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Abstract

This is an implementation guide to various approximation formulas for the SABR model. Some
general facts on implied volatility and an estimation of convergence rate of one of the approximation
formulas are also provided.
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Chapter 1

SABR model

The Stochastic Alpha Beta Rho (SABR) model is a stochastic volatility model that attempts
to model the volatility smile in the context of derivative pricing. In this model, the forward price
F' and the volatility « are given by

dF, = a,FdWA(t), Fo = f
doy = vapdWs(t), ap = «

under the forward measure P, where the two processes are correlated by
dW1 (t)dWQ(t) = pdt.

The price of a European call option on F' with exercise date t.,, settlement date 4., and strike
K is given by
‘/call = D(tset)E[(Ftex - K)Jr]

where E[-] is under the forward measure. Market convention often quotes the price through Black’s

formula 1
B log(f/K) + Qagtm

0BVtex

Veatr = D(tser) [fO(dy) — K®(d-)], dx

The remaining problem is how to obtain op = op(K, f).



Chapter 2

Hagan’s formula

2.1 Formula

Hagan [2] gives the following formula

op(K,f) = @ %

(P27 [14+ 221082/ K) + G og? (£/K) + -] #(2)

(1-p)? o 1 ppra 2-3p" ,
'{H[ 2 (JE)F AK) AR T ”}teﬁ"'}

where

1-2pz+2242—0p
1—p
For the special case of at-the-money options, options struck at K = f, this formula reduces to

.« (1-p58)? o? 1 pBav  2—3p% ,
oarm =5, f) ™ Fip {1+ [ 20 2w agam T gy V|letr

An alternative representation is through normal volatility:

on(K, f)
1 fIP_KIP ' x(z)

a 1-B(f-K) =z

2
B(2-8) 1= 1o (f/K) o, BB 1 m2 L 1ae ate2,
L+ 1+@1og2(f/1() FE)A T80 [(1=5)"+ =62 /8>](fK)2—273

Bp  avtes 2—3p2 9o
L+ T goaser + 721 Vit

2= =(fK)P P og(f/K), w(z) = 1og{

For the special case of at-the-money options, this formula reduces to

2_ 2 2_ 442
11+ HER et 4 PEE0 [(1-5)° + 582 - )] 7%

O-N(faf)%

32
afﬂ 1+ % : ?lffﬁét + 2 Qip V2tem
In actual implementation, the ATM case is unified under the case of “near ATM”: z(z)/z is
approximated by 1+ 2pz — 175”’ ®22 and
- - 1-p)? 1-p8)?
Fr-gs 1 14 S eg’(f/K) + Y- log! (£/K)

1=-B)(f—K)  (fE)B2 14 Llog?(f/K) + 1o log' (f/K)
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2.2 Asymptotics

Assuming 5 < 1, then limg_,o 2 = —00 and z(z) ~ —log(—z). So as K — oo,
viog(f/K 1 2 — 3p?
O'B(Ka f) ~ (1-p)2 5 g(f/ (1)_5)4 1 ’ 1o (—Z) : <1 + 24P 7/2tex> .
1+ 5= log*(f/K) + o590~ log™ (f/K) g
Since log(—z) ~ % log K,
lim vlog(f/K) _ ’
K—oo —log(—2z) 1-p
and we conclude
li K =0.
Kgnooo—( 7f)
Assuming 5 = 1, Hagan’s formula becomes
vlog(f/K) pra 2-3p* ,
K A ————= |1 —_— t
UB( ) f) Z,U(Z) + 4 + 24 1% exr bl
where
v 1—-2pz+224+2—0p
= —1 K = 1 .
v s S
We still have limpg_,~ 2 = —00 and x(z) ~ —log(—=z). Hence limg o op(K, f) = oc.
In summary,
0 1
lim op(K, f)= { B<

We further note when 8 = 1, Hagan’s formula satisfies

VlogK) [1+ <pya 2—-3p% ,

~ == t K —
log(log K PR, ”) 64’&8 >

O'B(Kv f)

This implies

2(K, ftes log K )2ty 2 — 302 2
e N = T
log(K/f)  log?(log K) - log K 4 24

which contradicts with the moment formula (see Section E) So Hagan’s formula when 8 = 1 cannot
be an accurate approximation for large strikes.
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