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Abstract

In this note, we document elements of the Linear Gaussian Markov (LGM) model and its calibration to
swaptions.
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Chapter 1

Elements of one-factor LGM model

In this section, we review the elements of one-factor LGM model and its calibration to swaptions, as
presented in Hagan [1] and Piza [6].

1.1 HJM framework
We assume that we have a family of zero-coupon bonds traded in the market. The price at time t of

a zero-coupon bond with maturity T (0 ≤ t ≤ T ) will be denoted by P (t, T ). We assume the bond price
satisfies the following SDE:

dP (t, T ) = P (t, T )
[
A(t, T )dt+B(t, T )dWt

]
, P (T, T ) = 1, A(T, T ) = B(T, T ) = 0,

where W is a 1-dimensional standard Brownian motion. We assume there is also a strictly positive process
N , which will be chosen as the numéraire, that satisfies the following SDE:

dNt = Nt

(
µN
t dt+ σN

t dWt

)
, N0 = 1.

By the Fundamental Theorem of Asset Pricing, a necessary and sufficient conditoin for the no arbitrage
property (more precisely, no-free-lunch-with-vanishing-risk, NFLVR, for allowable strategies) is that we can
find a probability measure Q such that the discounted bond price process

P̄ (t, T ) :=
P (t, T )

Nt

is a Q-local martingale. Itô calculus yields

dP̄ (t, T )

P̄ (t, T )
=
[
B(t, T )− σN

t

] [A(t, T )− µN
t + (σN

t )2 − σN
t B(t, T )

B(t, T )− σN
t

dt+ dWt

]
provided B(t, T )− σN

t ̸= 0, 0 ≤ t ≤ T .
If the probability measure Q is defined by (P denotes the original probability measure)

dQ

dP

∣∣∣∣
Ft

= Dt = exp
{∫ t

0

θsdWs −
1

2

∫ t

0

θ2sds

}
,

we necessarily have
A(t, T )− µN

t + (σN
t )2 − σN

t B(t, T )

B(t, T )− σN
t

= −θt,

which must be independent of T . We are already in the risk-neutral measure (i.e. P = Q) if and only if

A(t, T )− µN
t + (σN

t )2 − σN
t B(t, T ) = 0.
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1.2 Forward rate model
The results in HJM model can be translated into those in forward rate model. Denote by f(t, T ) the

forward rate such that P (t, T ) = exp
{
−
∫ T

t
f(t, s)ds

}
. Assume f(t, T ) follows the SDE

df(t, T ) = a(t, T )dt+ b(t, T )dWt.

We then have the following relations

A(t, T ) = f(t, t)−
∫ T

t

a(t, s)ds+
1

2

(∫ T

t

b(t, s)ds

)2

, B(t, T ) = −
∫ T

t

b(t, s)ds

and
a(t, T ) =

∂B(t, T )

∂T
B(t, T )− ∂A(t, T )

∂T
, b(t, T ) = −∂B(t, T )

∂T

Then the condition A(t, T )− µN
t + (σN

t )2 − σN
t B(t, T ) = 0 translates into

a(t, T ) =

∫ T

t

b(t, s)ds · b(t, T ) + σN
t b(t, T ).

1.3 The LGM model
To get the LGM model, we assume that we are already under the risk-neutral measure associated with

the numeraire N , where N is specified by the following parameter specification{
b(t, T ) = H ′(T )αt

σN
t = H(t)αt

Here H and α are two deterministic functions with H(0) = 0. This specification gives

a(t, T ) = H(T )H ′(T )α2
t , B(t, T ) = −[H(T )−H(t)]αt.

Define ζt =
∫ t

0
α2
sds and Xt =

∫ t

0
αsdWs, we have f(t, T ) = f(0, T ) +H ′(T )H(T )ζt +H ′(T )Xt. This gives

A(t, T ) = f(0, t) +H ′(t)H(t)ζt +H ′(t)Xt − [H(T )−H(t)]H(t)α2
t

and
µN
t = f(0, t) +H ′(t)H(t)ζt +H ′(t)Xt +H2(t)α2

t .

In summary, the HJM parameter specifications of LGM model are

A(t, T ) = f(0, t) +H ′(t)H(t)ζt +H ′(t)Xt − [H(T )−H(t)]H(t)α2
t

B(t, T ) = −[H(T )−H(t)]αt

a(t, T ) = H(T )H ′(T )α2
t

b(t, T ) = H ′(T )αt

µN
t = f(0, t) +H ′(t)H(t)ζt +H ′(t)Xt +H2(t)α2

t

σN
t = H(t)αt

(1.1)

where H and α are two deterministic functions with H(0) = 0, ζt =
∫ t

0
α2
sds, Xt =

∫ t

0
αsdWs, and f(0, t) is

given by market quoted yield curve.
Consequently, we have rt := f(t, t) = f(0, t) +H ′(t)H(t)ζt +H ′(t)Xt,

P (t, T ) = exp
{
−
∫ T

t

f(t, s)ds

}
=

P (0, T )

P (0, t)
exp

{
−[H(T )−H(t)]Xt −

1

2
[H2(T )−H2(t)]ζt

}
.
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and
dP̄ (t, T )

P̄ (t, T )
= [B(t, T )− σN

t ]dWt.

The last SDE gives
P̄ (t, T ) = P (0, T ) exp

{
−H(T )Xt −

1

2
H2(T )ζt

}
.

Therefore
Nt =

P (t, T )

P̄ (t, T )
=

1

P (0, t)
exp

{
H(t)Xt +

1

2
H2(t)ζt

}
.

In summary, we have

f(t, T ) = f(0, T ) +H ′(T )H(T )ζt +H ′(T )Xt

rt = f(0, t) +H ′(t)H(t)ζt +H ′(t)Xt

P (t, T ) = P (0,T )
P (0,t) exp

{
−[H(T )−H(t)]Xt − 1

2 [H
2(T )−H2(t)]ζt

}
P̄ (t, T ) = P (0, T ) exp

{
−H(T )Xt − 1

2H
2(T )ζt

}
Nt =

1
P (0,t) exp

{
H(t)Xt +

1
2H

2(t)ζt
}

(1.2)

1.4 Connection with one-factor Hull-White model
Denote by Q the martingale measure associated with money market account numeraire. The one-factor

Hull-White model assumes the short rate process rt follows the following dynamics under Q

drt = (bt − κrt)dt+ σtdW
Q
t ,

where κ is a constant, bt and σt are deterministic functions of t, and WQ is a standard Brownian motion
under Q.

Define θt = e−κtr0 + e−κt
∫ t

0
eκsbsds and XQ

t = e−κt
∫ t

0
eκsσsdW

Q
s . Then θt is a deterministic function

of t and XQ
t is Gaussian process with mean 0 and variance e−2κt

∫ t

0
e2κsσ2

sds. In summary, we have

rt = θt +XQ
t , dXQ

t = −κXQ
t dt+ σtdW

Q
t , XQ

0 = 0, E[XQ
t ] = 0, E[(XQ

t )2] = e−2κt

∫ t

0

e2κsσ2
sds.

It’s easy to verify thatP (t, T ) = P (t, T ;XQ
t ) = P (0,T )

P (0,t) exp
{
−HQ(T − t)

[
XQ

t + νh(t) + 1
2ν(t)H

Q(T − t)
]}

P (0, t) = exp
{
−
∫ t

0
θsds+ νH

Q

t

} (1.3)

where 

h(t) = e−κt

HQ(t) =
∫ t

0
h(s)ds

ν(t) = e−2κt
∫ t

0
e2κsσ2

sds

νh(t) = h ∗ v(t) =
∫ t

0
e−κ(t−s)ν(s)ds

νH
Q

(t) = HQ ∗ ν(t) =
∫ t

0
HQ(t− s)ν(s)ds.

We also note that d
dtν

HQ

(t) = νh(t). The one-to-one correspondence between one-factor LGM model and
one-factor Hull-White model is therefore

αt = eκtσt

ζt = e2κtν(t) =
∫ t

0
α2
sds =

∫ t

0
e2κsσ2

sds

H(t) = HQ(t) =
∫ t

0
e−κsds.
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To verify this relationship, we note

−HQ(T − t)[XQ
t + νh(t) +

1

2
ν(t)HQ(T − t)]

= −H(T − t)

[
e−κt

∫ t

0

eκsσsdW
Q
s + e−κt

∫ t

0

eκse−2κsζsds+
1

2
e−2κtζtH(T − t)

]
= −[H(T )−H(t)]

[∫ t

0

eκsσsdW
Q
s +

∫ t

0

e−κsζsds

]
− 1

2
[H(T )−H(t)]2ζt

= −[H(T )−H(t)]

[∫ t

0

eκsσsdW
Q
s −

∫ t

0

H(s)e2κsσ2
sds

]
− 1

2
[H2(T )−H2(t)]ζt.

We shall show
∫ t

0
eκsσsdW

Q
s −

∫ t

0
H(s)e2κsσ2

sds =
∫ t

0
eκsσs(dW

Q
s − H(s)eκsσsds) =

∫ t

0
eκsσsdWs = Xt,

and thus prove that formula (1.3) agrees with the zero coupon bond price formula in (1.2). Indeed, the
Radon-Nikodym derivative of QN w.r.t. Q is

Dt =
Nt

e
∫ t
0
rudu

.

So d lnDt =
dNt

Nt
+ (...)dt. Since Dt is a martingale under Q, we conclude

dDt = Dtσ
N
t dWQ

t = DtH(t)αtdW
Q
t .

Girsanov’s Theorem (see Appendix 3.1) implies WQ
t −

∫ t

0
H(s)αs is a martingale under QN . This proves our

claim.

1.5 Pricing formula of swap
Consider a swap with start date t0, fixed leg pay dates t1, t2, · · · , tn, and fixed rate K. Then the fixed

leg makes the payments (assuming notional is one unit of currency){
τiK paid at ti, for i = 1, 2, · · · , n− 1

1 + τnK paid at tn,

where τi is the day count of [ti−1, ti] in year fraction. For any t ≤ t0, these payments have the value

Vfix(t) = K

n∑
i=1

τiP (t, ti) + P (t, tn).

The swap’s floating leg usually has a different frequency than the fixed leg, so let this leg’s start and pay
dates be

t0 = u0 < u1 < · · · < um = tn.

The floating leg pays {
τ̃jLj paid at uj , for j = 1, 2, · · · ,m− 1

1 + τ̃mLm paid at um = tn

where τ̃j is the day count of [uj−1, uj ] in year fraction and Lj is the Libor or Euribor floating rate for the
interval [uj−1, uj ]. The rate Lj is set on the fixing date, which is generally two London business days before
the interval starts on uj−1. In formula,

Lj =
1

τ̃j

[
P (ufix

j−1, uj−1)

P (ufix
j−1, uj)

− 1

]
+ sj ,
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where the first part of the formula stands for risk-free floating rate, and the second part sj stands for a
spread for credit risk. The payment of τ̃jLj at time uj is equal to a payment of

[P (ufix
j−1, uj−1)− P (ufix

j−1, uj)] + τ̃jsjP (ufix
j−1, uj)

at time ufix
j , which is further equal to a payment of

[P (t, uj−1)− P (t, uj)] + τ̃jsjP (t, uj)

at time t. The value of the floating leg is therefore

Vflt(t) = P (t, t0) +

m∑
j=1

τ̃jsjP (t, uj).

The value of the receiver swap (receiving the fixed leg, paying the floating leg) is

Vrec(t) = K

n∑
i=1

τiP (t, ti) + P (t, tn)− P (t, t0)−
m∑
j=1

τ̃jsjP (t, uj) (1.4)

For t = 0, we can write the formula in a nicer form

Vrec(0) = Kadj
n∑

i=1

τiP (0, ti) + P (0, tn)− P (0, t0)

where Kadj = K −
∑m

j=1 τ̃jsjP (0,uj)∑n
i=1 τiP (0,ti)

. This leads to the following pragmatic approximation

Vrec(t) ≈ Kadj
n∑

i=1

τiP (t, ti) + P (t, tn)− P (t, t0) (1.5)

1.6 Pricing formula of swaption
The value of a receiver swaption at time zero is (tex ≤ t0 is the option exercise time)

V opt
rec (0) = N0E

QN

[
max{Vrec(tex), 0}

Ntex

]
≈ EQN

(Kadj
n∑

i=1

τiP̄ (tex, ti;Xtex) + P̄ (tex, tn;Xtex)− P̄ (tex, t0;Xtex)

)+


where Xtex ∼ N(0, ζtex) under the martingale measure QN associated with numeraire N . By change of
variable y = x+H(t0)ζtex , we have

V opt
rec (0) ≈ 1√

2πζtex

∫ ∞

−∞
e
− x2

2ζtex

(
Kadj

n∑
i=1

τiP (0, ti) exp
{
−H(ti)x− 1

2
H2(ti)ζtex

}

+P (0, tn) exp
{
−H(tn)x− 1

2
H2(tn)ζtex

}
− P (0, t0) exp

{
−H(t0)x− 1

2
H2(t0)ζtex

})+

dx

=
1√

2πζtex

∫ ∞

−∞
e
− y2

2ζtex

(
Kadj

n∑
i=1

τiDi exp
{
−(Hi −H0)y −

1

2
(Hi −H0)

2ζtex

}

+Dn exp
{
−(Hn −H0)y −

1

2
(Hn −H0)

2ζtex

}
−D0

)+

dx

where Hi = H(ti), Di = P (0, ti) for i = 0, 1, · · · , n.
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We now assume without loss of generality that H is a strictly increasing function so that H ′ > 0. Then

exp
{
−[H(T )−H(t)]y − 1

2
[H(T )−H(t)]2ζtex

}
, tex ≤ t ≤ T

is a monotone decreasing function of y, with limit 0 as y → ∞ and limit ∞ as y → −∞. So there exists a
unique break-even point y∗ such that the term inside (· · · )+ is

< 0 if y > y∗

= 0 if y = y∗

> 0 if y < y∗

Then

V opt
rec (0)

≈ 1√
2πζtex

∫ y∗

−∞
e
− y2

2ζtex

(
Kadj

n∑
i=1

τiDie
−(Hi−H0)y− 1

2 (Hi−H0)
2ζtex +Dne

−(Hn−H0)y− 1
2 (Hn−H0)

2ζtex −D0

)
dx

= Kadj
n∑

i=1

τiDiΦ

(
y∗ + (Hi −H0)ζtex√

ζtex

)
+DnΦ

(
y∗ + (Hn −H0)ζtex√

ζtex

)
−D0Φ

(
y∗√
ζtex

)
(1.6)

where Φ(·) is the c.d.f. of a standard normal distribution and y∗ is the unique solution of

Kadj
n∑

i=1

τiDie
−[H(ti)−H(t0)]y

∗− 1
2 [H(ti)−H(t0)]

2ζtex +Dne
−[H(tn)−H(t0)]y

∗− 1
2 [H(tn)−H(t0)]

2ζtex = D0.

1.7 Calibration to swaption market
We define the forward swap rate S as

S(t) =
P (t, t0)− P (t, tn)∑n

i=1 τiP (t, ti)
, t ≤ t0

and the annuity numeraire as

L(t) =

n∑
i=1

τiP (t, ti), t ≤ t0.

Then
Vrec(t) ≈ Kadj

n∑
i=1

τiP (t, ti) + P (t, tn)− P (t, t0) = (Kadj − S(t))L(t)

and the rule of change-of-numeraire gives us

V opt
rec (0) = N0E

QN

[
max{Vrec(tex), 0}

Ntex

]
= L0E

QL

[
max{Vrec(tex), 0}

Ltex

]
≈ L0E

QL [(Kadj − S(tex))
+].

By the pricing formula of zero coupon bond, S(t) is a function of t and Xt. So Ito’s formula yields

dS(t) = dS(t,Xt) =
∂S(t, x)

∂x

∣∣∣∣
x=Xt

αtdWt + (...)dt.

Since S(t) has the form of tradable
numeraire , it is a martingale under the martingale measure QL associated with

the annuity numeraire L. Therefore

dS(t) =
∂S(t, x)

∂x

∣∣∣∣
x=Xt

αtdW
L
t ,
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