


0

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

Table	of	Contents
Introduction

New	in	Swift

Currying

Declare	Protocol	function	as	mutating

Sequence

tuple

@autoclosure	and	??

Optional	Chaining

Operator

Parameter	Type	of	Function

Literal	Convertible

Subscript

Nested	Function

Namespace

Any	and	AnyObject

Typealias	and	Generic	Protocols

Variadic

Order	of	init	method

Designated,	Convenience	and	Required

Failable	Initializers

Protocol	Composition

static	and	class

Multiple	Type	and	Collection

Default	Parameter

Regular	Expression

Pattern	Match

...	and	..<

AnyClass,	Meta	Type	and	.self

Self	in	protocol	and	class	method

Dynamic	Type	and	Multi-methods

Property	Observers

final

2



1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

lazy	modifier	and	lazy	method

Reflection	and	MirrorType

Implicitly	Optional

Multiple	Optional

Optional	Map

Protocol	Extension

where	with	pattern

indirect	and	nested	enum

From	Objective-C/C	to	Swift

Selector

Function	Dispatch

Singleton

Conditional	Compilation

Param	Mark

@UIApplicationMain

@objc	and	dynamic

Optional	Protocol

Memory	Management,	weak	and	unowned

@autoreleasepool

Value	Type	and	Reference	Type

String	or	NSString

UnsafePointer

Memory	of	C	pointer

COpaquePointer	and	CFunctionPointer

GCD	and	delayed	invoking

Get	type	of	instance

Introspection

KVO

Local	scope

Equality

Hash

Class	Cluster

Swizzle

C	dynamic	library

Formatted	Output

3



2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

Options

Enumerating	an	Array

Type	Encode	and	@encode

Calling	C	code	and	@asmname

sizeof	and	sizeofValue

delegate

Associated	Object

Lock

Toll-Free	Bridging	and	Unmanaged

Swift	In	Practice

Swift	Command	Line	Tool

Random	Number

Printable	and	DebugPrintable

Error	Handling

Assertion

fatalError

Using	Framework

Resource	Safety

Playground	Delay	Execution

Playground	Visualization

Use	Playground	in	Project

Math	and	numbers

JSON

NSNull

Documentation

Performance

Log	Output

Overflow

Macro	Define

Property	Access

Tests	in	Swift

Core	Data

Closure	Ambiguous

Extension	Generic

Compatibility

4



3.26

3.27

4

5

Enumerate	enum	type

Tail	Recursion

Acknowledgements

Release	Note

5



Introduction
Although	all	of	us	wish	we	could	dive	into	Swift	soon,	I	guess	I	should	introduce	the	target
of	this	book	and	who	are	the	readers	this	book	written	for.

Why	do	I	should	read	this	book?

Quite	a	lot	of	learners	of	Swift	-	whether	those	who	are	totally	new	to	Cocoa/Cocoa	Touch,	or
used	to	write	in	Objective-C	-	are	struggling	in	the	same	situation:	how	to	improve	their
professional	skill	after	getting	started	with	Swift.	Maybe	it	happens	to	be	your	situation	as	well.
When	you	finished	the	last	page	of	Apple's	Swift	tutorial,	thinking	you	had	mastered	the	new
language,	then	created	an	Xcode	project	with	Swift,	and	stopped	at	the	very	first	line	of	code.
You	have	to	recall	when	to	use	Optional	and	when	not	to.	You	are	not	sure	of	how	to	express
these	familiar	APIs	in	the	new	language.	You	are	always	getting	trouble	with	compiling	the	code,
without	any	clue	for	fixing	them.

Don't	worry,	that	is	quite	normal.	The	Apple's	tutorial	is	written	for	showing	the	syntax	to	you.	If
you	want	to	make	Swift	a	powerful	weapon	in	your	daily	life,	you	have	to	learn	it	deeper	and	use
it	more.	The	target	of	this	book	is	introducing	some	innovative	points	for	you,	and	improving	your
practice	skill.	These	parts	of	knowledge	are	necessary	for	engineers	who	are	using	or	wishing	to
use	Swift	as	their	next	programming	language.

What	is	contained	in	this	book?

It	is	a	collection	of	knowledge	points	and	tips	for	Swift.	I	myself	attended	WWDC	14,	and	saw	the
birth	of	Swift	with	my	own	eyes.	From	the	very	first	minute,	I	am	learning	Swift.	By	now,	I
concluded	100	tips	for	this	language,	and	divided	them	into	3	sections,	from	the	very	basic	ones
to	some	high	level	ones.	Each	tip	has	unique	content	which	should	be	understood	by	a	senior
developer.

This	book	is	particularly	suitable	to	be	used	as	a	reference	and	supplement	of	Swift	official
documentation.	It	would	also	become	a	fancy	hand-book	for	developers.	For	the	detail	of	what
are	contained	in	the	book,	you	can	refer	to	the	Contents	page	of	the	book.

What	is	not	contained	in	this	book?

This	should	not	be	your	FIRST	book	for	learning	Swift,	and	this	book	is	no	longer	a	tutorial	for
you	to	develop	a	simple	calculator	or	note	app.	The	main	purpose	of	this	book	is	clear	-	to
explore	those	ignored	details	of	Swift.	Although	we	will	not	discuss	the	whole	language	in	a
systematic	way,	these	points	are	utilized	widely	in	developing.	Based	on	this	purpose,	the
chapters	of	the	book	are	organized	in	a	loose	structure.

6



Generally	speaking,	if	you	are	just	looking	for	a	beginner	book	of	Swift,	you	may	not	probably
choose	this	one.	You	can	first	read	Apple's	documentation	on	Swift,	then	have	a	look	at	this	book
later	on.	If	you	have	been	already	an	iOS	developer	for	a	while,	or	learned	some	Swift	before
and	now	wish	to	go	further,	this	book	is	right	for	you.

How	to	read	this	book

100	is	not	a	small	number	for	tips.	Fortunately,	every	part	of	this	book	is	not	so	tightly	with	each
other,	that	allows	you	to	just	open	the	book	and	pick	any	tip	you	like.	Although	I	recommend	to
follow	the	order	-	because	I	paid	specially	attention	not	to	refer	the	harder	part	in	the	earlier
chapters,	it	is	not	a	must-obeyed	rule.	And	there	are	links	to	the	referred	chapters	as	well,	you
can	jump	through	the	book	easily,	and	review	the	related	chapters	as	you	wish.	If	you	are	not
interested	in	some	chapters,	just	skip	them	first.	You	can	pick	these	ones	would	help	you	mostly
first,	then	go	back	to	the	skipped	chapters	later.

I	suggest	practicing	the	code	in	Xcode	while	reading.	It	could	be	a	help	to	understand	the
intension	of	these	sample	code.	Every	sample	code	is	not	long,	but	prepared	carefully.	I	hope
you	can	"talk"	to	me	by	repeating	these	codes.

Code	Sample

There	are	some	code	samples	in	most	tips,	mainly	in	Swift,	and	some	in	Objective-C	as	a
reference.	All	code	should	be	able	to	run	in	Swift	2	(which	bundled	in	Xcode	7).	Of	course,	the
change	is	happening	in	Swift	very	rapidly	now.	Some	code	might	be	needed	some	modification
to	be	compiled	and	run	correctly	in	later	Swift	version.	If	you	find	it,	please	open	an	issue	in	the
repository	of	this	book,	I	will	fix	them	as	soon	as	possible.

If	not	specially	pointed	out,	these	codes	could	be	executed	in	both	Playground	and	real	project,
and	should	share	the	same	result.	But	there	is	also	the	situation	of	the	code	could	be	only	tested
in	Playground	OR	in	a	project.	This	is	always	caused	by	the	limitation	of	the	platform,	and	I	will
mention	it	in	the	chapter	if	this	happens.

Errata	and	Feedback

Swift	is	of	great	speed	development	and	this	book	is	under	Swift	2	currently.	As	some	new
features	introduced	into	Swift,	there	might	be	outdated	content	in	the	book.	Despite	the	fact	that	I
will	improve	this	book,	it	might	take	some	time	after	the	upgrading	of	the	language	itself.

If	you	find	any	problem	in	reading	this	book,	it	would	greatly	help	if	you	can	report	it	in	the	issue
page.	I	will	confirm	these	feedback	and	fix	the	issues	if	necessary.

About	the	author

7

https://github.com/swifter-tips/Public-Issues/issues
https://github.com/swifter-tips/Public-Issues/issues


Wei	Wang	(onevcat)	is	an	iOS	developer	from	China.	He	got	his	master	degree	in	Tsinghua
University,	which	is	one	of	the	best	universities	in	China.	When	he	was	an	undergraduate	he
started	to	develop	iOS	app.	Now	he	is	a	senior	engineer	with	Cocoa	and	Objective-C
experience,	as	well	as	Swift.	He	is	writing	a	Chinese	blog	about	iOS	development	in	OneV's	Den
with	thousands	of	subscribers.	He	loves	to	contribute	to	open	source	community	and	is	the
author	of	a	famous	Xcode	plugin	VVDocumenter	as	well.

Now	Wei	Wang	is	working	in	Japan	for	a	mobile	communication	company.	If	you	want	to	know
more	about	him,	please	visit	his	personal	page	and	follow	him	on	Twitter.

8

http://www.twitter.com/onevcat
http://onevcat.com
https://github.com/onevcat/VVDocumenter-Xcode
http://onev.cat
http://www.twitter.com/onevcat


Part	I.	New	in	Swift

9



Pattern	Match
In	the	previous	regular	expression	tip,	we	implemented	a		=~		operator	to	do	simple	text	match.
Although	there	is	no	built-in	support	for	regular	expression,	there	is	a	similar	feature	in	Swift.
That	is	pattern	match.

Conceptually,	regular	expression	is	only	a	subset	of	pattern	match.	However,	the	pattern	match
support	in	Swift	now	is	quite	primary	and	simple.	It	can	only	handle	equality	match	and	range
match.	There	is	a	pattern	match	operator	in	the	standard	library,	which	is	not	so	widely	known.	It
is		~=	.	We	can	search	it	in	the	standard	library	and	find	the	related	APIs	below:

func	~=<T	:	Equatable>(a:	T,	b:	T)	->	Bool

func	~=<T>(lhs:	_OptionalNilComparisonType,	rhs:	T?)	->	Bool

func	~=<I	:	IntervalType>(pattern:	I,	value:	I.Bound)	->	Bool

They	can	accept	parameters	of	which	types	can	be	checked	equality,	types	can	be	compared	to
	nil	,	and	types	of	a	range	and	some	specified	value	respectively.	All	methods	return	a		Bool		to
indicate	whether	the	match	is	successful	or	not.	Remember	something?	It	is	not	so	obvious	at
first,	but	let	us	see	some	important	use	of		switch		in	Swift:

1.	 Types	can	be	checked	equality:

	let	password	=	"akfuv(3"

	switch	password	{

					case	"akfuv(3":	print("Passed")

					default:								print("Failed")

	}

2.	 Types	can	be	compared	to	optional	value:

	let	num:	Int?	=	nil

	switch	num	{

					case	nil:	print("No	value")

					default:		print("\(num!)")

	}

3.	 Types	of	a	range.	Check	some	value	in	the	range	or	not:

	let	x	=	0.5

	switch	x	{

					case	-1.0...1.0:	print("In	range")

					default:	print("Out	of	range")

	}

10

http://en.wikipedia.org/wiki/Pattern_matching


That's	right!		switch		statement	is	using		~=		to	do	a	pattern	match	under	the	hood.	The	pattern	is
set	as	the	left	operand	for		~=		by		case	.	And	the		switch		tells	it	what	is	waiting	to	be	matched,
as	the	right	operand.	This	process	is	done	by	Swift	implicitly.	After	knowing	this,	we	can	rely	on
the		switch		to	make	some	fun	things.	By	applying	our	customized	pattern,	sometimes	we	can
write	cleaner	and	more	logical	code.	Here	I	will	give	an	example	of	using	the	regular	expression
as	the	pattern	in		switch	.	So	you	can	draw	a	basic	idea	of	how	to	do.

Overriding	the		~=		operator	is	always	a	good	start	point.	Add	a	new	version	of		~=		and	make	it
accepting	an		NSRegularExpression		object	as	pattern,	to	match	a		String		input:

func	~=(pattern:	NSRegularExpression,	input:	String)	->	Bool	{

				return	pattern.numberOfMatchesInString(input,

								options:	nil,

								range:	NSRange(location:	0,	length:	count(input)))	>	0

}

For	convenience,	I	also	add	an	operator	to	convert	a	text	string	to		NSRegularExpression	.	Of
course	you	could	use		StringLiteralConvertible		as	well,	but	it	is	related	to	another	tip	and	here	I
decide	not	to	use	it.

prefix	operator	~/	{}

prefix	func	~/(pattern:	String)	->	NSRegularExpression	{

				return	NSRegularExpression(pattern:	pattern,	options:	nil,	error:	nil)!

}

It	is	so	simple.	Now	we	can	use	a	regular	expression	in		case	,	and	let	it	match	the	string	in
	switch	:

let	contact	=	("http://onevcat.com",	"onev@onevcat.com")

let	mailRegex:	NSRegularExpression

let	siteRegex:	NSRegularExpression

mailRegex	=	

				try	~/"^([a-z0-9_\\.-]+)@([\\da-z\\.-]+)\\.([a-z\\.]{2,6})$"

siteRegex	=	

				try	~/"^(https?:\\/\\/)?([\\da-z\\.-]+)\\.([a-z\\.]{2,6})([\\/\\w	\\.-]*)*\\/?$"

switch	contact	{

				case	(siteRegex,	mailRegex):	print("Valid	website	and	email")

				case	(_,	mailRegex):	print("Valid	email	only")

				case	(siteRegex,	_):	print("Valid	website	only")

				default:	print("Both	invalid")

}

//	Output:

//	Valid	website	and	email

11



II.	From	Objective-C/C	to	Swift

12



Selector
	@selector		is	keyword	in	Objective-C.	It	could	convert	a	method	to	a	SEL	type,	which	turns	out
behaving	as	a	"function	pointer".	In	the	old	Objective-C's	age,	selector	is	widely	used,	from
setting	the	target-action	to	introspecting.	In	Objective-C,	the	way	of	generating	a	selector	would
be:

-(void)	callMe	{

				//...

}

-(void)	callMeWithParam:(id)obj	{

				//...

}

SEL	someMethod	=	@selector(callMe);

SEL	anotherMethod	=	@selector(callMeWithParam:);

//	Or	we	can	use	NSSelectorFromString	as	well

//	SEL	someMethod	=	NSSelectorFromString(@"callMe");

//	SEL	anotherMethod	=	NSSelectorFromString(@"callMeWithParam:");

For	writing	less	code,		@selector		is	widely	used.	But	if	we	need	to	decide	which	method	to	call	at
runtime,		NSSelectorFromString		would	be	preferred,	so	we	could	generate	the	method	string
dynamically	and	send	the	message	with	the	name.

There	is	no		@selector		keyword	anymore	in	Swift.	Instead	of	it,	from	Swift	2.2,	we	could	get	a
selector	by	using		#selector		and	pass	the	function	name	which	exposed	to	Objective-C	to	it.
Similarly,	the	original		SEL		type	is	also	replaced	by	a		Selector		struct.	The	two	examples	above
could	be	rewritten	as	below:

func	callMe()	{

				//...

}

func	callMeWithParam(obj:	AnyObject!)	{

				//...

}

let	someMethod	=	#selector(callMe)

let	anotherMethod	=	#selector(callMeWithParam(_:))

Same	as	Objective-C,	you	have	to	add	the	colon	(	:	)	following		callMeWithParam		to	construct	the
full	method	name.	Method	with	multiple	parameters	is	similar,	like	this:

func	turnByAngle(theAngle:	Int,	speed:	Float)	{

				//...

}

let	method	=	#selector(turnByAngle(_:speed:))

13



Besides	of	that,	since		Selector		type	conforms	the		StringLiteralConvertible		protocol,	we	could
even	use	a	string	to	assign	a	selector,	without	using	its	init	method	explicitly.	It	is	semantic	in
some	situation,	for	example,	setting	a	call	back	method	when	adding	a	notification	observer:

NSNotificationCenter.defaultCenter().addObserver(self,

								selector:	"callMe",	name:	"CallMeNotification",	object:	nil)

We	should	pay	special	attention	on	the	fact	of	selector	being	a	concept	of	Objective-C	runtime.	If
the	method	of	a	selector	is	only	exposed	in	Swift,	but	not	Objective-C	(or	in	other	words,	it	is	a
private	method	of	Swift),	you	might	get	an	"unrecognized	selector"	exception	when	sending
method	to	this	selector:

This	is	wrong	code

```swift	private	func	callMe()	{	//...	}

NSTimer.scheduledTimerWithTimeInterval(1,	target:	self,	selector:#selector(callMe),	userInfo:
nil,	repeats:	true)

One	solution	would	be	adding	`@objc`	keyword	before	`private`,	so	the	runtime	could	get	to	know	what	you	mean	by	the	selector.

```swift

@objc	private	func	callMe()	{

				//...

}

NSTimer.scheduledTimerWithTimeInterval(1,	target:	self,

													selector:#selector(callMe),	userInfo:	nil,	repeats:	true)

Lastly,	if	the	method	name	is	unique	in	the	scope	it	belongs	to,	we	could	use	the	name	alone
without	full	signature/	Compared	to	the	full	signature,	it	will	be	a	bit	easier	for	us	to	write	the	short
version:

let	someMethod	=	#selector(callMe)

let	anotherMethod	=	#selector(callMeWithParam)

let	method	=	#selector(turnByAngle)

However,	if	there	are	two	or	more	functions	with	the	same	name	in	the	same	scope,	Swift	will	not
be	happy,	even	the	function	signatures	are	different	between	them:

14



func	commonFunc()	{

}

func	commonFunc(input:	Int)	->	Int	{

				return	input

}

let	method	=	#selector(commonFunc)

//	Compile	error,	there	is	ambiguity	in	`commonFunc`

We	have	to	cast	them	to	corresponded	types	to	make	it	compile:

let	method1	=	#selector(commonFunc	as	()->())

let	method2	=	#selector(commonFunc	as	Int->Int)

15



III.	Swift	In	Practice

16



Printable	and	DebugPrintable
Output	will	not	be	involved	when	implementing	these	two	protocols	in	Playground	and
Swift	REPL.

If	you	need	to	verify	the	code	in	this	tip,	you	need	to	do	it	in	a	project.

When	defining	and	implementing	a	type,	a	common	and	progressive	way	in	Swift	is	defining	a
simple	type	first,	and	then	adding	features	by	conforming	protocols	by	extension.	This	follows	a
good	design	concept	and	contributes	to	improving	scalability.	In	Objective-C,	we	can	use	the
combination	of	protocol	and	category	to	do	similar	things.	It	is	even	simpler	in	Swift.

	Printable		and		DebugPrintable		protocols	are	good	example	for	it.	For	a	regular	object,	when	we
use		print		on	it,	only	the	type	of	this	object	would	be	printed.	If	we	need	some	more	useful
information,	we	can	extend	this	type	to	make	it	conform		Printable		protocol.	Consider	we	have	a
calendar	app,	in	which	some	meeting	appointments	are	stored.	The	model	type	contains	the
date,	position	and	attendee	name:

struct	Meeting	{

				var	date:	NSDate

				var	place:	String

				var	attendeeName:	String

}

let	meeting	=	Meeting(date:	NSDate(timeIntervalSinceNow:	86400),

																					place:	"Room	B1",

														attendeeName:	"John")

print(meeting)

//	Output:

//	YourModuleName.Meeting

It	is	a	meaningless	output.	What	we	need	would	be	a	formatted	output,	something	like	this:

print("Meeting	with	\(meeting.attendeeName)	in	\(meeting.place)	at	\(meeting.date)")

//	Output:

//	Meeting	with	John	in	Room	B1	at	2014-08-25	11:05:28	+0000

Much	better!	But	it	is	not	acceptable	as	well	if	we	need	to	write	the	log	statement	every	time.
Proper	way	to	do	this	is	using		Printable		protocol,	defining	a	template	string	for	every		print	
calling.	Compared	change	the		Meeting		struct,	we	prefer	an		extension		on	it,	to	avoid	messing
up	the	core	model	with	the	helper	methods:

extension	Meeting:	Printable	{

				var	description:	String	{

								return	"Meeting	with	\(meeting.attendeeName)	in	\(meeting.place)	at	\(meeting.date)"

				}

}

Now,	we	can	just	simply	pass	the		meeting		to		print		to	get	the	formatted	output:

17



print(meeting)

//	Output:

//	Meeting	with	John	in	Room	B1	at	2014-08-25	11:05:28	+0000

	DebugPrintable		is	similar	to		Printable	,	except	it	will	only	called	in	a	debugger	logout.	For	these
types	conforming	to		DebugPrintable	,	we	can	use	a	printing	command,	such	as		po	meeting	,	to
print	the		debugDescription		string	defined	in	its		DebugPrintable	.

18



Acknowledgements
Swift	official	documentation
Apple	Developer	Forum
swift	tag	on	Stackoverflow
NSHipster
NSBlog	Friday	FAQ
Airspeed	Velocity

19

https://developer.apple.com/swift/
https://devforums.apple.com/community/tools/languages/swift
http://stackoverflow.com/questions/tagged/swift
http://nshipster.com
https://www.mikeash.com/pyblog/
http://airspeedvelocity.net


Release	Note

2.0.0	(2016/5/18)

Compatible	for	Swift	2.2.

1.0.0	(2014/9/19)

First	Edition

20


	Introduction
	New in Swift
	Pattern Match

	From Objective-C/C to Swift
	Selector

	Swift In Practice
	Printable and DebugPrintable

	Acknowledgements
	Release Note

