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Abstract

Elements of convexity adjustment in interest rate derivative pricing.
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Chapter 1

Introduction

In this note, we summarize various results on convexity adjustment. The exposition is based on Boenkost
and Schmidt [1], [2], Hagan [3], Hull [5], Hunt and Kennedy [4], Lesniewski [6], and Pelsser [8].

Denote by P (t, T ) (0 ≤ t ≤ T ) the time-t value of a zero coupon bond with maturity T . τ(S, T ) is the
year fraction between time S and time T (S < T ). The simply-compounded forward interest rate F (t;S, T )
is defined as

F (t;S, T ) =
1

τ(S, T )

(
P (t, S)

P (t, T )
− 1

)
.

Suppose Tα < Tα+1 < · · · < Tβ is a set of future times such that the LIBOR rate is reset at Tα, · · · , Tβ−1

and is paid at Tα+1, · · · , Tβ for a floating-rate note. The forward swap rate Sα,β(t) at time t for the set of
times T = {Tα, Tα+1, · · · , Tβ} (t ≤ Tα) and year fractions τ = {τα+1, · · · , τβ} (τi = τ(Ti−1, Ti)) is defined as

Sα,β(t) =
P (t, Tα)− P (t, Tβ)∑β

i=α+1 τiP (t, Ti)
.

These two rates often appear as the underlyings in interest rate derivatives, and will serve as the prototype
for convexity adjustment.
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Chapter 2

Convexity adjusted interest rates

2.1 LIBOR
The LIBOR rate L(S, T ) = F (S;S, T ) for the interval [S, T ] is given by

L(S, T ) =
1

τ(S, T )

(
1

P (S, T )
− 1

)
.

Under the forward measure QT for which P (·, T ) is the numeraire, F (t;S, T ) is a martingale and therefore
EQT [L(S, T )] = F (0;S, T ). This leads to the pricing formula of a floater, which resets LIBOR at time S and
makes payment at time T .

LIBOR-in-arrears

For LIBOR-in-arrears, we need to evaluate EQS [L(S, T )], where QS is the forward measure for which
P (·, S) is the numeraire. The goal is to express EQS [L(S, T )] in terms of the forward rate F (0;S, T ) plus
some “convexity” adjustment (recall EQT [L(S, T )] = F (0;S, T )):

EQS [L(S, T )] = EQT

[
L(S, T )

P (S, S)/P (0, S)

P (S, T )/P (0, T )

]
= EQT

[
L(S, T ) · (1 + τ(S, T )L(S, T )) · P (0, T )

P (0, S)

]
= EQT

[
L(S, T ) · 1 + τ(S, T )L(S, T )

1 + τ(S, T )F (0;S, T )

]
=

F (0;S, T ) + τ(S, T )EQT [L2(S, T )]

1 + τ(S, T )F (0;S, T )

Note EQT [L2(S, T )] = VarQT
(L(S, T )) + (EQT [L(S, T )])2, we conclude

EQS [L(S, T )] = F (0;S, T ) +
τ(S, T )VarQT

(L(S, T ))

1 + τ(S, T )F (0;S, T )
(2.1)

Under the so-called market model which is the model underlying the market valuation for caps, the
LIBOR L(S, T ) is lognormal under QT with volatility σ,

L(S, T ) = F (S;S, T ) = F (0;S, T ) exp
{
σWS − 1

2
σ2S

}
,

where W is a standard Brownian motion. In this case, VarQT
(L(S, T )) = F 2(0;S, T )(eσ

2S − 1) and formula
(2.1) becomes

EQS [L(S, T )] = F (0;S, T )

[
1 +

τ(S, T )F (0;S, T )(eσ
2S − 1)

1 + τ(S, T )F (0;S, T )

]
. (2.2)
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LIBOR paid at arbitrary time under the linear rate model

Suppose the payment is made at an arbitrary time T ′ ∈ [S, T ]. This is the case of Asian floater, where
S and T are the starting time and ending time of a coupon period, respectively. Then

EQT ′ [L(S, T )] = EQT

[
P (S, T ′)/P (0, T ′)

P (S, T )/P (0, T )
L(S, T )

]
The linear rate model assumes

P (S, T ′)

P (S, T )
= a+ b(T ′)L(S, T ), ∀T ′ ∈ [S, T ]

which requires a = 1 by setting T ′ = T . This is effectively equivalent to assuming

L(T ′, T ) =
b(T ′)

τ(T ′, T )
L(S, T ), ∀T ′ ∈ [S, T ].

Moreover, the martingale property dictates

P (0, T ′)

P (0, T )
= EQT

[
P (S, T ′)

P (S, T )

]
= a+ b(T ′)F (0;S, T ).

So we have b(T ′) =
(

P (0,T ′)
P (0,T ) − 1

)
/F (0;S, T ) = τ(T ′,T )F (0;T ′,T )

F (0;S,T ) . In summary, the linear rate model
assumes

L(T ′, T )

L(S, T )
=

F (0;T ′, T )

F (0;S, T )
, ∀T ′ ∈ [S, T ] (2.3)

which can be summarized in words as

The ratio of LIBOR rates over the interval [T ′, T ] and [S, T ] is equal to the ratio of time-zero forward
rates over the same intervals.

Note the case of LIBOR-in-arrears, where T ′ = S, satisfies the assumption of linear rate model.
Under the linear rate model assumption, we easily deduce that

EQT ′ [L(S, T )] = F (0;S, T )

[
1 +

1− P (0, T )/P (0, T ′)

F 2(0;S, T )
VarQT

(L(S, T ))

]
, ∀T ′ ∈ [S, T ] (2.4)

Remark 1. The original motivation for the linear rate model is probably the consideration that the “nat-
ural rate” under T -forward measure QT is L(S, T ). So one would like to use L(S, T ) to approximate
P (S, T ′)/P (S, T ), and linear function is obviously the simplest. This idea can be generalized to that of
making the Radon-Nikodym derivative a function of the payout rate.

Remark 2. For T ′ = S, formula (2.4) reduces to formula (2.1).

Under the market model where L(S, T ) is lognormal under QT with volatility σ,

L(S, T ) = F (0;S, T )eσWS− 1
2σ

2S

and formula (2.4) becomes more explicit:

EQT ′ [L(S, T )] = F (0;S, T )

[
1 +

(
1− P (0, T )

P (0, T ′)

)
(eσ

2S − 1)

]
.
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2.2 CMS
From the definition of forward swap rate Sα,β(t), if we choose the annuity Nα,β

t =
∑β

i=α+1 τiP (t, Ti)

as numeraire and denote by Qα,β the associated martingale measure (the “swap measure”), we have by
martingale property

EQα,β

[Sα,β(Tα)] = Sα,β(0).

If the payment is to be paid at some time T ′ > Tα, we need to compute under the T ′-forward measure QT ′

EQT ′ [Sα,β(Tα)] = EQα,β

[
P (Tα, T

′)/P (0, T ′)

Nα,β
Tα

/Nα,β
0

Sα,β(Tα)

]
=

Nα,β
0

P (0, T ′)
EQα,β

[
P (Tα, T

′)

Nα,β
Tα

Sα,β(Tα)

]
.

The goal is to express EQT ′ [Sα,β(Tα)] in terms of the time-zero swap rate Sα,β(0) plus some “convexity”
adjustment.

CMS paid at arbitrary time under the linear swap rate model

Under the swap measure Qα,β associated with the annuity numeraire Nα,β
t =

∑β
i=α+1 τiP (t, Ti), the

entity most convenient for computation is the swap rate Sα,β(Tα). Therefore, a natural assumption for the
so-called linear swap rate model is

P (Tα, T
′)

Nα,β
Tα

= a+ b(T ′)Sα,β(Tα), T
′ ≥ Tα.

To determine a and b, we first take expectation of both sides under the swap measure and use the
martingale property to get

P (0, T ′)

Nα,β
0

= a+ b(T ′)Sα,β(0).

This gives b(T ′) = 1
Sα,β(0)

[
P (0,T ′)

Nα,β
0

− a
]
. To deduce the second equation for a and b, we note

1 =

∑β
i=α+1 τiP (Tα, Ti)

Nα,β
Tα

=

β∑
i=α+1

τi [a+ b(Ti)Sα,β(Tα)] = a

(
1− Sα,β(Tα)

Sα,β(0)

) β∑
i=α+1

τi +
Sα,β(Tα)

Sα,β(0)
.

Therefore, we can solve for a: a = 1∑β
i=α+1 τi

. In summary, the linear swap rate model makes the
assumption 

P (Tα,T ′)

Nα,β
Tα

= a+ b(T ′)Sα,β(Tα), T
′ ≥ Tα

a = 1∑β
i=α+1 τi

b(T ′) = 1
Sα,β(0)

[
P (0,T ′)

Nα,β
0

− 1∑β
i=α+1 τi

]
, T ′ ≥ Tα

(2.5)

and consequently

EQT ′ [Sα,β(Tα)] = Sα,β(0)

1 + 1− P (0,Tα)−P (0,Tβ)

Sα,β(0)P (0,T ′)
∑β

i=α+1 τi

S2
α,β(0)

VarN (Sα,β(Tα))

 (2.6)

where VarN (Sα,β(Tα)) is the variance of the swap rate Sα,β(Tα) under the swap measure Qα,β .
Under the so-called market model for swpation, it’s assumed the swap rate Sα,β(t) satisfies

dSα,β(t) = σα,βSα,β(t)dW
α,β
t , t ≤ Tα
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where Wα,β is a standard Brownian motion under the swap measure Qα,β . The variance of the swap rate
Sα,β(Tα) under the swap measure is therefore S2

α,β(0)
(
eσ

2
α,βTα − 1

)
. Then

EQT ′ [Sα,β(Tα)] = Sα,β(0)

[
1 +

(
1− P (0, Tα)− P (0, Tβ)

Sα,β(0)P (0, T ′)
∑β

i=α+1 τi

)(
eσ

2
α,βTα − 1

)]
.

Remark 3. The linear rate model for Libor and CMS can be generalized as follows. Write YS for a floating
rate which is set at time S. Let N , QN denote the natural (“market”) numeraire pair associated with YS

and all we need is
EQN [YS ] = Y0,

where Y0 is known and a function of the yield curve P (0, ·) today.
We are interested in today’s price of the rate YS to be paid at some time T ′ ≥ S,

P (0, T ′)EQT ′ [YS ] = N0E
QN

[
P (S, T ′)

NS
YS

]
.

Assume a linear rate model of the form

P (S, T ′)

NS
= a+ b(T ′)YS (2.7)

with some deterministic a, b(T ′) which have to be determined accordingly to make the model consistent. We
then have

EQT ′ [YS ] = Y0

[
1 +

b(T ′)

Y0(a+ b(T ′)Y0)
VarQN

(YS)

]
(2.8)

If in addition, the distribution of YS under QN is lognormal with volatility σY : YS = Y0e
σY WS− 1

2σ
2
Y S, then

EQT ′ [YS ] = Y0

[
1 +

b(T ′)Y0

a+ b(T ′)Y0
(eσ

2
Y S − 1)

]
.

Under the linear rate model for Libor, YS = L(S, T ) and NS = P (S, T ); under the linear rate mode for
CMS, YS = Sα,β(Tα) and NS = Nα,β

Tα
.

As a last comment, the linear approximation of linear rate model does seem very crude at first, but can be
justified by the following argument. Convexity corrections only become sizeable for large maturities. However,
for large maturities the term structure almost moves in parallel. Hence, a change in the level of the long end
of the curve is well described by the rate Y . Furthermore, for parallel moves in the curve, the ratio P (S,T ′)

NS

is closely approximated by a linear function of Y , which is exactly what the linear rate model does. Hence,
exactly for long maturities the assumptions of the linear rate model become quite accurate. This leads to a
good approximation of the convexity correction for long maturities.

CMS paid at arbitrary time under Hagan’s model

As seen in the previous section, the key to the convexity adjustment involving CMS rate, is to express
P (Tα,T ′)

Nα,β
Tα

as a function of swap rate Sα,β(Tα):

P (Tα, T
′)

Nα,β
Tα

= G(Sα,β(Tα)).

In this section, we explain several such models proposed by Hagan [3].
Model 1: Standard model. The standard method for computing convexity corrections uses bond

math approximations: payments are discounted at a flat rate, and the coverage (day count fraction) for each
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period is assumed to be 1/q, where q is the number of periods per year. At any date t ≤ Tα, the annuity is
approximated by

Nα,β
t = P (t, Tα)

β∑
i=α+1

τi
P (t, Ti)

P (t, Tα)
≈ P (t, Tα)

β−α∑
j=1

1/q

[1 + Sα,β(t)/q]j
=

P (t, Tα)

Sα,β(t)

[
1− 1

(1 + Sα,β(t)/q)n

]

Here the forward swap rate Sα,β(t) is used as the discount rate, since it represents the average rate over the
life of the reference swap. In a similar spirit, the zero coupon bond for the pay date T ′ is approximated as

P (t, T ′) ≈ P (t, Tα)

(1 + Sα,β(t)/q)∆

where ∆ = T ′−Tα

Tα+1−Tα
. Combined, the standard “bond math model” leads to the approximation

G(Sα,β(t)) =
P (t, T ′)

Nα,β
t

≈ Sα,β(t)

(1 + Sα,β(t)/q)∆
· 1

1− 1
(1+Sα,β(t)/q)n

Model 2: “Exact yield” model. We can account for the reference swap’s schedule and day count
exactly by approximating

P (t, Ti)

P (t, Tα)
≈

i∏
j=α+1

1

1 + τjSα,β(t)

and
P (t, T ′) ≈ P (t, Tα)

(1 + τα+1Sα,β(t))∆

where ∆ = T ′−Tα

Tα+1−Tα
. Therefore

Nα,β
t ≈ P (t, Tα)

β∑
i=α+1

τi

 i∏
j=α+1

1

1 + τjSα,β(t)

 =
P (t, Tα)

Sα,β(t)

(
1−

β∏
i=α+1

1

1 + τiSα,β(t)

)

and

G(Sα,β(t)) =
P (t, T ′)

Nα,β
t

≈ Sα,β(t)

(1 + τα+1Sα,β(t))∆
1

1−
∏β

i=α+1
1

1+τiSα,β(t)

This approximates the yield curve as flat and only allows parallel shifts, but has the schedule right.

Model 3: Parallel shifts. This model takes into account the initial yield curve shape, which can be
significant in steep yield curve environments. We still only allow parallel yield curve shifts, so we approximate

P (t, Ti)

P (t, Tα)
=

P (0, Ti)

P (0, Tα)
e−(Ti−Tα)s

where s is the amount of the parallel shift to be determined. To determine s, note

Nα,β
t = P (t, Tα)

β∑
i=α+1

τi
P (t, Ti)

P (t, Tα)
= P (t, Tα)

β∑
i=α+1

τi
P (0, Ti)

P (0, Tα)
e−(Ti−Tα)s

and hence
Sα,β(t) =

P (t, Tα)− P (t, Tβ)

Nα,β
t

=
P (0, Tα)− P (0, Tβ)e

−(Tβ−Tα)s∑β
i=α+1 τiP (0, Ti)e−(Ti−Tα)s

.
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This equation implicitly determines s as a function of Sα,β(t). Therefore

Nα,β
t

P (t, Tα)
=

β∑
i=α+1

τi
P (0, Ti)

P (0, Tα)
e−(Ti−Tα)s =

1− P (0,Tβ)
P (0,Tα)e

−(Tβ−Tα)s

Sα,β(t)

and

G(Sα,β(t)) =
P (t, T ′)/P (t, Tα)

Nα,β
t /P (t, Tα)

=
e−(T ′−Tα)s[

1− P (0,Tβ)
P (0,Tα)e

−(Tβ−Tα)s
]
/Sα,β(t)

=
Sα,β(t)e

−(T ′−Tα)s

1− P (0,Tβ)
P (0,Tα)e

−(Tβ−Tα)s

where s is determined implicity in terms of Sα,β(t), by

Sα,β(t)

β∑
i=α+1

τiP (0, Ti)e
−(Ti−Tα)s = P (0, Tα)− P (0, Tβ)e

−(Tβ−Tα)s.

This model’s limitations are that it allows only parallel shifts of the yield curve and it presumes perfect
correlation between long and short term rates.

Model 4: Non-parallel shifts. We can allow non-parallel shifts by approximating

P (t, Ti)

P (t, Tα)
=

P (0, Ti)

P (0, Tα)
e−[h(Ti)−h(Tα)]s

Then similar to Model 3, we have

G(Sα,β(t)) =
Sα,β(t)e

−[h(T ′)−h(Tα)]s

1− P (0,Tβ)
P (0,Tα)e

−[h(Tβ)−h(Tα)]s

where s is determined implicity in terms of Sα,β(t), by

Sα,β(t)

β∑
i=α+1

τiP (0, Ti)e
−[h(Ti)−h(Tα)]s = P (0, Tα)− P (0, Tβ)e

−[h(Tβ)−h(Tα)]s.

To complete the model, we need to select the function h(·) which determines the shape of the non-parallel
shift. This is often done by postulating a constant mean reversion

h((T )− h(Tα) =
1

κ

[
1− e−κ(T−Tα)

]
.

Alternatively, one can choose h(·) by calibrating the vanilla swaptions which have the same start date Tα

and varying end dates to their market prices.

In either case, under the assumption P (Tα,T ′)

Nα,β
Tα

= G(Sα,β(Tα)), we have

EQT ′ [Sα,β(Tα)] = Sα,β(0) + EQα,β

{[
G(Sα,β(Tα))

G(Sα,β(0))
− 1

]
Sα,β(Tα)

}
(2.9)

2.3 Hull’s approach to convexity adjustment (LIBOR-in-arrears)
This section is based on Hull [5], Chapter 20. We recall the relation between forward LIBOR rate

F (t;S, T ) and zero coupon bond price P (t, ·) is given by

P (t, T )

P (t, S)
=

1

1 + τ(S, T )F (t;S, T )
.
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Write yt for F (t;S, T ) and define G(y) = 1
1+τ(S,T )y . Then Taylor expansion gives

P (t, T )

P (t, S)
= G(yt) ≈ G(y0) +G′(y0)(yt − y0) +

1

2
G′′(y0)(yt − y0)

2

Under the S-forward measure QS , EQS

[
P (t,T )
P (t,S)

]
= P (0,T )

P (0,S) = G(y0). So taking expectation of both sides of
the Taylor expansion, we have G(y0) ≈ G(y0) +G′(y0)

(
EQS [yt]− y0

)
+ 1

2G
′′(y0)E

QS [(yt − y0)
2]. This gives

EQS [yt] ≈ y0 −
1

2

G′′(y0)

G′(y0)
EQS [(yt − y0)

2].

Let t = S and approximate EQS [(yS − y0)
2] by σ2y20S with σ the volatility of y. We then have

EQS [L(S, T )] ≈ F (0;S, T )

[
1 +

τ(S, T )F (0;S, T )σ2S

1 + τ(S, T )F (0;S, T )

]
This is the first order approximation of convexity adjustment formula (2.2). Note the approximation of
EQS [(yS − y0)

2] by σ2y20S is more or less equivalent to assuming yS is lognormally distributed.

2.4 Option on interest rates paid at arbitrary time under linear
rate model

In this section, we investigate European options on interest rates like LIBOR L(S, T ) for period [S, T ]
or CMS rates Sα,β(Tα) for tenure structure T = {Tα, Tα+1, · · · , Tβ}. The payment date of the option is an
arbitrary time point T ′ with T ′ ≥ S or T ′ ≥ Tα, respectively.

Of particular interest are caps and floors or binaries. For standard caps and floors on LIBOR, we have
T ′ = T and the standard market model postulates a lognormal distribution of L(S, T ) under the forward
measure QT . For standard option on a swap rate Sα,β(Tα), i.e. swaptions, the market uses a lognormal
distribution for Sα,β(Tα) under the swap measure Qα,β . However in the general case, i.e. for options on
LIBOR or CMS with arbitrary payment date T ′, a lognormal model would be inconsistent with the market
model for standard options. For example, if L(S, T ) is lognormal under QT , it cannot be lognormal under
QS in general:

EQT [f(L(S, T ))] =
P (0, S)

P (0, T )
EQS

[
f(L(S, T ))

1 + τ(S, T )L(S, T )

]
.

We follow the general setup of linear rate model. YS is a floating interest rate which is set at time S and
(N,QN ) denotes the “market” numeraire pair associated with YS . We assume that the distribution of YS

under QN is lognormal with volatility σY ,

YS = Y0 exp
{
σY WS − 1

2
σ2
Y S

}
,

where W is a standard Brownian motion. For a payment date T ′ ≥ S, we further assume a linear rate model
of the form (2.7)

P (S, T ′)

NS
= a+ b(T ′)YS .

Recall that for the case of YS = L(S, T ), NS = P (S, T ), and T ′ = S, i.e. LIBOR-in-arrears, the assumption
of a linear rate model is trivially satisfied and there is no restriction.

We first consider the valuation of standard options on the rate YS but the option payout is at some
arbitrary time T ′ ≥ S. The value of a call option with strike K is then

P (0, T ′)EQT ′
[
(YS −K)+

]
= N0E

QN

[
(YS −K)+

P (S, T ′)

NS

]
= N0E

QN
[
(YS −K)+(a+ b(T ′)YS)

]
= P (0, T ′)

Y0Φ(d1)(a− b(T ′)K)− aKΦ(d2) + b(T ′)Y 2
0 e

σ2
Y SΦ(d1 + σY

√
S)

a+ b(T ′)Y0
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where Φ(·) is the c.d.f. of the standard normal distribution,

d1 =
ln
(
Y0

K

)
+ 1

2σ
2
Y S

σY

√
S

, d2 =
ln
(
Y0

K

)
− 1

2σ
2
Y S

σY

√
S

.

It is desirable to be able to use standard valuation formula (i.e. Black’s formula) also for options on
interest rates which are irregularly paid. For this purpose, we assume YS is lognormally distributed under
QT ′ , with adjusted volatility.

Using formula (2.8), i.e. EQT ′ [YS ] = Y0

[
1 + b(T ′)Y0

a+b(T ′)Y0
(eσ

2
Y S − 1)

]
, and moment matching, we can derive

YS ≈ EQT ′ [YS ] exp
{
σ∗
Y ŴS − 1

2
(σ∗

Y )
2S

}
,

where Ŵ is a standard Brownian motion under QT ′ and

(σ∗
Y )

2 = σ2
Y + ln

[
(a+ b(T ′)Y0)(a+ b(T ′)Y0e

2σ2
Y S)

(a+ b(T ′)Y0eσ
2
Y S)2

]
/S. (2.10)

This will give option price via Black’s formula.
With the above lognormal approximation, we can consider an exchange option involving two interest

rates, Y1 and Y2. We assume Y1 and Y2 are set (fixed) at times S1 and S2, respectively, with S1 ≤ S2. For
example, Y1 and Y2 could be LIBOR rates L(S1, T1) and L(S2, T2) referring to different fixing dates S1, S2

(e.g. LIBOR and LIBOR-in-arrears). One could also think of two CMS rates to be set at the same date but
with different tenors.

Suppose the option’s payoff is (Y2−Y1)
+, paid at time T ′ ≥ max{S1, S2}. In view of the above lognormal

approximation, we can assume that both interest rates are lognormal under QT ′ (i = 1, 2)

Yi = Y 0
i e

σiW
i
Si

− 1
2σ

2
i Si , Y 0

i = EQT ′ [Yi],

with EQT ′ [Yi] given by formula (2.4), (2.6), or (2.8) and W i standard Brownian motion under QT ′ . Suppose
the instantaneous correlation between W 1 and W 2 is ρ, the fair price of the exchange option is then given
by

P (0, T ′)[Y 0
2 N(b1)− Y 0

1 N(b2)],

where

b1 =
ln
(

Y 0
2

Y 0
1

)
+ 1

2 (σ
2
1S1 + σ2

2S2 − 2σ1σ2ρS1)√
σ2
1S1 + σ2

2S2 − 2σ1σ2ρS1

, b2 =
ln
(

Y 0
2

Y 0
1

)
− 1

2 (σ
2
1S1 + σ2

2S2 − 2σ1σ2ρS1)√
σ2
1S1 + σ2

2S2 − 2σ1σ2ρS1

For details of the computation, see Boenkost and Schmidt [1], Section 4.4, Proposition 7.

Remark 4. The market standard method of valuing options on convexity adjusted rates is to apply the Black
formula using the convexity adjusted rate as the forward rate. But to be conceptually correct, we should also
convexity adjust volatility by formula (2.10). These two adjustments combined is equivalent to assuming the
rate is lognormal under the T ′-forward measure QT ′ .
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