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Abstract

This is a self-contained implementation guide to the Hull-White model. We derive from scratch formulas
that are essential to coding up the model. Some numerical issues are also handled with care.
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Chapter 1

One-factor Hull-White model

1.1 Dynamics of short rate rt and state variable Xt under risk-
neutral measure

Under the assumption of one-factor Hull-White model, the short rate process under the risk-neutral
measure Q (the martingale measure associated with money market account numeraire) follows the dynamics

drt = (bt − κrt)dt+ σtdWt,

where κ is a constant, bt and σt are deterministic functions of t, and W is a standard Brownian motion.
Solving the SDE gives

rt = e−κtr0 + e−κt

∫ t

0

eκsbsds+ e−κt

∫ t

0

eκsσsdWs.

Setting θt = e−κtr0 + e−κt
∫ t

0
eκsbsds and Xt = e−κt

∫ t

0
eκsσsdWs. Then θt is a deterministic function of t

and Xt is Gaussian process with mean 0 and variance e−2κt
∫ t

0
e2κsσ2

sds. In summary, we have

rt = θt +Xt, dXt = −κXtdt+ σtdWt, X0 = 0, EQ[Xt] = 0, EQ[X2
t ] = e−2κt

∫ t

0

e2κsσ2
sds (1.1)

1.2 Pricing formula of zero coupon bond
1.2.1 Formula

Denote by P (t, T ) the time-t price of a zero-coupon bond with maturity T , we have (note P (t, T ) is a
function of the state variable Xt)P (t, T ) = P (t, T ;Xt) =

P (0,T )
P (0,t) exp

{
−H(T − t)

[
Xt + νh(t) + 1

2ν(t)H(T − t)
]}

P (0, t) = exp
{
−
∫ t

0
θsds+ νHt

} (1.2)

where 

h(t) = e−κt

H(t) =
∫ t

0
h(s)ds

ν(t) = e−2κt
∫ t

0
e2κsσ2

sds

νh(t) = h ∗ v(t) =
∫ t

0
e−κ(t−s)ν(s)ds

νH(t) = H ∗ ν(t) =
∫ t

0
H(t− s)ν(s)ds.

We also note that d
dtν

H(t) = νh(t).
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1.2.2 Derivation
For a derivation of formula (1.2), define αt = σte

κt. It’s easy to see Xt = h(t)
∫ t

0
αsdWs. For the

convenience of later computation, we note for u > t,

Xu = e−κu

∫ t

0

αsdWs + e−κu

∫ u

t

αsdWs = h(u− t)Xt + h(u)

∫ u

t

αsdWs.

Therefore, risk neutral pricing formula yields

P (t, T ;Xt = x) = EQ
[
e−

∫ T
t

rudu
∣∣∣Ft, Xt = x

]
= e−

∫ T
t

θudu−H(T−t)xEQ
[
e−

∫ T
t

h(u)(
∫ u
t

αsdWs)du
]

Define η =
∫ T

t
h(u)(

∫ u

t
αsdWs)du. Then η is a Gaussian random variable with 0 mean and

η2 =

[
H(u)

∫ u

t

αsdWs|u=T
u=t −

∫ T

t

H(u)αudWu

]2

= H2(T )

(∫ T

t

αsdWs

)2

− 2H(T )

∫ T

t

αsdWs

∫ T

t

H(u)αudWu +

(∫ T

t

H(u)αudWu

)2

.

Therefore the variance of η is equal to

EQ[η2] = H2(T )

∫ T

t

α2
sds− 2H(T )

∫ T

t

H(s)α2
sds+

∫ T

t

H2(s)α2
sds

and

P (t, T ;Xt = x) = e−
∫ T
t

θudu−H(T−t)xEQ[e−η] = e−
∫ T
t

θudu−H(T−t)x exp
{
1

2
V ar(η)

}
= exp

{
−
∫ T

t

θudu−H(T − t)x+
1

2

[
H2(T )

∫ T

t

α2
sds+

∫ T

t

H2(s)α2
sds

]
−H(T )

∫ T

t

H(s)α2
sds

}
.

As particular cases, we haveP (0, T ) = exp
{
−
∫ T

0
θudu+ 1

2

[
H2(T )

∫ T

0
α2
sds+

∫ T

0
H2(s)α2

sds
]
−H(T )

∫ T

0
H(s)α2

sds
}

P (0, t) = exp
{
−
∫ t

0
θudu+ 1

2

[
H2(t)

∫ t

0
α2
sds+

∫ t

0
H2(s)α2

sds
]
−H(t)

∫ t

0
H(s)α2

sds
}
.

Therefore, we have

P (0, T )

P (0, t)P (t, T ;Xt = x)

= exp
{
H(T − t)x+

1

2

[
H2(T )

∫ t

0

α2
sds+

∫ t

0

H2(s)α2
sds

]
−H(T )

∫ t

0

H(s)α2
sds

}
· exp

{
−1

2

[
H2(t)

∫ t

0

α2
sds+

∫ t

0

H2(s)α2
sds

]
+H(t)

∫ t

0

H(s)α2
sds

}
= exp

{
H(T − t)x+

1

2
[H2(T )−H2(t)]

∫ t

0

α2
sds− [H(T )−H(t)]

∫ t

0

H(s)α2
sds

}
.

That is,

P (t, T ;Xt = x)

=
P (0, T )

P (0, t)
exp

{
−H(T − t)x− 1

2
[H2(T )−H2(t)]

∫ t

0

α2
sds+ [H(T )−H(t)]

∫ t

0

H(s)α2
sds

}
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Note [H(T )−H(t)]eκt = e−κt−e−κT

κ eκt = H(T − t), we get

P (t, T ;Xt = x)

=
P (0, T )

P (0, t)
exp

{
−H(T − t)

[
x+

H(T ) +H(t)

2
e−κt

∫ t

0

α2
sds− e−κt

∫ t

0

H(s)α2
sds

]}
=

P (0, T )

P (0, t)
exp

{
−H(T − t)

[
x+H(t)e−κt

∫ t

0

α2
sds+

H(T )−H(t)

2
e−κt

∫ t

0

α2
sds

−e−κt

∫ t

0

H(s)α2
sds

]}
=

P (0, T )

P (0, t)
exp

{
−H(T − t)

[
x+H(t)e−κt

∫ t

0

α2
sds+

1

2
H(T − t)ν(t)− e−κt

∫ t

0

H(s)α2
sds

]}
.

Note

H(t)e−κt

∫ t

0

α2
sds− e−κt

∫ t

0

H(s)α2
sds

= h(t)

[
H(t)

∫ t

0

α2
sds− H(s)

∫ s

0

α2
udu

∣∣∣∣t
0

+

∫ t

0

h(s)

(∫ s

0

α2
udu

)
ds

]

= h(t)

∫ t

0

eκsν(s)ds = νh(t),

We have obtained

P (t, T ;Xt = x) =
P (0, T )

P (0, t)
exp

{
−H(T − t)

[
x+ νh(t) +

1

2
ν(t)H(T − t)

]}
,

which gives formula (1.2).

1.3 Joint density of (
∫ t

0 Xsds,Xt) and value of EQ
[
e−

∫ t

0
Xsds

∣∣∣Xt

]
un-

der risk-neutral measure
To price a European contingent claim with payoff f(XT ) at terminal time T , we typically need to evaluate

V0 = EQ
[
e−

∫ T
0

rsdsf(XT )
]
= e−

∫ T
0

θsdsEQ
[
e−

∫ T
0

Xsdsf(XT )
]

= e−
∫ T
0

θsdsEQ
[
EQ

[
e−

∫ T
0

Xsds
∣∣∣XT

]
f(XT )

]
.

This demands the knowledge of the joint density of (
∫ t

0
Xsds,Xt) or the value of EQ

[
e−

∫ t
0
Xsds

∣∣∣Xt

]
. We

derive these two quantities in this section.
It’s easy to see Zt :=

∫ t

0
Xsds and Xt are jointly Gaussian. In order to know their joint density, it’s

sufficient to know their respective mean and variance, as well as their covariance. In this regard, we note
E[Xt] = E[Zt] = 0. Define

vX(t) =
√
E[X2

t ], vZ(t) =
√
E[Z2

t ], ρXZ(t) =
E[XtZt]

vX(t)vZ(t)
, cXZ(t) = E[XtZt].

Then v2X(t) = E[X2
t ] = e−2κt

∫ t

0
e2κsσ2

sds = ν(t), and by integration-by-parts formula, we have

XtZt =

∫ t

0

ZsdXs +

∫ t

0

X2
sds = −κ

∫ t

0

XsZsds+

∫ t

0

X2
sds+ mart. part.
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Taking expectation on both sides gives

cXZ(t) = −κ

∫ t

0

cXZ(s)ds+

∫ t

0

ν(s)ds.

Solving this integral equation gives

cXZ(t) = e−κt

∫ t

0

eκsν(s)ds = νh(t).

Finally, note d
dtE

[
Z2
t

]
= 2E[ZtXt] = 2cXZ(t) = 2νh(t), we have v2Z(t) = E[Z2

t ] = 2
∫ t

0
νh(s)ds = 2νH(t). In

summary, we have 
v2X(t) = E[X2

t ] = ν(t)

v2Z(t) = E[Z2
t ] = 2νH(t)

cXZ(t) = E[XtZt] = νh(t)

ρ2XZ(t) =
(E[XtZt])

2

v2
X(t)v2

Z(t)
= (νh(t))2

2ν(t)νH(t)

Therefore, the covariance matrix Σt of the pair (Zt, Xt) is

Σt =

(
E[Z2

t ] E[XtZt]
E[XtZt] E[X2

t ]

)
=

(
2νH(t) νh(t)
νh(t) ν(t)

)
and its inverse is

Σ−1
t =

1

1− ρ2XZ(t)

(
1

v2
Z(t)

− ρXZ(t)
vX(t)vZ(t)

− ρXZ(t)
vX(t)vZ(t)

1
v2
X(t)

)
The joint density function of the pair (Xt, Zt) is therefore

g(x, z; t) =
|Σt|−

1
2

2π
e−

1
2 (x,z)Σ

−1
t (x,z)′

=
1

2πvX(t)vZ(t)
√
1− ρ2XZ(t)

exp
{
− 1

2
(
1− ρ2XZ(t)

) [ x2

v2X(t)
− 2ρXZ(t)

xz

vX(t)vZ(t)
+

z2

v2Z(t)

]}
(1.3)

To compute the other quantity, note when conditioning on Xt = x,

Zt ∼ N

(
cXZ(t)

v2X(t)
x, v2Z(t)−

c2XZ(t)

v2X(t)

)
= N

(
x
νh(t)

ν(t)
, 2νH(t)− (νh(t))2

ν(t)

)
.

So

EQ
[
e−Zt

∣∣Xt

]
= exp

{
−Xt

νh(t)

ν(t)
+ νH(t)− (νh(t))2

2ν(t)

}
(1.4)

1.4 Pricing formula of European contingent claim
To price a European contingent claim with payoff f(XT ) at terminal time T , we note by formula (1.4)

V0 = EQ
[
e−

∫ T
0

rsdsf(XT )
]
= e−

∫ T
0

θsdsEQ
[
e−

∫ T
0

Xsdsf(XT )
]

= e−
∫ T
0

θsdsEQ
[
EQ

[
e−

∫ T
0

Xsds
∣∣∣XT

]
f(XT )

]
= exp

{
−
∫ T

0

θsds+ νH(T )− (νh(T ))2

2ν(T )

}
EQ

[
f(XT ) exp

{
−XT

νh(T )

ν(T )

}]

= P (0, T ) exp
{
− (νh(T ))2

2ν(T )

}
EQ

[
f(XT ) exp

{
−XT

νh(T )

ν(T )

}]
(1.5)
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