也是 Text 组件样式定制的重要部分。 .foregroundColor()修饰符⽤于改变⽂本的前景⾊，开发
者可以根据应⽤的主题和设计需求，选择合适的颜⾊。例如， .foregroundColor(.blue)将⽂本颜⾊设置为蓝
⾊，蓝⾊通常给⼈⼀种专业、冷静的感觉，适合⽤于链接、提示信息等；⽽ .foregroundColor(.red)则将⽂本
设置为红⾊，红⾊常⽤于突出警告、错误等重要信息，能够迅速吸引⽤户的注意⼒。

对于多⾏⽂本的处理，SwiftUI 提供了丰富的功能。当⽂本内容较多，需要显示为多⾏时，开发者可以使
⽤ .lineLimit()修饰符来限制⽂本的⾏数。例如， .lineLimit(3)表示将⽂本限制为 3 ⾏，当⽂本超过 3 ⾏
时，多余的部分将被截断。同时， .truncationMode()修饰符⽤于设置⽂本超出限制时的截断⽅
式， .truncationMode(.tail)表示在⽂本末尾截断，使⽤省略号（...）来表示被截断的部
分； .truncationMode(.head)则表示在⽂本开头截断， .truncationMode(.middle)表示在⽂本中间截断。这
些选项为开发者提供了灵活的⽂本显示控制，以适应不同的界⾯布局和设计要求。

除了上述常⻅的样式设置和多⾏⽂本处理，Text 组件还⽀持其他修饰符，如 .underline()⽤于给⽂本添加下划
线，常⽤于突出显示链接或特殊强调的⽂本； .strikethrough()⽤于添加删除线，可⽤于表示已删除或⽆效的内
容。这些修饰符的组合使⽤，使得开发者能够创建出⾼度个性化和多样化的⽂本显示效果，满⾜各种应⽤场景的需
求。

2.2.2 Image 组件

Image 组件在 SwiftUI 中负责加载和展示图⽚，是构建丰富视觉界⾯的重要组成部分。它⽀持多种图⽚格式，包括
常⻅的 JPEG、PNG、GIF 等，为开发者提供了⼴泛的图⽚资源选择。

加载本地图⽚是 Image 组件的基本功能之⼀。在 Xcode 项⽬中，通常将图⽚资源添加到 Assets.xcassets 资源库
中。例如，假设在资源库中添加了⼀张名为 “example.jpg” 的图⽚，使⽤ Image 组件加载该图⽚的代码如下：

在上述代码中，通过 Image("example")即可创建⼀个显示 “example.jpg” 图⽚的视图。这种⽅式简洁明了，开发
者只需指定图⽚在资源库中的名称，即可轻松加载图⽚。

对于⽹络图⽚的加载，SwiftUI 提供了 AsyncImage组件，它能够以异步的⽅式加载图⽚，避免阻塞主线程，确保
应⽤的流畅运⾏。例如，加载⼀张⽹络图⽚的代码如下：

在这个例⼦中， AsyncImage组件接收⼀个 URL参数，通过该参数指定⽹络图⽚的地址。 AsyncImage会在后台线
程中异步加载图⽚，并在图⽚加载完成后⾃动显示在视图中。在图⽚加载过程中，还可以通过 .placeholder修饰
符设置占位符，为⽤户提供友好的视觉反馈。

Image 组件还⽀持对图⽚进⾏各种修饰和处理，以满⾜不同的设计需求。使⽤ .resizable()修饰符可以使图⽚⼤
⼩可调整，允许开发者根据界⾯布局的需要对图⽚进⾏拉伸或缩放。结合 .scaledToFit()修饰符，可以保持图⽚
的原始宽⾼⽐，在指定的区域内等⽐例缩放图⽚，确保图⽚不会变形。例如：

Image("example")

AsyncImage(url: URL(string: "https://example.com/image.jpg"))

第 5 ⻚ / 共 97 ⻚

上述代码将加载名为 “example” 的图⽚，并使其在保持原始⽐例的情况下适应显示区域的⼤⼩。

通过 .clipShape()修饰符，Image 组件可以将图⽚裁剪成指定的形状。例如，使⽤ Circle()形状可以将图⽚裁
剪为圆形，常⽤于展示头像等场景：

这段代码将图⽚裁剪为圆形，使其外观更加美观和独特。

Image 组件还⽀持调整图⽚的透明度、添加阴影、设置图⽚的背景颜⾊等修饰操作，通过这些修饰符的组合使⽤，
开发者可以创建出各种精美的图⽚展示效果，为应⽤增添丰富的视觉元素。

2.2.3 Button 组件

Button 组件是 SwiftUI 中⽤于响应⽤户点击操作的重要组件，它在应⽤中扮演着触发各种交互逻辑的关键⻆⾊。⽆
论是提交表单、执⾏某项功能，还是导航到其他⻚⾯，Button 组件都能为⽤户提供直观的操作⼊⼝。

处理 Button 组件的点击事件是其最核⼼的功能之⼀。在 SwiftUI 中，通过 action参数来定义按钮点击后的操作。
action是⼀个闭包，当⽤户点击按钮时，闭包内的代码将被执⾏。例如，创建⼀个简单的按钮，并在点击时打印
⼀条消息到控制台：

在上述代码中， Button的 action闭包中包含了 print("Button is tapped")语句，当按钮被点击时，这条语
句将被执⾏，控制台会输出 “Button is tapped”。

除了基本的点击事件处理，Button 组件还⽀持多种样式定制⽅法，以满⾜不同的设计需求。通过
foregroundColor()修饰符可以改变按钮的前景⾊，即按钮上⽂本或图标的颜⾊。例如，使
⽤ .foregroundColor(.white)可以将按钮的前景⾊设置为⽩⾊，使按钮在深⾊背景下更加醒⽬。

background()修饰符⽤于设置按钮的背景颜⾊。例如， .background(Color.blue)将按钮的背景设置为蓝⾊，
蓝⾊背景可以传达出专业、可靠的感觉，常⽤于重要操作按钮的设计。

cornerRadius()修饰符⽤于设置按钮的圆⻆半径，使按钮的边⻆变得圆润。例如， .cornerRadius(10)将按钮
的圆⻆半径设置为 10，使按钮看起来更加柔和和美观，提升⽤户体验。

为了进⼀步定制按钮的样式，SwiftUI 还提供了 ButtonStyle协议。开发者可以通过实现该协议来⾃定义按钮的外
观和交互效果。例如，创建⼀个⾃定义的按钮样式，使其在点击时具有放⼤的动画效果：

Image("example")

 .resizable()
 .scaledToFit()

Image("example")

 .resizable()
 .scaledToFit()
 .clipShape(Circle())

Button(action: {

 print("Button is tapped")
}) {

 Text("Tap Me")
}

第 6 ⻚ / 共 97 ⻚

在上述代码中， CustomButtonStyle结构体实现了 ButtonStyle协议的 makeBody⽅法。在 makeBody⽅法中，
通过 configuration.isPressed判断按钮是否被按下，当按钮被按下时，使⽤ .scaleEffect(1.5)将按钮放⼤
1.5 倍，并添加 .animation(.easeInOut, value: configuration.isPressed)动画效果，使按钮的放⼤和缩⼩
过程更加平滑和⾃然。使⽤⾃定义按钮样式的代码如下：

通过上述⽅式，开发者可以根据应⽤的主题和⽤户体验需求，灵活地定制 Button 组件的样式和交互效果，使其与
整个应⽤的设计⻛格保持⼀致，提升应⽤的⽤户界⾯质量。

2.2.4 List 组件

List 组件在 SwiftUI 中⽤于展示列表数据，它提供了⼀种简洁⽽⾼效的⽅式来呈现⼀系列相关的信息。⽆论是展示
消息列表、设置菜单，还是商品清单，List 组件都能以直观的⽅式将数据呈现给⽤户。

List 组件展示列表数据的原理基于其内部的视图构建机制。它会⾃动根据数据的数量和内容⽣成相应的列表项，每
个列表项可以是⼀个简单的⽂本视图，也可以是包含图⽚、按钮等多种组件的复杂视图。通常，结合 ForEach循环
来遍历数据源，为每个数据项创建对应的列表项。例如，展示⼀个字符串数组的列表：

struct CustomButtonStyle: ButtonStyle {

 func makeBody(configuration: Configuration) -> some View {
 configuration.label
 .foregroundColor(.white)
 .padding()
 .background(Color.blue)
 .cornerRadius(10)
 .scaleEffect(configuration.isPressed ? 1.5 : 1)
 .animation(.easeInOut, value: configuration.isPressed)
 }
}

Button(action: {

 print("Button is tapped")
}) {

 Text("Tap Me")
}.buttonStyle(CustomButtonStyle())

struct ContentView: View {

 let items = ["Item 1", "Item 2", "Item 3", "Item 4"]

 var body: some View {
 List {
 ForEach(items, id: \.self) { item in
 Text(item)
 }
 }
 }
}

第 7 ⻚ / 共 97 ⻚

在上述代码中， List组件内部使⽤ ForEach循环遍历 items数组， id: \.self⽤于为每个列表项提供唯⼀的标
识，确保在数据更新时，SwiftUI 能够正确地识别和更新对应的列表项。每个列表项是⼀个 Text视图，显示数组中
的字符串内容。

当列表数据量较⼤时，性能优化成为关键。为了提⾼ List 组件的性能，可以采取以下⼏种⽅法。⾸先，使⽤
LazyVStack或 LazyHStack代替普通的 VStack或 HStack。 LazyVStack和 LazyHStack会根据需要延迟加载和
渲染视图，只有当视图进⼊屏幕可⻅区域时才会进⾏渲染，从⽽减少了初始加载时的性能开销。例如，将上述代码
中的 List改为 LazyVStack：

在这个例⼦中， LazyVStack被包裹在 ScrollView中，以实现可滚动的列表效果。 LazyVStack会在⽤户滚动列
表时，按需加载和渲染列表项，提⾼了列表的响应速度。

为列表项提供稳定的唯⼀标识符也能优化性能。在 ForEach循环中，通过 id参数指定唯⼀标识符，SwiftUI 可以
更⾼效地跟踪和更新列表项。如果列表项没有唯⼀标识符，在数据更新时，SwiftUI 可能会重新创建和销毁整个列
表项，导致性能下降。

合理使⽤ Section组件对列表进⾏分组，也能提⾼性能。 Section可以将相关的列表项组织在⼀起，并提供可选
的头部和尾部视图。这样不仅可以使列表结构更加清晰，还能减少不必要的视图更新。例如：

struct ContentView: View {

 let items = ["Item 1", "Item 2", "Item 3", "Item 4"]

 var body: some View {
 ScrollView {
 LazyVStack {
 ForEach(items, id: \.self) { item in
 Text(item)
 }
 }
 }
 }
}

struct ContentView: View {

 let section1Items = ["Item 1", "Item 2"]
 let section2Items = ["Item 3", "Item 4"]

 var body: some View {
 List {
 Section(header: Text("Section 1")) {
 ForEach(section1Items, id: \.self) { item in
 Text(item)
 }
 }

 Section(header: Text("Section 2")) {
 ForEach(section2Items, id: \.self) { item in
 Text(item)
 }
 }
 }

第 8 ⻚ / 共 97 ⻚

在上述代码中， List被分为两个 Section，每个 Section有⾃⼰的头部视图，分别显示 “Section 1” 和 “Section
2”。这种分组⽅式不仅提升了列表的可读性，还在⼀定程度上优化了性能。

2.2.5 ScrollView 组件

ScrollView 组件是 SwiftUI 中实现可滚动视图的核⼼组件，它允许⽤户通过滚动操作查看超出屏幕尺⼨的内容。⽆
论是展示⻓⽂本、图⽚集，还是复杂的表单，ScrollView 组件都能提供流畅的滚动体验。

ScrollView 组件实现可滚动视图的原理基于其对视图布局和滚动事件的处理。它会将其⼦视图按照指定的⽅向（垂
直或⽔平）进⾏排列，并根据⼦视图的总⼤⼩和屏幕尺⼨来判断是否需要启⽤滚动功能。当⽤户在屏幕上进⾏滑动
操作时，ScrollView 会捕捉滚动事件，并相应地调整⼦视图的位置，实现内容的滚动展示。

创建⼀个垂直滚动的 ScrollView ⾮常简单，只需将需要滚动展示的内容放置在 ScrollView 内部即可。例如，展示
⼀段⻓⽂本：

在上述代码中， ScrollView包裹着⼀个 Text视图，该 Text视图显示⼀段⻓⽂本。由于⽂本内容超出了屏幕尺
⼨，⽤户可以通过在屏幕上向上或向下滑动来查看完整的⽂本内容。 .padding()修饰符⽤于为⽂本添加内边距，
使⽂本在滚动视图中显示更加美观。

ScrollView 组件也⽀持⽔平滚动。通过将 ScrollView的 axis参数设置为 .horizontal，可以创建⽔平滚动的视
图。例如，展示⼀组图⽚：

 }
}

struct ContentView: View {

 let longText = "This is a very long text. It contains a lot of information that needs
to be scrolled to view completely. Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

consequat..."

 var body: some View {
 ScrollView {
 Text(longText)
 .padding()
 }
 }
}

struct ContentView: View {

 let images = ["image1", "image2", "image3", "image4"]

 var body: some View {
 ScrollView(.horizontal) {
 HStack {
 ForEach(images, id: \.self) { image in
 Image(image)
 .resizable()
 .scaledToFit()
 .frame(width: 200, height: 200)

第 9 ⻚ / 共 97 ⻚

在这个例⼦中， ScrollView的 axis参数设置为 .horizontal，表示⽔平滚动。 HStack⽤于将图⽚⽔平排列，
ForEach循环遍历图⽚数组，为每个图⽚创建⼀个 Image视图，并设置图⽚的⼤⼩和样式。⽤户可以通过在屏幕
上向左或向右滑动来查看不同的图⽚。

ScrollView 组件常与其他组件组合使⽤，以实现更丰富的界⾯效果。与 TabView组合，可以创建可滚动的选项卡视
图，⽤户可以通过滚动切换不同的选项卡内容；与 List组件组合，可以实现可滚动的列表，并且在列表内容超出
屏幕⾼度时，提供流畅的滚动体验。例如，将 ScrollView与 List组合：

在上述代码中， ScrollView包裹着⼀个 List组件，当 List中的内容超出屏幕⾼度时，⽤户可以通过滚动
ScrollView来查看完整的列表内容。这种组合⽅式在展示⼤量列表数据时⾮常实⽤，能够提升⽤户的交互体验。

2.3 布局⽅式详解

2.3.1 HStack 布局

HStack 是 SwiftUI 中⽤于实现⽔平布局的容器视图，它能够将其⼦视图按照⽔平⽅向依次排列，是构建复杂⽤户界
⾯的重要布局⽅式之⼀。在实际应⽤中，HStack 常⽤于创建导航栏、⼯具栏、⽔平排列的按钮组以及图⽂混排的
界⾯元素等。

HStack 实现⽔平布局的原理基于其对视图排列规则的定义。当在 HStack 中添加多个⼦视图时，它会从左到右依次
放置这些⼦视图，每个⼦视图按照其⾃身的⼤⼩和设置的约束进⾏排列。例如，以下代码创建了⼀个包含三个⽂本
视图的 HStack：

 .padding()
 }
 }
 }
 }
}

struct ContentView: View {

 let items = ["Item 1", "Item 2", "Item 3", "Item 4", "Item 5", "Item 6", "Item 7",
"Item 8", "Item 9", "Item 10"]

 var body: some View {
 ScrollView {
 List {
 ForEach(items, id: \.self) { item in
 Text(item)
 }
 }
 }
 }
}

HStack {

 Text("First")
 Text("Second")
 Text("Third")
}

第 10 ⻚ / 共 97 ⻚

在这个例⼦中，三个 Text视图会⽔平排列，从左到右依次显示 “First”“Second”“Third”。默认情况下，⼦视图在
HStack 中会根据其内容的⼤⼩⾃动调整尺⼨，并且它们之间的间距是系统默认的。

HStack 提供了丰富的对⻬⽅式选项，以满⾜不同的布局需求。通过 .alignment修饰符，可以设置⼦视图在垂直
⽅向上的对⻬⽅式。例如， .alignment(.top)表示⼦视图在 HStack 中顶部对⻬， .alignment(.center)表示
居中对⻬， .alignment(.bottom)表示底部对⻬。以下代码展示了不同对⻬⽅式的效果：

在上述代码中，当使⽤ .alignment(.top)时，两个⽂本视图的顶部会对⻬；使⽤ .alignment(.center)时，它
们会在垂直⽅向上居中对⻬；使⽤ .alignment(.bottom)时，底部会对⻬。这种灵活的对⻬⽅式使得开发者能够
根据界⾯设计的要求，精确控制⼦视图的位置。

在布局过程中，设置⼦视图之间的间距也是常⻅的需求。HStack 通过 .spacing修饰符来设置⼦视图之间的间距。
例如， .spacing(10)表示⼦视图之间的间距为 10 个点。以下代码展示了如何设置间距：

在这个例⼦中，“Item 1”“Item 2” 和 “Item 3” 这三个⽂本视图之间的间距为 10 个点，使得界⾯看起来更加整洁和
美观。合理设置间距可以提⾼界⾯的可读性和⽤户体验，避免⼦视图之间过于拥೿或稀疏。

2.3.2 VStack 布局

VStack 是 SwiftUI 中⽤于实现垂直布局的容器视图，它将⼦视图按照垂直⽅向从上到下依次排列，为构建纵向结构
的⽤户界⾯提供了便利。在实际应⽤中，VStack 常⽤于创建表单、列表项、垂直导航菜单以及包含多个垂直排列
元素的界⾯等。

VStack 实现垂直布局的原理是基于其对视图排列顺序和位置的管理。当在 VStack 中添加多个⼦视图时，它会按照
添加的顺序，将⼦视图从上到下依次放置在垂直⽅向上。每个⼦视图根据⾃身的⼤⼩和设置的约束来确定其在垂直
⽅向上的位置和尺⼨。例如，以下代码创建了⼀个包含三个⽂本视图的 VStack：

// 顶部对⻬
HStack(alignment: .top) {

 Text("Long Text")
 Text("Short")
}

// 居中对⻬
HStack(alignment: .center) {

 Text("Long Text")
 Text("Short")
}

// 底部对⻬
HStack(alignment: .bottom) {

 Text("Long Text")
 Text("Short")
}

HStack(spacing: 10) {

 Text("Item 1")
 Text("Item 2")
 Text("Item 3")
}

第 11 ⻚ / 共 97 ⻚

在这个例⼦中，三个 Text视图会垂直排列，从上到下依次显示 “Top”“Middle”“Bottom”。默认情况下，⼦视图在
VStack 中会根据其内容的⼤⼩⾃动调整尺⼨，并且它们之间的间距是系统默认的。

在复杂界⾯中，VStack 常常与其他组件结合使⽤，以实现多样化的布局效果。例如，在创建⼀个登录界⾯时，可
以使⽤ VStack 来垂直排列⽤户名输⼊框、密码输⼊框和登录按钮。代码如下：

在上述代码中， TextField⽤于输⼊⽤户名， SecureField⽤于输⼊密码， Button⽤于触发登录操作。它们通
过 VStack 垂直排列，并且每个组件都设置了适当的内边距和样式，使得整个登录界⾯布局清晰、美观。

VStack 还可以与 Spacer组件结合使⽤，实现灵活的布局。 Spacer是⼀个可伸缩的空⽩视图，它会⾃动填充剩余
的空间。例如，在⼀个包含标题和内容的界⾯中，可以使⽤ Spacer将内容与标题分隔开，并使内容在剩余空间中
居中显示。代码如下：

在这个例⼦中，两个 Spacer分别位于标题和内容之间以及内容下⽅，它们会⾃动填充剩余的垂直空间，使得标题
和内容在界⾯中呈现出合理的布局效果。

VStack {

 Text("Top")
 Text("Middle")
 Text("Bottom")
}

VStack {

 TextField("Username", text: $username)
 .padding()
 .border(Color.gray)

 SecureField("Password", text: $password)
 .padding()
 .border(Color.gray)

 Button("Login") {
 // 登录逻辑
 }
 .padding()
 .background(Color.blue)
 .foregroundColor(.white)
}

VStack {

 Text("Title")
 .font(.title)

 Spacer()

 Text("Content")
 .font(.body)

 Spacer()
}

第 12 ⻚ / 共 97 ⻚

2.3.3 ZStack 布局

ZStack 是 SwiftUI 中⽤于实现层叠布局的容器视图，它允许将多个⼦视图在同⼀位置进⾏堆叠，通过控制⼦视图的
层级关系来实现丰富的界⾯效果。在实际应⽤中，ZStack 常⽤于创建带有覆盖层的图⽚、添加⽂本标签到图像上、
实现半透明遮罩效果以及创建复杂的图标等。

ZStack 实现层叠布局的原理基于其对视图层级的管理。当在 ZStack 中添加多个⼦视图时，这些⼦视图会按照添加
的顺序进⾏堆叠，后添加的视图会覆盖在前⾯添加的视图之上。例如，以下代码创建了⼀个包含⼀个图⽚和⼀个⽂
本的 ZStack：

在这个例⼦中， Image视图⾸先被添加到 ZStack 中，作为背景。然后， Text视图被添加到 ZStack 中，它会覆盖
在 Image视图之上，显示在图⽚的上⽅。通过这种⽅式，可以轻松实现⽂本与图⽚的层叠效果。

在处理视图遮挡时，需要注意⼦视图的顺序和透明度设置。如果需要让某个⼦视图完全显示，⽽不被其他视图遮
挡，可以将其放置在 ZStack 的最上层，即最后添加。例如，在⼀个包含按钮和背景图⽚的 ZStack 中，为了确保按
钮能够被⽤户点击，应将按钮放在最后添加：

在上述代码中， Button被添加到 ZStack 的最后，因此它会显示在最上层，⽤户可以正常点击按钮。

通过设置⼦视图的透明度，可以实现半透明遮罩效果。例如，在⼀个图⽚上添加⼀个半透明的遮罩层，以突出显示
图⽚上的⽂本：

ZStack {

 Image("background")
 .resizable()
 .scaledToFill()

 Text("Overlay Text")
 .foregroundColor(.white)
 .font(.title)
 .padding()
}

ZStack {

 Image("background")
 .resizable()
 .scaledToFill()

 Button("Click Me") {
 // 按钮点击逻辑
 }
 .padding()
 .background(Color.blue)
 .foregroundColor(.white)
}

第 13 ⻚ / 共 97 ⻚

在这个例⼦中， Color.black作为遮罩层被添加到 ZStack 中，并通过 .opacity(0.5)设置其透明度为 0.5，使其
呈现半透明效果。 Text视图则显示在遮罩层之上，突出显示⽂本内容。

2.4 修饰符（Modifiers）运⽤

2.4.1 Spacer 修饰符

Spacer 修饰符在 SwiftUI 布局中起着独特⽽重要的作⽤，它主要⽤于占据剩余空间，为其他视图提供灵活的布局调
整能⼒。Spacer 修饰符的本质是⼀个不可⻅的视图，它没有实际的内容显示，但能够根据布局容器的剩余空间进
⾏⾃动伸缩。

在实际应⽤中，Spacer 修饰符常与 HStack、VStack 等布局容器配合使⽤。在 HStack 中，Spacer 可以将其两侧
的视图进⾏分隔，并根据剩余空间⾃动调整⾃身的宽度。例如，以下代码展示了如何在 HStack 中使⽤ Spacer：

在这个例⼦中，“Left” ⽂本视图位于 HStack 的左侧，“Right” ⽂本视图位于右侧，⽽ Spacer 修饰符位于它们之
间。Spacer 会⾃动填充 HStack 中除了 “Left” 和 “Right” ⽂本视图所占空间之外的剩余⽔平空间，使得 “Left” 和
“Right” ⽂本视图分别靠向 HStack 的左右两侧，实现了⼀种简单⽽有效的⽔平布局效果。

在 VStack 中，Spacer 的作⽤原理类似，只不过它是在垂直⽅向上占据剩余空间。例如：

在这个示例中，“Top” ⽂本视图位于 VStack 的顶部，“Bottom” ⽂本视图位于底部，Spacer 修饰符在它们之间⾃动
填充剩余的垂直空间，使得 “Top” 和 “Bottom” ⽂本视图分别靠向 VStack 的顶部和底部，实现了垂直⽅向上的布局
调整。

ZStack {

 Image("example")
 .resizable()
 .scaledToFill()

 Color.black
 .opacity(0.5)

 Text("Highlighted Text")
 .foregroundColor(.white)
 .font(.title)
 .padding()
}

HStack {

 Text("Left")
 Spacer()
 Text("Right")
}

VStack {

 Text("Top")
 Spacer()
 Text("Bottom")
}

第 14 ⻚ / 共 97 ⻚

除了在 HStack 和 VStack 中使⽤，Spacer 修饰符还可以与其他视图组合，以实现更复杂的布局需求。在⼀个包含
多个按钮和⽂本的界⾯中，可以使⽤多个 Spacer 来精确控制它们之间的间距和位置，使界⾯布局更加合理和美
观。Spacer 修饰符的这种灵活的空间占据特性，为 SwiftUI 的布局设计提供了强⼤的⽀持，使得开发者能够轻松创
建出各种复杂⽽精美的⽤户界⾯。

2.4.2 Divider 修饰符

Divider 修饰符在 SwiftUI 中主要⽤于创建分隔线，它能够在视图之间添加清晰的视觉分隔，增强界⾯的层次感和
可读性。Divider 修饰符创建分隔线的原理基于其内部的绘制逻辑，它会在指定的位置绘制⼀条细线条，以实现分
隔的效果。

在实际应⽤中，Divider 修饰符常⽤于 List、VStack 和 HStack 等布局容器中。在 List 中，Divider 常⽤于分隔不同
的列表项，使列表的结构更加清晰。例如：

在这个例⼦中，每个 Divider 修饰符都会在对应的列表项之间绘制⼀条分隔线，将 “Item 1”“Item 2” 和 “Item 3” 清
晰地分隔开来，⽤户能够更直观地分辨不同的列表项。

在 VStack 和 HStack 中，Divider 可以⽤于分隔不同的视图组。例如：

在这个 VStack 示例中，Divider 在 “Group 1” 和 “Group 2” ⽂本视图之间创建了⼀条分隔线，明确地划分了两个视
图组，使界⾯的层次更加分明。

Divider 修饰符的样式可以通过⼀些修饰符进⾏定制。通过 .background()修饰符可以改变分隔线的颜⾊。例如：

上述代码将 Divider 的背景颜⾊设置为红⾊，从⽽改变了分隔线的颜⾊。通过 .frame()修饰符可以调整分隔线的
⾼度（在垂直⽅向布局中）或宽度（在⽔平⽅向布局中）。例如：

List {

 Text("Item 1")
 Divider()
 Text("Item 2")
 Divider()
 Text("Item 3")

}

VStack {

 Text("Group 1")
 Divider()
 Text("Group 2")
}

Divider()

 .background(Color.red)

Divider()

 .frame(height: 2)

第 15 ⻚ / 共 97 ⻚

这段代码将 Divider 的⾼度设置为 2，使分隔线看起来更粗，以满⾜不同的设计需求。通过这些修饰符的组合使
⽤，开发者可以根据应⽤的整体⻛格和设计要求，灵活地定制 Divider 修饰符的样式，为⽤户界⾯增添更多的美感
和功能性。

2.4.3 Padding 修饰符

Padding 修饰符在 SwiftUI 中主要⽤于设置视图的内边距，它通过在视图的边界和内容之间添加空⽩区域，来调整
视图的布局和外观。Padding 修饰符的⼯作原理是在视图的四周（或指定的⽅向）增加⼀定的间距，从⽽使视图的
内容与边界保持⼀定的距离。

设置视图内边距是 Padding 修饰符的核⼼功能。在⼀个包含⽂本和按钮的视图中，为了使⽂本和按钮与视图的边
界保持⼀定的距离，可以使⽤ Padding 修饰符。例如：

在上述代码中， .padding()修饰符被应⽤到 VStack 上，它会在 VStack 的四周添加默认的内边距，使得 VStack
中的⽂本和按钮与 VStack 的边界之间有⼀定的空⽩区域，使界⾯看起来更加整洁和美观。

Padding 修饰符还⽀持指定具体的内边距值。通过 .padding(_:)⽅法，可以设置所有⽅向的统⼀内边距值。例
如， .padding(10)表示在视图的四周添加 10 个点的内边距。如果需要在不同⽅向上设置不同的内边距值，可以
使⽤ .padding(_:edges:)⽅法。例如：

在这个例⼦中， .padding(10, edges: [.top, .bottom])表示在 VStack 的顶部和底部添加 10 个点的内边距，
⽽左右两侧没有添加额外的内边距，这种⽅式可以根据具体的布局需求，精确地控制视图在不同⽅向上的内边距。

Padding 修饰符对布局有着重要的影响。它可以改变视图在布局容器中的位置和⼤⼩。在⼀个 HStack 中，如果为
其中⼀个视图添加了 Padding 修饰符，该视图在 HStack 中的实际占⽤空间会增加，从⽽影响其他视图的布局。例
如：

VStack {

 Text("Hello, SwiftUI!")

 Button("Tap Me") {
 // 按钮点击后的操作
 }
}

.padding()

VStack {

 Text("Hello, SwiftUI!")

 Button("Tap Me") {
 // 按钮点击后的操作
 }
}

.padding(10, edges: \[.top, .bottom])

第 16 ⻚ / 共 97 ⻚

在这个例⼦中，“Left” ⽂本视图添加了 10 个点的内边距，这使得 “Left” ⽂本视图在 HStack 中的实际宽度增加，
“Right” ⽂本视图会相应地被೿向右侧，从⽽改变了整个 HStack 的布局。合理使⽤ Padding 修饰符可以使界⾯的
布局更加合理，元素之间的间距更加协调，提升⽤户界⾯的整体美感和可读性。

2.4.4 视图样式修改修饰符

在 SwiftUI 中，.font ()、.foregroundColor ()、.background () 等修饰符在修改视图样式⽅⾯发ഀ着关键作⽤，它
们各⾃基于不同的原理实现对视图外观的定制。

.font () 修饰符主要⽤于设置视图中⽂本的字体样式。它的原理是通过指定字体的名称、⼤⼩、粗细等属性，来改变
⽂本的呈现效果。在⼀个 Text 视图中，使⽤.font (.title) 可以将⽂本字体设置为系统定义的标题样式，字体较⼤且
具有突出的视觉效果，适合⽤于⻚⾯的主要标题展示。⽽.font (.system (size: 16)) 则将字体⼤⼩设置为 16 号，常
⽤于正⽂内容的显示，以保证⽂本的可读性和整体界⾯的协调性。通过这种⽅式，开发者可以根据不同的⽂本内容
和界⾯需求，灵活地选择合适的字体样式，使⽂本在界⾯中更加突出或与整体⻛格相融合。

.foregroundColor () 修饰符⽤于改变视图的前景⾊，即视图中⽂本或图标的颜⾊。其原理是通过设置颜⾊值，来替
换视图原有的前景⾊。对于 Text 视图，使⽤.foregroundColor (.blue) 可以将⽂本颜⾊设置为蓝⾊，蓝⾊通常给⼈
⼀种专业、冷静的感觉，适合⽤于链接、提示信息等，能够吸引⽤户的注意⼒并传达特定的信息。对于包含图标的
视图，该修饰符同样可以改变图标的颜⾊，使其与⽂本颜⾊或界⾯主题保持⼀致，增强视图的整体视觉效果。

.background () 修饰符的作⽤是设置视图的背景颜⾊或背景样式。它通过在视图的底层绘制指定的背景内容，来改
变视图的背景外观。在⼀个 Button 视图中，使⽤.background (Color.blue) 可以将按钮的背景设置为蓝⾊，蓝⾊
背景可以传达出专业、可靠的感觉，常⽤于重要操作按钮的设计，使按钮在界⾯中更加醒⽬，引导⽤户进⾏操作。
除了纯⾊背景，.background () 修饰符还⽀持设置渐变背景、图⽚背景等复杂的背景样式，通过结合其他相关的修
饰符和参数，开发者可以创建出丰富多样的背景效果，满⾜不同界⾯设计的需求。

2.4.5.frame () 调整⼤⼩

.frame () 修饰符在 SwiftUI 中是精确控制视图⼤⼩的重要⼯具，它基于明确指定宽度和⾼度的原理，为开发者提供
了对视图尺⼨的细致掌控能⼒。

在 SwiftUI 中，视图的⼤⼩默认是根据其内容⾃动调整的，但在许多情况下，开发者需要精确地设置视图的宽度和
⾼度，以满⾜特定的布局需求。.frame () 修饰符通过提供设置宽度和⾼度的参数，使开发者能够轻松实现这⼀⽬
标。例如，对于⼀个 Text 视图，如果希望将其宽度设置为 200，⾼度设置为 50，可以使⽤以下代码：

在这个例⼦中，.frame (width: 200, height: 50) 明确地将 Text 视图的宽度设置为 200 个点，⾼度设置为 50 个
点，⽆论 Text 视图的内容有多少，它都会按照指定的尺⼨进⾏显示。

.frame () 修饰符与布局有着紧密的关系。在布局容器中，如 HStack、VStack 和 ZStack 等，视图的⼤⼩会影响整
个布局的结构和效果。在⼀个 HStack 中，如果其中⼀个视图使⽤了.frame () 修饰符来设置⼤⼩，那么这个视图的
尺⼨变化会直接影响其他视图在 HStack 中的位置和⼤⼩分配。例如：

HStack {

 Text("Left")
 .padding(10)
 Text("Right")
}

Text("Hello, SwiftUI!")

 .frame(width: 200, height: 50)

第 17 ⻚ / 共 97 ⻚

在这个例⼦中，“Left” ⽂本视图通过.frame (width: 100, height: 50) 设置了固定的⼤⼩，这使得它在 HStack 中占
据了固定的宽度和⾼度空间。“Right” ⽂本视图会根据剩余的空间进⾏布局，如果 HStack 的总宽度有限，“Right”
⽂本视图可能会受到 “Left” 视图⼤⼩的限制，其显示位置和⼤⼩会相应调整，以适应整个 HStack 的布局。因此，
在使⽤.frame () 修饰符时，需要充分考虑其对布局的影响，确保整个界⾯的布局合理、美观。

2.4.6.clipShape () 裁剪形状

.clipShape () 修饰符在 SwiftUI 中⽤于裁剪视图的形状，它通过定义⼀个特定的形状，并将视图的内容限制在该形
状范围内，实现对视图形状的定制。

.clipShape () 修饰符的⼯作原理基于形状的定义和视图内容的裁剪。在 SwiftUI 中，提供了多种预定义的形状，如
Circle（圆形）、Rectangle（矩形）、RoundedRectangle（圆⻆矩形）等，开发者也可以通过实现 Shape 协议
来⾃定义形状。当使⽤.clipShape () 修饰符时，它会根据指定的形状，将视图的内容进⾏裁剪，使视图呈现出指定
形状的外观。例如，对于⼀个 Image 视图，如果希望将其裁剪为圆形，可以使⽤以下代码：

在这个例⼦中，.clipShape (Circle ()) 将 Image 视图的内容裁剪为圆形，⽆论原始图⽚的形状如何，最终显示的都
是圆形的图⽚，这种效果常⽤于展示头像等场景，使图⽚的外观更加美观和独特。

实现⾃定义形状需要遵循 Shape 协议。Shape 协议要求实现者提供⼀个 path (in:) ⽅法，该⽅法⽤于定义形状的路
径。通过在 path (in:) ⽅法中使⽤ Path 类的相关⽅法，如 move (to:)、addLine (to:)、addArc
(center:radius:startAngle:endAngle:clockwise:) 等，可以绘制出各种复杂的形状。例如，创建⼀个⾃定义的三⻆
形形状，可以按照以下⽅式实现：

在上述代码中，Triangle 结构体遵循 Shape 协议，并实现了 path (in:) ⽅法。在该⽅法中，通过⼀系列的路径绘制
操作，定义了⼀个三⻆形的形状。使⽤这个⾃定义形状来裁剪视图的代码如下：

HStack {

 Text("Left")
 .frame(width: 100, height: 50)
 Text("Right")
}

Image("example")

 .resizable()
 .scaledToFit()
 .clipShape(Circle())

struct Triangle: Shape {

 func path(in rect: CGRect) -> Path {
 var path = Path()
 path.move(to: CGPoint(x: rect.midX, y: rect.minY))
 path.addLine(to: CGPoint(x: rect.minX, y: rect.maxY))
 path.addLine(to: CGPoint(x: rect.maxX, y: rect.maxY))
 path.closeSubpath()
 return path
 }
}

第 18 ⻚ / 共 97 ⻚

在这个例⼦中，.clipShape (Triangle ()) 将 Text 视图裁剪为⾃定义的三⻆形形状，使⽂本以三⻆形的外观显示，展
示了.clipShape () 修饰符在实现⾃定义形状裁剪⽅⾯的强⼤功能。

2.4.7.opacity () 透明度调整

.opacity () 修饰符在 SwiftUI 中主要⽤于调整视图的透明度，它通过控制视图的不透明度值，实现对视图可⻅程度
的改变，并且在动画中有着⼴泛的应⽤，能够为动画效果增添丰富的变化。

.opacity () 修饰符调整视图透明度的原理基于不透明度值的设置。不透明度值的范围是从 0.0（完全透明，即不可
⻅）到 1.0（完全不透明，即正常显示）。通过设置不同的不透明度值，开发者可以精确地控制视图的透明程度。
对于⼀个 Text 视图，如果希望将其透明度设置为 0.5（半透明），可以使⽤以下代码：

在这个例⼦中，.opacity (0.5) 将 Text 视图的透明度设置为 0.5，使得⽂本呈现出半透明的效果，透过⽂本可以看
到其背后的其他视图内容。这种透明度调整在创建半透明遮罩、模糊效果或者实现视图的渐变显示等⽅⾯⾮常有
⽤。

在动画中，.opacity () 修饰符可以与.animation () 修饰符结合使⽤，实现动态的透明度变化效果。在⼀个按钮点击
时，使按钮逐渐变得透明，代码如下：

在上述代码中，通过 @State 属性包装器定义了⼀个布尔类型的状态变量 isButtonTransparent，⽤于控制按钮的
透明度状态。当按钮被点击时，withAnimation 代码块会在动画效果下切换 isButtonTransparent 的值。根据
isButtonTransparent 的值，按钮的透明度会在 0.5（半透明）和 1（不透明）之间切换，从⽽实现按钮点击时的
透明度动画效果，为⽤户提供更加⽣动和直观的交互体验。

2.4.8.shadow () 阴影

.shadow () 修饰符在 SwiftUI 中⽤于为视图添加阴影效果，它通过设置⼀系列参数来控制阴影的颜⾊、半径、偏移
量等属性，从⽽实现丰富多样的阴影效果，并且这些参数的设置对最终的阴影效果有着显著的影响。

Text("Triangle Clip")

 .padding()
 .background(Color.blue)
 .foregroundColor(.white)
 .clipShape(Triangle())

Text("Transparent Text")

 .opacity(0.5)

struct ContentView: View {

 @State private var isButtonTransparent = false

 var body: some View {
 Button("Tap Me") {
 withAnimation {
 isButtonTransparent.toggle()
 }
 }
 .opacity(isButtonTransparent ? 0.5 : 1)
 }
}

第 19 ⻚ / 共 97 ⻚

.shadow () 修饰符添加视图阴影的原理基于对阴影相关属性的设置。在 SwiftUI 中，.shadow () 修饰符提供了多个
参数来定义阴影的特性。其中，color 参数⽤于设置阴影的颜⾊，开发者可以根据需求选择不同的颜⾊，
如.shadow (color: Color.black) 将阴影颜⾊设置为⿊⾊，⿊⾊阴影通常⽤于增强视图的⽴体感和层次感；radius 参
数⽤于控制阴影的模糊程度，数值越⼤，阴影越模糊，例如.shadow (radius: 10) 会创建⼀个较为模糊的阴影，使
阴影看起来更加柔和，⽽.shadow (radius: 2) 则会创建⼀个相对清晰的阴影；x 和 y 参数⽤于设置阴影在⽔平和垂
直⽅向上的偏移量，.shadow (x: 5, y: 5) 表示阴影在⽔平⽅向向右偏移 5 个点，在垂直⽅向向下偏移 5 个点，通过
调整这两个参数，可以改变阴影相对于视图的位置，使阴影看起来像是从不同⽅向投射出来的。

参数设置对阴影效果的影响⼗分明显。在颜⾊⽅⾯，不同的颜⾊会给阴影带来不同的视觉感受。⽩⾊阴影通常⽤于
创建⼀种发光的效果，使视图看起来更加突出和醒⽬；⽽灰⾊阴影则可以营造出⼀种柔和、⾃然的⽴体感。在半径
⽅⾯，较⼩的半径值会使阴影更加清晰，能够准确地反映视图的形状，适合⽤于需要突出阴影形状的场景；较⼤的
半径值则会使阴影变得模糊，产⽣⼀种柔和的扩散效果，常⽤于营造氛围或使阴影看起来更加⾃然。在偏移量⽅
⾯，不同的偏移⽅向和数值会改变阴影与视图的相对位置关系。正的 x 和 y 偏移量会使阴影向右下⽅偏移，

三、状态管理

3.1 @State

在 SwiftUI 中，@State 是⽤于管理视图内部简单状态的属性包装器，它在视图状态管理中扮演着⾄关重要的⻆
⾊。@State 的⼯作原理基于 SwiftUI 的响应式编程模型，当被 @State 修饰的状态变量发⽣变化时，SwiftUI 会⾃
动检测到这种变化，并重新渲染依赖于该状态的视图部分，以确保界⾯能够实时反映最新的状态。

@State 通常⽤于存储视图内部的简单数据，如布尔值、整数、字符串等。在⼀个简单的计数器应⽤中，@State 可
以⽤来管理计数器的数值：

在上述代码中， @State private var count = 0声明了⼀个名为 count的状态变量，初始值为 0。
Text("Count: \(count)")视图依赖于 count状态，当⽤户点击 Button("Increment")时， count += 1语句
会改变 count的值，SwiftUI 会⾃动检测到这个变化，并重新渲染 Text视图，以显示更新后的计数值。

@State 变量必须在声明时进⾏初始化，这是因为它代表着视图的初始状态。初始化值将作为视图⾸次显示时的状
态，为⽤户呈现⼀个初始的界⾯状态。同时，@State 变量应该是私有的，因为它是视图的内部状态，不应该被外
部视图直接访问或修改。这有助于保持视图的封装性和独⽴性，避免外部因素对视图内部状态的意外⼲扰，确保状
态的⼀致性和可维护性。如果将 @State 变量设置为公有，可能会导致不同视图之间的状态同步问题，增加代码的
复杂性和出错的⻛险。

struct CounterView: View {

 @State private var count = 0

 var body: some View {
 VStack {
 Text("Count: \\(count)")
 Button("Increment") {
 count += 1
 }
 }
 }
}

第 20 ⻚ / 共 97 ⻚

	掌握SwiftUI技术核心知识
	一、引言
	1.1 SwiftUI 的发展背景与意义
	1.2 研究目的与内容概述

	二、SwiftUI 基础
	2.1 视图（View）体系
	2.2 基本组件解析
	2.2.1 Text 组件
	2.2.2 Image 组件
	2.2.3 Button 组件
	2.2.4 List 组件
	2.2.5 ScrollView 组件

	2.3 布局方式详解
	2.3.1 HStack 布局
	2.3.2 VStack 布局
	2.3.3 ZStack 布局

	2.4 修饰符（Modifiers）运用
	2.4.1 Spacer 修饰符
	2.4.2 Divider 修饰符
	2.4.3 Padding 修饰符
	2.4.4 视图样式修改修饰符
	2.4.5.frame () 调整大小
	2.4.6.clipShape () 裁剪形状
	2.4.7.opacity () 透明度调整
	2.4.8.shadow () 阴影

	三、状态管理
	3.1 @State

