Learn to use javascript AMD in your apps the easy way

Structurin
Q\Bs BACKBONE,JS

QU IRE, \\\JDOdé

Wlth o

e \\\\\J%equweJS

@ﬁﬁ Ak @ -

A
gﬂm@%ﬁ'mﬁ%x
%7@;3& et {1 / and
il ;;7

arionette

Modules ——
A Gentle Introduction

by David Sulc



Structuring Backbone Code with RequireJS
and Marionette Modules

Learn to use javascript AMD in your apps the easy way

David Sulc

This book is for sale at http://leanpub.com/structuring-backbone-with-requirejs-and-marionette

This version was published on 2015-09-20

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 - 2015 David Sulc


http://leanpub.com/structuring-backbone-with-requirejs-and-marionette
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help David Sulc by spreading the word about this book on Twitter!
The suggested tweet for this book is:

[ just bought @davidsulc’s book on @marionettejs and Require]S. Interested? Check it out at
https://leanpub.com/structuring-backbone-with-requirejs-and-marionette

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#


http://twitter.com
https://twitter.com/search?q=%23

Also By David Sulc

Backbone.Marionette.js: A Gentle Introduction
Backbone.Marionette.js: A Serious Progression

Marionette.js: Testing and Refactoring


http://leanpub.com/u/davidsulc
http://leanpub.com/marionette-gentle-introduction
http://leanpub.com/marionette-serious-progression
http://leanpub.com/marionette-testing

Contents

Work in Progress . . . . . . . . . i
Who This BookisFor . . . . . . . . ... . .. ii
Following Along with Git . . . . . . .. .. .. ... ... iii

Jumping in for Advanced Readers . . . . . . ... ... L Lo L iv
Why Use AMD? . . . . . . . 1
Getting Started . . . . . . . . . 2

Adding RequireJStothe Mix . . . . . . . . .. ... 3

Using Shims . . . . . . . .. e 6



Work in Progress

This book is currently being written, and I'd love to hear from you! The ultimate goal, of course,
is to cover the sticking points readers have trouble understanding or with using Require]S and
Marionette, so you'll be comfortable using Require]JS in your own applications.



Who This Book is For

This book is first and foremost for the readers of “Backbone.Marionette.js: A Gentle Introduction'”
who want to take their knowledge to the next level, by using Require]S to structure their code and
load dependencies.

To follow along, you’ll need to have at least passing familiarity with the Contact Manager application
developed in my previous book. Put another way, the focus of this book is how to use Require]S with
Marionette: it does NOT explain how to leverage the various components Marionette provides (that’s
covered in the book linked above).

'https://leanpub.com/marionette-gentle-introduction


https://leanpub.com/marionette-gentle-introduction
https://leanpub.com/marionette-gentle-introduction

Following Along with Git

This book is a step by step guide to rebuilding the Contact Manager application to use Require]JS. As
such, it’s accompanied by source code in a Git repository hosted at https://github.com/davidsulc/structuring-
backbone-with-requirejs-and-marionette®.

Throughout the book, as we code our app, we’ll refer to commit references within the git repository

like this:

0 Git commit with our basic index.html:
dcc76a70bd5520add1d4ebdc42320aacbocod771?

This will allow you to follow along and see exactly how the codebase has changed: you can either
look at that particular commit in your local copy of the git repository, or click on the link to see an
online display of the code differences.

A Any change in the code will affect all the following commit references, so the links in
your version of the book might become desynchronized. If that’s the case, make sure you
update your copy of the book to get the new links. At any time, you can also see the full
list of commits here*, which should enable you to locate the commit you’re looking for (the

commit names match their descriptions in the book).

Even if you haven’t used Git yet, you should be able to get up and running quite easily using online
resources such as the Git Book®. This chapter is by no means a comprehensive introduction to Git,
but the following should get you started:

« Set up Git with Github’s instructions®
« To get a copy of the source code repository on your computer, open a command line and run

git clone git://github.com/davidsulc/structuring-backbone-with-requirejs-and-ma\
rionette.git

« From the command line move into the structuring-backbone-with-require js-and-marionette
folder that Git created in the step above, and execute

*https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette

*https://github.com/davidsulc/structuring-backbone- with-requirejs-and- marionette/commit/dcc76a70bd5520add 1d4ebdc42320aacb0cod77f
“https://github.com/davidsulc/marionette- gentle-introduction/commits/master

*http://git-scm.com/book

®https://help.github.com/articles/set-up- git


https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette
https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette
https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/commit/dcc76a70bd5520add1d4ebdc42320aacb0c0d77f
https://github.com/davidsulc/marionette-gentle-introduction/commits/master
http://git-scm.com/book
https://help.github.com/articles/set-up-git
https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette
https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/commit/dcc76a70bd5520add1d4ebdc42320aacb0c0d77f
https://github.com/davidsulc/marionette-gentle-introduction/commits/master
http://git-scm.com/book
https://help.github.com/articles/set-up-git

Following Along with Git iv
git show dccT76a70bd5520add1d4ebdc42320aacb@c@d7Tt
to show the code differences implemented by that commit:

« ’-‘ lines were removed
o '+’ lines were added

You can also use Git to view the code at different stages as it evolves within the book:

« To extract the code as it was during a given commit, execute

git checkout dcc76a70bd5520add1d4ebdc4232@aacb@codTTf

« Look around in the files, they’ll be in the exact state they were in at that point in time within

the book

+ Once you're done looking around and wish to go back to the current state of the codebase,
run

git checkout master

(2 What if | don’t want to use Git, and only want
the latest version of the code?

You can download a zipped copy of the repository’. This will contain the full Git commit
history, in case you change your mind about following along.

Jumping in for Advanced Readers

My goal with this book is to get you comfortable enough to use Require]S in your own Marionette
projects, and it rebuild an existing application from start to finish with Require]S. Therefore, after
presenting the main concepts you need to know when using RequireJS, the book guides you in
rewriting the ContactManager application by pointing out various aspects to bear in mind, and then
providing a step by step guide to the actual implementation.

Although you’ll learn the most by following along with the code, you can simply skim the content
and checkout the Git commit corresponding to the point in the book where you wish to join in.

"https://github.com/davidsulc/structuring-backbone-with-requirejs-and- marionette/archive/master.zip


https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/archive/master.zip
https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/archive/master.zip

Why Use AMD?

Asynchronous Module Definition (or AMD for short) is one answer to the problems that plague
modern web development:

web applications require lots of javascript code;
+ to manage application complexity, javascript code needs to be broken down into smaller files;

« these smaller javascript files have dependencies on one another that aren’t clear from their
inclusion via <script> tags: the tag sequence only gives a rough sense of order, not a
dependency tree;

« loading a long list of javascript files with includes slows down your web page: each file requires
a separate HTTP request, and is blocking.

By using Require]S in a web app, you get the following benefits:

« your javascript code can be distributed among many smaller files;

« you explicitly declare the dependencies each javascript module requires (both libraries and
other modules);

« you can build a single, optimized, and minified javascript file for production deployment.



0 N O O &~ W N -

B ) S s sy
O© 00 1 O O » WO N~ O ©

Getting Started

ﬂ This book uses Marionette 2.3.2. If you wish to learn an earlier version of Marionette (e.g.
you’ve inherited a project with an older version), refer to the older book version included

as a zip. The code using Marionette 1.7.4 is available on Github in the marionnette-pre-v2
branch®.

First, let’s grab a copy of the source code for our basic Contact Manager application (as it was
developed in my “Backbone.Marionette.js: A Gentle Introduction®” book) from here'. We’re doing
this for convenience, since we’ll now have all libraries and assets (images, icons, etc.) available and
won’t have to deal with fetching them in the next chapters. Downloading the entire app also means
we have all of our modules ready to go, simply waiting to be integrated in our Require]JS app.

Now, let’s start with a basic index.html file, by removing all javascript includes, and templates:

Our initial index.html

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Marionette Contact Manager</title>
<link href="./assets/css/bootstrap.css" rel="stylesheet">
<link href="./assets/css/application.css" rel="stylesheet">

<link href="./assets/css/jquery-ui-1.10.3.custom.css" rel
</head>

stylesheet">

<body>
<div id="app-container">
<div id="header-region"></div>
<div id="main-region" class="container">
<p>Here is static content in the web page. You'll notice that it
gets replaced by our app as soon as we start it.</p>
</div>

<div id="dialog-region"></div>

®https://github.com/davidsulc/structuring-backbone- with-requirejs-and-marionette/tree/marionette-pre-v2
*https://leanpub.com/marionette- gentle-introduction
https://github.com/davidsulc/structuring-backbone-with-requirejs-and- marionette/archive/dcc76a70bd5520add1d4ebdc42320aacb0c0d77f.zip


https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/tree/marionette-pre-v2
https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/tree/marionette-pre-v2
https://leanpub.com/marionette-gentle-introduction
https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/archive/dcc76a70bd5520add1d4ebdc42320aacb0c0d77f.zip
https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/tree/marionette-pre-v2
https://leanpub.com/marionette-gentle-introduction
https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/archive/dcc76a70bd5520add1d4ebdc42320aacb0c0d77f.zip

20
21
22

0 N O O & W N =

S =S
O© 00 1 O O b O N~ O ©

Getting Started 3

</div>
</body>
</html>

You may have noticed that we’ve got some CSS includes that aren’t needed yet. We’ll just leave
them there, so we can avoid dealing with them later: they’ll already be included when we do need
them.

0 Git commit with our basic index.html:
2cf4f77cbffaab86aafob355410a6d2f46£58d29"*

Adding Require]S to the Mix

With our basic index.html in place, let’s move on to our next goal: using Require]S to load our
libraries. So let’s get RequireJS from here'” and save it in assets/ js/vendor /require. js. Now, we
can add RequireJS to our index.html (line 22):

Adding Require]S (index.html)

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Marionette Contact Manager</title>
<link href="./assets/css/bootstrap.css" rel="stylesheet">

—n

<link href="./assets/css/application.css" rel="stylesheet">
<link href="./assets/css/jquery-ui-1.10.3.custom.css" rel="stylesheet">

</head>

<body>
<div id="app-container">
<div id="header-region"></div>
<div id="main-region" class="container">
<p>Here is static content in the web page. You'll notice that it
gets replaced by our app as soon as we start it.</p>
</div>

<div id="dialog-region"></div>

"https://github.com/davidsulc/structuring-backbone-with-requirejs-and- marionette/commit/2cf4f77cbffaab86aafob355410a6d2f46f58d29
http://requirejs.org/docs/release/2.1.8/comments/require.js


https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/commit/2cf4f77cbffaab86aaf9b355410a6d2f46f58d29
http://requirejs.org/docs/release/2.1.8/comments/require.js
https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/commit/2cf4f77cbffaab86aaf9b355410a6d2f46f58d29
http://requirejs.org/docs/release/2.1.8/comments/require.js

20
21
22
23
24

Getting Started 4

</div>

<script src="./assets/js/vendor/require. js"></script>
</body>
</html>

So how do we actually load our libraries with Require]S? We’re going to add adata-main attribute to
the script tag, which will make RequireJS automatically load the provided javascript file. This file,
in turn, will configure Require]S per our environment, load the top-level dependencies and libraries,
and then start our Contact Manager application. So let’s change our script tag on line 22 to

<script data-main="./assets/js/require_main. js"

src="./assets/js/vendor/require. js"></script>

That was easy enough! Of course, we now need to actually write require_main.js to provide
configuration directives. Let’s start by simply using Require]S to load jQuery and display jQuery’s
version number:

assets/js/require_main.js

require(/"vendor/jquery" ], function(){
', $.fn.jquery);

console.log("jQuery version:

});

If you refresh index.html, you’ll now see jQuery’s version number printed in the console. How
is this happening? First, Require]S determines the baseUr1, which is the path from which all other
paths are computed. By default, it is set to the path provided to the data-main attribute above (minus
the file portion, of course). So in our case, the baseUr1 is assets/Js.

Then, within require_main.js, we call Require]JS’s require function, which takes 2 arguments:

1. an array of dependencies that need to be loaded before executing the callback function;
2. a callback function that gets executed once all the required dependencies have been loaded.

Note that Require]S also defines a requirejs function, which is interchangeable with
require.

In the dependency array, we provide the path to the file we want to load relative to the baseUr1 path.
As we indicated jQuery was located at vendor/jquery, and our baseUr1 is assets/js (because that’s



O© 00 9 O O b W N =

RGN
= o

Getting Started 5

where our require_main.js file is located), Require]S will look for the library file in assets/js/ven-
dor/jquery.js. So our code essentially instructs “once jQuery is loaded from assets/js/vendor/jquery.js,
print its version number.”

Note that we specify file without extensions. For example, to require jQuery we had
“vendor/jquery” as the dependency, and Require]S automatically added the “js” extension.

But we can still improve our code by adding some global configuration:

assets/js/require_main.js

requirejs.config({
baseUrl: "assets/js",
paths: {
jquery: "vendor/jquery"
}
1)

require(/"jquery" ], function(jq){
, Ja.fn.jquery);
", $.fn.jquery);

"

console.log(" jQuery version:

console.log(" jQuery version:

});

Q Due to the equivalence of require and requirejs, the config method could also be called
via require.config. Why do I use requirejs on line 1 and then require on line 87 It’s
just a matter of personal taste: I find that requirejs.config explicitly indicates we are
configuring Require]S, and using the require function call reads better (i.e. “require these
files before proceeding”). But be aware of the requirejs and require synonyms when you

look at Require]JS code.

So we’'ve added some configuration, but what does it do? First, we provide a baseUrl path. This
isn’t really necessary in our case (since we’re using the same path as the default), but I find it helps
with clarity: since all the other paths indicated in the file will be defined relative to the baseUr1, it’s
practical to have it explicitly defined on the same page.

Next, we've added a paths'® object to specify paths that aren’t directly under the baseUr1 path. This
allows us to create a “jquery” key to use when requiring the library, and RequireJS will know it
should be loaded from the vendor/jquery location.

Phttp://requirejs.org/docs/api-html#config-paths


http://requirejs.org/docs/api.html#config-paths
http://requirejs.org/docs/api.html#config-paths

Getting Started 6

9 From the documentation**:

The path that is used for a module name should not include an extension, since the path
mapping could be for a directory. The path mapping code will automatically add the .js
extension when mapping the module name to a path.

Q By using path fallbacks'’, you can easily load libraries from CDNs and default to using a
local version should the CDN be unavailable.

With this configuration in place, we can now simply require “jquery” and Require]S will know where
to look. In addition, note that RequireJS will provide the array of dependencies as arguments to the
callback function: in the code above, we have the “jquery” dependency assigned to the jq variable,
which allows us to then call jq. fn. jquery to get jQuery’s version number. As you can tell from the
console output, using the provided callback argument is equivalent to using the global $ variable.

’ JQuery’s case is a bit special, so let’s talk about it a bit. Ever since version 1.7, jQuery is

J AMD-compatible meaning that it can be loaded with a module loader such as Require]S.
In that case, the module loader will receive a reference to jQuery which can be used in
the callback function. All of this happens in addition to jQuery’s registering the global $
variable.

However, with most other modules and libraries, no global variables will be registered.
That’s one of the objectives when using Require]S: don’t register objects in the global
namespace, and require the ones you need instead, passing them into the callback function.

Using Shims

We’ve seen how to load an AMD-compatible library (namely, jQuery), so let’s move on to loading
one that is not compatible with AMD: Underscore. By using the new shim object in Require]S, we
can still load AMD-incompatible scripts with Require]JS: all we need to do is provide a little more
information. Here we go:

"http://requirejs.org/docs/api.html#config-paths
Phttp://requirejs.org/docs/api-html#pathsfallbacks


http://requirejs.org/docs/api.html#config-paths
http://requirejs.org/docs/api.html#pathsfallbacks
http://requirejs.org/docs/api.html#config-paths
http://requirejs.org/docs/api.html#pathsfallbacks

©O© 00 N O U b W N =

B | S s s sy
O 00 3 O O b W N~ O

Getting Started 7

assets/js/require_main.js

requirejs.config({
baseUrl: "assets/js",
paths: {
jquery: "vendor/jquery",
underscore: "vendor/underscore"

}/

shim: {
underscore: {

non

exports:

}
});

require(/["underscore", "jquery"], function(un){
", $.fn. jquery);
console.log("underscore identity call: ", _.identity(5));

console.log(" jQuery version:

console.log("underscore identity call: ", un.identity(5));

});

First, we indicate where Underscore is located (line 5). With that done, we add the “underscore”
key to the shim object and indicate that it should return the value of the “_” global to the callback
function. Notice that, thanks to the shim, we have access to both the global “_” value (line 17) and
the un callback value (line 18). If we hadn’t used a shim, we wouldn’t be able to use the un callback
value, only the “_” global.

9 Since writing this, Underscore, Marionette, etc. have become AMD-compatible : they will
work as expected without requiring shims. The code is left as is for educational purposes,
as you will likely deal with external libraries that will require shims at some point.

’ How come we require 2 files, but have only one callback argument? Because we only

J explicitly state the callback arguments we’re going to be using (and for which we need
a variable to reference). So why bother having the “jquery” as a dependency? Because
even though we’re not using an explicit callback argument value, we know that within the
callback function jQuery has been loaded and can be used via the global $ variable. This is
due to jQuery’s particularity of registering a global variable we can reference: there’s no
need to use a callback argument.

Let’s move on to loading something with dependencies: Backbone. Here we go:



© 00 39 O O b W N =~

NN NN N N B B 1 |l sy s
O b WO N O O 0 O O b W N~ O

Getting Started 8

assets/js/require_main.js

requirejs.config({
baseUrl: "assets/js",
paths: {
backbone: "vendor/backbone",
jquery: "vendor/jquery",
json2: "vendor/json2",
underscore: "vendor/underscore"

}/

shim: {
underscore: {

non

exports:
},
backbone: {
deps: ["jquery", "underscore", "json2"],
exports: "Backbone"

}
});

require(["backbone" ], function(bb){
", $.fn. jquery);

console. log("jQuery version:

console.log("underscore identity call: ", _.identity(5));
console. log("Backbone.history: ", bb.history);
1);

Let’s start studying this code in the shim (lines 14-17):

1. we declare a “backbone” key we can then use to require the library;

2. we indicate that Backbone depends on jQuery, Underscore, and JSON2. This implies that
before loading Backbone, Require]S has to load these dependencies;

3. we indicate that the global Backbone variable should be returned to the callback function.

Naturally, we need to tell Require]S where to find the various files so we’ve had to add paths for
Backbone (line 4) and JSON2 (line 6).

With that configuration set up, we can require Backbone on line 21 and use it within the callback
function. But how come we can still use jQuery and Underscore without requiring them (lines 22-23)?
Because of the dependency tree: Backbone depends on those libraries (see above), so once Backdone



Getting Started 9

and its dependencies have been loaded we have access to jQuery and Underscore via their global
variables (since they’re both Backbone dependencies). Require]S magic in action!

® Try adding Marionette to require_main.js on your own, then check below. Things to
y remember:

« You’ll need to specify a path for Marionette;
« Marionette depends on Backbone;
+ Marionette registers the global Marionette variable.

You can see the solution on the next page.



Getting Started 10

assets/js/require_main.js

requirejs.config({

baseUrl: "assets/js",

paths: {
backbone: "vendor/backbone",
jquery: "vendor/jquery",
json2: "vendor/json2",
marionette: "vendor/backbone.marionette",
underscore: "vendor/underscore"

}/

shim: {
underscore: {

non

exports:

},
backbone: {
deps: ["jquery", "underscore", "json2"],

exports: "Backbone"
}
marionette: {
deps: ["backbone"],
exports: "Marionette"

}
1)

require(/"marionette" ], function(bbm){
", $.fn.jquery);
console.log("underscore identity call: ", _.identity(5));

console.log(" jQuery version:

console.log("Marionette: ", bbm);

1)

Adding Marionette is pretty straightforward, as it’s no different from adding Backbone. However,
do note that since Marionette depends on Backbone, we don’t need to specify that it also depends
(e.g.) on Underscore: Require]S will load Undercore, then Backbone, then Marionette, due to the
dependency relationships we’ve indicated in the config method.

0 Git commit loading basic libraries:
218e693¢31d8e69376a68429e617b4b339fcf58¢"

https://github.com/davidsulc/structuring-backbone-with-requirejs-and- marionette/commit/218e693c31d8e69376a68429e617b4b339fcf58¢


https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/commit/218e693c31d8e69376a68429e617b4b339fcf58c
https://github.com/davidsulc/structuring-backbone-with-requirejs-and-marionette/commit/218e693c31d8e69376a68429e617b4b339fcf58c

	Table of Contents
	Work in Progress
	Who This Book is For
	Following Along with Git
	Jumping in for Advanced Readers

	Why Use AMD?
	Getting Started
	Adding RequireJS to the Mix
	Using Shims


