Chapter 1. Theory of automated testing.
So, what is automated testing?

Automated testing — an analogue of manual functional testing,
which is performed by a robot program, not by a human.

In turn.

Automation of software testing — this verification process
that includes the examination of the basic functions and test
steps as running, initialization, execution, analysis and
results, automatically by specialized tools. Consider the
example in more detail.

When we develop software, we certainly test it. If we are talking
about a function, we can call it with different arguments, and see
what it will return to us. Having created a website or a large
portal, we open it in a browser, click links and buttons, check
that everything is done correctly. We walk through it on pre -
written scripts. We conduct various types of testing (functional,
smoke, sanity, etc.) This process is called “manual” testing — a
person checks the operation of the program. A reasonable
question is whether this process can be shifted to the shoulders
of robots? It is usually possible, and this is what is called
automated testing.

11



* The speed of execution of test cases can be many times and
orders of magnitude superior to human capabilities. If you
imagine that a person will have to manually reconcile
several files of several tens of megabytes each, the estimate
of manual execution time becomes frightening: months or
even years. At the same time, 36 tests implemented in the
framework of smoke testing by automated scripts are
performed in less than five seconds and require only one
action from the tester — to run the script.

* There is no influence of the human factor in the process of
test cases (fatigue, inattention, etc.). let's Continue the
example from the previous paragraph: what is the
probability that a person will make a mistake, comparing
(symbolically) even two ordinary texts of 100 pages each?
And if such texts 10 or 20? And the checks have to be
repeated over and over again? We can safely say that a
person is guaranteed to make a mistake. The automated
script is not wrong.

* Automation tools are able to perform test cases, in
principle, impossible for a person due to its complexity,
speed or other factors. Again, our example of comparing
large texts is relevant: we cannot afford to spend years
repeatedly performing an extremely complex routine
operation in which we are guaranteed to make mistakes.
Another excellent example of test cases that are too much
for a person is a performance study, in which it is necessary
to perform certain actions at a high speed, as well as to fix
the values of a wide range of parameters. Can a person, for
example, a hundred times per second to measure and record
the amount of RAM occupied by the application? No. But
automation script can.

12



* Automation tools are able to collect, store, analyze,
aggregate and present huge amounts of data in a human-
readable form. In our smoke-testing example of the "file
Converter", the amount of data obtained from the test is
small — it can be processed manually. But if you look at
real-world design situations, the logs of automated testing
systems can take tens of gigabytes for each iteration. It is
logical that a person is not able to manually analyze such
amounts of data, but a properly configured automation
environment will do it itself, providing accurate reports in
2-3 pages, convenient graphs and tables, as well as the
ability to dive into details, moving from aggregated data to
details, if necessary.

* Automation tools are able to perform low-level actions
with the application, operating system, data channels, etc.
In one of the previous paragraphs, we mentioned such a
task as "a hundred times a second to measure and record
the amount of RAM occupied by the application." This task
of gathering information about the resources used by the
application is a classic example. However, automation can
not only collect this information, but also affect the runtime
environment of the application or the application itself,
emulating typical events (for example, lack of memory or
processor time) and fixing the reaction of the application.
Even if the tester is qualified enough to perform such
operations on his own, he will still need a particular tool —
so why not solve this problem immediately at the level of
test automation?

13



So, with the use of automation, we are able to increase the test
coverage by:

* execution of test cases, which previously were not worth
thinking about.

* multiple repetition of test cases with different input data.
* freeing up time to create new test cases.

But is everything so good with automation test? Unfortunately,
not. Very clearly one of the major problems can be represented

by figure:

Manual testing

Development

Implementatiori Implementation Implementation

Development and debugging implementation

Automated testing

Correlation of development time and execution of test cases
in manual and automated testing.

First of all, you should realize that automation does not happen
by itself, there is no magic button that solves all problems.
Moreover, a series of serious drawbacks and risks are associated

with test automation:

14



* The need for highly qualified personnel due to the fact that
automation is a "project within a project" (with its own
requirements, plans, code, etc.). Even if we forget for a
moment about the "project within the project", the technical
qualification of employees involved in automation, as a
rule, should be significantly higher than that of their
colleagues involved in manual testing.

* Development and maintenance of both automated test cases
and all necessary infrastructure takes a lot of time. The
situation is aggravated by the fact that in some cases (with
major changes in the project or in the case of errors in the
strategy) all the relevant work has to be done again from
scratch: in the case of a tangible change in the
requirements, the change of the technological domain, the
processing of interfaces (both user and software), many test
cases become hopelessly outdated and require the creation
of anew.

* Automation requires more careful planning and risk
management, because otherwise the project can be
seriously damaged (see the previous paragraph about the
alteration from scratch of all developments).

* Commercial automation tools are significantly expensive,
and the available free analogues do not always allow you to
effectively solve the tasks. And here again we have to
return to the question of errors in planning: if initially a set
of technologies and automation tools was chosen
incorrectly, it is necessary not only to redo all the work, but
also to buy new automation tools.

15



* There are a lot of automation tools, which complicates the
problem of choosing a particular tool, makes it difficult to
plan and define a testing strategy, can entail additional time
and financial costs, as well as the need for training or hiring
appropriate specialists.

The scope of automation:

First, we look at the list of tasks that automation helps to solve:
» Execution of test cases, unbearable to man.

* Solving routine tasks.

* Speed up test execution.

* Release of human resources for intellectual work.

* Increase test coverage.

» Improvement of the code by increasing the test coverage and
the use of special automation techniques.

Testing makes our software more reliable and life easier. But not
always. After all, agree, it is better when we ourselves find and
fix the error before the release, than when an angry customer or
user tells us about the problem.

Firstly, we lose time to correct the defect, sometimes during
overtime or on weekends. And, secondly, we are losing business
reputation, which negatively affects the business.

Testing is especially useful when developing large applications
in a large team, when you can accidentally break some function
that the other person did, and which you did not know. Or, when
it is necessary to finalize a previously written complex project.

16



In large companies, there may be a separate group of people
who are engaged only in testing. Usually they are called the
testing Department, or Department QA (quality assurance) in
this book, I immediately want to separate the concepts of testing
and QA.

Testing — the process of product quality assessment, and QA-is
the formation of processes that provide high quality software
(including development processes, Analytics, documentation).

Basically, when they talk about QA, they mean testing: largely
because process control is still not very common in Russia,
much is done by intuition.

Only some large companies have already started to manage the
processes: QA conducts system studies of all problems and time
delays, identifies necessary improvements, documents the
process. In such companies, all document templates are usually
approved, and employees know exactly who needs what to do
and what are the criteria for the effectiveness of tasks. By the
way, many believe that in such formal processes work is boring:
not so. Employees have no less level of freedom and creativity.
The tasks they solve are only available at this level of maturity,
and become harder and more interesting.

If we talk about testing, it is not easy to classify tasks. In some
(usually small) companies, the tester is provided with a
workplace, access to the Assembly of the product, leaving the
organization of work at his discretion.

17



In the companies, using more formal processes, there are clearly
defined roles of test designers (the designers of the tests), test
engineers (implementers of these tests), test automation
(developers) etc. Each of these roles requires its own unique
skills and abilities.

Test designers — they examine the product and determine which
tests to perform (after all, it is impossible to test everything —
they have a very important task to choose the tests that will be
carried out). To do this, they need to know the product, subject
area and methodology of test design, so competent designers are
rare.

Test automation engineer — they write scripts for automated
testing — and there are very different levels of tasks, from the
use of various means of recording user actions to the
development of its automation platform (Framework), which is
often not inferior to the complexity of the product under test.
Therefore, the automation engineer is primarily skilled
developers.

Test engineers — either they check the tests previously designed
by the test designer, or, when using the so-called research
testing, they study the product, design the tests and test it
simultaneously.

But regardless of the role, testers every day stand guard over the
quality of the software, a lot and often use their product, come
up with ways to "break" it, and all this goes to the product for
the benefit.

18



