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Abstract

Elements of convexity adjustment in interest rate derivative pricing.
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Chapter 1

Introduction

In this note, we summarize various results on convexity adjustment. The exposition is based on Boenkost
and Schmidt [, [2], Hagan [3], Hull [5], Hunt and Kennedy [4], Lesniewski [6], and Pelsser [§].

Denote by P(¢,T) (0 <t < T) the time-t value of a zero coupon bond with maturity 7. 7(S5,T) is the
year fraction between time S and time T' (S < T'). The simply-compounded forward interest rate F(t;S,T)

is defined as ) P(t.5)
FST) = o (pi )

Suppose Ty, < Tpq1 < --- < Tp is a set of future times such that the LIBOR rate is reset at Ty, - -+, Tg—1
and is paid at To41, - -, T for a floating-rate note. The forward swap rate S, g(t) at time ¢ for the set of
times T = {Ta, Tot1, -+ .13} (t <T,) and year fractions 7 = {7441, ,78} (7 = 7(T3-1,T;)) is defined as

P(taTa> - P<taTB)
S TiP(8,T)

These two rates often appear as the underlyings in interest rate derivatives, and will serve as the prototype
for convexity adjustment.

Sap(t) =



Chapter 2

Convexity adjusted interest rates

2.1 LIBOR
The LIBOR rate L(S,T) = F(S;S,T) for the interval [S,T] is given by

L(S.T) = T(;T) (P(Sl',T) - 1) '

Under the forward measure Q7 for which P(-,T) is the numeraire, F'(¢;S,T) is a martingale and therefore
EQT[L(S,T)] = F(0;S,T). This leads to the pricing formula of a floater, which resets LIBOR at time S and
makes payment at time 7.

LIBOR-in-arrears

For LIBOR-in-arrears, we need to evaluate E9S[L(S,T)], where Qg is the forward measure for which
P(-,8) is the numeraire. The goal is to express E?S[L(S,T)] in terms of the forward rate F(0;S,T) plus
some “convexity” adjustment (recall EQT[L(S,T)] = F(0;S,T)):

(S, S)/P(0, }

EQS[L(S,T)] = E°r _L(S,T) P(S.T)/P(0

= E°7|L _ L(S,T) - (1 +7(S,T)L(S,T)) - PO, T)}
' 1+ 7(S,T)L(S, T)
1+ 7(S,T)F(0 ,S,T)}
F(0; S T) +7(S,T)ECT [L?(S,T)]
1+7(S,T)F(0;5,7T)
Note EQT[L%(S,T)] = Varg, (L(S,T)) + (E?T[L(S,T)])2, we conclude

= E9T|L(S,T)-

7(S,T)Varg, (L(S,T))
1+ 7(S,T)F(0;S,T)

EQs[L(S,T)] = F(0;8,T) + (2.1)

Under the so-called market model which is the model underlying the market valuation for caps, the
LIBOR L(S,T) is lognormal under Qr with volatility o,

1
L(S,T) = F(S;S,T) = F(0;S,T) exp {UWS - 2025} ,

where W is a standard Brownian motion. In this case, Varg, (L(S,T)) = F?(0; S, T)(e"2s — 1) and formula

(R.1f) becomes

(S, T)F(0;S,T)(e”"® — 1)
14+ 7(S,T)F(0;5,T)

E@S[L(S,T)] = F(0;9,T) (2:2)




LIBOR paid at arbitrary time under the linear rate model

Suppose the payment is made at an arbitrary time 7" € [S,T]. This is the case of Asian floater, where
S and T are the starting time and ending time of a coupon period, respectively. Then

P(S,T")/P(0,T")

ESUIL(S. )] = E°" |\ "5 (0. 7

L(S,T)

The linear rate model assumes

P(S,T/) - ’ !
m = a+b(T )L(SaT)v VI € [SvT]

which requires a = 1 by setting 7/ = T'. This is effectively equivalent to assuming

oy 0(T7) /
L(T',T) = T(T/7T>L(S,T), VT €[S, 7).
Moreover, the martingale property dictates
P(0,7") P(S,T")
= pOT | 2| = a+b(T)F(0; S, T).
o bocx ] RERECRLCEES

So we have b(T') = (1;,((%’?)) - 1) JF(0;5,T) = % In summary, the linear rate model
assumes

L(T',T) F(0;T,T)

L(S,T) _ F(0;8,T)

, VT € [S,T] (2.3)

which can be summarized in words as

The ratio of LIBOR rates over the interval [T7,T] and [S,T)] is equal to the ratio of time-zero forward

rates over the same intervals.

Note the case of LIBOR-in-arrears, where T = S, satisfies the assumption of linear rate model.
Under the linear rate model assumption, we easily deduce that

1— P(0,7)/P(0,T")
F2(0;5,7)

EQr[L(S,T)] = F(0;5,T) {1 +

Varg, (L(S, T))} VT € [S,T) (2.4)

Remark 1. The original motivation for the linear rate model is probably the consideration that the “nat-
ural rate” under T-forward measure Qr is L(S,T). So one would like to use L(S,T) to approzimate
P(S,T)/P(S,T), and linear function is obviously the simplest. This idea can be generalized to that of
making the Radon-Nikodym derivative a function of the payout rate.

Remark 2. For T' = S, formula (@) reduces to formula (@)

Under the market model where L(S,T) is lognormal under Q7 with volatility o,
L(S,T) = F(0; S, T)e"Ws—2°S

and formula (@) becomes more explicit:

EQt [L(S,T)] = F(0;5,T) {1 + (1 - P(’T)> (7S — 1)} .



2.2 CMS

From the definition of forward swap rate S, g(t), if we choose the annuity NP = Zf:a_H T.P(t,T;)
as numeraire and denote by Q®# the associated martingale measure (the “swap measure”), we have by
martingale property

B9 [Sa,5(Ta)] = Sas(0).

If the payment is to be paid at some time 7" > T,,, we need to compute under the T’-forward measure Q7

P(T,,T")/P(0,T)
Np? INGP

N(‘)LB Qa,ﬁ

B P(T,,T")
- P(0,T")

, .8
E°r [Sa,ﬁ(Ta)] = E° NP
TLY

Soz’B(Ta) Sa,B(Ta)

The goal is to express E?7’ [S, 5(T,)] in terms of the time-zero swap rate S%#(0) plus some “convexity”
adjustment.

CMS paid at arbitrary time under the linear swap rate model

Under the swap measure Q%? associated with the annuity numeraire Nta’ﬁ = Zf:aH T, P(t,T;), the
entity most convenient for computation is the swap rate S, g(Ts). Therefore, a natural assumption for the
so-called linear swap rate model is

P(T,,T")
NP

@

= 0+ b(T")Sas(Th), T' > Th.

To determine a and b, we first take expectation of both sides under the swap measure and use the
martingale property to get

P](VOOO’C’I;) =a+b(T")Ss,5(0).
This gives b(T") = Sa; ©) {P]%’g) - a}. To deduce the second equation for a and b, we note
Can iPT0T) _ ¢ Sap(To)\ g~ Sos(To)
1 = NP = igln [a+b(T;)Su,5(Ta)] = a (1 " S0 ) i:za;lﬂ TS0
Therefore, we can solve for a: a = ﬁﬂﬂ In summary, the linear swap rate model makes the

assumption

NgP
S > e (25)
o) = s (B8 - ] e
and consequently
1_ P(0,T.)—P(0,T5)
B9 [Sa,5(Ta)] = Sap(0) |1+ S“’ﬁ(ogz(Z’(T(;;ZfW”VarN(sa,B(Ta)) (2.6)

where Vary (S, 5(T)) is the variance of the swap rate S, (7,) under the swap measure Q.
Under the so-called market model for swpation, it’s assumed the swap rate S, g(t) satisfies

dSe p(t) = 0 pSas(t)dW P t < T,



where W*# is a standard Brownian motion under the swap measure Q7. The variance of the swap rate
Sa.5(Ta) under the swap measure is therefore S7 5(0) (e"iﬁTa — 1). Then

1+ (1 __POT) - Pm’BTB) ) (eaiﬁT@ - 1)
Sa,ﬁ(O)P(Oa T/) Zi:a+1 Ti

Remark 3. The linear rate model for Libor and CMS can be generalized as follows. Write Ys for a floating
rate which is set at time S. Let N, Qn denote the natural (“market”) numeraire pair associated with Yg
and all we need is

B9 [Sa,5(Ta)] = 8a,5(0)

E®9N[Ys] = Y,

where Yy is known and a function of the yield curve P(0,-) today.
We are interested in today’s price of the rate Ys to be paid at some time T' > S,

/
P(0,T")E®T [Yg] = NgEO¥ [P (5T )YS] .
Ng
Assume a linear rate model of the form
P(S, T
PST) a+b(T")Ys (2.7)
Ns

with some deterministic a, b(T") which have to be determined accordingly to make the model consistent. We
then have

b(T")
Yo(a + b(T")Yo)

E®"[Ys] = Yp [1 + V(“”QN(YS)] (2.8)

If in addition, the distribution of Ys under Qn is lognormal with volatility oy : Y = Yoe""WS*%"%S, then

(e7%5 — 1)} .

Under the linear rate model for Libor, Ys = L(S,T) and Ng = P(S,T); under the linear rate mode for
CMS, Ys = Sa,5(Ta) and Ng = N3".

As a last comment, the linear approximation of linear rate model does seem very crude at first, but can be
justified by the following argument. Convezity corrections only become sizeable for large maturities. However,
for large maturities the term structure almost moves in parallel. Hence, a change in the level of the long end
of the curve is well described by the rate Y. Furthermore, for parallel moves in the curve, the ratio %’ST/)
is closely approzimated by a linear function of Y, which is exactly what the linear rate model does. Hence,
ezxactly for long maturities the assumptions of the linear rate model become quite accurate. This leads to a

good approximation of the convexity correction for long maturities.

b(I")Yy

E°T V3] =Y |1+ —
[Vs] 0{ +a+b(T’)Y0

CMS paid at arbitrary time under Hagan’s model

As seen in the previous section, the key to the convexity adjustment involving CMS rate, is to express
P(Tu,T’
(N;’ﬁ )

as a function of swap rate S, g(Tw):

P(T,. T
(TB) = G(Sa,5(Tw))-
NT(;

In this section, we explain several such models proposed by Hagan [3].

Model 1: Standard model. The standard method for computing convexity corrections uses bond
math approximations: payments are discounted at a flat rate, and the coverage (day count fraction) for each



period is assumed to be 1/g, where ¢ is the number of periods per year. At any date t < T, the annuity is
approximated by

B—«
Ot,ﬂ T; ———— :P(t7Ta) _ 1
v 0 Y AP pr, ) TS~ S | TS

1=a+1 (x

Here the forward swap rate Sy g(t) is used as the discount rate, since it represents the average rate over the
life of the reference swap. In a similar spirit, the zero coupon bond for the pay date T’ is approximated as

P(1,T.)
Pt,T) ~ !
N (S NOIR
where A = % Combined, the standard “bond math model” leads to the approximation
P(t,T) Sa,p(t) 1
G(Sa,8(t) = ~ : :
g NP (14 Sap(t)/a)® 1- W

Model 2: “Exact yield” model. We can account for the reference swap’s schedule and day count
exactly by approximating

P(t,T;) H 1
]D(t7 Ta) j=at1 1+ Tjsaﬂ(t)
and
P(t, T,
Pt,T) =~ (t, Ta) N
(1+ Ta+15a,5(t))
where A = ﬁ Therefore
B i B
1 P(t,T.) 1
NP = P(t,T,) Ti =1 —_—
t 2\ swm ) - son U AL esse
and
P(t,T") Sa,p(t) 1
G(S,5(t)) = ~ d
(Sa,5(1)) NPT (U 70180 8015 1~ 1L o) 5rem

This approximates the yield curve as flat and only allows parallel shifts, but has the schedule right.

Model 3: Parallel shifts. This model takes into account the initial yield curve shape, which can be
significant in steep yield curve environments. We still only allow parallel yield curve shifts, so we approximate

P(t7Ti) _ P(OﬂTi) e—(Ti—Ta)s
P(t,T,) P(0,T,)

where s is the amount of the parallel shift to be determined. To determine s, note
Nt p.) 3w pgy 3 POTD
i=a+1 a i=a+1

and hence
P(t,Ty) — P(t,Ts) P(() T,) — p(O’Tﬁ)ef(TﬁfTa)s

NP Y1 TiP(0, T e (1= T)s

Sa,p(t) =



This equation implicitly determines s as a function of S, g(t). Therefore

o _ P(0,Tp) e—(Ts—Ta)s
N o Z 7_ —(T —Ta)s PO, (’) "
i=a+1 a S("ﬁ(t)
and
G(S ( )) B P(t, T/)/P(t,Ta) B ef(T’,Ta)S . Sa 5(t) —(T'=T,)s
a,B = NO"B/P(t T ) - _ POTs) ,(T5—Tu)s - 1— P(0.Ts) e~ (Ts—Ta)s
t y Lo 1 P(O,Ta)e s /Schﬁ(t) P( ) a)

where s is determined implicity in terms of S, (t), by

B
Sas(t) > mP(0,T;)e” 7T = P(0,T,,) — P(0, Tp)e™ To =72,
i=a+1

This model’s limitations are that it allows only parallel shifts of the yield curve and it presumes perfect
correlation between long and short term rates.

Model 4: Non-parallel shifts. We can allow non-parallel shifts by approximating

P@t,Ti) _ P(O,T) o~ [h(T) ~h(To)]s
P(t,T,) P(0,T,)

Then similar to Model 3, we have

S (£)e T =h(Ta)]s

1— %ef[hm—h(ms

G(Sa,5(t) =

where s is determined implicity in terms of S, g(t), by

B
Sas(t) Y 7P(0,Tp)e” MTI=hTls = P(0,T,) — P(0, Tp)e MTo)~hTls,
1=a+1

To complete the model, we need to select the function A(-) which determines the shape of the non-parallel
shift. This is often done by postulating a constant mean reversion

h(T) - h(T,) :% | e r@-T)]

Alternatively, one can choose h(-) by calibrating the vanilla swaptions which have the same start date Ty,
and varying end dates to their market prices.

In either case, under the assumption P(%jg/) = G(S4,5(Tw)), we have
s

B9 [80,(Tu)] = S010) + B9 { | G ] 5,50 (29)

2.3 Hull’s approach to convexity adjustment (LIBOR-in-arrears)

This section is based on Hull [5], Chapter 20. We recall the relation between forward LIBOR rate
F(t;S,T) and zero coupon bond price P(t,-) is given by

P@t,T) 1
P(t,S) 1+7(S,T)F(t;S,T)



Write y; for F(¢;S,T) and define G(y) = m Then Taylor expansion gives

P(t,T) . - ’ 1 2
PL,S) G(ye) = Glyo) + G'(y0) (ye — o) + 5G"(y0) (ye — o)
Under the S-forward measure Qg, E?S [g&g” = % = G(yo). So taking expectation of both sides of
the Taylor expansion, we have G(yo) ~ G(yo) + G’ (yo) (E9[ye] — yo) + 3G (yo) ES[(y¢ — yo)?]. This gives
1 G/l
E9S[y] =~ yo — > (yO)EQS[(yt —10)°]-

2 G'(yo)
Let t = S and approximate E95[(ys — yo)?] by 0?y2S with o the volatility of y. We then have

7(S,T)F(0;S,T)o2S
14 7(S,T)F(0; S, T)]

EQs[L(S,T)] ~ F(0;5,T) [1 +

This is the first order approximation of convexity adjustment formula (@) Note the approximation of
E9s[(ys — y0)?] by 0%y2S is more or less equivalent to assuming yg is lognormally distributed.

2.4 Option on interest rates paid at arbitrary time under linear
rate model

In this section, we investigate European options on interest rates like LIBOR L(S,T) for period [S,T]
or CMS rates S, g(T) for tenure structure 7 = {T, To+1, - ,T3}. The payment date of the option is an
arbitrary time point 7" with 7" > S or T" > T, respectively.

Of particular interest are caps and floors or binaries. For standard caps and floors on LIBOR, we have
T’ = T and the standard market model postulates a lognormal distribution of L(S,T) under the forward
measure Qp. For standard option on a swap rate S, 5(Ty), i.e. swaptions, the market uses a lognormal
distribution for S, g(T,) under the swap measure Q*”. However in the general case, i.e. for options on
LIBOR or CMS with arbitrary payment date T’, a lognormal model would be inconsistent with the market
model for standard options. For example, if L(S,T) is lognormal under Qr, it cannot be lognormal under

s in general:
i _P(0,S) o, [ fL(S,T))
E°T[f(L(S,T))] = P(0,7) E¢ [1 +7(S, T)L(S, T)] .

We follow the general setup of linear rate model. Yy is a floating interest rate which is set at time S and
(N,Qn) denotes the “market” numeraire pair associated with Ys. We assume that the distribution of Yg
under @y is lognormal with volatility oy,

1
Ys = Yyexp {Jyws - 2032/5} ,

where W is a_standard Brownian motion. For a payment date 77 > S, we further assume a linear rate model
of the form (@)
P(S,T")
Ns
Recall that for the case of Yo = L(5,T), Ns = P(S,T), and T’ = S, i.e. LIBOR-in-arrears, the assumption
of a linear rate model is trivially satisfied and there is no restriction.

=a+b(T")Ys.

We first consider the valuation of standard options on the rate Yg but the option payout is at some
arbitrary time 7’ > S. The value of a call option with strike K is then
N EQ + Q + P05, T") Q + ,
P(0,T)E°™ [(Ys — K)*] = NoE?Y |(Ys — K) o | = NoETY [(Ys — K)"(a+b(T")Ys)]
s
Yo®(dy)(a — b(T")K) — aK®(dy) + b(T')Y2e ¥ S®(dy + oy /S)

= PO.T) a+b(1T"Y,




where ®(-) is the c.d.f. of the standard normal distribution,

dlz 111(%)4—%0’32/57 d2: K

UY\/§ O’Y\/§

It is desirable to be able to use standard valuation formula (i.e. Black’s formula) also for options on
interest rates which are irregularly paid. For this purpose, we assume Yy is lognormally distributed under
Q-+, with adjusted volatility.

2

Using formula (@), ie. B9 [Ys] =Y, [1 + %(ews - 1)}, and moment matching, we can derive

In (%) - 1028

— 1
Yo x B9 [¥s]exp {05 Wa - Lo %5 .

where W is a standard Brownian motion under @7/ and

(a+ b(T")Yy)(a+ b(T")Yye2ovS)
(a+ b(T")Yye+5)2

(03)* =0y +1n

/S. (2.10)

This will give option price via Black’s formula.

With the above lognormal approximation, we can consider an exchange option involving two interest
rates, Y7 and Yo. We assume Y7 and Y, are set (fixed) at times S; and Ss, respectively, with S; < S,. For
example, Y7 and Y3 could be LIBOR rates L(S7,T7) and L(Ss, Ts) referring to different fixing dates S1, So
(e.g. LIBOR and LIBOR-in-arrears). One could also think of two CMS rates to be set at the same date but
with different tenors.

Suppose the option’s payoff is (Yo —Y7)™, paid at time 77 > max{S1, S2}. In view of the above lognormal
approximation, we can assume that both interest rates are lognormal under Q7 (i = 1,2)

Wi 1524,
Y; — Y;OeUsti 20151, Y;»O _ EQT/ D/l]7

with E97'[V;] given by formula (@), (@), or (@) and W' standard Brownian motion under Q7. Suppose
the instantaneous correlation between W' and W2 is p, the fair price of the exchange option is then given
by

P(0, T")[Yy'N(b1) = YN (b)),

where
0 0
In (%) + %(U%Sl + U%SQ - 2010’2[)51) In (%) — %(0’%51 + U%SQ — 20’10’2p51)

bl = y V2 =
\/0%314-0'%52—2010'2[)51 \/O’%Sl +J§SQ_20—10-2[)51

For details of the computation, see Boenkost and Schmidt [lf], Section 4.4, Proposition 7.

Remark 4. The market standard method of valuing options on convexity adjusted rates is to apply the Black
formula using the convexity adjusted rate as the forward rate. But to be conceptually correct, we should also
convezity adjust volatility by formula ). These two adjustments combined is equivalent to assuming the
rate is lognormal under the T'-forward measure Q.

10
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