& SWIFTER

100 must know tips for Swift
2nd Edition

Wei Wang (@onevcat)

Table of Contents

Introduction 0
New in Swift 1
Currying 1.1
Declare Protocol function as mutating 1.2
Sequence 1.3
tuple 14
@autoclosure and ?? 1.5
Optional Chaining 1.6
Operator 1.7
Parameter Type of Function 1.8
Literal Convertible 1.9
Subscript 1.10
Nested Function 1.11
Namespace 1.12
Any and AnyObiject 1.13
Typealias and Generic Protocols 1.14
Variadic 1.15
Order of init method 1.16
Designated, Convenience and Required 1.17
Failable Initializers 1.18
Protocol Composition 1.19
static and class 1.20
Multiple Type and Collection 1.21
Default Parameter 1.22
Regular Expression 1.23
Pattern Match 1.24
..and ..< 1.25
AnyClass, Meta Type and .self 1.26
Self in protocol and class method 1.27
Dynamic Type and Multi-methods 1.28
Property Observers 1.29
final 1.30

lazy modifier and lazy method 1.31

Reflection and MirrorType 1.32
Implicitly Optional 1.33
Multiple Optional 1.34
Optional Map 1.35
Protocol Extension 1.36
where with pattern 1.37
indirect and nested enum 1.38
From Objective-C/C to Swift 2
Selector 2.1
Function Dispatch 2.2
Singleton 2.3
Conditional Compilation 24
Param Mark 2.5
@UIApplicationMain 2.6
@objc and dynamic 2.7
Optional Protocol 2.8
Memory Management, weak and unowned 29
@autoreleasepool 2.10
Value Type and Reference Type 2.1
String or NSString 2.12
UnsafePointer 213
Memory of C pointer 214
COpaquePointer and CFunctionPointer 2.15
GCD and delayed invoking 2.16
Get type of instance 217
Introspection 2.18
KVvO 2.19
Local scope 2.20
Equality 2.21
Hash 2.22
Class Cluster 2.23
Swizzle 2.24
C dynamic library 2.25
Formatted Output 2.26

Options 2.27

Enumerating an Array 2.28
Type Encode and @encode 2.29
Calling C code and @asmname 2.30
sizeof and sizeofValue 2.31
delegate 2.32
Associated Object 2.33
Lock 2.34
Toll-Free Bridging and Unmanaged 2.35
Swift In Practice 3
Swift Command Line Tool 3.1
Random Number 3.2
Printable and DebugPrintable 3.3
Error Handling 3.4
Assertion 3.5
fatalError 3.6
Using Framework 3.7
Resource Safety 3.8
Playground Delay Execution 3.9
Playground Visualization 3.10
Use Playground in Project 3.1
Math and numbers 3.12
JSON 3.13
NSNull 3.14
Documentation 3.15
Performance 3.16
Log Output 3.17
Overflow 3.18
Macro Define 3.19
Property Access 3.20
Tests in Swift 3.21
Core Data 3.22
Closure Ambiguous 3.23
Extension Generic 3.24
Compatibility 3.25

Enumerate enum type 3.26

Tail Recursion 3.27
Acknowledgements 4
Release Note 5

Introduction

Although all of us wish we could dive into Swift soon, | guess | should introduce the target
of this book and who are the readers this book written for.

Why do | should read this book?

Quite a lot of learners of Swift - whether those who are totally new to Cocoa/Cocoa Touch, or
used to write in Objective-C - are struggling in the same situation: how to improve their
professional skill after getting started with Swift. Maybe it happens to be your situation as well.
When you finished the last page of Apple's Swift tutorial, thinking you had mastered the new
language, then created an Xcode project with Swift, and stopped at the very first line of code.
You have to recall when to use Optional and when not to. You are not sure of how to express
these familiar APlIs in the new language. You are always getting trouble with compiling the code,
without any clue for fixing them.

Don't worry, that is quite normal. The Apple's tutorial is written for showing the syntax to you. If
you want to make Swift a powerful weapon in your daily life, you have to learn it deeper and use
it more. The target of this book is introducing some innovative points for you, and improving your
practice skill. These parts of knowledge are necessary for engineers who are using or wishing to
use Swift as their next programming language.

What is contained in this book?

It is a collection of knowledge points and tips for Swift. | myself attended WWDC 14, and saw the
birth of Swift with my own eyes. From the very first minute, | am learning Swift. By now, |
concluded 100 tips for this language, and divided them into 3 sections, from the very basic ones
to some high level ones. Each tip has unique content which should be understood by a senior
developer.

This book is particularly suitable to be used as a reference and supplement of Swift official
documentation. It would also become a fancy hand-book for developers. For the detail of what
are contained in the book, you can refer to the Contents page of the book.

What is not contained in this book?

This should not be your FIRST book for learning Swift, and this book is no longer a tutorial for
you to develop a simple calculator or note app. The main purpose of this book is clear - to
explore those ignored details of Swift. Although we will not discuss the whole language in a
systematic way, these points are utilized widely in developing. Based on this purpose, the
chapters of the book are organized in a loose structure.

Generally speaking, if you are just looking for a beginner book of Swift, you may not probably
choose this one. You can first read Apple's documentation on Swift, then have a look at this book
later on. If you have been already an iOS developer for a while, or learned some Swift before
and now wish to go further, this book is right for you.

How to read this book

100 is not a small number for tips. Fortunately, every part of this book is not so tightly with each
other, that allows you to just open the book and pick any tip you like. Although | recommend to
follow the order - because | paid specially attention not to refer the harder part in the earlier
chapters, it is not a must-obeyed rule. And there are links to the referred chapters as well, you
can jump through the book easily, and review the related chapters as you wish. If you are not
interested in some chapters, just skip them first. You can pick these ones would help you mostly
first, then go back to the skipped chapters later.

| suggest practicing the code in Xcode while reading. It could be a help to understand the
intension of these sample code. Every sample code is not long, but prepared carefully. | hope
you can "talk" to me by repeating these codes.

Code Sample

There are some code samples in most tips, mainly in Swift, and some in Objective-C as a
reference. All code should be able to run in Swift 2 (which bundled in Xcode 7). Of course, the
change is happening in Swift very rapidly now. Some code might be needed some modification
to be compiled and run correctly in later Swift version. If you find it, please open an issue in the
repository of this book, | will fix them as soon as possible.

If not specially pointed out, these codes could be executed in both Playground and real project,
and should share the same result. But there is also the situation of the code could be only tested
in Playground OR in a project. This is always caused by the limitation of the platform, and | will
mention it in the chapter if this happens.

Errata and Feedback

Swift is of great speed development and this book is under Swift 2 currently. As some new
features introduced into Swift, there might be outdated content in the book. Despite the fact that |
will improve this book, it might take some time after the upgrading of the language itself.

If you find any problem in reading this book, it would greatly help if you can report it in the issue
page. | will confirm these feedback and fix the issues if necessary.

About the author

https://github.com/swifter-tips/Public-Issues/issues
https://github.com/swifter-tips/Public-Issues/issues

Wei Wang (onevcat) is an iOS developer from China. He got his master degree in Tsinghua
University, which is one of the best universities in China. When he was an undergraduate he
started to develop iOS app. Now he is a senior engineer with Cocoa and Objective-C
experience, as well as Swift. He is writing a Chinese blog about iOS development in OneV's Den
with thousands of subscribers. He loves to contribute to open source community and is the
author of a famous Xcode plugin VVDocumenter as well.

Now Wei Wang is working in Japan for a mobile communication company. If you want to know
more about him, please visit his personal page and follow him on Twitter.

http://www.twitter.com/onevcat
http://onevcat.com
https://github.com/onevcat/VVDocumenter-Xcode
http://onev.cat
http://www.twitter.com/onevcat

Part |l. New in Swift

Pattern Match

In the previous regular expression tip, we implemented a =~ operator to do simple text match.
Although there is no built-in support for regular expression, there is a similar feature in Swift.
That is pattern match.

Conceptually, regular expression is only a subset of pattern match. However, the pattern match
support in Swift now is quite primary and simple. It can only handle equality match and range
match. There is a pattern match operator in the standard library, which is not so widely known. It

is ~= . We can search it in the standard library and find the related APIs below:
func ~=<T : Equatable> -> Bool
func ~=<T> -> Bool
func ~=<I : IntervalType> -> Bool

They can accept parameters of which types can be checked equality, types can be compared to

nil , and types of a range and some specified value respectively. All methods return a Bool to
indicate whether the match is successful or not. Remember something? It is not so obvious at
first, but let us see some important use of switch in Swift:

1. Types can be checked equality:

let password = "akfuv(3"
switch password {
case "akfuv(3": ("Passed")
default: ("Failed")
3

2. Types can be compared to optional value:

let num: Int? =

switch num {
case : ("No value")
default: ("\(num!)™")

3. Types of a range. Check some value in the range or not:

let x =

switch x {
case - C : ("In range")
default: ("Out of range")

3

10

http://en.wikipedia.org/wiki/Pattern_matching

That's right! switch statementis using ~= to do a pattern match under the hood. The pattern is
set as the left operand for ~= by case . And the switch tells it what is waiting to be matched,
as the right operand. This process is done by Swift implicitly. After knowing this, we can rely on
the switch to make some fun things. By applying our customized pattern, sometimes we can
write cleaner and more logical code. Here | will give an example of using the regular expression
as the pattern in switch . So you can draw a basic idea of how to do.

Overriding the ~= operator is always a good start point. Add a new version of ~= and make it
accepting an nNsregularExpression Object as pattern, to match a string input:

func ~= -> Bool {
return pattern.numberOfMatchesInString(input,
options: ,
range: NSRange(location: 0, length: (input))) >

For convenience, | also add an operator to convert a text string to NsrRegularexpression . Of
course you could use stringlLiteralconvertible as well, but it is related to another tip and here |
decide not to use it.

prefix operator ~/ {}

prefix func ~/ -> NSRegularExpression {
return NSRegularExpression(pattern: pattern, options: , error:)!

It is so simple. Now we can use a regular expression in case , and let it match the string in

switch

let contact = ("http://onevcat.com", "onev@onevcat.com")

let mailRegex: NSRegularExpression
let siteRegex: NSRegularExpression

mailRegex =
try ~/"A([a-z0-9_\\.-]+)@([\\da-z\\.-]+)\\.([a-z\\.]{2,6})%"
siteRegex =
try ~/"A(https?:\\/\\/)?2([\\da-z\\.-]+)\\. ([a-z\\.]1{2,63) ([\\/\\w \\.-]*)*\\/?%"

switch contact {
case (siteRegex, mailRegex): ("valid website and email")
case (_, mailRegex): ("valid email only")
case (siteRegex,): ("valid website only")
default: ("Both invalid")

11

Il. From Objective-C/C to Swift

12

Selector

@selector is keyword in Objective-C. It could convert a method to a SEL type, which turns out
behaving as a "function pointer". In the old Objective-C's age, selector is widely used, from
setting the target-action to introspecting. In Objective-C, the way of generating a selector would
be:

-(void) callMe {
}

-(void) callMewithParam: (id)obj {

}

SEL someMethod = @selector(callMe);
SEL anotherMethod = @selector(callMewWithParam:);

For writing less code, @selector is widely used. But if we need to decide which method to call at
runtime, nNsselectorrromstring would be preferred, so we could generate the method string
dynamically and send the message with the name.

There is no @selector keyword anymore in Swift. Instead of it, from Swift 2.2, we could get a
selector by using #selector and pass the function name which exposed to Objective-C to it.
Similarly, the original seL type is also replaced by a selector struct. The two examples above
could be rewritten as below:

func {

func {

}

let someMethod = #selector(callMe)
let anotherMethod = #selector(callMewithParam(:))

Same as Objective-C, you have to add the colon (:) following calimewithparam to construct the
full method name. Method with multiple parameters is similar, like this:

func {

}

let method = #selector(turnByAngle(:speed:))

13

Besides of that, since selector type conforms the stringLiteralconvertible protocol, we could
even use a string to assign a selector, without using its init method explicitly. It is semantic in
some situation, for example, setting a call back method when adding a notification observer:

NSNotificationCenter.defaultCenter().addObserver(self,
selector: "callMe", name: "CallMeNotification", object:)

We should pay special attention on the fact of selector being a concept of Objective-C runtime. If
the method of a selector is only exposed in Swift, but not Objective-C (or in other words, it is a
private method of Swift), you might get an "unrecognized selector" exception when sending
method to this selector:

This is wrong code

" swift private func callMe() {//... }

NSTimer.scheduledTimerWithTimelnterval(1, target: self, selector:#selector(callMe), userinfo:
nil, repeats: true)

One solution would be adding “@objc’ keyword before “private’, so the runtime could get to know

Tswift
@objc private func callMe() {
/7. ..

NSTimer.scheduledTimerWithTimeInterval(1l, target: self,
selector:#selector(callMe), userInfo: nil, repeats: true)

Lastly, if the method name is unique in the scope it belongs to, we could use the name alone
without full signature/ Compared to the full signature, it will be a bit easier for us to write the short
version:

let someMethod = #selector(callMe)
let anotherMethod = #selector(callMewithParam)
let method = #selector(turnByAngle)

However, if there are two or more functions with the same name in the same scope, Swift will not
be happy, even the function signatures are different between them:

14

func commonFunc() {

func commonFunc(input: Int) -> Int {
return input

let method = #selector(commonFunc)
// Compile error, there is ambiguity in “commonFunc’

We have to cast them to corresponded types to make it compile:

let methodl = #selector(commonFunc as ()->())
let method2 = #selector(commonFunc as Int->Int)

15

lll. Swift In Practice

16

Printable and DebugPrintable

Output will not be involved when implementing these two protocols in Playground and
Swift REPL.

If you need to verify the code in this tip, you need to do it in a project.

When defining and implementing a type, a common and progressive way in Swift is defining a
simple type first, and then adding features by conforming protocols by extension. This follows a
good design concept and contributes to improving scalability. In Objective-C, we can use the
combination of protocol and category to do similar things. It is even simpler in Swift.

Printable and DebugPrintable protocols are good example for it. For a regular object, when we
use print on it, only the type of this object would be printed. If we need some more useful
information, we can extend this type to make it conform printable protocol. Consider we have a
calendar app, in which some meeting appointments are stored. The model type contains the
date, position and attendee name:

struct Meeting {
var date: NSDate
var place: String
var attendeeName: String

}
let meeting = Meeting(date: NSDate(timeIntervalSinceNow: Do
place: "Room B1",
attendeeName: "John")
(meeting)
// Output:

// YourModuleName.Meeting

It is a meaningless output. What we need would be a formatted output, something like this:

("Meeting with \(meeting.attendeeName) in \(meeting.place) at \(meeting.date)")
// Output:
// Meeting with John in Room Bl at 2014-08-25 11:05:28 +0000

Much better! But it is not acceptable as well if we need to write the log statement every time.
Proper way to do this is using printable protocol, defining a template string for every print
calling. Compared change the wMeeting struct, we prefer an extension on it, to avoid messing
up the core model with the helper methods:

extension Meeting: Printable {
var description: String {
return "Meeting with \(meeting.attendeeName) in \(meeting.place) at \(meeting.date)"

}

Now, we can just simply pass the meeting to print to getthe formatted output:

17

(meeting)

DebugPrintable is similarto printable , except it will only called in a debugger logout. For these
types conforming to pebugpPrintable , we can use a printing command, such as po meeting , to
print the debugpescription string defined in its pebugprintable .

18

Acknowledgements

o Swift official documentation
e Apple Developer Forum

o swift tag on Stackoverflow
e NSHipster

e NSBlog Friday FAQ

e Airspeed Velocity

19

https://developer.apple.com/swift/
https://devforums.apple.com/community/tools/languages/swift
http://stackoverflow.com/questions/tagged/swift
http://nshipster.com
https://www.mikeash.com/pyblog/
http://airspeedvelocity.net

Release Note

2.0.0 (2016/5/18)

Compatible for Swift 2.2.

1.0.0 (2014/9/19)

First Edition

20

	Introduction
	New in Swift
	Pattern Match

	From Objective-C/C to Swift
	Selector

	Swift In Practice
	Printable and DebugPrintable

	Acknowledgements
	Release Note

