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Abstract

This is a self-contained implementation guide to the Hull-White model. We derive from scratch formulas
that are essential to coding up the model. Some numerical issues are also handled with care.
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Chapter 1

One-factor Hull-White model

1.1 Dynamics of short rate r, and state variable X; under risk-
neutral measure

Under the assumption of one-factor Hull-White model, the short rate process under the risk-neutral
measure () (the martingale measure associated with money market account numeraire) follows the dynamics

dry = (by — kre)dt + o dWr,

where k is a constant, b; and o, are deterministic functions of ¢, and W is a standard Brownian motion.
Solving the SDE gives

t t
e =e “lrg+ 67’“/ e byds + e / eodWs.
0 0

Setting 0, = e lrg + e "t fot e*byds and X, = e ™ fot e o,dWy. Then 6, is a deterministic function of ¢

. . . . _ t
and X; is Gaussian process with mean 0 and variance e~ 2" fo e?"s02ds. In summary, we have

t
e = 0 + Xt, dX; = —kXpdt + 0idWy, Xo =0, E9[X,] =0, E9[X?] = e—%t/ e olds (1.1)
0

1.2 Pricing formula of zero coupon bond

1.2.1 Formula

Denote by P(¢,T) the time-t price of a zero-coupon bond with maturity 7', we have (note P(¢,T) is a
function of the state variable X;)

P(t,T) = P(t,T; X;) = 20T oxp {fH(T — 1) [Xt + () + L) H(T — t)] }

P(0,t) :exp{—fé5 95d5+ytH} (1.2)

where
h(t) = e *t
H(t) = [] h(s)ds
t) = e 2t fot e2r552ds
ity =hxo(t) = [ e " =u(s)ds
H(t)y = Hxv(t) = [} H(t — s)v(s)ds.

<

174
v

We also note that 45 () = v (t).



1.2.2 Derivation

For a derivation of formula (E), define oy = oyet. It’s easy to see X; = h(t) fg asdW,. For the
convenience of later computation, we note for u > t,

t u U
X, = e‘““/ asdWs + e‘““/ asdWs = h(u — ) X + h(u) / o dWs.
0 t t

Therefore, risk neutral pricing formula yields

P(t,T, Xt = IE) = EQ [6_ ftT rydu

Fi X, = x] — o= S udu—H(T—t)x pQ {e— ST h(u) (e anWS)du]

Define n = ftT h(u)( [, asdWy)du. Then 7 is a Gaussian random variable with 0 mean and

2
u T
7> [H(u) / s dW, V=T — / H(u)auqu]
t t

HA(T) ( /t ' adeS> S 2H(T) /t " div, /t " B (wandiV, + ( /t ’ H(u)auqu> 2

Therefore the variance of n is equal to

E°[n? = HX(T) / : o?ds — 2H(T) / ' H(s)a2ds + / ' H?(s)a’ds

and
1
Pt,T;Xy=x)=¢" I G“duiH(Tft)mEQ[efn] — e S 0udu—H(T—t)x exp {2‘/“7'(77)}

1

= exp{—/tTQHdu—H(T—t)x—i-Q H*(T) /tTazds+/tTH2(s)a§ds] — H(T) /tTH(s)aﬁds}.

As particular cases, we have

P(0,T) = exp {— fOT O du+ % [HQ(T) fOT alds + fOT HQ(S)OéEdS} — H(T) j;)TH(s)afds}
P(0,t) = exp {f fg Oudu+ % [Hz(t) fg a?ds + fot H2(s)a§ds} — H(t) f(f H(s)agds} :

Therefore, we have

P(0,T)
P(0,4)P(t, T; X; = x)

= exp{H(Tt)er; {H%T) /Ot agds+/0t H%s)afds} — H(T) /OtH(s)afds}

-exp{—; {HQ(t) /Ot a§d3+/OtH2(s)ozfds] 0 /OtH(s)agds}

— e {H(T e+ %[HZ(T) — H(1)] /O o2ds — [H(T) — H(#)] /O H(s)aids} .

That is,

P(t,T; X; = x)

- 1;}(%;) exp {—H(T ~ t)a — S[HA(T) ~ H(1) / olds + [H(T) — H(b)] / H(s)aids}




P(t,T; X; = )
= P((%’f;) eXp{—H(T—t) [x+ (T);H(t)e—”/ a’ds — ”t/ H(s st]}
- ];((%;) exp{ —H(T — 1) [x+H() —“t/o o2ds + T —HO e—*“/o o2ds
—ert OtH(s) ﬁds]}
— ];%j)) eXp{H(Tt) [:chH() ”t/Ota?dH H(T —e / H st]}

Note

¢ ¢
H(t)e "t / a’ds — e_”t/ H(s)a2ds
0 0

h(t) [H(t) /075 o’ds — H(s) /05 o du t

< fn([ )

We have obtained

P(t,T; X; =) =

which gives formula (@)

1.3 Joint density of (f(;t X,ds, X;) and value of E¢ [efothds
der risk-neutral measure

Xti| un-

To price a European contingent claim with payoff f(Xr) at terminal time T, we typically need to evaluate
Vo = e {effoTrSde(XT)} _ effOT 0-ds pQ [effoT Xsdsf(XT)]

_ ST pa {EQ [efff X,ds XT} f(XT)] .

This demands the knowledge of the joint density of (f(f X,ds, X;) or the value of E% [e* Jo Xods
derive these two quantities in this section.

It’s easy to see Z; := fot X.ds and X; are jointly Gaussian. In order to know their joint density, it’s
sufficient to know their respective mean and variance, as well as their covariance. In this regard, we note

E[X:]| = E[Z;] = 0. Define

Xt] We

ox(t) = \JEIXZ), vz(t) = \/E[Z2), pxz(t) = E[tht]),cxzu):E[xtzt].

vx (t)’Uz(t

Then v% (t) = E[X?] = e 2+ fot e?"s02ds = v(t), and by integration-by-parts formula, we have

t t t t
tht:/ stXs+/ des:—/f/ Xssts—i—/ X2ds + mart. part.
0 0 0 0



Taking expectation on both sides gives
t t
cexz(t) = 7!1/ cxz(s)ds + / v(s)ds.
0 0
Solving this integral equation gives
t
exz(t) = ef'“””t/ e™u(s)ds = v (t).
0

Finally, note 4 E [Z2] = 2E[Z,X;] = 2cx z(t) = 20" (t), we have v} (t) = E[Z?] = 2f s)ds = 2vH(¢). In
summary, we have

o
e
N

~

| |

EXZ] = M)
) (Exezd? _ i)
Pxz() = Zmezm = werto

Therefore, the covariance matrix ¥; of the pair (Z;, X;) is

_(ElZ) EXZ) _ (270 o)
= (E[tht] E[xX?] ) - ( V1 (1) u<t>>

and its inverse is

1 __pxz(t)
1L we T (607 (0
t T _p2 (t) __pxz(t) 1
Xz vx (t)vz(t) vk (1)

The joint density function of the pair (X, Z;) is therefore
1
|Et| 2 {2 IS %(m,z)Z;l(I,z)'
27
1 1 { x? xz 22
expq — —2pxz(t) + } 1.3)
2rux ()vz(t)\/1 — p% 4 (t) { 2(1 = p% (1) L% () vx (t)vz(t)  v(t)

To compute the other quantity, note when conditioning on X; = x,

- (m(t)x 20— c%<Z<t>> . <xuh<t>72yH(t) B <uh<t>>2> |

vk () 7 vk (®) v(t) v(t)

g(z,z;t) =

So

h U ()2
E° [e_Z“ X| =exp {—Xt V(Eft)) +vH(t) - (QV((?)) } (1.4)

1.4 Pricing formula of European contingent claim

To price a European contingent claim with payoff f(Xr) at terminal time T', we note by formula (@)

Vo = E° [e*foT “dsf(XT)} — e Jo Oeds Q2 {e’f‘? X“dsf(XT)]
= ¢ Jo bsdspQ [EQ {67 Jo" Xods XT} f(XT)}
= exp {— /OT 0.ds 4+ v (T) — (V2’;((:;)))2} E@ |:f(XT) exp {—XT V;/h((TT)) H
= | P(0,T)exp {—(1/2};((?))2} E@ |:f(XT) exp {—XT V:((TT)) H (1.5)
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