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Goals 
• Provide a self-contained introduction to the inner working of ClickHouse 

➢ How are data stored? 

➢ How are data queried? 

• Design a suitable table schema for equity tick data 

• Intended audience: engineers implementing ClickHouse; quants using ClickHouse 

References 
• 朱凯：《ClickHouse原理解析与应用实践》，机械工业出版社，2020. 

• Vijay Anand: Up and Running with ClickHouse, BPB Publications, India, 2020. 

• ClickHouse Official Documentation: https://clickhouse.com/docs/en/intro 

Row-Based DBMS vs. Column-Based DBMS 
• Row-based DBMS 

 

• Column-based DBMS 

 

https://clickhouse.com/docs/en/intro
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Sample Equity Tick Data 
• Data Source: https://firstratedata.com/tick-data  

• Sample data: trades of AAPL and MSFT on 2020-01-02 

 

• Table schema for trade data:  

 
 

• Table creation for trade data 

 

Basic Statistics of One Day’s Tick Data 
• Based on Bloomberg BPIPE equity tick data (trades & quotes combined) on 2022-05-27 

➢ ~19K distinct tickers 

➢ ~136 million distinct time stamps 

➢ ~595 million rows 

➢ ~7.4 GB of compressed data and ~55.5 GB uncompressed data 

➢ These numbers allow back-of-envelop estimation of query efficiency (see later) 

https://firstratedata.com/tick-data
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• Equity tick data is huge, so that storage and queries need to be extremely efficient  

Key Concepts in ClickHouse: Partition, Primary Key, Order BY, Skip Index 
Conceptually, 

• Partition: directory for physical storage of data 

• Order By: sort rows by lexicographic order of sort keys  

• Primary Key: for indexing data location 

• Data Skipping Index: additional data indexing 

Physically, 

• Data are divided by “partitions” (directories) 

• Within each partition, column data are stored separately in [Column].bin 

• Rows are in lexicographic ascending order by the primary key columns (and the additional sort 

key columns) 

• Rows from different columns are matched via [Column].mrk 

 

 



5 
 

Illustration of Data Storage in ClickHouse 
Using web browsing data as an illustration: UserID, URL, EventTime 

• PRIMARY KEY (UserID, URL) ORDER BY (UserID, URL, EventTime) 

• Web browsing data are sorted first by UserID, then by URL, and lastly be EventTime 

 

Partition 

Basics 
• Data are written to disk simultaneously so that table insertion is fast 

• As a result, multiple directories for the same partition are created, and then merged (10-15 min. 

after insertion); old directories will then be deleted (~8 min. after merging) 

• MinBlockNum, MaxBlockNum: global counter across partitions, increase by 1 if a new 

partition directory is generated 

• Level: the number of merging for a particular partition; local counter of “age” 

• Example: directory “201905_1_1_0” is the first directory created for the partition “201905” 

 

Directory creation, merging, and deletion 
In the example below, month is used as the partition key for table “partition_v5”, e. g. 201905, 

201906, etc. 
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Partition improves query performance 
Back to Bloomberg equity tick data. Assume we have 3 years of daily data and we use date as the 

partition key 

• This will lead to about 250 * 3 = 750 partitions 

• Partitioning indexing (minmax.idx) is triggered when the partition column “timestamp” is 

used in the “WHERE” condition, allowing ClickHouse to skip many irrelevant partitions. 

➢ SELECT * FROM equity_tickdata LIMIT 10 ⇒ full table scan, 750 partitions 

will be scanned 

➢ SELECT * FROM equity_tickdata WHERE timestamp >= 

toDateTime64(‘2020-01-02 00:00:00.000000’,6) AND timestamp 

<= toDateTime64(‘2020-01-02 23:59:59.000000’,6) LIMIT 10 ⇒ 

scan data for 01/02/2020, 1 partition will be scanned 

• Number of partitions affects efficiency, up to 10x (Source: Altinity): month vs. date as partition 

key 

 

Key Takeaways for Partition 
• A partition is a directory for physical storage of data 

• Partition allows fast table insertion: multiple directories are created for the same partition, and 

then merged and deleted 

• Partition allows fast data query: when the column(s) for partitioning appears in WHERE statement, 

partition indexing is triggered and only the relevant partitions are scanned for query result 

• Number of partitions should not be too big: building and reading partition index files take time 

and memory 
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Primary Key, Order By 
Recall that web browsing data are sorted first by UserID, then by URL, and lastly by EventTime: 

PRIMARY KEY (UserID, URL) ORDER BY (UserID, URL, EventTime) 

• Ordered data storage allows for efficient search algorithm, e. g. binary search algorithm 

• Web browsing data are sorted first by UserID, then by URL, and lastly be EventTime 

 

Sparse index to locate granules 
• Primary key columns are used to build a sparse index, which, when combined with column level 

offset files (“mark”), can quickly locate matching data 

➢ First element of the primary key columns is used for binary search algorithm 

➢ Other elements of the primary key columns are used for generic exclusion search 

algorithm (more on this later) 

• Data are logically grouped into “granules” 

➢ typically, 8192 rows, set by index_granularity 

➢ for Bloomberg equity tick data on 5/27/2022, 1 granule = 55.5 GB / 595 mil. * 8192 = 

0.76 MB, 1 ticker = 55.5 GB / 19K = 3 MB = 4 granules 

• After being located by the sparse index, relevant granules are loaded into memory for parallel 

data processing 
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Build and use the primary index 
• The primary index has one entry per granule. The orange marked columns values are the 

minimum values of each primary key column in each granule; they will be the entries in the 

table’s primary index. The primary index file is completely loaded into the main memory (~6MB 

for equity_tickdata table on 5/27, ~120MB if partitioning by month) 

• The primary index is used for selecting granules: SELECT * FROM equity_tickdata 

WHERE id = ‘AAPL’ AND timestamp >= toDateTime64(‘2022-05-27 

00:00:00.000000,6)’ AND timestamp <= ‘2022-05-27 

23:59:59.000000,6)’ 

➢ “id” is used for binary search algorithm 

➢ “timestamp” is used for generic exclusion search algorithm to locate the relevant 

granules 
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Use mark files 
Primary index file locates the logical location of relevant granules, mark files locate the physical location 

of the granules 

• Locating via mark files happens to each column in parallel (hence the speed) 

• Why not store that information directly in primary index? The primary index file needs to fit into 

the main memory 

 

Generic exclusion search algorithm 
• The generic exclusion search algorithm is most effective when the predecessor key column has 

low(er) cardinality 

• On 5/27/2022, equity_tickdata has ~19K distinct IDs and ~136 mil. distinct timestamps, 

#id ≪ #timestamp  

• Details of this algorithm can be found at https://clickhouse.com/docs/en/guides/improving-query-

performance/sparse-primary-indexes/sparse-primary-indexes-multiple/#generic-exclusion-search-

algorithm  

https://clickhouse.com/docs/en/guides/improving-query-performance/sparse-primary-indexes/sparse-primary-indexes-multiple/#generic-exclusion-search-algorithm
https://clickhouse.com/docs/en/guides/improving-query-performance/sparse-primary-indexes/sparse-primary-indexes-multiple/#generic-exclusion-search-algorithm
https://clickhouse.com/docs/en/guides/improving-query-performance/sparse-primary-indexes/sparse-primary-indexes-multiple/#generic-exclusion-search-algorithm
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Data skipping index: a secondary index to group and skip granules 
A secondary data skipping index on the URL column of the web browsing data with compound primary 

key (UserID, URL) 

• A secondary data skipping index on URL helps with excluding granules only if the #UserID ≪ 

#URL 

• Data skipping index should only be used after investigating other alternatives (projections, 

materialized views, etc.) 

• Data skipping index behavior is not obvious from thought experiments alone 

 

Test, Test, Test!  
• Design of table schemas needs to be carefully considered for each business application.  

• Use ClickHouse command-line client to have detailed performance information for each design. 
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Additional Resources 
• ClickHouse Academy - Free self-paced ClickHouse Training (requires login to track 

progress): https://clickhouse.com/learn/  

• Monthly ClickHouse release webinars: https://clickhouse.com/company/news-events  

• Monthly newsletter: https://clickhouse.com/company/news-events  

• YouTube channel - recent recordings from Monthly releases & meetups: 

https://www.youtube.com/c/ClickHouseDB  

• Blogs - many recent articles of technical nature: https://clickhouse.com/blog  

• ClickHouse Roadmap 2023: https://github.com/ClickHouse/ClickHouse/issues/44767  

https://clickhouse.com/learn/
https://clickhouse.com/company/news-events
https://clickhouse.com/company/news-events
https://www.youtube.com/c/ClickHouseDB
https://clickhouse.com/blog
https://github.com/ClickHouse/ClickHouse/issues/44767
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