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Abstract

In this note, we document elements of the Linear Gaussian Markov (LGM) model and its calibration to
swaptions.
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Chapter 1

Elements of one-factor LGM model

In this section, we review the elements of one-factor LGM model and its calibration to swaptions, as
presented in Hagan [[I] and Piza [6].

1.1 HJM framework

We assume that we have a family of zero-coupon bonds traded in the market. The price at time ¢ of
a zero-coupon bond with maturity 7 (0 < ¢t < T) will be denoted by P(t,T). We assume the bond price
satisfies the following SDE:

dP(t,T) = P(t,T)[A(t, T)dt + B(t,T)dW;|, P(T,T) =1, A(T,T) = B(T,T) = 0,

where W is a 1-dimensional standard Brownian motion. We assume there is also a strictly positive process
N, which will be chosen as the numéraire, that satisfies the following SDE:

dNy = Ny (py dt + o dW;), Ny = 1.

By the Fundamental Theorem of Asset Pricing, a necessary and sufficient conditoin for the no arbitrage
property (more precisely, no-free-lunch-with-vanishing-risk, NFLVR, for allowable strategies) is that we can
find a probability measure @ such that the discounted bond price process

P(t,T) := P(Jt\’]T)

is a Q-local martingale. 1t6 calculus yields

dP(t,T) N
PUT) [B(t.T) —0,"] [

At,T) — ) + (07)> =o' B(t,T)
B(ta T) - Ulgv

dt + th}

provided B(t,T) — o #0,0<t < T.
If the probability measure @ is defined by (P denotes the original probability measure)

t 1 [t
@ =Dy =exp / 0, dW, — f/ 9§ds ,

At,T) — pf + (o)> — oV B(t,T)
B(t,T) — ol

which must be independent of T. We are already in the risk-neutral measure (i.e. P = Q) if and only if

we necessarily have

= _9t7

A, T) = pp’ + (0f)* = oY B(t,T) = 0.



1.2 Forward rate model

The results in HIM model can be translated into those in forward rate model. Denote by f(¢,T) the
forward rate such that P(¢,T) = exp{ ft ft,s ds} Assume f(¢,T) follows the SDE

df(t,T) = a(t,T)dt + b(t, T)dW,.

We then have the following relations
T 1 T 2 T
A@ﬂ:f@ﬂ—/cﬁ@@+2</b@@%>,muﬂ:—/b@@$
t t t

dB(t,T)
aT

and
0B(t,T) 8A(t T)

oT or
Then the condition A(t,T) — ul¥ + (oV)? — oV B(t,T) = 0 translates into

a(t,T) = B(t,T) — L b(t,T) = —

T
a@ﬂ:A‘W@@b@ﬂ+qbﬁﬂ

1.3 The LGM model

To get the LGM model, we assume that we are already under the risk-neutral measure associated with
the numeraire N, where N is specified by the following parameter specification

?@ﬂ—qu

oN = H(t)oy
Here H and « are two deterministic functions with H(0) = 0. This specification gives
a(t,T) = H(T)H'(T)o?, B(t,T) = —[H(T) — H(t)]as.
Define ¢, = fo a?ds and X; = fo asdWs, we have f(t,T) = f(0,T) + H(T)H(T)( + H'(T)X,. This gives
A(t,T) = f(0,t) + H'()H(t)¢, + H'(t)X, — [H(T) — H(t)|H(t)o

and
pi = f0,t) + H'()H(t)G + H' (1) X¢ + H*(t)af

In summary, the HJIM parameter specifications of LGM model are

A(t,T) = f(0,t) + H'(t)H (t)¢: + H'(t) X — [H(T) — H(t)|H (t)o
B(t,T) = —[H(T) — H(t)]o

a(t,T) = H(T)H'(T)a?

b(t,T)=H' (T«

ulN = £(0,t) + H' (t)H(t)¢ + H' (1) X + H?(t)a?

oN = H(t)oy

where H and « are two deterministic functions with H(0) =0, ¢; = fot a?ds, X; = fot asdWs, and f(0,t) is
given by market quoted yield curve.
Consequently, we have r, := f(t,t) = f(0,¢) + H'(t)H(t)¢ + H'(t) X4,

P(0,T)

T
P(.T) = exp { / f(t,S)dS} = D e { <H (D)~ HOLX, - () - 10




and

The last SDE gives

Therefore

In summary, we have

f(&,T) = f(0,T) + H'(T)H(T)¢ + H'(T) Xy

re = f(0,t) + H'(t)H ()¢ + H'(t) Xy

P(t,T) = 555 exp {~[H(T) — H(t)| X, — J[HX(T) — H*()]¢;} (1.2)
P(t,T) = P(0,T)exp{—H(T)X, — sH*(T)(; }

Ni = progy exp {H()X, + s H* ()G, }

1.4 Connection with one-factor Hull-White model

Denote by @ the martingale measure associated with money market account numeraire. The one-factor
Hull-White model assumes the short rate process r; follows the following dynamics under )

d?"t = (bt — /ﬁl?"t)dt + UtthQ,

where & is a constant, b, and o, are deterministic functions of ¢, and W< is a standard Brownian motion
under Q.
Define 6; = e "lrg 4+ e fg e*byds and XtQ = fot e o, dW®. Then 6; is a deterministic function

. . . . _ ¢
of ¢t and XtQ is Gaussian process with mean 0 and variance e~2% fo e?*$g2ds. In summary, we have

t
re =0, + X2, dXP = —kX2dt + 0, dWE, X8 =0, E[XP] =0, B[(XP)?] = e*%t/ > ds.
0

It’s easy to verify that

P(t,T) = P(t,T; X2) = 20D oxp {—HQ(T — )| XQ + vh(t) + vty HT - t)} }

P(0,t) = exp {~ [y 0uds + v}° } (1.3)

where
h(t) = e "t
HR(t) = [} h(s)ds
v(t) = e 2"t fot e?"so2ds
V() = hxo(t) = [i e ") (s)ds
VA (1) = HO x v(t) = [} HR(t — s)u(s)ds.

We also note that &uH N (t) = v"(t). The one-to-one correspondence between one-factor LGM model and
one-factor Hull-White model is therefore

oy = eoy
G = eXrty(t) = fot alds = fot e?"so2ds
H(t) = HO(t) = [] e "*ds.




To verify this relationship, we note

_HO(T = )[X2 + (1) + %V(t)HQ(T )]

t t
1
—H(T —1t) [e“t / e”SUSdWSQ 4 / e e 2 ds + iefzﬁtCtH(T —t)
0 0

—[H(T) — H(t)] [/Ot e dWE + /Ot e”sgsds} - %[H(T) — H()]*¢

) - 1) | | W / t H(s)e*a2ds| = [H(T) ~ ()G,

o dWy = X,

We shall show fot o dW@ — [! H(s)e2r*o2ds = fg e o (dWE — H(s)e"o.ds) = [ e
@) Indeed, the

t
and thus prove that formula ([l.3) agrees with the zero coupon bond price formula in (
Radon-Nikodym derivative of QV w.r.t. Q is

Ny

Dy = —/———.
t efotrudu

So dln Dy = dTA? + (...)dt. Since D, is a martingale under @), we conclude
dDy = Dol dWR = D, H (t)adW2.

Girsanov’s Theorem (see Appendix @) implies WtQ - f(f H(s)ay is a martingale under Q. This proves our
claim.

1.5 Pricing formula of swap

Consider a swap with start date tg, fixed leg pay dates ¢, to, - -, t,, and fixed rate K. Then the fixed
leg makes the payments (assuming notional is one unit of currency)

i K paid at t;, for i =1,2,--- ‘n—1
1+ 7, K paid at t,,

where 7; is the day count of [t;_1,%;] in year fraction. For any ¢ < t;, these payments have the value

me(t) = KiTiP(t,ti) + P(t,tn).

i=1

The swap’s floating leg usually has a different frequency than the fixed leg, so let this leg’s start and pay
dates be
to=uyg <up < - < Uy =1ty

The floating leg pays

7iL; paid at u;, for j=1,2,--- ,;m—1

where 7; is the day count of [u;_1,u;] in year fraction and L; is the Libor or Euribor floating rate for the
interval [uj_1,u;]. The rate L; is set on the fixing date, which is generally two London business days before
the interval starts on u;_;. In formula,

P(ul™ u;1)

fix -1
P(ujfl’uj)

+ 55,




where the first part of the formula stands for risk-free floating rate, and the second part s; stands for a
spread for credit risk. The payment of 7;L; at time u; is equal to a payment of

(Pl uj 1) — Pl u))] + 75, P(ul ™, uj)

fix

at time u; ", which is further equal to a payment of

[Pt uj—1) = Pt uy)] + 7555 P (¢, uj)
at time ¢. The value of the floating leg is therefore
Viu(t) = Pt to) + Y 75, P(t,u;).
j=1

The value of the receiver swap (receiving the fixed leg, paying the floating leg) is

Viee(t KZTZ (t,t:) + P(t,t,) — P(t, o) Zr]s] (t,uj) (1.4)
=1

For t = 0, we can write the formula in a nicer form

Viee(0) = K93 "7, P(0,1;) + P(0,t,) — P(0, o)
i=1

where Kad] = K — Z] 1 7385 P(0,uy)

S pon) This leads to the following pragmatic approximation

n
Viee(t) m KU "7, P(t, 1) + P(t,t,) — P(t, to) (1.5)
i=1

1.6 Pricing formula of swaption

The value of a receiver swaption at time zero is (t., < o is the option exercise time)

+

rec teI b D, D,

V;Og;t( ) NOEQN [maX{VN ( ) 0}:| ~ EQN <K¢1dj E 7—1 tea,ti; X )+P(tem7tn§Xtm) P(tem,t0§Xtm)>
tex

where X; , ~ N(0,(,,) under the martingale measure @ associated with numeraire N. By change of
variable y = x + H (t0)(;,, , we have

V2 (0)

rec

1 oo 2 & 1
e, e Ctes T; ti)expy —H(t;)r — = ti)Ceq
/ T [ KUY "1 P(0, 1) p{ H(t;) H( )Cm}
vV 27Ct,, J—oo i=1 2

+
+P(0,t,) exp {—H(tn)x - ;HQ(tn)Qm} — P(0,t0) exp {—H(to)x _ %H2(to)@m }) dr
K4 ZTZ’Di exp {—(Hl — Hy)y — %(Hz - Ho)Zth}

o0 2
1 / o
\/ 27TCteI —00 i—

1 +
+D,, exp {—(Hn — Hy)y — §(Hn — HO)QQM} — DO) dx

where Hz:H(tZ), Dz:P(O,t,) fOI‘i:O,L'" ,n



We now assume without loss of generality that H is a strictly increasing function so that H' > 0. Then

exp { ~[H(T) - HOly - §IHT) ~ HOPG. |t <0<T

is a monotone decreasing function of y, with limit 0 as y — oo and limit co as y — —oo. So there exists a
unique break-even point y* such that the term inside (---)* is

<0 ify>y*
=0 ify=y
>0 ify<y*
Then
V& (0)

Y~ 2 n
: / eiQCytj (K“dj ZTiDie_(H"_HO)y_%(Hi_HO)zqt” + Dne_(H"_HO)y_%(H"_HO)ZC‘W - DO) dx

\/ 27T<t61. i—1

k4 e (LU G| g (v U - oG | g (0 1.6
27 ( @, )7 o "\ Ve o)

where ®(-) is the c.d.f. of a standard normal distribution and y* is the unique solution of

KoY 7, Dy [H )~ Hly = (H )= H (10 s | o= 1H(0n) =H )" ~§[H(t)=H (o) = Dy
i=1

1.7 Calibration to swaption market

We define the forward swap rate S as

P(tatO) B P(t,tn) < tO

SO = Thte) S

and the annuity numeraire as
n
L(t) =Y 7iP(t,t:), t < to.
i=1

Then
Viee(t) = KU "1, P(t,t:) + P(t, tn) — P(t,to) = (K*Y — S(t))L(¢)

and the rule of change-of-numeraire gives us

V() = NoEQ [ma"{vj’”\?(t”)’ow LoE?" [ma"{vfc ez 0}] LB (K — §(t,.))"].
tﬁﬂ: tel‘

By the pricing formula of zero coupon bond, S(t) is a function of ¢t and X;. So Ito’s formula yields
oS(t
or  |,_x,

Since S(t) has the form of M, it is a martingale under the martingale measure ();, associated with
numeraire

the annuity numeraire L. Therefore

0S(t, )
ox

ds(t) = o dW,

=X




