

1

A Practitioner’s Guide to ClickHouse

Yan Zeng, version 1.0, last updated on 2/25/2023

Downloadable at https://leanpub.com/sqf6-clickhouse-guide

Contents
Goals ... 2

References .. 2

Row-Based DBMS vs. Column-Based DBMS ... 2

Sample Equity Tick Data .. 3

Basic Statistics of One Day’s Tick Data .. 3

Key Concepts in ClickHouse: Partition, Primary Key, Order BY, Skip Index .. 4

Illustration of Data Storage in ClickHouse .. 5

Partition .. 5

Basics ... 5

Directory creation, merging, and deletion .. 5

Partition improves query performance .. 7

Key Takeaways for Partition ... 7

Primary Key, Order By ... 8

Sparse index to locate granules .. 8

Build and use the primary index ... 9

Use mark files .. 11

Generic exclusion search algorithm .. 11

Data skipping index: a secondary index to group and skip granules .. 12

Test, Test, Test! ... 12

Additional Resources .. 13

https://leanpub.com/sqf6-clickhouse-guide

2

Goals
• Provide a self-contained introduction to the inner working of ClickHouse

➢ How are data stored?

➢ How are data queried?

• Design a suitable table schema for equity tick data

• Intended audience: engineers implementing ClickHouse; quants using ClickHouse

References
• 朱凯：《ClickHouse原理解析与应用实践》，机械工业出版社，2020.

• Vijay Anand: Up and Running with ClickHouse, BPB Publications, India, 2020.

• ClickHouse Official Documentation: https://clickhouse.com/docs/en/intro

Row-Based DBMS vs. Column-Based DBMS
• Row-based DBMS

• Column-based DBMS

https://clickhouse.com/docs/en/intro

3

Sample Equity Tick Data
• Data Source: https://firstratedata.com/tick-data

• Sample data: trades of AAPL and MSFT on 2020-01-02

• Table schema for trade data:

• Table creation for trade data

Basic Statistics of One Day’s Tick Data
• Based on Bloomberg BPIPE equity tick data (trades & quotes combined) on 2022-05-27

➢ ~19K distinct tickers

➢ ~136 million distinct time stamps

➢ ~595 million rows

➢ ~7.4 GB of compressed data and ~55.5 GB uncompressed data

➢ These numbers allow back-of-envelop estimation of query efficiency (see later)

https://firstratedata.com/tick-data

4

• Equity tick data is huge, so that storage and queries need to be extremely efficient

Key Concepts in ClickHouse: Partition, Primary Key, Order BY, Skip Index
Conceptually,

• Partition: directory for physical storage of data

• Order By: sort rows by lexicographic order of sort keys

• Primary Key: for indexing data location

• Data Skipping Index: additional data indexing

Physically,

• Data are divided by “partitions” (directories)

• Within each partition, column data are stored separately in [Column].bin

• Rows are in lexicographic ascending order by the primary key columns (and the additional sort

key columns)

• Rows from different columns are matched via [Column].mrk

5

Illustration of Data Storage in ClickHouse
Using web browsing data as an illustration: UserID, URL, EventTime

• PRIMARY KEY (UserID, URL) ORDER BY (UserID, URL, EventTime)

• Web browsing data are sorted first by UserID, then by URL, and lastly be EventTime

Partition

Basics
• Data are written to disk simultaneously so that table insertion is fast

• As a result, multiple directories for the same partition are created, and then merged (10-15 min.

after insertion); old directories will then be deleted (~8 min. after merging)

• MinBlockNum, MaxBlockNum: global counter across partitions, increase by 1 if a new

partition directory is generated

• Level: the number of merging for a particular partition; local counter of “age”

• Example: directory “201905_1_1_0” is the first directory created for the partition “201905”

Directory creation, merging, and deletion
In the example below, month is used as the partition key for table “partition_v5”, e. g. 201905,

201906, etc.

6

7

Partition improves query performance
Back to Bloomberg equity tick data. Assume we have 3 years of daily data and we use date as the

partition key

• This will lead to about 250 * 3 = 750 partitions

• Partitioning indexing (minmax.idx) is triggered when the partition column “timestamp” is

used in the “WHERE” condition, allowing ClickHouse to skip many irrelevant partitions.

➢ SELECT * FROM equity_tickdata LIMIT 10 ⇒ full table scan, 750 partitions

will be scanned

➢ SELECT * FROM equity_tickdata WHERE timestamp >=

toDateTime64(‘2020-01-02 00:00:00.000000’,6) AND timestamp

<= toDateTime64(‘2020-01-02 23:59:59.000000’,6) LIMIT 10 ⇒

scan data for 01/02/2020, 1 partition will be scanned

• Number of partitions affects efficiency, up to 10x (Source: Altinity): month vs. date as partition

key

Key Takeaways for Partition
• A partition is a directory for physical storage of data

• Partition allows fast table insertion: multiple directories are created for the same partition, and

then merged and deleted

• Partition allows fast data query: when the column(s) for partitioning appears in WHERE statement,

partition indexing is triggered and only the relevant partitions are scanned for query result

• Number of partitions should not be too big: building and reading partition index files take time

and memory

8

Primary Key, Order By
Recall that web browsing data are sorted first by UserID, then by URL, and lastly by EventTime:

PRIMARY KEY (UserID, URL) ORDER BY (UserID, URL, EventTime)

• Ordered data storage allows for efficient search algorithm, e. g. binary search algorithm

• Web browsing data are sorted first by UserID, then by URL, and lastly be EventTime

Sparse index to locate granules
• Primary key columns are used to build a sparse index, which, when combined with column level

offset files (“mark”), can quickly locate matching data

➢ First element of the primary key columns is used for binary search algorithm

➢ Other elements of the primary key columns are used for generic exclusion search

algorithm (more on this later)

• Data are logically grouped into “granules”

➢ typically, 8192 rows, set by index_granularity

➢ for Bloomberg equity tick data on 5/27/2022, 1 granule = 55.5 GB / 595 mil. * 8192 =

0.76 MB, 1 ticker = 55.5 GB / 19K = 3 MB = 4 granules

• After being located by the sparse index, relevant granules are loaded into memory for parallel

data processing

9

Build and use the primary index
• The primary index has one entry per granule. The orange marked columns values are the

minimum values of each primary key column in each granule; they will be the entries in the

table’s primary index. The primary index file is completely loaded into the main memory (~6MB

for equity_tickdata table on 5/27, ~120MB if partitioning by month)

• The primary index is used for selecting granules: SELECT * FROM equity_tickdata

WHERE id = ‘AAPL’ AND timestamp >= toDateTime64(‘2022-05-27

00:00:00.000000,6)’ AND timestamp <= ‘2022-05-27

23:59:59.000000,6)’

➢ “id” is used for binary search algorithm

➢ “timestamp” is used for generic exclusion search algorithm to locate the relevant

granules

10

11

Use mark files
Primary index file locates the logical location of relevant granules, mark files locate the physical location

of the granules

• Locating via mark files happens to each column in parallel (hence the speed)

• Why not store that information directly in primary index? The primary index file needs to fit into

the main memory

Generic exclusion search algorithm
• The generic exclusion search algorithm is most effective when the predecessor key column has

low(er) cardinality

• On 5/27/2022, equity_tickdata has ~19K distinct IDs and ~136 mil. distinct timestamps,

#id ≪ #timestamp

• Details of this algorithm can be found at https://clickhouse.com/docs/en/guides/improving-query-

performance/sparse-primary-indexes/sparse-primary-indexes-multiple/#generic-exclusion-search-

algorithm

https://clickhouse.com/docs/en/guides/improving-query-performance/sparse-primary-indexes/sparse-primary-indexes-multiple/#generic-exclusion-search-algorithm
https://clickhouse.com/docs/en/guides/improving-query-performance/sparse-primary-indexes/sparse-primary-indexes-multiple/#generic-exclusion-search-algorithm
https://clickhouse.com/docs/en/guides/improving-query-performance/sparse-primary-indexes/sparse-primary-indexes-multiple/#generic-exclusion-search-algorithm

12

Data skipping index: a secondary index to group and skip granules
A secondary data skipping index on the URL column of the web browsing data with compound primary

key (UserID, URL)

• A secondary data skipping index on URL helps with excluding granules only if the #UserID ≪

#URL

• Data skipping index should only be used after investigating other alternatives (projections,

materialized views, etc.)

• Data skipping index behavior is not obvious from thought experiments alone

Test, Test, Test!
• Design of table schemas needs to be carefully considered for each business application.

• Use ClickHouse command-line client to have detailed performance information for each design.

13

Additional Resources
• ClickHouse Academy - Free self-paced ClickHouse Training (requires login to track

progress): https://clickhouse.com/learn/

• Monthly ClickHouse release webinars: https://clickhouse.com/company/news-events

• Monthly newsletter: https://clickhouse.com/company/news-events

• YouTube channel - recent recordings from Monthly releases & meetups:

https://www.youtube.com/c/ClickHouseDB

• Blogs - many recent articles of technical nature: https://clickhouse.com/blog

• ClickHouse Roadmap 2023: https://github.com/ClickHouse/ClickHouse/issues/44767

https://clickhouse.com/learn/
https://clickhouse.com/company/news-events
https://clickhouse.com/company/news-events
https://www.youtube.com/c/ClickHouseDB
https://clickhouse.com/blog
https://github.com/ClickHouse/ClickHouse/issues/44767

	title_page
	clickhouse-guide

