
 

  



Spring Boot API 

 

Insurance Quote Application 

 

 

Step by step instructions  

for practical hands-on programming 

 

 

 

 

 

Gerry Byrne 
 

 

 



Copyright © 2025 Gerry Byrne.  

All rights reserved. No part of this book may be reproduced in any form without permission 

from the author.  



 

ABOUT THE AUTHOR 
 
 

Gerry Byrne is a Senior Technical Trainer at a Forbes 100 company, where he specializes in 

upskilling software engineers who build business critical applications. With a long career as a 

teacher, lecturer, and corporate trainer, Gerry brings a rare blend of academic rigor and real-

world insight to his instruction. 

 

He has delivered technical training across a wide spectrum of languages and frameworks, 

including Java, Spring, C#, Python, and JavaScript. His expertise in Spring Boot and API 

development is grounded in years of hands-on experience teaching modern enterprise 

technologies to engineers at all stages of their careers, from new graduates to those re-entering 

the workforce, to seasoned professionals. 

 

Gerry’s approach to training emphasizes clarity, practical application, and a deep understanding 

of how software development fits into commercial environments. Whether introducing Test-

Driven Development or guiding teams through the intricacies of RESTful API design, he 

equips learners with the tools they need to thrive in today’s fast-paced tech landscape. 

 

 

 

 

 

 



 

DEDICATION 
 
 
 

Writing a book is a rewarding undertaking, but it requires time, effort and patience. It requires 

patience from those who help you write the book and those around you in your life. 

So, I start by thanking my family for ‘facilitating’ me as I worked over many hours, days, weeks 

and months to write this book.  

 
 
 
 

ACKNOWLEDGMENTS 
 
 
 

Writing this book has been a journey, one shaped not only by years of teaching and training, 

but also by the people who have inspired, challenged, and supported me along the way. 

To my colleagues, and the learners I have worked with, thank you for your curiosity, your 

questions, and your willingness to dive deep into the complexities of software development. 

You’ve kept me sharp and reminded me why teaching is a privilege. 

To the technical training teams I have worked with over the years, your dedication to 

excellence and your passion for empowering others have been a constant source of motivation. 

I also wish to thank those who have taught me programming over many years and shared their 

knowledge. I have learnt so much from them and in writing this book their imprint exists.  

 

 

To the readers of this book, whether you are just starting out, or refining your Spring Boot 

skills, I hope these pages help you build something meaningful. Thank you for letting me be 

part of your learning journey. 

 

 

 

 

 



6 

Table of Contents 

What you will learn 11 
On completing the learning, you will: 11 

Introduction - Spring Boot Electrical Items Insurance 13 

1 AGILE USER STORIES 15 

What Is a User Story? 15 

Why Are User Stories Important? 16 

User Stories and Acceptance Criteria 16 

How to Write Effective User Stories 17 

User Stories in Agile Workflows 18 
Sprint Planning 18 
Continuous Collaboration 18 
TDD and BDD Integration 18 
Examples of User Stories in an Online Insurance System 19 

User Stories in Gherkin Format 20 
What is Gherkin? 20 
The GWT Structure 20 
Explaining Gherkin with an Insurance Company Example 20 
Scenario analysis 21 

2 QUICK SPRING BOOT SETUP 23 

Creating a Simple Spring Boot Project 23 
What is pom.xml? 26 
Analysis of the pom.xml code sections 26 

Creating a Basic Controller 31 
Analysis of the HealthCheckController code 32 
Analysis of the DemoApplication code 34 

Creating a Basic Model 35 
Analysis of the DemoApplication code 36 
Analysis of the mapping code 37 

Creating a Basic Service 40 
Analysis of the mapping code 41 

Creating a Basic DTO 43 

What is a DTO? 44 
Analysis of the QuoteResponseDto? 44 
Analysis of the calculatequotevaluedto mapping? 45 



7 

Summarizing our basic API 47 

3 TEST-DRIVEN DEVELOPMENT 49 

JUnit 5 versus JUnit 4 52 

Creating a Maven Project 53 
pom.xml 56 

Product Type Factor Tests 63 
More Tests 70 

Product Value Factor Tests 74 

Calculate Quote Tests 82 

More robust testing 86 

Separation of Concerns 93 
Modularity 93 
Maintainability 93 
Testability 93 
Application of Separation of Concern in Java and Other Languages 93 
Separation of Concern for the business logic 94 
Separation of Concern for the tests 98 

Create a test suite 107 

Understanding the manifest and jar files 110 
Configure the project to build a jar file 112 
Maven configuration (command/script) 117 

Summary 119 

4 SPRING BOOT API – INSURANCE QUOTE BACKEND 121 

Explanation of common layers 121 
User Stories 123 

Project setup 127 

Starter poms 130 

The Model Class 132 

Data Transfer Objects (DTO) 137 

The Repository Class 151 

The Service Class 154 
Create functionality 157 
Read functionality 158 
Update functionality 158 



8 

Delete functionality 160 
Find record by its id functionality 161 

RestTemplate 165 
External Service Client 165 

The Exception Classes 167 

The Controller Class 169 
HTTP responses 169 
Handling HTTP Requests with Spring's Mapping Annotations 172 

Adding database functionality 181 

Configuring the database 182 
Server Port 182 
Database setup 182 
JPA & Hibernate Configuration 182 
H2 Console Access 183 

SQL Records 184 

The Application Class – the main method 186 

Test the endpoints 188 
CORS 189 
HTTP Client in IntelliJ IDEA Ultimate Edition 190 

Download Postman 192 

Testing the API with Postman 192 

The database table 198 

Derived Queries  - (SQL Queries) 199 
Naming convention 199 
Supported Keywords 200 
Basic Derived Query 200 
Using GreaterThan 200 
Using LessThan 200 
Using And 200 
Using Or 201 
Using Between 201 
Using Like 201 
Using In 201 
Using OrderBy 201 

Optional 201 
Derived queries in the Repository layer 202 
Derived queries in the Service layer 203 
Derived queries in the Controller layer 207 
Why These Endpoints Belong in the Controller 207 

Test the SQL endpoints 210 



9 

Quote Calculations as a service 216 

5 PRODUCT DESCRIPTION MICROSERVICE 219 

Creating a Maven Project for the Microservice 220 
Project setup 221 

The database table 248 

Testing the API with Postman 249 

6 CUSTOMER MICROSERVICE 261 
Creating a Maven Project for the Microservice 261 
Project setup 262 
Database Records 282 

The database table 284 

Testing the API with Postman 285 

7 TESTING THE MICROSERVICES INTEGRATION 291 

8 PAGINATION AND DYNAMIC SEARCHING 298 

Pagination with sorting 305 

Dynamic searching 311 

9 VALIDATION 320 
Layered approach for where and what to validate 320 
Global Exception handler 321 
Entity Field Validation 323 
Controller Method Validation 324 
Query Parameter Validation 326 

10 MOCKING 329 

Introduction to mocking 329 
Why We Use Mocking 329 
Mockito – A Popular Mocking Framework 330 

11 LOGGING 338 

Introduction to logging with SLF4J 338 
Controller Layer Logging 339 
Testing the API with Postman 340 
Testing the API controllers with Postman 343 
Service Layer Logging 344 
Testing the API service methods with Postman 349 
Repository Layer Logging 351 
Exceptions Layer Logging 352 



10 

12 SWAGGER 355 

Introduction to Swagger 355 
What is Swagger? 355 
The Springdoc OpenAPI Dependency 355 
Compatibility with Spring Boot Versions 355 
Swagger Integration with our application 356 
Generated Endpoints and API Documentation 357 
Documenting our InsuredItem endpoints 358 
Testing and Interactive Features 360 
Schema Generation and Validation Documentation 364 
Advanced Endpoint Documentation 365 

13 RESTTEMPLATE AND WEBCLIENT 367 

RestTemplate - A Classic Approach 367 

WebClient - A Modern, Reactive Solution 367 
Analysis of the WebClientConfig code 371 
Analysis of the ProductClientService code 372 
Analysis of the CustomerController getProductTypes() code 374 
Analysis of the ProductClientService code 376 
Analysis of the CustomerController getProductDescriptionByType() code 378 
Separate Configuration Class Approach (CustomerMicroservice) 379 
Main Application Class Approach (InsuredItem Microservice) 380 

14 GLOSSARY OF TERMS 381 

Spring API terms 381 

WebClient terms 385 

 

  



11 

Introduction  

 

1Embarking on the journey to becoming proficient in Spring Boot, Test-

Driven Development (TDD), and Java is akin to training for a marathon. 

Think of yourself as an athlete preparing for a marathon. Just as a fitness 

tracker helps you monitor your physical activity, set goals, and track progress, 

this book will guide you through the steps of mastering these technologies.   

 

A fitness tracker provides insights into your daily steps, exercise routines, and overall health, 

helping you stay on track and improve over a period of time. Similarly, this book will offer 

structured lessons with practical coding, and real-world examples to help you build your skills 

incrementally. By following a disciplined approach, much like adhering to a fitness régime, 

you'll develop a strong foundation in Spring Boot, Java and TDD. We will do this by 

developing an application and microservices, enabling you to tackle complex software 

development challenges with confidence. 

 

Along the way, you will encounter challenges and obstacles, much like the bumps and hurdles 

faced during physical training. Some may find that they grasp concepts quickly and progress 

rapidly, while others may take a bit longer to get into the rhythm. This is perfectly normal and 

should not be a cause for discouragement. We all have different learning curves. The key to 

success lies in perseverance and commitment. Just as consistent training and dedication can 

lead to improved physical fitness, a steadfast approach to learning and spending time writing 

code for Spring Boot, Java and TDD, will ultimately lead to proficiency.   

 

Remember, the path to becoming 'fit' in software development will not always be smooth. 

There will be moments of frustration and setbacks, but these are part of the learning process. 

Embrace the challenges, see them as opportunities to grow and strengthen your skills. With 

determination and a positive mindset, you will reach your end goal, equipped with the 

knowledge and confidence to tackle complex software development projects. 

 
Mastering Spring Boot, Java and TDD will not only enhance your technical skills but also 

broaden your understanding of widely used industry technologies. Proficiency in these areas 

will equip you with the knowledge to contribute to high-quality, maintainable, and scalable 

software solutions. By the end of this journey, you'll have a strong foundation to tackle 

complex software development challenges with confidence.

 
1 <a href="https://www.flaticon.com/free-icons/tracker" title="tracker icons">Tracker icons created by Eucalyp - Flaticon</a> 



12 

2What you will learn 

 

On completing the learning, you will: 

• Read Agile user stories and gherkins. 

• Use JUnit to create unit tests and develop Java code. 

• Use IntelliJ to create a Maven Spring Boot application. 

• Understand the Maven project structure and manage dependencies. 

• Create the structure of a Spring Boot project. 

• Create and configure JPA entities. 

• Use annotations like @Entity, @Table, @Id, and @GeneratedValue. 

• Create repository interfaces extending JpaRepository. 

• Implement custom query methods using Spring Data JPA. 

• Implement business logic in service classes. 

• Understand dependency injection using constructor injection. 

• Create RESTful endpoints using @RestController, @GetMapping, @PostMapping, 

@PutMapping, and @DeleteMapping. 

• Handle HTTP requests and responses. 

• Handle exceptions in service and controller layers. 

• Create custom exceptions. 

• Configure database connections. 

• Implement logging using SLF4J. 

• Configure application properties and logging levels. 

• Test the RESTful endpoints using Postman or cURL commands or Swagger. 

• Perform CRUD operations on a database using JPA. 

• Run a Spring Boot application from the IDE or command line. 

• Understand the main application class and its role. 

• Build and use microservices. 

• Implement pagination and sorting in REST endpoints to efficiently manage and organize 

large sets of data. 

 
2 <a href="https://www.flaticon.com/free-icons/goal" title="goal icons">Goal icons created by Uniconlabs - Flaticon</a> 



13 

• Apply validation annotations to class fields in a ‘model’ and use @Valid in our controllers 

to ensure that only valid data is processed and stored. 

• Create dynamic filtering and search functionality, allowing users to retrieve records based 

on various optional criteria. 

• Develop a global exception handler to provide consistent and informative error responses 

across the application. 

• Use Data Transfer Objects (DTOs) to encapsulate and transfer data between different 

layers of the application. 

• Write unit tests for the service layer using Mockito to mock dependencies and verify 

business logic. 

• Create integration tests to ensure that controllers and services work together as expected. 

• Integrate a simple frontend using HTML and JavaScript to demonstrate how the backend 

API can be consumed and interacted with. 

• Connect to external microservices, such as customer and product services, to enrich the 

application’s functionality. 

• Configure the application properties to manage environment-specific settings and improve 

maintainability. 

• Implement logging to monitor application behavior and assist with debugging and 

maintenance. 

• Understand how to package and deploy the application using Maven to facilitate easy 

distribution and deployment. 

• Generate API documentation using Swagger/OpenAPI to make endpoints easy to 

understand and consume. 

 

  



14 

Introduction - Spring Boot Electrical Items Insurance  

Using Spring Boot, Java, and Test-Driven Development (TDD), we will create an application 

for managing insurance related to electrical items. The generic workflow we will follow is to 

create the models, then the repositories, then the services, then the controllers, and finally the 

main application class. When we use a DTO layer, we can create the DTO classes after we 

create the model since a DTO is a view of the model. The main application class will be called 

InsuredItem and will have the properties: product_type, product_value, quote_amount and 

customer_account_number. A sample is shown below: 

 

product_type  Mobile Phone  

product_value 1200.00 

quote_amount  100.00 

customer_account_number ACC123 

 

Once we have this first part of the application developed, we will extend our knowledge by 

creating two more microservices. The first microservice will be an application that holds details 

of products i.e., the product type and a description of the policy coverage e.g.,  

Product type Camera 

Product description This policy covers accidental damage, liquid damage, fire, and 

theft of the insured camera. Coverage includes damage 

resulting from drops, spills, and electrical surges. Theft is 

covered if the camera was stored securely. Normal wear and 

tear, careless handling, unauthorized modifications, and 

mechanical breakdowns not caused by an insured event are 

excluded. 

Here the product type is Camera, and the description indicates what is and is not covered as 

part of the policy and quote amount.   

 

The second microservice will be an application that holds details of customers, the account 

number, the customer’s name and the customer’s email address e.g., 

account_number ACC123 

name Gerry Byrne 

email gerry.byrne@example.com 

 



15 

The plan for developing the application, which is itself a microservice, and the other two 

microservices is: 

• Use Test-Driven Development, based on user stories and Gherkins, to create an insurance 

quote section of the application. 

• Build the insurance API to perform CRUD operations. 

• Test the CRUD functionality. 

• Build the microservice that supplies insurance product descriptions. 

• Test this microservice. 

• Build the microservice that supplies customer details. 

• Test this microservice. 

• Build and test endpoints that use one or more microservices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source code for this book is available to readers on GitHub  

(https://github.com/gerardbyrne/ Java-Programming-Spring-InsuranceQuoteApplication.git) 

 

  



16 

1 Agile User Stories  

Agile development prioritizes delivering value to end-users, promoting teamwork, and adapting 

to change. A fundamental aspect of Agile methodology is the user story, which places users at 

the heart of software development. In the modern software development world, it is essential 

that developers understand Agile practices including Test-Driven Development and Behavior-

Driven Development (BDD). To develop user-centric software applications, developers must 

fully comprehend and master user stories. We need to be able to read and analyze user stories 

so we can create code to satisfy the user stories. 

 

What is a User Story? 

A user story is a brief, informal description of a software feature which is written from the 

perspective of the end user. It defines three things: 

• Who the user is  we say this is the persona. 

• What  they want to achieve  we say this is the goal. 

• Why  they want to achieve it  we say this is the value. 

 

A typical format for our user story is: 

 

“As a [persona], I want to [action/goal], so that [value/benefit].” 

 

 

  



17 

2 Quick Spring Boot Setup 

Creating a Simple Spring Boot Project 

1. Open a browser window. 

2. In the address bar type: https://start.spring.io/ 

 

This is Spring Initializr, which is one way to create a starter project for a Spring Boot API as 

shown in Figure 2-1. 

 

3. Click the Maven radio button in the Project section. 

4. Click the Java radio button in the Language section. 

5. Click a version in the Spring Boot section, e.g., 3.5.6. 

6. Leave the Project Metadata with the defaults. 

7. Click on the Jar radio button in the Packaging section. 

8. Click on a version in the Java section, e.g., 21. 

 

Figure 2-1. Spring Initializr – set up a project 

 

9. Click on the Add button in the Dependencies section. 

https://start.spring.io/


18 

10. Type Web in the search box that appears. 

11. Click on the Spring Web option that appears as shown in Figure 2-2. 

 

Figure 2-2. Add the Spring Web dependency 

 

________________ 

Creating a Basic Controller 

1. Right click on the demo folder (com.example.demo). 

2. Choose New. 

3. Choose Package. 

4. Name the package controller (com.example.demo.controller) as shown in Figure 2-8. 

 

Figure 2-8. Add the controller package 

 

5. Right click on the controller package. 

6. Choose New. 

7. Choose Java Class. 

8. Name the class HealthCheckController. 

9. Amend the code as shown in Listing 2-2. 

 

Listing 2-1. Controller to check the API works correctly 

package com.example.demo.controller; 

 

import org.springframework.web.bind.annotation.GetMapping; 



19 

import org.springframework.web.bind.annotation.RestController; 

 

// RestController is used to create RESTful web services using Spring MVC. 

@RestController 

public class HealthCheckController { 

     

    // GetMapping is used to map HTTP GET requests onto specific handler methods. 

    @GetMapping("/healthcheck") 

    public String healthCheck() { 

        return "Spring Boot Insurance Quote API!"; 

    } // End of healthCheck() method 

 

} // End of HealthCheckController class 

 

As we add the annotations, @RestController and @GetMapping we may need to import them 

by hovering over the annotation and choosing Import Class. 

 

Analysis of the HealthCheckController code  

What is HealthCheckController.java? 

• This is a simple Java class that acts as a REST API controller in a Spring Boot application. 

• It provides a basic endpoint and method allowing us to check if the application is running 

and responding. 

 

________________ 

Creating a Basic Service 

1. Right click on the demo folder (com.example.demo). 

2. Choose New. 

3. Choose Package. 

4. Name the package service (com.example.demo.service). 

5. Right click on the service package. 

6. Choose New. 

7. Choose Java Class. 

8. Name the class QuoteCalculator. 

9. Amend the code as shown in Listing 2-6. 

 

Listing 2-2. Service layer with method to calculate the quote value 

package com.example.demo.service; 

 

public class QuoteCalculator 

{ 



20 

    // Method to calculate insurance quote based on product type and value 

    public double calculateQuote(String productType, double productValue) 

 

 

________________ 

Creating a Basic DTO 

1. Right click on the demo folder (com.example.demo). 

2. Choose New. 

3. Choose Package. 

4. Name the package dto (com.example.demo.dto). 

5. Right click on the dto package. 

6. Choose New. 

7. Choose Java Class. 

8. Name the class QuoteResponseDto. 

9. Amend the code as shown in Listing 2-8. 

 

Listing 2-3. DTO class to be used for a response 

package com.example.demo.dto; 

 

// Data Transfer Object (DTO) to encapsulate quote response details 

public class QuoteResponseDto 

{ 

    // Fields to hold product type, product value, and calculated quote amount 

    private String productType; 

    private double productValue; 

    private double quoteAmount; 

 

    public QuoteResponseDto(String productType, double productValue, double 

quoteAmount) { 

        this.productType = productType; 

        this.productValue = productValue; 

        this.quoteAmount = quoteAmount; 

    } // End of parameter constructor 

 

 

 

What is a DTO? 

A DTO, or Data Transfer Object, is a simple Java class used to transfer data between different 

layers of our application. DTOs are designed to carry only the data needed for a specific 

operation, without any business logic. We will see more about DTOs later when we build the 

main application and microservices. 

 



21 

Summarizing our basic API 

In building our simple API application, we started by organizing our project structure using 

packages, which helps keep related code grouped together and easy to manage. We created a 

dedicated controller package and added a HealthCheckController class. This class uses Spring 

Boot annotations to define a simple REST endpoint. By adding the @RestController 

annotation, we told Spring Boot that this class would handle web requests and return data. The 

@GetMapping("/healthcheck") annotation mapped HTTP GET requests to a specific 

method, allowing us to easily check if our API is running, by visiting a simple URL in the 

browser. 

 

3 Test-Driven Development  

We are creating an application that will, like all applications, use methods, and it is essential that 

these methods work correctly. One of the essential development tools in software 

development is Test-Driven Development (TDD), which, as we read earlier, is an Agile 

software development approach that emphasizes writing tests before any functional code. In 

modern development, software developers are also testers. There should be no silos, with 

testers in one group and developers in another. Agile teams have testers and developers 

working together. Developers should be placing validation at the heart of their processes. Our 

methods need to be fully tested. The Test-Driven Development process involves the following 

steps. 

 

Listing 3-1. Sample test class 

import org.junit.jupiter.api.BeforeEach; 

import org.junit.jupiter.api.Test; 

import static org.junit.jupiter.api.Assertions.*; 

 

class QuoteCalculatorTest  

{ 

    // Declare an object of QuoteCalculator class 

    private QuoteCalculator quoteCalculator; 

 

    @BeforeEach 

    void setUp() { 

        quoteCalculator = new QuoteCalculator(); 

  } // End of setUp() method 

 

    @Test 

    void testQuoteAmount() { 

        assertEquals(120, quoteCalculator.quote("Mobile", 1000)); 

  } // End of testQuoteAmount() method 

 

    @Test 



22 

    void testDiscount() { 

        assertEquals(1, quoteCalculator.discount(3, 2)); 

   } // End of testDiscount() method 

 

} // End of QuoteCalculatorTest class 

 

 

Creating a Maven Project 

Start a new project as shown in Figure 3-1. 

1. Open IntelliJ IDEA. 

2. Choose New Project from within IntelliJ. 

Select the project type 

3. In the left-hand panel choose Java. 

Configure Project Name 

4. Name the project InsuranceQuoteBackEnd. 

Choose the Project Location 

5. Choose a location for the project. 

Set the Build System 

6. Choose Maven as the build system.  

Choose the Project SDK 

7. Select the JDK (Project SDK) – e.g., temurin-22 but a higher version is OK as well. 

Advanced Settings 

8. In the Advanced Settings add the GroupId e.g., org.example. 

9. Amend the ArtifactId if required. 

Create the project 

10. Click the Create button. 



23 

  

Figure 3-1. Project setup 

 

11. Amend the code as shown in Listing 3-2. 

 

Listing 3-2. Adding the dependencies and dependency management 

<?xml version="1.0" encoding="UTF-8"?> 

<project xmlns="http://maven.apache.org/POM/4.0.0" 

         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 

http://maven.apache.org/xsd/maven-4.0.0.xsd"> 

    <modelVersion>4.0.0</modelVersion> 

 

    <groupId>org.example</groupId> 

    <artifactId>InsuranceQuoteBackend</artifactId> 

    <version>1.0-SNAPSHOT</version> 

 

    <properties> 

        <maven.compiler.source>24</maven.compiler.source> 

        <maven.compiler.target>24</maven.compiler.target> 

        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> 

    </properties> 

 

    <!-- 

    The <dependencyManagement> section in a pom.xml file is used 

    to manage dependency versions in a centralized way. 

    This ensures that all modules in a multi-module project use 

    the same version of a dependency. 

 

    This dependency management section: 

    - Defines a BOM (Bill of Materials): 

        The junit-bom is for JUnit 5 and specifies the versions 

        of all JUnit artifacts. 

    - Sets the version: 

        Version 5.9.3 is specified for the junit-bom. 

    - Sets Type and Scope: 



24 

        The type is set to pom and the scope to import, 

        which tells Maven to import this BOM into the project. 

 

    By doing this, all JUnit dependencies in the project will use 

    version 5.9.3 without needing to specify the version for each 

    JUnit dependency individually. 

    --> 

 

    <dependencyManagement> 

        <dependencies> 

            <dependency> 

                <groupId>org.junit</groupId> 

                <artifactId>junit-bom</artifactId> 

                <version>5.9.3</version> 

                <type>pom</type> 

                <scope>import</scope> 

            </dependency> 

        </dependencies> 

    </dependencyManagement> 

 

    <dependencies> 

        <!-- 

        This dependency set adds support for JUnit 5, the latest 

        version of the JUnit testing framework. 

 

        Jupiter is the new programming and extension model for 

        writing tests in JUnit 5. 

 

        - org.junit.jupiter:junit-jupiter 

          Convenience dependency that includes both the API and 

          the engine for running tests. 

        - org.junit.jupiter:junit-jupiter-api 

          (included automatically by junit-jupiter) – API used 

          to write test code. 

        - org.junit.jupiter:junit-jupiter-engine 

          (included automatically by junit-jupiter) – Engine that 

          runs tests written with the JUnit Jupiter API. 

        --> 

        <dependency> 

            <groupId>org.junit.jupiter</groupId> 

            <artifactId>junit-jupiter</artifactId> 

            <scope>test</scope> 

        </dependency> 

 

        <!-- 

        To use the Suite features of JUnit 5, add these dependencies: 

        - junit-platform-suite-api 

          Provides the API for creating test suites. 

        - junit-platform-suite-engine 

          Executes test suites created with the Suite API. 

        --> 

        <dependency> 

            <groupId>org.junit.platform</groupId> 

            <artifactId>junit-platform-suite-api</artifactId> 

            <scope>test</scope> 

        </dependency> 

        <dependency> 

            <groupId>org.junit.platform</groupId> 

            <artifactId>junit-platform-suite-engine</artifactId> 

            <scope>test</scope> 



25 

        </dependency> 

    </dependencies> 

</project> 

 

 

ALL fourteen tests pass as shown in Figure 3-38. 

 

Figure 3-38. All fourteen tests pass 

 

Understanding the manifest and jar files 

Currently we have a small application that can create an insurance quote for an electrical item, 

given the product type and the product value. We have used Test-Driven Development to 

create the application, and our tests were developed to verify that the user stories were fully 

complied with. We ran the application from the main() method within the IntelliJ Integrated 

Development Environment, and all worked well. 

 

 

  



26 

4 Spring Boot API – Insurance Quote Backend 

In a tiered system, we use a separation of concerns approach and organize our codebase into 

distinct parts, each with a specific responsibility. This is what we have just completed with our 

tests and business logic. By using separation of concerns, we make the application easier to 

manage, test, and maintain. 

 

In a Spring Boot API application, separation of concerns means dividing the codebase into 

layers or components, each handling a specific responsibility. This approach improves 

maintainability, testability, scalability, and clarity by ensuring that each part of the application 

has a clear, focused role. 

Explanation of common layers 

1. Model Layer  

The model layer contains the domain objects or entities that standard Spring Boot 

applications use to represent the data in the application. These classes are typically 

annotated with JPA annotations to map them to database tables.  

2. Repository Layer 

The repository layer contains interfaces that define the CRUD operations for the domain 

objects. These interfaces extend the JpaRepository interface provided by Spring Data JPA. 

3. Service Layer  

The service layer contains the business logic of the application. It interacts with the 

repository layer to perform CRUD operations on the domain objects.  

4. Controller Layer  

The controller layer contains the REST endpoints that handle incoming HTTP requests. 

It interacts with the service layer to process the requests and return the appropriate 

responses.  

5. Main Application Class   

The main application class is the entry point of the Spring Boot application. It contains the 

main method that starts the Spring Boot application.  

6. Application Properties  

The application.properties file contains configuration settings for the Spring Boot 

application, such as database connection details, server port, and logging settings.  

7. Test Classes  

The test classes contain unit tests for the various components of the application, such as 

the models, repositories, services, and controllers.  



27 

8. Exception Handling  

The exception handling classes contain custom exception classes that extend the 

RuntimeException class to handle errors and exceptions in the application.  

9. Security Configuration  

The security configuration classes contain configurations for securing the application, such 

as authentication, authorization, and access control.  

10. Logging Configuration  

The logging configuration classes contain configurations for logging in the application, 

such as log levels, log file location, and log format.  

11. Swagger Configuration  

The Swagger configuration classes contain configurations for generating API 

documentation using Swagger, such as API version, title, description, and contact 

information.  

12. Docker Configuration  

The Docker configuration files contain configurations for building and running the 

application in a Docker container, such as Dockerfile, docker-compose.yml, and docker-

compose.override.yml.  

13. CI/CD Configuration  

The CI/CD configuration files contain configurations for continuous integration and 

continuous deployment, such as Jenkins file, GitHub Actions workflow, and GitLab 

CI/CD pipeline. 

 
We can now begin our journey by building our Spring Boot application and making the API. 

The Maven project we have with the test and business logic classes can now be extended to 

create a standard Spring Boot application. We will not use all the configurations we have just 

read about but, we will use layers and configuration to create a fully working and extendible 

application. 

 

We will create an insurance quote application that enables users to manage insured items, 

calculate insurance quotes, and view related customer and product information. The main 

application will provide CRUD operations for insured items, allow users to request insurance 

quotes based on product type and value, and support advanced search, pagination, and sorting 

features. Along with this main insurance quote application we will develop two microservices. 

The first microservice, The Customer Microservice, will be a service that manages customer 

data, such as account numbers, names, and email addresses. The main application will call this 

microservice to retrieve and display customer information associated with insured items. 



28 

The second microservice, The Product Microservice, will be a service that manages product 

details, including product types and descriptions. The main application will interact with this 

microservice to fetch and display product information relevant to each insured item. 

 

Together, our three segregated applications will form a distributed system where the main 

application orchestrates insurance operations and integrates customer and product data from 

dedicated microservices, ensuring modularity, scalability, and clear separation of concerns. 

 

In line with what we did in building the quote classes we will look at some user stories and 

Gherkins that could act as the starting point for our full application. Whilst the user stories are 

not a complete list, they are the core for what the application is required to achieve. We are 

simply trying to ensure that we understand that systems are built from a user-centric 

perspective and that as developers we build our application based on the user stories and 

acceptance criteria we are given by the Product Owner. As the focus of this book and our 

learning is how to build a Spring Boot applications, we will concentrate more on designing the 

application from the perspective of the architecture layers, and in doing so, we will cover the 

user stories and acceptance criteria. 

 

Project setup 

We will now set up the layers we require to get started with our application. We should think 

back to the demo API we built with the help of Spring Initializr, as it introduced us to a basic 

structure for an API project. We saw that we segregated our API using the packages, 

controller, model, service and dto. We also discussed a little about the use of DTOs. We will 

enhance our knowledge of DTOs and the structure of an API as we build the remaining part 

of this application and the two microservices.  

 

1. Right click on the java package in the main package. 

2. Choose New. 

3. Choose Package. 

4. Name the package api. 

 

5. Right click on the api package. 

6. Choose New. 

7. Choose Package. 

8. Name the package controller. 



29 

 

9. Right click on the api package. 

10. Choose New. 

11. Choose Package. 

12. Name the package exceptions. 

 

13. Right click on the api package. 

14. Choose New. 

15. Choose Package. 

16. Name the package model. 

 

17. Right click on the api package. 

18. Choose New. 

19. Choose Package. 

20. Name the package repository. 

 

21. Right click on the api package. 

22. Choose New. 

23. Choose Package. 

24. Name the package service. 

 

The new project structure is shown in Figure 4-1. 

 

Figure 4-1. API layers 

 



30 

The Model Class 

The model class named InsuredItem will represent an entity in our application. The model will 

consist of fields, constructors, getters and setters and a toString() method, just like any other 

Java class can have. The purpose of this model is to define the structure for the data that will 

be stored in the database and to facilitate interaction with the database through an object-

oriented approach. This model will be mapped to a database table using the Java Persistence 

API (JPA) annotations. The annotations we will use are: 

 

The Repository Class 

The repository is an interface, which often extends JpaRepository, and provides Create, Read, 

Update, Delete (CRUD) and query methods backed by JPA. The repository is the persistence 

boundary, and our services will use repositories to load, save, and delete entities. Our 

controllers should not call repositories directly, they should use services to do this. 

 

 

Listing 4-1. Add the code for the repository layer 

package api.repository; 

 

/* 

The JpaRepository interface provides various methods for performing 

CRUD (Create, Read, Update, Delete) operations and pagination on the 

InsuredItem entity. 

*/ 

import api.model.InsuredItem; 

import org.springframework.data.jpa.repository.JpaRepository; 

import java.util.List; 

 

/* 

The InsuredItemRepository interface extends the JpaRepository interface, 

which takes the entity type (InsuredItem) and the type of the primary 

key (Long) as type arguments. We use this JpaRepository interface to 

interact with the InsuredItem entity in the database. The interactions we 

can use include the CRUD operations, sorting, and pagination. 

The JpaRepository interface extends the PagingAndSortingRepository 

interface, which in turn extends the CrudRepository interface. 

*/ 

 

public interface InsuredItemRepository extends JpaRepository<InsuredItem, Long> 

{ 

    /* We use List to return a list of InsuredItem objects. */ 

    List<InsuredItem> findByCustomerAccountNumber(String customerAccountNumber); 

 

} // End of InsuredItemRepository interface 

 



31 

The Service Class 

Now we will create the service layer for our API. The responsibility of the services will be to 

encapsulate the business logic of the application. It will be the intermediary between the 

controller layer, which will handle the HTTP requests and responses, and the data access 

layer, which interacts with the database. The service layer ensures that business rules are 

applied, and it provides a clean separation of concerns. Our service layer called, 

InsuredItemService, will handle operations such as creating, retrieving, updating, and deleting 

related to the InsuredItem model. We will see later how the methods in this layer will be called 

by the methods in the Controller layer. 

 

25. Amend the code as shown in Listing 4-13. 

 

Listing 4-2. Add the code for the Service layer 

package api.service; 

 

import api.dto.CustomerWithInsuredItemsDTO; 

import api.dto.InsuredItemWithoutAccountDTO; 

import api.dto.CustomerDTO; 

import api.model.InsuredItem; 

import api.repository.InsuredItemRepository; 

import api.service.quotecalculations.CalculateQuote; 

import org.springframework.stereotype.Service; 

import api.exceptions.InvalidQuoteException; 

import api.exceptions.QuoteNotFoundException; 

 

import java.util.List; 

 

/* 

@Service annotation is used to mark the class as a service 

provider. The @Service annotation is a specialization of the 

@Component annotation. It's a good practice to use @Service over 

@Component in service-layer classes 

*/ 

@Service 

public class InsuredItemService { 

 

    /*************************************************************** 

                         DEPENDENCY INJECTION 

         Inject CalculateQuote, InsuredItemRepository, and 

         ExternalServiceClient for business logic, data access, 

         and external service integration 

     ***************************************************************/ 

    private final CalculateQuote calculateQuote; 

    private final InsuredItemRepository insuredItemRepository; 

    private final ExternalServiceClient externalServiceClient; 

 

    /************************************************************** 

                  CONSTRUCTOR-BASED DEPENDENCY INJECTION 

         Inject CalculateQuote, InsuredItemRepository, 

         and ExternalServiceClient into InsuredItemService 



32 

     **************************************************************/ 

    public InsuredItemService(CalculateQuote calculateQuote, 

                              InsuredItemRepository insuredItemRepository, 

                              ExternalServiceClient externalServiceClient) { 

        this.calculateQuote = calculateQuote; 

        this.insuredItemRepository = insuredItemRepository; 

        this.externalServiceClient = externalServiceClient; 

    } // End of InsuredItemService() constructor 

 

} // End of class InsuredItemService 

 

Adding database functionality 

To persist and manage data in our API, we will integrate a database. Using a database allows 

the application to store, retrieve, update, and delete records efficiently. For development and 

testing purposes, we will use the H2 database, which is an in-memory, lightweight, and fast 

relational database. H2 requires minimal configuration and runs within the application, making 

it ideal for prototyping and local development. It is not a database we would use at the 

production stage. We will add a dependency for the h2 database in the pom.xml. 

 

1. Open the pom.xml file. 

2. Amend the pom.xml code as shown in Listing 4-39. 

 

Listing 4-3. Add the h2 dependency 

    <dependency> 

        <groupId>org.springframework.boot</groupId> 

        <artifactId>spring-boot-starter-data-jpa</artifactId> 

    </dependency> 

 

    <dependency> 

        <groupId>com.h2database</groupId> 

        <artifactId>h2</artifactId> 

        <version>2.3.232</version> 

        <scope>runtime</scope> 

    </dependency> 

</dependencies> 

Having amended the pom.xml file we need to make sure all dependencies are up to date. 

 

SQL Records 

We will now create a data.sql file, which will be used to insert initial data into the 

INSUREDITEM table of our H2 in-memory database. This table will store details about 

various items, including their product type and value. By populating the database with this data, 

we will be able to test our application with a predefined set of records. We will use SQL 

INSERT statements to add multiple rows to the INSUREDITEM table. Each row will 



33 

represent an electrical item with product type and product value attributes. This approach 

ensures that our database is preloaded with data when the application starts, allowing us to 

focus on developing and testing the application's functionality without manually entering data 

each time. 

 

3. Right click on the resources package. 

4. Choose New. 

5. Choose File. 

6. Name the file data.sql. 

7. Press the Enter key. 

8. Amend the code as shown in Listing 4-41 to add records that will populate the H2 

database. 

 

Listing 4-4. Records to be inserted into the H2 database 

INSERT INTO insureditem(product_type, product_value, quote_amount, 

customer_account_number) VALUES ('Mobile Phone', 1200.00, 100.00, 'ACC123'); 

INSERT INTO insureditem(product_type, product_value, quote_amount,  

 

Figure 4-4. All records are displayed 

  



34 

5 Product Description Microservice 

A microservice is a small, independently deployable application that focuses on a specific 

business capability. In this microservice (application), we are now going to build functionality 

for managing information about a Product. In the context of Spring Boot, a microservice is 

typically built as a standalone Spring Boot application that exposes its functionality through 

RESTful APIs. It uses Spring Data JPA to interact with its own dedicated database, mapping 

Java entities to database tables and handling data persistence. The InsuranceQuoteBackEnd 

application we just created could considered a microservice. A microservice manages its own 

data and logic, communicates with other microservices through HTTP APIs and can be 

developed, deployed, and scaled independently of other services.  

 

 

Figure 5-3. Connection to the H2 database 

 

1. Click on the PRODUCT table on the left-hand side.  

2. Click on the Run button. 

 

The list of products in the table is displayed and shown in Figure 5-4. The column order might 

be different, but this is not important. 



35 

 

Figure 5-4. Run the SQL Select all command 

 

6 Customer Microservice 

As we have read previously, a microservice is a small, independently deployable application 

that focuses on a specific business capability. In our application we have created the Product 

microservice and now we will create a second microservice to hold data about Customers. The 

Customer microservice will manage its own data and logic and communicate with other 

microservices through HTTP APIs. 

 

Figure 6-3. Connection to the H2 database 

 

1. Click on the CUSTOMER table on the left-hand side.  

2. Click on the Run button. 

 

The list of customers in the table will be displayed as shown in Figure 6-4. The column order 

might be different, but this is not important. 



36 

 

Figure 6-4. Run the SQL Select all command 

  



37 

7 Testing the microservices integration  

All customers and their insured items  

We will now create code in the InsuranceQuoteBackEnd application that will allow us to see all 

customers, along with their details and the list of items they have insured. We therefore need to 

integrate data from two sources. The insured items are stored in the H2 database managed by 

our InsuranceQuoteBackEnd application. However, customer details are not stored locally, 

instead, they reside in a separate microservice running on port 9999. 

 

 

The full set of insured items, each with the customer details, and the product details should be 

displayed as shown in Figure 7-2. 

 

Figure 7-2. Insured items with customer and product details 

 

  



38 

8 Pagination and dynamic searching 

Rather than having a long list of records displayed in the browser or end user’s application, we 

can use pagination, which is available with Spring Data JPA. Pagination is a technique we can 

use to split large sets of data into smaller chunks or pages. Pagination can improve 

performance and enhance the user experience by allowing clients to request only a subset of 

the data at a time. 

 

The sixth page with a set of five insured items should be displayed as shown in Figure 8-8, 

remembering that we asked for descending order by product type, then quote amount by 

ascending order and customer account number in ascending order. 

 

Figure 8-8. Pagination with sort by multiple fields 

 
  



39 

9 Validation 

Validation is not just checking fields, it is the first and most important point where we check 

for correctness in our Spring Boot API or microservice.  There are many reasons why we need 

to validate in our Spring API application. One simple example would be to follow the 

important principle of fail fast. This principle can help us save effort by rejecting incorrect 

requests at the controller level, which is the edge of our application receiving the user requests. 

As an example, there would no point in calling the service layer if the minimum or maximum 

value in the request is violated. 

 

 

Listing 9-1. Customer account number pattern incorrect 

 

  



40 

10 Mocking 

Introduction to mocking 

We unit tested our code to ensure that the methods in the quote calculator worked, and we got 

a correct quote value when we passed the product details to a method. When we test our code, 

the goal is to check whether a particular class or method works as expected. However, as we 

have seen in building the insurance application, classes usually do not work in isolation. Our 

insurance quote service depends on two other microservices, one to fetch customer details and 

the other to retrieve product details. When we run a unit test that calls these services our test 

will be dependent on systems outside of our control. We may find a test fails because the 

product service is down, or the customer database is being updated. So, our tests would fail not 

because our code is incorrect, but because of external factors. 

 

 

Figure 10-1. All Mockito tests pass 

 

These tests cover creation, validation, retrieval, deletion, and a DTO mapping scenario. 

Mocking is an important feature of modern software development and in this chapter we have 

simply introduced ourselves to its use.  



41 

11 Logging 

Introduction to logging with SLF4J 

We can use logging to record information about the execution of our application. As 

developers we can use logging to track the flow of our program, monitor its behavior, and 

capture important events or errors that occur during runtime. Logging is essential for 

debugging, troubleshooting, and maintaining any application, since it provides a history, a 

record, of what happened in the system when it runs. This is an invaluable source of 

information when diagnosing issues or understanding user actions. 

 

 

We will now see the logging information in the console window as shown in Figure 11-8. 

 

Figure 11-8. Logging information for the findProductsByType in external service 

 

This endpoint is missing the last parameter, it should be 

http://localhost:8888/quote?productType=Laptop&productValue=400 which we used 

previously. 

 

 

 

  

http://localhost:8888/quote?productType=Laptop&productValue=400


42 

12 Swagger 

Introduction to Swagger  

What is Swagger? 

Swagger is an open-source framework that allows us to design, build, document, and consume 

RESTful web services. It provides a standard, language-agnostic interface to REST APIs that 

allows both humans and computers to discover and understand the capabilities of a Restful 

service without requiring access to source code or additional documentation. Swagger uses the 

OpenAPI Specification (OAS), which defines how to describe REST APIs in a machine-

readable format. When we access the Swagger UI in a browser, we will see an interactive 

documentation page that lists all our API endpoints, their parameters, request and response 

formats, and allows us to test them directly from the interface. We also see documentation for 

our DTO objects. 

 

 

The Swagger interface should appear as shown in Figure 12-1. 

 

Figure 12-1. Swagger UI Interface 

 



43 

13 RestTemplate and WebClient 

In the three microservice we have created and tested, we have the InsuranceQuoteBackEnd 

microservice (application) which can call both external microservices, CustomerMicroservice 

and ProductMicroservice using the RestTemplate. 

 

RestTemplate - A Classic Approach 

RestTemplate has been the standard way to make HTTP requests in Spring applications for 

many years. It is simple, synchronous, and easy to use for straightforward REST calls. For 

example, in Listing 13-1 we see the code we used to connect to an external customer 

microservice. 

 

Listing 13-1. Using the RestTemplate getForObject() method 

public CustomerDTO findCustomerByAccountNumber(String accountNumber) 

{ 

    logger.info("Fetching customer details for account number: {}", accountNumber); 

    String url = "http://localhost:9999/api/customer/account/" + accountNumber; 

    CustomerDTO customer = restTemplate.getForObject(url, CustomerDTO.class); 

    logger.info("Received customer details: {}", customer); 

    return customer; 

} // End of findCustomerByAccountNumber method 

 

This approach works well for traditional, blocking applications. 

 

WebClient - A Modern, Reactive Solution 

As applications in the enterprise have become more demanding, requiring better scalability, 

non-blocking I/O, and support for reactive programming, WebClient was introduced as part 

of Spring WebFlux. WebClient is fully non-blocking and supports both synchronous and 

asynchronous operations, making it ideal for modern, high-concurrency applications. 

  



44 

14 Glossary of Terms 

Spring API terms 

 

API  An Application Programming Interface is a set of defined rules, protocols, and 

tools that allow different software systems to communicate with each other. 

When dealing with web APIs, we usually refer to HTTP-based endpoints that 

handle requests and responses between the client and the server. 

 

 

WebClient terms 

Reactive Programming  

An asynchronous programming approach for handling data streams and event 

propagation. WebClient leverages this model to handle multiple concurrent 

requests efficiently without blocking threads.  

 

 


