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Abstract

A survey of the Fundamental Theorems of Asset Pricing in mathematical finance.
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Chapter 1

Introduction

This note serves as a summary of the numéraire change techniques as presented in Brigo and Mercurio [3]
§2.2 and §2.3. The idea is to present the main results in a logically “natural” order so that we can easily
remember them.

Roughly speaking, we are concerned with the following question: Is the Fundamental Theorem of Asset
Pricing (FTAP) invariant under numéraire change?

The answer is negative. The key idea of this presentation is therefore the following: the version of FTAP
as formulated in Delbaen and Schachermayer [§] starts from relaxing the no-arbitrage condition, so that
it states its most general results in terms of local martingales or even o-martingales. This is insufficient
for the practical usage of risk-neutral pricing, as we really need martingale property, not local martingale
property. We should instead start from the other way around: insist on martingale property and derive the
right formulation of no-arbitrage.

In Section P and Y4, we review the classical formulation of the first and second Fundamental Theorem of
Asset Pricing (FTAP). Such a formulation is not invariant under numéraire change. In Section g and f, we
review the “right” formulation of Fundamental Theorem of Asset Pricing, insisting on martingale measures
instead of local martingales measures. Such a formulation turns out to be invariant under numéraire change.
In Section f, we give concrete formulas for the case of It6 processes.

This note is based on a series of papers by Delbaen and Schachermayer (8], [9], [10], [11], [12]), Schacher-
mayer [24], Geman et al. [16], Yan et al. ([29], [22], [B0], [28]), and Shiryaev [25], as well as the references
therein.



Chapter 2

Fundamental Theorem of Asset
Pricing: classical formulation

We first summarize the state of the art before Delbaen and Schachermayer [8]. The case when the time set
is finite is completely settled in Dalang et al. [5] and the use of simple or even elementary integrands as
trading strategies is no restrction at all. For the case of discrete but infinite time sets, the problem is solved
in Schachermayer [24]; the case of continuous and bounded processes in continuous time is solved in Delbaen
[6]. In these two cases the theorems are stated in terms of simple integrands and limits of sequences and by
using the concept of no free lunch with bounded risk.

To state the results of Delbaen and Schachermayer [R], we consider a probability space (2, F, P) and a
right-continuous filtration F = {F; : 0 <t < T} (T < o0). In the given economy, (K + 1) non-dividend
paying securities are traded continuously from time 0 until time T". Their prices are modeled by a (K 4 1)-
dimensional adapted, positive semimartingale S = {(S?, S}, .-+, SE):0 <t < T}. We assume S° = 1.

Definition 2.1. (Yan [29] p.661, p.662) A trading strategy is an RET!-valued predictable process ¢ =
{¢¢ : 0 <t < T} which is integrable w.r.t semimartingale S.B The value process associated with a strategy
¢ is defined by

K
Vi(¢) = ¢uSe =) dfSE0<t<T,
k=0

and the gains process associated with a strategy ¢ is defined by

t K t
Gi(9) = (08 = [ ouds, = [ hasto<e<r.
k=0

A trading strategy ¢ is self — financing if
Vi(¢) = Vo(9) + Gi(9),0 < t < T.

Definition 2.2. (Delbaen and Schachermayer [§] Definition 2.7) A trading strategy ¢ is admissible if
G(9) is bounded from below, i.e. there is a constant M such that G¢(¢) > —M a.s. for allt > 0.

Definition 2.3. (Delbaen and Schachermayer [10] or Shiryaev [25] p.650, VI §2a.2 Definition 1) We say
that the vector of price processes S salisfies the condition of no arbitrage (NA) at time T if for each
self-financing strategy ¢, we have

P(Gr(¢) > 0) = 1 = P(Gr(¢) = 0) = 1.

1This assumption hides the fact that we need a numéraire (i.e. a positive discounter), since 1 is used as the numéraire.
2We need here the notion of integration w.r.t. a vector-valued semimartingale, which is is defined globally, not component-
wisely (see Jacod [19]). This is because the notion of componentwise stochastic integral is insufficient for stating FTAP in the
y p g g
most general setting (see Shiryaeve [25] p.635, Shiryaev_and Cherny [26]). However, when ¢ is locally bounded, componentwise
integration is sufficient for stating FTAP. See Cherny [4] for more details.




The above concept of no arbitrage is already sufficient for stating FTAP in the discrete time case, but
for continuous time case, we need the following concept:

Definition 2.4. (Delbaen and Schachermayer [8§] Definition 2.8 or Shiryaev [25] p.650, VI §2a.2 Definition
3) Let
K ={Gr(¢)|¢ admissible and G (@) = lims_, oo Gt(9) exists a.s. if T = oo}

and
C={ge L>®(Q,Fr,P)| g < [ for some f € K}.

We say that S satisfies the condition of no free lunch with vanishing risk (NFLVR) for admissible
strategies, if -
CNLEQ, Fr, P) = {0},

where C denotes the closure of C with respect to the norm topology of L= (S, Fr, P).

To understand intuitively the NFLVR condition, we note S allows for a free lunch with vanishing risk, if
there is f € LY(Q, Fr, P) \ {0}, a sequence (Gr(dn))5Zg C K, where (¢™)52 is a sequence of admissible
integrands, and (g,)5%, C L>®(Q, Fr, P) satisfying g, < Gr(¢,), such that

nh_{{.lo If = gnlz,7r,p) = 0.

In particular the negative parts (G7(¢n))5%, and (g,, )52, tend to zero uniformly, which explains the term
“vanishing risk”.
The last piece of our vocabulary for stating FTAP is the following one.

Definition 2.5. (Shiryaev [23] p.652, VI §2b.1 and p.656, VI §2¢.2) An equivalent martingale measure
(EMM) is a probability measure equivalent to P and under which S is a martingale. An equivalent local
martingale measure (ELMM) is a probability measure equivalent to P and under which S is a local
martingale. An equivalent o-martingale measure (EoMM) is a probability measure equivalent to P and
under which S is a o-martingale, i.e. S = So+ H - M with M a martingale and H a positive predictable
process integrable w.r.t M.

Now we are ready to state a list of results on the classical formulation of Fundamental Theorem of Asset
Pricing:

Theorem 2.1. (Shiryaev (23] p.655, VI §2¢, Theorem 1, 2, and Corollary) Let S be defined as above.
a) If S is bounded, then
NFLVR << EMM.

b) If S is locally bounded, then
NFLVR < ELMM.

¢) If S is a general semimartingale, then
NFLVR < EocMM.

For a clearer insight into the_connection between the above results and the corresponding results in the
discrete-time case (see Theorem @), we reformulate the theorem as follows.
In general semimartingale models Sy = (1, S}, - ,StK)ogth; T < o0, we have

EMM = ELMM = EcMM < NFLVR.
When S is moreover locally bounded, we have

EMM = ELMM < EcMM < NFLVR.
When S is further assumed to be bounded, we have

EMM < ELMM < EoMM < NFLVR.



As a comparison, we recall FTAP in the discrete-time case.

Theorem 2.2. (Dalang et al. [j]. Also see Delbaen and Schachermayer 1G] Theorem 15) In the discrete-
and finite-time case (i.e. t=0,1,--- T < o0) , we have

EMM < ELMM < EcMM < NA.

Remark 1. For Theorem @ to hold, we need no additional assumptions on trading strategies beside
predictability. We also comment that T < oo is essential for Theorem ; otherwise a counter example
exists (see Shiryaev [25] p.415, V §2b.3). For the case of T = oo, the NA condition needs to be modified to
“no free lunch with bounded risk” (see Schachermayer [24]).

In the above statement of FTAP, we have set S° = 1. In practice, we usually do not have an asset whose

price is identically 1. So FTAP as stated in Theorem and is really a mathematical simplification:
instead of a general semimartingale S = (S°,S!,---, SK), we considered the discounted process:
St SN
SO,8h, S =1, 5 = )
% - ) 5o g0

Therefore we implicitly used S° as a numéraire, and EMM or ELMM should be understood as w.r.t a
numéraire: discounted by this numéraire, S is a martingale or local martingale. So measure and numéraire
appear in a dual pair. Similarly, the notion of admissibility should be understood as “in given numéraire”.
That is, we require G¢(¢) denominated in the numéraire is bounded from below. Formally, we have

Definition 2.6. A numéraire is any strictly positive semimartingale.

Definition 2.7. An equivalent martingale measure QY associated with the numeéraire N is a
probability measure equivalent to P such that S/N is a martingale under Q™.

Definition 2.8. A trading strategy ¢ is admissible under the numéraire N if there is a constant M
such that Gi(¢)/Ny > —M a.s. for all t > 0.

To reconcile any potential conceptual conflicts, we need the following

Lemma 2.1. ¢ is a self-financing strategy if and only if for any numéraire N, we have
K
V(@) _ ko (St
d( , => ¢fd ¥ )
k=0
Proof. Sufficiency is obvious as we can take N; = 1. For necessity, we note by integration-by-part formula
o (Ve
Ny
K K K
dVi(¢) <1> ¢y dSy k ok <1> korak
= ——+Vi_(p)d|—=)+dV(s),1/N| = —— + Spdl — |+ d[S™,1/N
N, T V- | 5 ) +dlV(9),1/N]; kZ:O o kzzoqst a7 I;@ [S*,1/Ns

K dSk 1 K Sk
_ k & 1 i B ) st
: f§¢t{Nt o d(Nt>+d[S’UN]t}—Z@d(z\Z),

where the second “=" has used the observation that

Vi (¢) = Vi(¢) — AVi(4 Z@Sk ZMAS’C Z@S’“



As we change numéraire, a question naturally arises: Is Fundamental Theorem of Asset Pricing invariant
under a numéraire change? This question can be more precisely stated as follows:

1) Under numéraire change, is NFLVR, preserved?

2) Under numéraire change, is the existence of EMM or ELMM preserved?

3) Under numéraire change, if the existence of EMM or ELMM is preserved, is the uniqueness of such a
measure also preserved?

4) How are the equivalent martingale measures related to each other? For example, can we represent the
Radon-Nikodym derivatives in terms of the numéraires?

5) If we change the numéraire N to another numéraire U, does the risk-neutral pricing formula still holds?
That is, for an Fp-measurable random variable £ satisfying suitable integrability conditions, do we have
(t<T)

N,EN [1\2 ]-‘t} =U,EY [U?T ]-"t]?

For the sake of risk-neutral pricing, we shall focus on EMM. The following example justifies our choice:
NFLVR and existence of ELMM are not preserved under numéraire change.

Example 1. (Delbaen [i] or Delbaen and Schachermayer [9], Corollary 5) Let R be the Bessel(3) process
starting from 1, i.e. Ry = |B:| where B is a 3-dimensional Brownian motion starting at some point
2o € R3\ {0} with |x| =1 and | - | is the Euclidean norm. Then R hits origin with probability O and there
exists a 1-dimensional Brownian motion W such that R satisfies the SDE

dt
dRy = dW; + —,
t t + i
where AW, = 320, 280 dB;(1).
For the asset pair (R%, 1) over a time horizon [0,T] (T < o), (R%, 1) is a pair of local martingales under
the original probability P, as it’s easy to verify d (R%) = —dI?Q. Since R% is locally bounded, by Theorem

@ b), the system (R%, 1) satisfies NFLVR.
Suppose we now take % as the numéraire. Discounted by this numéraire, the asset system becomes (1, Ry).
We show R; cannot be a local martingale under a probability measure P’ equivalent to P. Indeed, assume

such a probability measure P’ exists. Define My = ET [%u—t}' By Lemma @ and localization, we can

conclude MR is a local martingale under P. But % is the only local martingale X such that Xg = 1 and
such that X R is a local martingale. So M; = R% is a strict P-local martingale, not a martingale. This
contradiction shows ELMM does not exist, and hence NFLVR property is not preserved under numéraire
change.

The above example gives negative answer to Question 1) and 2) for ELMM. However, for EMM, things
are much better, as we shall see in Section J.

3Here, EMM and ELMM are always understood as being associated with a given numéraire.
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