

Startup Flow

Get Your Team Up and Running as Quickly as Possible

©2012 Louis Chatriot, Stanislas Marion, Charles Migliei

is version was published on 2012-05-15

is is a Leanpub book, for sale at:

http://leanpub.com/startupflow

Leanpub helps authors to self-publish in-progress ebooks. We call this idea Lean Publishing. To
learn more about Lean Publishing, go to: http://leanpub.com/manifesto

To learn more about Leanpub, go to: http://leanpub.com

http://leanpub.com/startupflow
http://leanpub.com/manifesto
http://leanpub.com

Contents

Preface 1

Who Is this Book For? . 1

Why You Need this Book . 1

What Is in this Book? . 1

What this Book is Not . 2

Why We Wrote this Book . 2

How to Contact Us . 3

Anowledgments and Inspiration . 3

Communication in a Small Team 5

Synronous and Asynronous Communications . 5

Most Communication Should Be Asynronous . 5

When to Be Synronous . 6

Segmentation by Use Cases . 6

Project Management - Do It Like a Pro 7

Todo Lists . 7

Why Do We Use Trello ? . 7

How Does Trello Work ? . 7

Further Information . 8

Real Life Example . 8

Version Control - Safely Iterate on Your Code 9

Version Control, What Is It ? . 9

e Ultimate VCS: Git . 9

Installing Git . 10

How Does Git Work? . 10

Git versus SVN . 10

Feature Bran Workflow . 11

Real Life Example . 11

i

CONTENTS ii

Who Are We? 12

Louis Chatriot . 12

Stanislas Marion . 12

Charles Migliei . 12

Preface
Who Is this Book For?

If you are a small team beginning a tenical entrepreneurial project and you are struggling to
organize your workflow, especially if some of you are working remotely, this book is for you. It
was wrien with both business people and developers in mind as they’ll need to use common tools,
however there are some more tenical apters whi are marked as su so that business people
can skip them.

Why You Need this Book

You need it because it will save you a ton of time andmake your workdays mumore pleasant.
Indeed, when you start working on a startup you quily realize that you are going to need some
tools to organize your workflow. Especially if you have cofounders, you will find yourself meeting
too oen, repeating yourself, having a hard time following what everyone is doing, and this will be
very frustrating for all of you.

In order to fix these problems, you’ll need to oose your tools and design an efficient workflow
through trial and error. at takes a lot of time, given how many tools there are and how hard
it is to discriminate between them without actually trying them. We already went through that
process, and we compiled our findings in this book so that you can skip that part and start geing
things done with great tools that will boost your productivity. Some of these tools solve issues that
you might not even be aware of yet.

What Is in this Book?

is book is a collection of the opinionated oices we made. We focused on what we think are
the most important components of a startup workflow:

• Communication

• Knowledge sharing and reuse

• Codebase management

With these 3 themes in mind, we offer a selection of tools, one tool for one problem. e tools that
we promote are the ones that we use extensively everyday and that weose aer weeks of iteration.
Furthermore, they all work very well together. We will describe these synergies at the end of the
book, so that you can take full advantage of your work environment.

1

Preface 2

Communication

Communication between teammates is a hard problem. It is necessary yet so complicated to get
right. A large portion of communication should be asynronous, enabling you to avoid useless
interruptions that hurt your and your teammates’ productivity. You also need to use different
annels dedicated to different use cases.

Knowledge Sharing and Reuse

All the knowledge that one finds interesting and usable should be findable by the other teammates,
without him having to send a link by email or Skype every time. If knowledge is not shared or not
reusable, it’s worthless and you will lose a lot of time. is is especially true for Eric Ries’ validated
learning¹, on whi the whole team should be constantly focused.

Codebase Management

In a tenical startup, coding is a vital activity. e developers need to be able to code effectively
on their own, but also to collaborate seamlessly. ey need to be able to review one another’s code
to ensure overall quality. Teams that don’t do that will hit a wall.

If you do all these 3 things right, your team will be so efficient it will be able to build the next
Instagram in a week. No kidding!

What this Book is Not

is book is not a collection of tutorials. We will not guide you through the process of installing
and using everything in details. Instead we point you to quality external resources.

It also doesn’t pretend to be the be-all, end-all guide on team workflow for every case imaginable.
However we feel it is the absolute best for small teams working on a te project, especially if the
team doesn’t have an office yet.

And, finally, it is not a startup guide. We won’t give you any advice as to how to get your business
off the ground since we’re not qualified for that! If that’s what you’re looking for, we recommend
Eric Ries’e Lean Startup², a must-read in our opinion.

Why We Wrote this Book

As we started working on ideas and on our startup, we faced the problem we cited earlier. Our la
of organization was holding us ba. So we spent two weeks researing and trying different tools.

¹http://www.startuplessonslearned.com/2009/04/validated-learning-about-customers.html
²http://www.amazon.com/The-Lean-Startup-Entrepreneurs-Continuous/dp/0307887898/ref=sr_1_1?ie=UTF8&qid=1334839735&sr=8-1

http://www.startuplessonslearned.com/2009/04/validated-learning-about-customers.html
http://www.startuplessonslearned.com/2009/04/validated-learning-about-customers.html
http://www.amazon.com/The-Lean-Startup-Entrepreneurs-Continuous/dp/0307887898/ref=sr_1_1?ie=UTF8&qid=1334839735&sr=8-1
http://www.startuplessonslearned.com/2009/04/validated-learning-about-customers.html
http://www.amazon.com/The-Lean-Startup-Entrepreneurs-Continuous/dp/0307887898/ref=sr_1_1?ie=UTF8&qid=1334839735&sr=8-1

Preface 3

Aer a few iterations we finally reaed a very efficient workflow and this investment is now paying
off big time. At first this was just an internal effort, but judging from the sheer number of questions³
you⁴ can⁵ find⁶ on ora⁷, we understood that many people could benefit from our resear, and
decided to write this book.

How to Contact Us

is is the first version of this book and any feedba that can help improve it will be genuinely
appreciated! You can send us an email at book@needforair.com⁸ or tweet us @NeedForAir⁹. You
can also e our blog¹⁰ out.

Acknowledgments and Inspiration

We would like to thank our reviewers who helped us improve this book:

• Charles¹¹ for his precise and constructive feedba

• Clement for his early support and his key remarks on the introduction

• Jeff¹², who managed not to fall asleep spoing typos during a flight

• Jonathan¹³ and the Vidal¹⁴ R&D team for their very comprehensive and detailed review of the
book

• Martin¹⁵ for his thoughtful advice on marketing and audience building

• Rand¹⁶, for being the quiest to give us feedba aer receiving our email. And it was
insightful too!

• Raphael¹⁷ for is business-oriented eye

³http://www.quora.com/Project-Management/Which-is-the-best-project-mangement-time-mangement-tool-and-why
⁴http://www.quora.com/What-is-the-best-way-for-a-startup-distributed-team-to-handle-document-management
⁵http://www.quora.com/Which-Project-Management-tools-are-most-useful-for-a-small-startup
⁶http://www.quora.com/What-are-the-best-productivity-tools-for-entrepreneurs
⁷http://quora.com
⁸mailto:book@needforair.com
⁹http://twitter.com/#!/NeedForAir
¹⁰http://needforair.com
¹¹http://twitter.com/#!/Gorintic
¹²http://twitter.com/#!/jfpetitniv
¹³http://twitter.com/#!/un_john
¹⁴http://www.vidal.fr/
¹⁵http://twitter.com/#!/martinpannier
¹⁶http://twitter.com/#!/randhindi
¹⁷http://www.linkedin.com/pub/raphael-de-talhouet/15/572/a7a

http://www.quora.com/Project-Management/Which-is-the-best-project-mangement-time-mangement-tool-and-why
http://www.quora.com/What-is-the-best-way-for-a-startup-distributed-team-to-handle-document-management
http://www.quora.com/Which-Project-Management-tools-are-most-useful-for-a-small-startup
http://www.quora.com/What-are-the-best-productivity-tools-for-entrepreneurs
http://quora.com
mailto:book@needforair.com
http://twitter.com/#!/NeedForAir
http://needforair.com
http://twitter.com/#!/Gorintic
http://twitter.com/#!/jfpetitniv
http://twitter.com/#!/un_john
http://www.vidal.fr/
http://twitter.com/#!/martinpannier
http://twitter.com/#!/randhindi
http://www.linkedin.com/pub/raphael-de-talhouet/15/572/a7a
http://www.quora.com/Project-Management/Which-is-the-best-project-mangement-time-mangement-tool-and-why
http://www.quora.com/What-is-the-best-way-for-a-startup-distributed-team-to-handle-document-management
http://www.quora.com/Which-Project-Management-tools-are-most-useful-for-a-small-startup
http://www.quora.com/What-are-the-best-productivity-tools-for-entrepreneurs
http://quora.com
mailto:book@needforair.com
http://twitter.com/#!/NeedForAir
http://needforair.com
http://twitter.com/#!/Gorintic
http://twitter.com/#!/jfpetitniv
http://twitter.com/#!/un_john
http://www.vidal.fr/
http://twitter.com/#!/martinpannier
http://twitter.com/#!/randhindi
http://www.linkedin.com/pub/raphael-de-talhouet/15/572/a7a

Preface 4

• Saa¹⁸ for her nice non-geek point of view

We would also like to thank Jason Fried¹⁹ and David Heinemeier Hansson²⁰ for their book Rework²¹
whi helped us and inspired us tremendously. We recommend you read it!

¹⁸http://www.linkedin.com/pub/safta-de-hillerin/47/711/a57
¹⁹http://twitter.com/#!/jasonfried
²⁰http://twitter.com/#!/dhh
²¹http://www.amazon.com/Rework-Jason-Fried/dp/0307463745/ref=sr_1_1?ie=UTF8&qid=1334839838&sr=8-1

http://www.linkedin.com/pub/safta-de-hillerin/47/711/a57
http://twitter.com/#!/jasonfried
http://twitter.com/#!/dhh
http://www.amazon.com/Rework-Jason-Fried/dp/0307463745/ref=sr_1_1?ie=UTF8&qid=1334839838&sr=8-1
http://www.linkedin.com/pub/safta-de-hillerin/47/711/a57
http://twitter.com/#!/jasonfried
http://twitter.com/#!/dhh
http://www.amazon.com/Rework-Jason-Fried/dp/0307463745/ref=sr_1_1?ie=UTF8&qid=1334839838&sr=8-1

Communication in a Small Team
Internal communication is hard to do efficiently, and bad communication will dramatically slow
you down. Let us describe a few concepts that are the foundations on whi we ose our tools.

Synchronous and Asynchronous Communications

Communicating synronouslymeans that all the interlocutors are communicating at the same time.
is is why it is called synronous. is is usually the case for all voice-based communications,
su as face-to-face conversations, phone calls and conference calls. In a synronous conversation,
people expect an instantaneous response from the other participants.

On the other hand, asynronous communication entails leing people take part in the conversation
when they want. at could be a few minutes later, a few hours later, or even a few days or weeks.
For that to work, asynronous communications need to rely on a wrien exange. It is not possible
to have an oral conversation where inputs arrive every few hours. ey just don’t work with delay.
Examples of asynronous communication media are leers, text messages, emails, at or carrier
pigeons.

Most people and teams use both forms of communications naturally, but oen applied to the wrong
usecases. It is not rare for instance to see people send an email and expecting a qui answer, or
conversely to see people engage in oral conversations that really should have been asynronous
because the maer is not urgent. In practice, long conversations tend to take the shape of meetings
whi are notorious productivity killers, while if done in an asynronously they can yield beer
results and be less disturbing at the same time.

Most Communication Should Be Asynchronous

e massive use of text messages illustrates the usefulness and the advantages asynronous
communication offers over an oral conversation. Itâ€™s qui and efficient, one can respond hours
later and keep tra of history. In most cases your communication with your teammates should be
asynronous for the following reasons.

Asynronous communications don’t disturb people. By sending a message to someone, you let
her read it and respond when she sees fit. You don’t bother the person you are communicating
with, nor the other people around you that might overhear your conversation if you’re talking in
an open space for instance. Distracting your teammates strongly hurts your productivity as a team
and is conducive to tensions. Furthermore, synronous conversations have a high tendency to dri
completely off-topic, whereas their asynronous counterparts are more stable.

Asynronous communications being wrien, they are stored somewhere (atlogs, emails, etc.)
and you can go ba to it later, to refresh your memory or to bring someone new to the debate. is

5

Communication in a Small Team 6

is important because humans are inherently bad at recalling conversations in an impartial way.

Most topics of communications are not urgent, and most shouldn’t require the focus of two or more
people at the same time.

When to Be Synchronous

ere are a few cases though when asynronous is just wasting time and won’t cut it. Here they
are:

• Urgent maers

• Crucial decisions that need lengthy explanations and argumentations. ese should be very
rare in practice.

• When interlocutors are effectively aing to ea other in synronous mode and the
discussion is going nowhere. In that case it usually feels obvious a vocal conversation will
be more efficient and the best thing is to pi up the phone or start a Skype call to sele the
maer.

Segmentation by Use Cases

Being asynronous is not enough. If you don’t compartmentalize your conversations by use case,
you’ll end up using email for everything, and we all know how this ends. Instead you should
have different annels for different topics. We have a at room for everyday conversations (and
subannels inside the at), Github for code-related conversations, Trello for project management
conversations, and email for reports and formal announcements. at way it becomes easy to follow
on everything that’s going on, and you don’t face a mountain of emails everyday. We will detail
ea of these annels in this book.

Project Management - Do It Like a Pro
Todo Lists

When working on a project, you oen think about a new idea or a bug to fix while doing something
else and you want to keep tra of all these. at’s why todo lists were invented. Todo lists are so
simple and modular that you can organize and manage all your work with them. For managing our
short, middle and long term workload we ose to use Trello²².

Why Do We Use Trello ?

e common problem with todo list soware is they actually end up geing in the way of real
work. e classic tragic ending is when people are happy because they just prioritized and assigned
50 bullet points without geing any work done. Two weeks later the todo list is abandoned because
it’s too mu work to maintain.

But Trello is different. We tested Asana²³, RemembereMilk²⁴, and simple google docs. None of
them survived more than a week. Trello has survived for more than 2 months now and is still going
strong. e reason is that at heart Trello is a simplified and collaborative version of Excel: you get
columns and cells, but with a fantastic user experience. You’ll see that people are naturally used to
that kind of visual data-structure and will use it effectively. You can cat a global overview of the
progress of your project in one glance. So throw away those 23657 post-its that have been siing
around on your desk for 2 weeks and start using Trello now!

How Does Trello Work ?

On Trello, you create a board (just like a physical one), accessible by all teamates from their
computers and phones. Ea board is composed of a certain number of lists. On ea list every
teammate can add items (called ‘cards’ that are just like post-its), move them within the list or
across lists with a simple drag-and-drop, assign them to one or several persons, and arive them
when they’re taken care of. Notifications are sent for ea modification to keep you updated.
What really makes Trello user friendly is its two layers of information. By looking at a board you
have all the top level information you need to keep tra of the work in progress. If you need more
details on a task you can zoom in to the card view where you may add comments, have a discussion
with your teammates, browse the card history and so on.

²²https://trello.com/
²³http://asana.com
²⁴http://rememberthemilk.com

7

https://trello.com/
http://asana.com
http://rememberthemilk.com
https://trello.com/
http://asana.com
http://rememberthemilk.com

Project Management - Do It Like a Pro 8

Further Information

Trello’s guide²⁵ is great for geing started.

Real Life Example

We use Trello Boards for this book, our product and our blog²⁶. Let’s detail the process we used
for this book. At first we joed down our ideas for the tools we wanted to cover. We created a
Nothing done list and a card for ea tool. en we created the following lists: Ready for Review,
and Reviewed. Any time one of us started working on a newapter, he would assign himself to the
card so that it was easy to see what was being worked on at any given time, and what was le to
do. Once the first dra of the article was done, the person who wrote it would move the card to the
Ready for Review column. e other would now review the apter and assign themselves to the
card once the review was done. Once we agreed on a final version for a apter, the card was moved
to the Reviewed list. Any time someone had a question or advice on an item that was still in the
Nothing done list, he could ask a question or write a piece of advice in the card. Further discussions
took place on Github pull requests. is very simple process worked wonders.

For those interested in a usage example in a larger and more mature startup, Uservoice²⁷ published
a great blogpost²⁸ that details their product management process.

²⁵https://trello.com/guide
²⁶http://needforair.com
²⁷http://uservoice.com
²⁸http://www.uservoice.com/blog/founders/trello-google-docs-product-management/

https://trello.com/guide
http://needforair.com
http://uservoice.com
http://www.uservoice.com/blog/founders/trello-google-docs-product-management/
https://trello.com/guide
http://needforair.com
http://uservoice.com
http://www.uservoice.com/blog/founders/trello-google-docs-product-management/

Version Control - Safely Iterate on
Your Code

is is probably the single most important tool you will need apart from your brain, your hands
and your computer. You might not realize it now if you never had to use a version control tool
before, but you’ll see.

SVN users, don’t skip this apter! It explains why Git is genuinely better than SVN.

Version Control, What Is It ?

When you learn how to code, you start naming your files like my-cool-program. en you want
to make it beer, but you are scared to overwrite the previous version because it might not work.
So you wisely name your new version my-cool-program-v2. You show it to a friend of yours who
thinks what you built is really cool and he is going to try and make it even beer! So you email
him the file and the next day, lo and behold, you get a my-cool-program-v3-reviewed-by-friend

in your inbox. What if you want to accept only a few of his modifications? What if aer doing this
you want to rollba to your v1? It gets really messy real fast and then it gets worse, and then worse
again.

So then you think there must be a beer way to do this mustn’t it? As any good programmer, you
want to automate stuff so you can focus on your code instead of managing versions.

e good news is that there are tools to deal with this problem. ey are called Version Control
Systems (VCS). Using a VCS allows you to experiment with your code while always keeping a stable
version easily. ey allow you to show your teammates and the world what you worked only when
it is ready, without messing up the program for them in the process.

The Ultimate VCS: Git

Git has been invented by none other than Linus Torvalds²⁹ a few years ago, and is the most elegant
and convenient solution out there. It is straightforward, easy to use and incredibly powerful. e
good thing is that the learning curve is very smooth. You can start using it for simple tasks at the
beginning and learn more complex stuff as you go.

²⁹http://en.wikipedia.org/wiki/Linus_Torvalds

9

http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Linus_Torvalds

Version Control - Safely Iterate on Your Code 10

Installing Git

You will find simple installation instructions here³⁰. You can either install from source, with a
paage manager or with an executable, depending on your OS.

How Does Git Work?

Basically what Git does is tra modifications of your files and allow you to take a snapshot of
the current state of your files at any given time. When you have a number of snapshots, you can
navigate between them, and follow the history of your code.

e inner workings of Git are well explained in the Pro Git book³¹. You should read the first three
apters to understand how a modern VCS works. You will learn what a repository, a commit, a
bran, a merge, and a eout are. Aer this, you will be ready to start using Git, and soon you’ll
feel really comfortable with it. It is crucial that you read these three apters to understand
what version control is and how it works. is won’t be a waste of time: as you begin to use
Git’s more advanced commands, you will find more than helpful to have a real understanding of
what you are doing.

Git versus SVN

is paragraph is geared towards SVN users, not version control beginners

If you have used SVN before and you’re wondering why you should swit to a new system, then
here’s why:

• Braning³² in Git is simple, natural, fast and makes for great unobstrusive collaborative
workflows

• Merging is a breeze: ever had problems with merging in SVN? Having to oose between a
reverse merge, a bran merge, a something else merge in TortoiseSVN? In Git, merge just
works, another reason to go on a braning spree!

• You can work and commit without having to be connected to the server. I’m not kidding,
you’re not dreaming. Yes, you really can keep tra of different versions on a plane!

• e CLI is fairly straightforward and lightweight

• Github³³ was designed to work with Git and makes your team even more productive

³⁰http://progit.org/book/ch1-4.html
³¹http://progit.org/book/
³²http://en.wikipedia.org/wiki/Branching_%28software%29
³³http://github.com

http://progit.org/book/ch1-4.html
http://progit.org/book/
http://en.wikipedia.org/wiki/Branching_%28software%29
http://github.com
http://progit.org/book/ch1-4.html
http://progit.org/book/
http://en.wikipedia.org/wiki/Branching_%28software%29
http://github.com

Version Control - Safely Iterate on Your Code 11

Feature Branch Workflow

Sco Chacon, author of Pro Git book³⁴, and other fine folks working at Github³⁵ recommend a
workflow³⁶ based on feature branes. Basically one starts a new bran from master every time
one wants to develop a new feature. is allows to keep an always deployable master bran, and
always have a clear view of what features are being developed. It also mitigates the risk of two
branes overlapping in scope and ending up conflicting.

Real Life Example

Charles wanted to build the handling PATCH requests feature for our API. He created a bran
named handle-patch-request and started coding. Aer some time, there was an urgent bug some
special aracters not displaying properly to fix, so he simply commited what he was working
on, swited to the new feature bran hot-fix-special-characters, fixed the bug and pushed
to master. He then resumed his work on the handle PATCH requests feature. Meanwhile, Stan
reviewed his hot fix and merged it into master to make it go live right away. It really was that easy.

³⁴http://progit.org/book/
³⁵http://github.com
³⁶http://scottchacon.com/2011/08/31/github-flow.html

http://progit.org/book/
http://github.com
http://scottchacon.com/2011/08/31/github-flow.html
http://progit.org/book/
http://github.com
http://scottchacon.com/2011/08/31/github-flow.html

Who Are We?
Need for Air³⁷ is composed of Louis Chatriot, Stanislas Marion and Charles Migliei. Sharing the
same passion for the internet and entrepreneurship, we quit our day jobs at the same time to laun a
company together. We are working onmaking good content more easily discoverable through beer
curation. Previously we learned to work together on our first (and only so far) freelance mission for,
Captain Dash³⁸, Laurence Parisot³⁹ and the Medef⁴⁰.

Louis Chatriot

I’m a long-time geek who’s always wanted to understand how things work, especially the fields of
math, physics, computer science and economy.

Aer 6 months as a soware engineer at Robinsons Participations and about 2 years as a
management consultant for Bain & Company, I decided to laun my own company with Charles
and Stan.

I graduated from Ecole Polytenique (majored in CS) and have a MS in Management Science and
Engineering from Stanford University.

Stanislas Marion

I’ve been meaning to start a company for a long time. I quit my job without a firm idea nor a
cofounder. It didn’t take long to find both. In the past I successfully played online poker at middle
to high stakes, whi taught me a lot about risk-taking, long-term focus and short term swings,
adapting and the value of money.

I worked for about 2 years at a Parisian startup⁴¹, where I learned a ton about small team dynamics
and problems. I graduated from Ecole Centrale Paris and have an MS in Management Science and
Engineering from Stanford University.

Charles Miglietti

I dowhat I love and I’m always on the lookout for a goodallenge. Being passionate about computer
science and math, as well as innovation,I became more and more interested in entrepreneurship.

³⁷https://twitter.com/#!/NeedForAir
³⁸http://captaindash.com
³⁹https://twitter.com/#!/laurenceparisot
⁴⁰http://www.medef.com/medef-corporate.html
⁴¹http://yseop.com

12

https://twitter.com/#!/NeedForAir
http://captaindash.com
https://twitter.com/#!/laurenceparisot
http://www.medef.com/medef-corporate.html
https://twitter.com/#!/louisChatriot
https://twitter.com/#!/stanmarion
http://yseop.com
https://twitter.com/#!/charlesmigli
https://twitter.com/#!/NeedForAir
http://captaindash.com
https://twitter.com/#!/laurenceparisot
http://www.medef.com/medef-corporate.html
http://yseop.com

Who Are We? 13

Aer graduating from Ecole Polytenique, I spent a year as an embedded systems engineer at
Withings⁴², one of the most promising Fren startups at the moment. Inspired by this experience,
I decided to quit to start my own company.

⁴²http://withings.com

http://withings.com
http://withings.com

	Contents
	Preface
	Who Is this Book For?
	Why You Need this Book
	What Is in this Book?
	What this Book is Not
	Why We Wrote this Book
	How to Contact Us
	Acknowledgments and Inspiration

	Communication in a Small Team
	Synchronous and Asynchronous Communications
	Most Communication Should Be Asynchronous
	When to Be Synchronous
	Segmentation by Use Cases

	Project Management - Do It Like a Pro
	Todo Lists
	Why Do We Use Trello ?
	How Does Trello Work ?
	Further Information
	Real Life Example

	Version Control - Safely Iterate on Your Code
	Version Control, What Is It ?
	The Ultimate VCS: Git
	Installing Git
	How Does Git Work?
	Git versus SVN
	Feature Branch Workflow
	Real Life Example

	Who Are We?
	Louis Chatriot
	Stanislas Marion
	Charles Miglietti

