Java Spring Series

Spring Boot API:
Insurance Quote Application

Build APIs that work -
clearly, confidently, and with purpose.

Gerry Byrne

Spring Boot API

Insurance Quote Application

Step by step instructions

for practical hands-on programming

Gerry Byrne

Copyright © 2025 Gerry Byrne.

All rights reserved. No part of this book may be reproduced in any form without permission

from the author.

ABOUT THE AUTHOR

Gerry Byrne is a Senior Technical Trainer at a Forbes 100 company, where he specializes in
upskilling software engineers who build business critical applications. With a long career as a
teacher, lecturer, and corporate trainer, Gerry brings a rare blend of academic rigor and real-

world insight to his instruction.

He has delivered technical training across a wide spectrum of languages and frameworks,
including Java, Spring, C#, Python, and JavaScript. His expertise in Spring Boot and API
development is grounded in years of hands-on experience teaching modern enterprise
technologies to engineers at all stages of their careers, from new graduates to those re-entering

the workforce, to seasoned professionals.

Gerry’s approach to training emphasizes clarity, practical application, and a deep understanding
of how software development fits into commercial environments. Whether introducing Test-
Driven Development or guiding teams through the intricacies of RESTful API design, he

equips learners with the tools they need to thrive in today’s fast-paced tech landscape.

DEDICATION

Writing a book is a rewarding undertaking, but it requires time, effort and patience. It requires
g g g q > p q
patience from those who help you write the book and those around you in your life.

So, I start by thanking my family for “facilitating’ me as I worked over many hours, days, weeks
and months to write this book.

ACKNOWLEDGMENTS

Writing this book has been a journey, one shaped not only by years of teaching and training,
but also by the people who have inspired, challenged, and supported me along the way.

To my colleagues, and the learners I have worked with, thank you for your curiosity, your
questions, and your willingness to dive deep into the complexities of software development.
You’ve kept me sharp and reminded me why teaching is a privilege.

To the technical training teams I have worked with over the years, your dedication to
excellence and your passion for empowering others have been a constant source of motivation.

I also wish to thank those who have taught me programming over many years and shared their
knowledge. I have learnt so much from them and in writing this book their imprint exists.

To the readers of this book, whether you are just starting out, or refining your Spring Boot
skills, I hope these pages help you build something meaningful. Thank you for letting me be
part of your learning journey.

Table of Contents

What you will learn
On completing the learning, you will:

Introduction - Spring Boot Electrical Items Insurance

1 AGILE USER STORIES
What Is a User Story?

Why Are User Stories Important?
User Stories and Acceptance Criteria
How to Write Effective User Stories

User Stories in Agile Workflows
Sprint Planning
Continuous Collaboration
TDD and BDD Integration
Examples of User Stories in an Online Insurance System

User Stories in Gherkin Format
What is Gherkin?
The GWT Structure
Explaining Gherkin with an Insurance Company Example
Scenario analysis

2 QUICK SPRING BOOT SETUP

Creating a Simple Spring Boot Project
What is pom.xml?
Analysis of the pom.xml code sections

Creating a Basic Controller
Analysis of the HealthCheckController code
Analysis of the DemoApplication code

Creating a Basic Model
Analysis of the DemoApplication code
Analysis of the mapping code

Creating a Basic Service
Analysis of the mapping code

Creating a Basic DTO

What is a DTO?
Analysis of the QuoteResponseDto?
Analysis of the calculatequotevaluedto mapping?

6

1
11

13

15

15

16

16

17

18
18
18
18
19

20
20
20
20
21

23

23
26
26

31
32
34

35
36
37

40
41

43
44

44
45

Summarizing our basic API

3 TEST-DRIVEN DEVELOPMENT
JUnit 5 versus JUnit 4

Creating a Maven Project
pom.xml

Product Type Factor Tests
More Tests

Product Value Factor Tests

Calculate Quote Tests

More robust testing

Separation of Concerns
Modularity
Maintainability
Testability
Application of Separation of Concern in Java and Other Languages
Separation of Concern for the business logic
Separation of Concern for the tests

Create a test suite

Understanding the manifest and jar files
Configure the project to build a jar file

Maven configuration (command/sctipt)

Summary

4 SPRING BOOT API - INSURANCE QUOTE BACKEND

Explanation of common layers
User Stories

Project setup
Starter poms
The Model Class
Data Transfer Objects (DTO)
The Repository Class
The Service Class
Create functionality

Read functionality
Update functionality

47

49

52

53
56

63
70

74
82
86
93
93
93
93
93
94
98
107
110
112
117

119

121

121
123

127
130
132
137
151
154
157

158
158

Delete functionality
Find record by its id functionality

RestTemplate
External Service Client

The Exception Classes

The Controller Class
HTTP responses

Handling HTTP Requests with Spring's Mapping Annotations

Adding database functionality

Configuring the database
Server Port
Database setup
JPA & Hibernate Configuration
H2 Console Access

SQL Records
The Application Class — the main method

Test the endpoints
CORS
HTTP Client in Intelli] IDEA Ultimate Edition

Download Postman
Testing the API with Postman
The database table

Derived Queries - (SQL Queries)
Naming convention
Supported Keywords
Basic Detived Query
Using GreaterThan
Using LessThan
Using And
Using Or
Using Between
Using Like
Using In
Using OrderBy

Optional
Derived queries in the Repository layer
Derived queries in the Service layer
Derived queries in the Controller layer
Why These Endpoints Belong in the Controller

Test the SQL endpoints

160
161

165
165

167

169
169
172

181

182
182
182
182
183

184

186

188
189
190

192

192

198

199
199
200
200
200
200
200
201
201
201
201
201

201
202
203
207
207

210

Quote Calculations as a service

5 PRODUCT DESCRIPTION MICROSERVICE

Creating a Maven Project for the Microservice
Project setup

The database table

Testing the API with Postman

6 CUSTOMER MICROSERVICE
Creating a Maven Project for the Microservice
Project setup
Database Records

The database table

Testing the API with Postman

7 TESTING THE MICROSERVICES INTEGRATION

8 PAGINATION AND DYNAMIC SEARCHING
Pagination with sorting

Dynamic searching

9 VALIDATION
Layered approach for where and what to validate
Global Exception handler
Entity Field Validation
Controller Method Validation
Query Parameter Validation

10 MOCKING

Introduction to mocking
Why We Use Mocking
Mockito — A Popular Mocking Framework

1 LOGGING

Introduction to logging with SLF4]
Controller Layer Logging
Testing the API with Postman
Testing the API controllers with Postman
Service Layer Logging
Testing the API service methods with Postman
Repository Layer Logging
Exceptions Layer Logging

216

219

220
221

248

249

261
261
262
282

284

285

291

298

305

nm

320
320
321
323
324
326

329

329
329
330

338

338
339
340
343
344
349
351
352

12 SWAGGER 355

Introduction to Swagger 355
What is Swagger? 355
The Springdoc OpenAPI Dependency 355
Compatibility with Spring Boot Versions 355
Swagger Integration with our application 356
Generated Endpoints and API Documentation 357
Documenting our InsuredItem endpoints 358
Testing and Interactive Features 360
Schema Generation and Validation Documentation 364
Advanced Endpoint Documentation 365

13 RESTTEMPLATE AND WEBCLIENT 367

RestTemplate - A Classic Approach 367

WebClient - A Modern, Reactive Solution 367
Analysis of the WebClientConfig code 371
Analysis of the ProductClientService code 372
Analysis of the CustomerController getProductTypes() code 374
Analysis of the ProductClientService code 376
Analysis of the CustomerController getProductDescriptionByType() code 378
Separate Configuration Class Approach (CustomerMicroservice) 379
Main Application Class Approach (InsuredItem Microsetvice) 380

14 GLOSSARY OF TERMS 381

Spring API terms 381

WebClient terms 385

10

Introduction

!Embarking on the journey to becoming proficient in Spring Boot, Test-
@ Driven Development (TDD), and Java is akin to training for a marathon.

Think of yourself as an athlete preparing for a marathon. Just as a fitness

tracker helps you monitor your physical activity, set goals, and track progress,

this book will guide you through the steps of mastering these technologies.

A fitness tracker provides insights into your daily steps, exercise routines, and overall health,
helping you stay on track and improve over a period of time. Similarly, this book will offer
structured lessons with practical coding, and real-world examples to help you build your skills
incrementally. By following a disciplined approach, much like adhering to a fitness régime,
you'll develop a strong foundation in Spring Boot, Java and TDD. We will do this by
developing an application and microservices, enabling you to tackle complex software

development challenges with confidence.

Along the way, you will encounter challenges and obstacles, much like the bumps and hurdles
faced during physical training. Some may find that they grasp concepts quickly and progress
rapidly, while others may take a bit longer to get into the rhythm. This is perfectly normal and
should not be a cause for discouragement. We all have different learning curves. The key to
success lies in perseverance and commitment. Just as consistent training and dedication can
lead to improved physical fitness, a steadfast approach to learning and spending time writing

code for Spring Boot, Java and TDD, will ultimately lead to proficiency.

Remembet, the path to becoming 'fit' in software development will not always be smooth.
There will be moments of frustration and setbacks, but these are part of the learning process.
Embrace the challenges, see them as opportunities to grow and strengthen your skills. With
determination and a positive mindset, you will reach your end goal, equipped with the

knowledge and confidence to tackle complex software development projects.

Mastering Spring Boot, Java and TDD will not only enhance your technical skills but also
broaden your understanding of widely used industry technologies. Proficiency in these areas
will equip you with the knowledge to contribute to high-quality, maintainable, and scalable
software solutions. By the end of this journey, you'll have a strong foundation to tackle

complex software development challenges with confidence.

<o href="https:/ /www.flaticon.com/free-icons/tracker" title="tracker icons">Tracker icons created by Eucalyp - Flaticon

11

*What you will learn
5

=3 On completing the learning, you will:
Read Agile user stories and gherkins.
Use JUnit to create unit tests and develop Java code.
Use Intelli] to create a Maven Spring Boot application.
Understand the Maven project structure and manage dependencies.
Create the structure of a Spring Boot project.
Create and configure JPA entities.
Use annotations like @Entity, @Table, @Id, and @GeneratedValue.
Create repository interfaces extending JpaRepository.
Implement custom query methods using Spring Data JPA.
Implement business logic in service classes.
Understand dependency injection using constructor injection.

Create RESTful endpoints using @RestController, @GetMapping, @PostMapping,
@PutMapping, and @DeleteMapping.

Handle HTTP requests and responses.

Handle exceptions in service and controller layers.

Create custom exceptions.

Configure database connections.

Implement logging using SLF4].

Configure application properties and logging levels.

Test the RESTful endpoints using Postman or cURL commands or Swagger.
Perform CRUD operations on a database using JPA.

Run a Spring Boot application from the IDE or command line.
Understand the main application class and its role.

Build and use microservices.

Implement pagination and sorting in REST endpoints to efficiently manage and organize

large sets of data.

_n

2 href="https:/ /www.flaticon.com/free-icons/goal" title="goal icons">Goal icons created by Uniconlabs - Flaticon

12

Apply validation annotations to class fields in a ‘model’ and use @Valid in our controllers

to ensure that only valid data is processed and stored.

Create dynamic filtering and search functionality, allowing users to retrieve records based

on various optional criteria.

Develop a global exception handler to provide consistent and informative error responses

across the application.

Use Data Transfer Objects (DTOs) to encapsulate and transfer data between different
layers of the application.

Write unit tests for the service layer using Mockito to mock dependencies and verify

business logic.
Create integration tests to ensure that controllers and services work together as expected.

Integrate a simple frontend using HTML and JavaScript to demonstrate how the backend

API can be consumed and interacted with.

Connect to external microservices, such as customer and product services, to enrich the
application’s functionality.

Configure the application properties to manage environment-specific settings and improve
maintainability.

Implement logging to monitor application behavior and assist with debugging and

maintenance.

Understand how to package and deploy the application using Maven to facilitate easy

distribution and deployment.

Generate API documentation using Swagger/OpenAPI to make endpoints easy to

understand and consume.

13

Introduction - Spring Boot Electrical Items Insurance

Using Spring Boot, Java, and Test-Driven Development (TDD), we will create an application
for managing insurance related to electrical items. The generic workflow we will follow is to
create the models, then the repositories, then the services, then the controllers, and finally the
main application class. When we use a DTO layer, we can create the DTO classes after we
create the model since a DTO is a view of the model. The main application class will be called
InsuredItem and will have the properties: product_type, product_value, quote_amount and

customer_account_number. A sample is shown below:

product_type Mobile Phone
product_value 1200.00
quote_amount 100.00
customer_account_number ACC123

Once we have this first part of the application developed, we will extend our knowledge by

creating two more microservices. The first microservice will be an application that holds details

of products i.e., the product type and a description of the policy coverage e.g.,

Product type Camera

Product description This policy covers accidental damage, liquid damage, fire, and
theft of the insured camera. Coverage includes damage
resulting from drops, spills, and electrical surges. Theft is
covered if the camera was stored securely. Normal wear and
tear, careless handling, unauthorized modifications, and
mechanical breakdowns not caused by an insured event are
excluded.

Here the product type is Camera, and the desctiption indicates what is and is not covered as

part of the policy and quote amount.

The second microservice will be an application that holds details of customers, the account

number, the customer’s name and the customer’s email address e.g.,

account_number ACC123
name Gerry Byrne
email gerry.byrne(@example.com

14

The plan for developing the application, which is itself a microservice, and the other two

microservices is:

e Use Test-Driven Development, based on user stories and Gherkins, to create an insurance

quote section of the application.
e Build the insurance API to perform CRUD operations.
e Test the CRUD functionality.
e Build the microservice that supplies insurance product descriptions.
e Test this microservice.
e Build the microservice that supplies customer details.
e Test this microservice.

e Build and test endpoints that use one or more microservices.

Source code for this book is available to readers on GitHub

(https://github.com/gerardbyrne/ Java-Programming-Spring-InsuranceQuoteApplication.git)

15

1 Agile User Stories

Agile development prioritizes delivering value to end-users, promoting teamwork, and adapting
to change. A fundamental aspect of Agile methodology is the user story, which places users at
the heart of software development. In the modern software development world, it is essential
that developers understand Agile practices including Test-Driven Development and Behavior-
Driven Development (BDD). To develop user-centric software applications, developers must
fully comprehend and master user stories. We need to be able to read and analyze user stories

so we can create code to satisfy the user stories.

What is a User Story?

A user story is a brief, informal description of a software feature which is written from the

perspective of the end user. It defines three things:

e Who the user is we say this is the persona.
e What they want to achieve we say this is the goal.
e Why they want to achieve it we say this is the value.

A typical format for our user story is:

“As a [persona], I want to [action/goal], so that [value/benefit].”

16

2 Quick Spring Boot Setup

Creating a Simple Spring Boot Project

1. Open a browser window.

2. In the address bar type: https://start.spring.io

This is Spring Initializr, which is one way to create a starter project for a Spring Boot API as

shown in Figure 2-1.

3. Click the Maven radio button in the Project section.
4. Click the Java radio button in the Language section.
5. Click a version in the Spring Boot section, e.g., 3.5.6.
6. Leave the Project Metadata with the defaults.
7. Click on the Jar radio button in the Packaging section.
8. Click on a version in the Java section, e.g., 21.
® ® C Spring Initializr x o+
€« C = hupsijstart.spring.io Cwx BCO &
= spring initializr
)
/)
(€ * v
Project Language Dependencies ADD.. %+B
Iﬁ—]“ QO Gradle - Groovy J @ Q Kotlin
Q Gradie - Kotlin O Groovy Spring Web [
\/ ® Build web, including RESTful, applications using Spring
MVC. Uses Apache Tomcat as the default embedded
Spring Boot
O 400 (SNAPSHOT) O 400 (M3)
Q 357 (SNAPSHOT) @ 356 @
O 3.4.11 (SNAPSHOT) O 34.10

Project Metadata

Group com.example

Artifact demo

Name demo

Description Demo project for Spring Boot

Package name com.example.demo

Packaging @ O War

§ Java

Q22 ®21 Q17 //

I GENERATE ml EXPLORE CTRL + SPACE I

Figure 2-1. Spring Initializr — set up a project

O

9. Click on the Add button in the Dependencies section.

17

https://start.spring.io/

10. Type Web in the search box that appears.
11. Click on the Spring Web option that appears as shown in Figure 2-2.

Web Press # for multiple adds

Spring Web [}

Build web, including RESTful, applications using Spring MVC. Uses Apache Tomcat as the default embedded
container.

Figure 2-2. Add the Spring Web dependency

Creating a Basic Controller

1. Right click on the demo folder (com.example.demo).
2. Choose New.

3. Choose Package.
4

Name the package controller (com.example.demo.controller) as shown in Figure 2-8.

Project + T X =

v C‘Gdemn C:\Users\gerar\Downloads\demo\demo
> [.idea
> [J.mvn
v Osrc
~ [main
~ [Djava
~ [Jcom
v [3] example
~ [5] demo

7 DemoApplication java

New Package

com.example.demo.controller

~ [Zresources
[static
[templates

& application.properties

Figure 2-8. Add the controller package

Right click on the controller package.
Choose New.
Choose Java Class.

Name the class HealthCheckController.

A N

Amend the code as shown in Listing 2-2.

Listing 2-1. Controller to check the API works correctly

package com.example.demo.controller;

i import org.springframework.web.bind.annotation.GetMapping;

18

import org.springframework.web.bind.annotation.RestController;
// RestController is used to create RESTful web services using Spring MVC.
@RestController
public class HealthCheckController {
// GetMapping is used to map HTTP GET requests onto specific handler methods.
@GetMapping (" /healthcheck")
public String healthCheck () {
return "Spring Boot Insurance Quote API!";

} // End of healthCheck () method

} // End of HealthCheckController class

As we add the annotations, @RestController and @GetMapping we may need to import them

by hovering over the annotation and choosing Import Class.

Analysis of the HealthCheckController code
What is HealthCheckController.java?
e This is a simple Java class that acts as a REST API controller in a Spring Boot application.

e It provides a basic endpoint and method allowing us to check if the application is running

and responding,.

Creating a Basic Service

1. Right click on the demo folder (com.example.demo).
Choose New.

Choose Package.

Name the package service (com.example.demo.service).
Right click on the service package.

Choose New.

Choose Java Class.

Name the class QuoteCalculator.

Y ® N k»

Amend the code as shown in Listing 2-6.

Listing 2-2. Service layer with method to calculate the quote value

§ package com.example.demo.service;

i public class QuoteCalculator

P

19

// Method to calculate insurance quote based on product type and value
public double calculateQuote(String productType, double productValue)

Creating a Basic D'TO

Right click on the demo folder (com.example.demo).
Choose New.

Choose Package.

Name the package dto (com.example.demo.dto).
Right click on the dto package.

Choose New.

Choose Java Class.

Name the class QuoteResponseDto.

e A A o e

Amend the code as shown in Listing 2-8.

Listing 2-3. DTO class to be used for a response

package com.example.demo.dto;

// Data Transfer Object (DTO) to encapsulate quote response details
public class QuoteResponseDto
{
// Fields to hold product type, product value, and calculated quote amount
private String productType;
private double productValue;
private double quoteAmount;

public QuoteResponseDto (String productType, double productValue, double
quoteAmount) {
this.productType = productType;
this.productValue = productValue;
this.quoteAmount = quoteAmount;
} // End of parameter constructor

What is a DTO?

A DTO, or Data Transfer Object, is a simple Java class used to transfer data between different
layers of our application. DTOs are designed to carry only the data needed for a specific
operation, without any business logic. We will see more about DTOs later when we build the

main application and microservices.

20

Summarizing our basic API

In building our simple API application, we started by organizing our project structure using
packages, which helps keep related code grouped together and easy to manage. We created a
dedicated controller package and added a HealthCheckController class. This class uses Spring
Boot annotations to define a simple REST endpoint. By adding the @RestController
annotation, we told Spring Boot that this class would handle web requests and return data. The
@GetMapping("/healthcheck") annotation mapped HTTP GET requests to a specific
method, allowing us to easily check if our API is running, by visiting a simple URL in the

browset.

3 Test-Driven Development

We are creating an application that will, like all applications, use methods, and it is essential that
these methods work correctly. One of the essential development tools in software
development is Test-Driven Development (TDD), which, as we read earlier, is an Agile
software development approach that emphasizes writing tests before any functional code. In
modern development, software developers are also testers. There should be no silos, with
testers in one group and developers in another. Agile teams have testers and developers
working together. Developers should be placing validation at the heart of their processes. Our
methods need to be fully tested. The Test-Driven Development process involves the following

StGpS.

Listing 3-1. Sample test class

import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.*;

class QuoteCalculatorTest

{

/ Declare an obiect of OuoteCalculator class

Declare 111 O ¢ t or QuoteCalculator class

private QuoteCalculator quoteCalculator;

@BeforeEach
void setUp() {
quoteCalculator = new QuoteCalculator();

} // End of setUp() method

@Test
void testQuoteAmount () {
assertEquals (120, quoteCalculator.quote ("Mobile", 1000));
} // End of testQuoteAmount () method
@Test

21

void testDiscount () {
assertEquals (1, quoteCalculator.discount (3,

} End of testDiscount () method

Creating a Maven Project

Start a new project as shown in Figure 3-1.
1. Open Intelli] IDEA.

2. Choose New Project from within Intelli].
Select the project type

3. In the left-hand panel choose Java.
Configure Project Name

4. Name the project InsuranceQuoteBackEnd.
Choose the Project Location

5. Choose a location for the project.

Set the Build System

6. Choose Maven as the build system.
Choose the Project SDK

2)) i

7. Select the JDK (Project SDK) — e.g., temurin-22 but a higher version is OK as well.

Advanced Settings

8. In the Advanced Settings add the Groupld e.g., org.example.

9. Amend the Artifactld if required.
Create the project
10. Click the Create button.

22

e e New Project
aQ

New Project Name: InsuranceQuoteBackEnd
LJ Java
= Location: ~[Drophox/GerrysWork/JavaTDDSpring
Kotlin
= Project will be created in: ~/Dropbox/...ng/insuranceQuoteBackEnd
@ Groovy
& Pyth Create Git repository
ythan
C5 Empty Project Bulld system: Intelll) Maven | Gradle
Generatars
JOK: [temurin-22 Eclipse Temurin 22.0.2 v
1M Maven Archetype
4 Jakarta EE Add sample code
< Spring Boot
5 JavaFx
¥ ~ Advanced Settings
[®) Quarkus 9
H Micronaut Groupld: org.example
% Ktor
B o Nitiolat Artifactid: InsuranceQuoteBackEnd
ompose Multiplatform
B HTML
React
ex Express
¥ Angular CLI
¥ Vuejs

More via plugins...

7) | cancel
Figure 3-1. Project setup

11. Amend the code as shown in Listing 3-2.

Listing 3-2. Adding the dependencies and dependency management

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.example</groupld>
<artifactId>InsuranceQuoteBackend</artifactId>
<version>1.0-SNAPSHOT</version>

<properties>
<maven.compiler.source>24</maven.compiler.source>
<maven.compiler.target>24</maven.compiler.target>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

<!I--

The <dependencyManagement> section in a pom.xml file is used
to manage dependency versions in a centralized way.

This ensures that all modules in a multi-module project use
the same version of a dependency.

This dependency management section:

- Defines a BOM (Bill of Materials):
The junit-bom is for JUnit 5 and specifies the versions
of all JUnit artifacts.

- Sets the version:
Version 5.9.3 is specified for the junit-bom.

- Sets Type and Scope:

23

set to pom scope

Maven to 1 "t this BOM into the project.

By doing this, all JUnit dependencies in the project will use
ion 5.9.3 without needing to specify the version for each

dependency indi

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.junit</groupId>
<artifactId>junit-bom</artifactId>
<version>5.9.3</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>

This dependency

version of the

<dependency>
<groupId>org.junit. jupiter</groupld>
<artifactId>junit-jupiter</artifactId>
<scope>test</scope>

</dependency>

add these dependencies:

<dependency>
<groupId>org.junit.platform</groupId>
<artifactId>junit-platform-suite-api</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.junit.platform</groupId>
<artifactId>junit-platform-suite-engine</artifactId>
<scope>test</scope>

24

</dependency>
</dependencies>
§ </project>

ALL fourteen tests pass as shown in Figure 3-38.

v TestFactors (quotecalculationstests) 91ms v 14 tests passed 14 tests total, 9T ms
+ productTypeFactorOther() 52ms "C:\Program Files\Eclipse Adoptil
v productValueFactorGreaterThan500() 2ms
+ productTypeFactorLaptop() 2ms Process finished with exit code
v productTypeFactorMobile() Tms
+ calculateQuoteMobileAndGreaterThan500() Tms
+ productValueFactorJustAbove500() 4ams
v productValueFactorZeroThrowsException() 3ms
+ productTypeFactorShouldReturnDefaultForUnknownType() 4ms
+ calculateQuoteForNegativeValueThrowsException() 3ms
+ productTypeFactorTelevision() 3ms
+ calculateQuoteMobileAndLessThanOrEqualTo500() 1ms
+ productValueFactorExactly500() 2ms
v productValueFactorLessThanZeroThrowsException() 1Mms
v productValueFactorLessThanOrEqualTo500() 2ms

Figure 3-38. All fourteen tests pass

Understanding the manifest and jar files

Currently we have a small application that can create an insurance quote for an electrical item,
given the product type and the product value. We have used Test-Driven Development to
create the application, and our tests were developed to verify that the user stories were fully
complied with. We ran the application from the main() method within the Intelli] Integrated

Development Environment, and all worked well.

25

4 Spring Boot API — Insurance Quote Backend

In a tiered system, we use a separation of concerns approach and organize our codebase into
distinct parts, each with a specific responsibility. This is what we have just completed with our
tests and business logic. By using separation of concerns, we make the application easier to

manage, test, and maintain.

In a Spring Boot API application, separation of concerns means dividing the codebase into
layers or components, each handling a specific responsibility. This approach improves
maintainability, testability, scalability, and clarity by ensuring that each part of the application

has a clear, focused role.

Explanation of common layers

1. Model Layer

The model layer contains the domain objects or entities that standard Spring Boot
applications use to represent the data in the application. These classes are typically

annotated with JPA annotations to map them to database tables.
2. Repository Layer
The repository layer contains interfaces that define the CRUD operations for the domain
objects. These interfaces extend the JpaRepository interface provided by Spring Data JPA.
3. Service Layer
The service layer contains the business logic of the application. It interacts with the
repository layer to perform CRUD operations on the domain objects.
4. Controller Layer

The controller layer contains the REST endpoints that handle incoming HTTP requests.
It interacts with the service layer to process the requests and return the appropriate

responses.
5. Main Application Class

The main application class is the entry point of the Spring Boot application. It contains the

main method that starts the Spring Boot application.
6. Application Properties

The application.properties file contains configuration settings for the Spring Boot

application, such as database connection details, server port, and logging settings.
7. Test Classes

The test classes contain unit tests for the various components of the application, such as

the models, repositories, services, and controllers.

26

8. Exception Handling

The exception handling classes contain custom exception classes that extend the

RuntimeException class to handle errors and exceptions in the application.
9. Security Configuration

The security configuration classes contain configurations for securing the application, such

as authentication, authorization, and access conttrol.
10. Logging Configuration

The logging configuration classes contain configurations for logging in the application,
such as log levels, log file location, and log format.

11. Swagger Configuration
The Swagger configuration classes contain configurations for generating API
documentation using Swagger, such as API version, title, description, and contact
information.

12. Docker Configuration

The Docker contfiguration files contain configurations for building and running the
application in a Docker container, such as Dockerfile, docker-compose.yml, and docker-

compose.override.yml.
13. CI/CD Configuration

The CI/CD configuration files contain configurations for continuous integration and
continuous deployment, such as Jenkins file, GitHub Actions workflow, and GitLab
CI/CD pipeline.

We can now begin our journey by building our Spring Boot application and making the API.
The Maven project we have with the test and business logic classes can now be extended to
create a standard Spring Boot application. We will not use all the configurations we have just
read about but, we will use layers and configuration to create a fully working and extendible

application.

We will create an insurance quote application that enables users to manage insured items,
calculate insurance quotes, and view related customer and product information. The main
application will provide CRUD operations for insured items, allow users to request insurance
quotes based on product type and value, and support advanced search, pagination, and sorting
features. Along with this main insurance quote application we will develop two microservices.
The first microservice, The Customer Microservice, will be a service that manages customer
data, such as account numbers, names, and email addresses. The main application will call this

microservice to retrieve and display customer information associated with insured items.

27

The second microservice, The Product Microservice, will be a service that manages product
details, including product types and descriptions. The main application will interact with this

microservice to fetch and display product information relevant to each insured item.

Together, our three segregated applications will form a distributed system where the main
application orchestrates insurance operations and integrates customer and product data from

dedicated microservices, ensuting modularity, scalability, and clear separation of concerns.

In line with what we did in building the quote classes we will look at some user stories and
Gherkins that could act as the starting point for our full application. Whilst the user stories are
not a complete list, they are the core for what the application is required to achieve. We are
simply trying to ensure that we understand that systems are built from a user-centric
perspective and that as developers we build our application based on the user stories and
acceptance criteria we are given by the Product Owner. As the focus of this book and our
learning is how to build a Spring Boot applications, we will concentrate more on designing the
application from the perspective of the architecture layers, and in doing so, we will cover the

user stories and acceptance criteria.

Project setup

We will now set up the layers we require to get started with our application. We should think
back to the demo API we built with the help of Spring Initializr, as it introduced us to a basic
structure for an API project. We saw that we segregated our API using the packages,
controller, model, service and dto. We also discussed a little about the use of DTOs. We will
enhance our knowledge of DTOs and the structure of an API as we build the remaining part

of this application and the two microservices.

1. Right click on the java package in the main package.
Choose New.
Choose Package.

Rl

Name the package api.

Right click on the api package.
Choose New.
Choose Package.

® =N

Name the package controller.

28

9. Right click on the api package.
10. Choose New.
11. Choose Package.

12. Name the package exceptions.

13. Right click on the api package.
14. Choose New.

15. Choose Package.

16. Name the package model.

17. Right click on the api package.
18. Choose New.

19. Choose Package.

20. Name the package repository.

21. Right click on the api package.
22. Choose New.
23. Choose Package.

24. Name the package service.

The new project structure is shown in Figure 4-1.

Project - ¢ X i =

~ [gInsuranceQuoteBackEnd ~/Dropbox/GerrysWork/JavaTDL
> [.idea
v [Dsre
~ [main
v [Djava
v [2] api

(=] controller
] exceptions
(57 model
(2] repository

00000

(=) service

Figure 4-1. API layers

29

The Model Class

The model class named InsuredItem will represent an entity in our application. The model will
consist of fields, constructors, getters and setters and a toString() method, just like any other
Java class can have. The purpose of this model is to define the structure for the data that will
be stored in the database and to facilitate interaction with the database through an object-
oriented approach. This model will be mapped to a database table using the Java Persistence

API (JPA) annotations. The annotations we will use are:

The Repository Class

The repository is an interface, which often extends JpaRepository, and provides Create, Read,
Update, Delete (CRUD) and query methods backed by JPA. The repository is the persistence
boundary, and our services will use repositories to load, save, and delete entities. Our

controllers should not call repositories directly, they should use services to do this.

Listing 4-1. Add the code for the repository layer

package api.repository;

/*

The JpaRepository interface provides various methods for performing
CRUD (Create, Read, Update, Delete) operations and pagination on the
InsuredItem entity.

*/

import api.model.InsuredItem;

import org.springframework.data.jpa.repository.JpaRepository;

import java.util.List;

/*
The InsuredItemRepository interface extends the JpaRepository interface,
which takes the entity type (InsuredItem) and the type of the primary
key (Long) as type arguments. We use this JpaRepository interface to
interact with the InsuredItem entity in the database. The interactions we
can use include the CRUD operations, sorting, and pagination.
The JpaRepository interface extends the PagingAndSortingRepository
interface, which in turn extends the CrudRepository interface.
*/
public interface InsuredItemRepository extends JpaRepository<InsuredItem, Long>
{

/* We use List to return a list of InsuredItem objects. */

List<InsuredItem> findByCustomerAccountNumber (String customerAccountNumber) ;

} // End of InsuredItemRepository interface

30

The Service Class

Now we will create the service layer for our APIL. The responsibility of the services will be to
encapsulate the business logic of the application. It will be the intermediary between the
controller layer, which will handle the HTTP requests and responses, and the data access
layer, which interacts with the database. The service layer ensures that business rules are
applied, and it provides a clean separation of concerns. Our service layer called,
InsuredItemService, will handle operations such as creating, retrieving, updating, and deleting
related to the InsuredItem model. We will see later how the methods in this layer will be called
by the methods in the Controller layer.

25. Amend the code as shown in Listing 4-13.

Listing 4-2. Add the code for the Service layer

package api.service;

import api.dto.CustomerWithInsuredItemsDTO;

import api.dto.InsuredItemWithoutAccountDTO;

import api.dto.CustomerDTO;

import api.model.InsuredItem;

import api.repository.InsuredItemRepository;

import api.service.quotecalculations.CalculateQuote;
import org.springframework.stereotype.Service;
import api.exceptions.InvalidQuoteException;

import api.exceptions.QuoteNotFoundException;

import java.util.List;

/*

@Service annotation is used to mark the class as a service
provider. The (@Service annotation is a specialization of the
@Component annotation. It's a good practice to use @Service over
@Component in service-layer classes

*/

@Service

public class InsuredItemService {

/***
DEPENDENCY INJECTION
Inject CalculateQuote, InsuredItemRepository, and
ExternalServiceClient for business logic, data access,
and external service integration
***/
private final CalculateQuote calculateQuote;
private final InsuredItemRepository insuredItemRepository;
private final ExternalServiceClient externalServiceClient;

/**

CONSTRUCTOR-BASED DEPENDENCY INJECTION
Inject CalculateQuote, InsuredItemRepository,
and ExternalServiceClient into InsuredItemService

31

**/

public InsuredItemService (CalculateQuote calculateQuote,
InsuredItemRepository insuredItemRepository,
ExternalServiceClient externalServiceClient) {
this.calculateQuote = calculateQuote;
this.insuredItemRepository = insuredItemRepository;
this.externalServiceClient = externalServiceClient;
} // End of InsuredItemService () constructor

} // End of class InsuredItemService

Adding database functionality

To persist and manage data in our API, we will integrate a database. Using a database allows
the application to store, retrieve, update, and delete records efficiently. For development and
testing purposes, we will use the H2 database, which is an in-memory, lightweight, and fast
relational database. H2 requires minimal configuration and runs within the application, making
it ideal for prototyping and local development. It is not a database we would use at the

production stage. We will add a dependency for the h2 database in the pom.xml.

1. Open the pom.xml file.

2. Amend the pom.xml code as shown in Listing 4-39.

Listing 4-3. Add the h2 dependency

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<version>2.3.232</version>
<scope>runtime</scope>
</dependency>
</dependencies>

Having amended the pom.xml file we need to make sure all dependencies are up to date.

SQL Records

We will now create a data.sql file, which will be used to insert initial data into the
INSUREDITEM table of our H2 in-memory database. This table will store details about
various items, including their product type and value. By populating the database with this data,
we will be able to test our application with a predefined set of records. We will use SQL
INSERT statements to add multiple rows to the INSUREDITEM table. Each row will

32

represent an electrical item with product type and product value attributes. This approach

ensures that our database is preloaded with data when the application starts, allowing us to

focus on developing and testing the application's functionality without manually entering data

each time.

3. Right click on the resources package.
4. Choose New.

5. Choose File.

6. Name the file data.sql.

7. Press the Enter key.

8.

database.

Listing 4-4. Recotds to be inserted into the H2 database

INSERT INTO insureditem(product_type, product_value, quote_amount,

i customer account number) VALUES ('Mobile Phone', 1200.00, 100.00,

i INSERT INTO insureditem(product_type, product_ value, quote_amount,

Amend the code as shown in Listing 4-41 to add records that will populate the H2

'ACC123"'") ;

0 @ localhostssss

& C | @ localhost8888
Pretty-print
[
{
"id": 1,

"productValue": 12080,
"quoteAmount”: 100,

"productValue": 3@,
"quoteAmount™: 3,

"id": 3@,

"productValue": 6@@,
"quoteAmount”: 60,

¥

1

"customerAccountNumber™:

{
"id": 2,
"productType": "Laptop",
"productValue": 868,
"quoteAmount”: 80,
"customerAccounthumber”:
1
{) .
P — P -
v & v
{
"id": 29,
"productType": "Mouse",

"customerAccountNumber" :

"customerAccountNumber™ :

x +

"productType": "Mobile Phone",

"ACC123"

"Acciza"

"ACC123"

"productType": "Projector”,

"ACC124"

Figure 4-4. All records are displayed

33

5 Product Description Microservice

A microservice is a small, independently deployable application that focuses on a specific
business capability. In this microservice (application), we are now going to build functionality
for managing information about a Product. In the context of Spring Boot, a microservice is
typically built as a standalone Spring Boot application that exposes its functionality through
RESTful APIs. It uses Spring Data JPA to interact with its own dedicated database, mapping
Java entities to database tables and handling data persistence. The InsuranceQuoteBackEnd
application we just created could considered a microservice. A microservice manages its own
data and logic, communicates with other microservices through HTTP APIs and can be

developed, deployed, and scaled independently of other services.

B © H2console x +

& (O | O localhost:8888/h2-ui/

[English v| Preferences Tools Help
P ———

Saved Settings: | Generic H2 (Embedded) v |
Setting Name: ’Generic H2 (Embedded) Save Remove
Driver Class: ’org.hZ.Driver

JDBC URL: jdbc:n2:mem:productdb

User Name: ’sa

Password: ’

Connect Test Connection

Figure 5-3. Connection to the H2 database

1. Click on the PRODUCT table on the left-hand side.
2. Click on the Run button.

The list of products in the table is displayed and shown in Figure 5-4. The column order might

be different, but this is not important.

34

€& C @ localhost:9998/h2-uiflogin.do?jsessionid=0%e423a87dd5c9a13d 1e53ee 1d86c3cd

8| & | BaAuocommit %0 0 | Maxrows: 1000 ~| o8 “ |Autocomplele Of ~|Autoselect On~ (7)
[} jdbch2:mem:productdb Run Run Selected Aulo complele Clear SQL statement:

[PRODUCT SELECT * FROM PRODUCT|

2 INFORMATION_SCHEMA

® () users

(@ H22.3.232 (2024-08-11)

SELECT * FROM PRODUCT,
ID PRODUCT_TYPE PRODUCT DESCRIPTION

1 Camera This policy covers accidental damage, liquid damage, fire, and theft of the insured camera. Coverage includes damagy
2 GameConsole The insured game console is protected against accidental damage, liquid damage, fire, and theft. Coverage inciudes

3 Inst piles 1o aceidental damage, fire. liquid damage, and theft. Covered incidents include broken eaf
4 Keyboard This policy covers accidental damage. fire, liquid damage. and theft of the insured keyboard., Protection includes dam:
5 Laptop The insured laptop is covered against accidental damage, fire, hquid damage. and theft. Covered incidents include sc
6 Mobile Phone This policy provides coverage for accidental damage, liquid damage, fire, and thefl. Covered incidents include screen
7 Monitor Insurance covers accidental damage, liquid damage, fire, and theft. Covered Incidents Include cracked screens, powel
8 Mouse This policy includes coverage for accidental damage, fire, and theft. Damage from drops, spills, and electrical faults is
9 Printar The insured printer is covered for accidental damage, fire, liquid damage, and theft. Coverage includes electrical failur
10 Projector This policy covers accidental damage, liquid damage, fire, and theft. Coverage includes broken lenses, liquid spills, an
1 Router Coverage appiies 1o accidental damage, fire, and theft. Covered incidents include electrical damage from surges and

12 Scanner The insured scanner is covered against accidental damage, fire, and theft. Coverage inciudes electronic failure due o
13 Smartwatoh This policy covers accidental damage. fire, liquid damage. and theft. Protection includes screen cracks, waler expos

14 Speaker The insured speaker is covered against accidental damage, fire, liquid damage, and thefl. Coverage includes intemal

15 Tablet This policy covers accidental damage. fire, liquid damage, and theft. Covered incidents include cracked scraens, powe
16 Televisian Insurance cavers accidental damage, liquid damage, fire, and thef. Protection includes screen cracks, pawer surges,

17 Webcam This policy covers accidental damage. fire, liquid damage, and thefl. Covered Incidents include electrical failures, cracl
(17 rows, 2 ms)

Edit

Figure 5-4. Run the SQL Select all command

6 Customer Microservice

As we have read previously, a microservice is a small, independently deployable application
that focuses on a specific business capability. In our application we have created the Product
microservice and now we will create a second microservice to hold data about Customers. The
Customer microservice will manage its own data and logic and communicate with other
microservices through HTTP APIs.

Figure 6-3. Connection to the H2 database

1. Click on the CUSTOMER table on the left-hand side.
2. Click on the Run button.

The list of customers in the table will be displayed as shown in Figure 6-4. The column order

might be different, but this is not important.

35

& O localhost:999%/h2-ui/login.do?jsessionid=8c05a0dcdc84673c579eBe56417ebdea

M| | Eauocommit “0 0 | Maxrows: 1000 ~| @ O B | ¥ |Autocomplete Off - Autoselect Onv|(3)

(] Jdbe:h2:mem:customerdb Run Run Selected Auto complete Clear SQL statement:
[T CUSTOMER SELECT * FROM CUSTOMER

& () INFORMATION_SCHEMA

@ {§} Users

(D) H2 2.3.232 (2024-08-11)

SELECT * FROM CUSTOMER;

1D ACCOUNT_NUMBER EMAIL NAME

1 ACC123 gemy. byme@example.com Gerry Byme

2 ACC124 janesmith@example com Jane Smith

3 ACC125 maryjones@example.com Mary Jones

4 ACC126 charlottebrown@example.com Charlotte Brown
(4 rows, 3 ms)

Edit

Figure 6-4. Run the SQL Select all command

36

7 Testing the microservices integration

All customers and their insured items

We will now create code in the InsuranceQuoteBackEnd application that will allow us to see all
customers, along with their details and the list of items they have insured. We therefore need to
integrate data from two sources. The insured items are stored in the H2 database managed by
our InsuranceQuoteBackEnd application. However, customer details are not stored locally,

instead, they reside in a separate microservice running on port 9999.

The full set of insured items, each with the customer details, and the product details should be

displayed as shown in Figure 7-2.

GET htip:/flocalnost:8888ite »

Params Authorizatio Headers (B Body Scripts Tests Settings Cooki

Query Params

Key Value Description Bulk Edi

Body Cookies Headers (8) Test Resul 20006 - 934m rake - @

Insured Item

Customer Details

Product Details

Figure 7-2. Insured items with customer and product details

37

8 Pagination and dynamic searching

Rather than having a long list of records displayed in the browser or end user’s application, we
can use pagination, which is available with Spring Data JPA. Pagination is a technique we can
use to split large sets of data into smaller chunks or pages. Pagination can improve
performance and enhance the user experience by allowing clients to request only a subset of

the data at a time.

The sixth page with a set of five insured items should be displayed as shown in Figure 8-8,
remembering that we asked for descending order by product type, then quote amount by

ascending order and customer account number in ascending order.

GET v i t=productType, ascasor
1
"content": [Sort by productType in
! idv: 14, descending order, then sort
"productType”: "Television”, by the quoteAmount in
"productvalue": 1400.0,

. .. ascending order and the sort

quoteAmount”: .0,

"customerAccounthumber”: "Acc124” by customerAccountNumber
b in ascending order.

"id": 9,

“productType”: "Television®,

"productValue": 1!

"quoteAmount”: 1

"customerAccountNumber": "ACC123" Same quoteAmount
v but ACC123 comes
id": 4, before ACC126 in
"productType”: "Television", ascending order.
"productValue": 1580.0,
"quoteAmount®: 150.0,
"customerAccountNumber”: "ACC126°
1,
1
"id": 19,
"productType”: "Television”,
"productValue B
"quoteAmount": 160.0,
"customerAccountNumber": "ACC125"
3
i
"id": R,
"“productType”: "TakIlet“,
"productValue": 380.0,
"quoteAmount”: 30.8,
"customerAccountNumber": "ACC125'
1

1,

Figure 8-8. Pagination with sort by multiple fields

38

9 Validation

Validation is not just checking fields, it is the first and most important point where we check
for correctness in our Spring Boot API or microservice. There are many reasons why we need
to validate in our Spring API application. One simple example would be to follow the
important principle of fail fast. This principle can help us save effort by rejecting incorrect
requests at the controller level, which is the edge of our application receiving the user requests.
As an example, there would no point in calling the service layer if the minimum or maximum

value in the request is violated.

POST http:fflocalhost:88E ® ET http:f/localhost:8888 & | v EJ\ No environment v 55|
@ http://localhost:8888 [E) save ~ Share (& &>
POST v http://localhost:8888 m 2
Params Auth Headers (3) Body ® Scripts Tests Settings Cookies
raw v JSON ~ Beautify
14
2 "productType": "Test Item With Quote amount",
3 "productValue": 99.00,
a "guoteAmount”: 100.0, B
5 "customerAccountNumber”: "ACC1234" h Incorrect pattern
[I3 ®
Body v 1) 400 B@ 5ms - 288B @ eoo
Raw v [Preview {9 Debugwith Al v = Q @g &
1 Account number must start with ACC followed by 3 digits J

Listing 9-1. Customer account number pattern incorrect

39

10 Mocking

Introduction to mocking

We unit tested our code to ensure that the methods in the quote calculator worked, and we got
a correct quote value when we passed the product details to a method. When we test our code,
the goal is to check whether a particular class or method works as expected. However, as we
have seen in building the insurance application, classes usually do not work in isolation. Our
insurance quote service depends on two other microservices, one to fetch customer details and
the other to retrieve product details. When we run a unit test that calls these services our test
will be dependent on systems outside of our control. We may find a test fails because the
product service is down, or the customer database is being updated. So, our tests would fail not

because our code is incotrect, but because of external factors.

Run InsureditemServiceTest

G G @ v O 1o

v+ InsuredltemServiceTest (apitests.servicetests) 1sec 476 ms
v deletelnsuredltem_shouldDeletelfExists() 1sec 440 ms
v findInsuredItemByld_should ThrowlfNotFound() 7ms
v getCustomerWithinsuredltems_shouldReturnDTO() 1Mms
+ findInsuredItemByld_shouldReturnltem() 2ms
+ createlnsuredltem_shouldSaveAndReturnltem() 3ms
v createlnsuredltem_shouldThrowlfProductTypeNull() 5ms
v findByProductType_shouldReturnMatchingltems() 4ms
v deletelnsuredltem_shouldThrowlfNotExists() 4ms

Figure 10-1. All Mockito tests pass

These tests cover creation, validation, retrieval, deletion, and a DTO mapping scenatio.
Mocking is an important feature of modern software development and in this chapter we have

simply introduced ourselves to its use.

40

11 Logging
Introduction to logging with SLEF4]

We can use logging to record information about the execution of our application. As
developers we can use logging to track the flow of our program, monitor its behavior, and
capture important events or errors that occur during runtime. Logging is essential for
debugging, troubleshooting, and maintaining any application, since it provides a history, a
record, of what happened in the system when it runs. This is an invaluable source of

information when diagnosing issues or understanding user actions.

We will now see the logging information in the console window as shown in Figure 11-8.

N 15938 --- [nio-B888-exec-7] api.service.BxternalsServiceClient : Missing regquest parameter: productValue

Figure 11-8. Logging information for the findProductsByType in external service

This endpoint is missing the last parameter, it should be

http://localhost:8888/quote?productType=Laptop&productValue=400 which we used

previously.

41

http://localhost:8888/quote?productType=Laptop&productValue=400

12 Swagger

Introduction to Swagger

What is Swagger?

Swagger is an open-source framework that allows us to design, build, document, and consume
RESTful web services. It provides a standard, language-agnostic interface to REST APIs that
allows both humans and computers to discover and understand the capabilities of a Restful
service without requiring access to source code or additional documentation. Swagger uses the
OpenAPI Specification (OAS), which defines how to describe REST APIs in a machine-
readable format. When we access the Swagger Ul in a browser, we will see an interactive
documentation page that lists all our API endpoints, their parameters, request and response
formats, and allows us to test them directly from the interface. We also see documentation for
our DTO objects.

The Swagger interface should appear as shown in Figure 12-1.

localhost:8888/swagger-uifindex.html#/

OpenAPI definition @ =D

Servers
[htipzacainost:8868 - Generated serverurl ~ |

insured-item-controller

S /i BEEAN /search/in
J{id} AN /search/greaterthan
m /{id} m /search/between
m / m /search/and
m 7 m /paginatedandsorted
m /searchproductvalue m /paginated
m /searchproducttype m /items/insuredi ith p tails

m /searchByValueAndType
IS0 /search/orderby

m /insureditems/search

m /customer/customerdetailswithinsureditems

BEEAN /searchyor quote-controller
[et PN SN /auote
m /search/lessthan

Schemas

Figure 12-1. Swagger Ul Interface

42

13 RestTemplate and WebClient

In the three microservice we have created and tested, we have the InsuranceQuoteBackEnd
microservice (application) which can call both external microservices, CustomerMicroservice

and ProductMicroservice using the RestTemplate.

RestTemplate - A Classic Approach

RestTemplate has been the standard way to make HTTP requests in Spring applications for
many years. It is simple, synchronous, and easy to use for straightforward REST calls. For
example, in Listing 13-1 we see the code we used to connect to an external customer

microservice.

Listing 13-1. Using the RestTemplate getForObject() method

public CustomerDTO findCustomerByAccountNumber (String accountNumber)

{
logger.info ("Fetching customer details for account number: {}", accountNumber) ;
String url = "http://localhost:9999/api/customer/account/" + accountNumber;
CustomerDTO customer = restTemplate.getForObject (url, CustomerDTO.class);

logger.info ("Received customer details: {}", customer);

return customer;

This approach works well for traditional, blocking applications.

WebClient - A Modern, Reactive Solution

As applications in the enterprise have become more demanding, requiring better scalability,
non-blocking I/O, and support for reactive programming, WebClient was introduced as patt
of Spring WebFlux. WebClient is fully non-blocking and supports both synchronous and

asynchronous operations, making it ideal for modern, high-concurrency applications.

43

14 Glossary of Terms
Spring API terms

API An Application Programming Interface is a set of defined rules, protocols, and
tools that allow different software systems to communicate with each other.
When dealing with web APIs, we usually refer to HTTP-based endpoints that

handle requests and responses between the client and the server.

WebClient terms

Reactive Programming
An asynchronous programming approach for handling data streams and event
propagation. WebClient leverages this model to handle multiple concurrent

requests efficiently without blocking threads.

44

