

 [image: Spring AI for Your Organization]

 Spring AI for Your Organization

 GCP Vertex AI Edition

 Muthukumaran Navaneethakrishnan

 This book is available at https://leanpub.com/springai

 This version was published on 2025-06-13

 [image: publisher's logo]

 * * * * *

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

 © 2025 Muthukumaran Navaneethakrishnan

 To Balasundari Navaneethakrishnan.

Table of Contents
		
	
	
	
	
	
	
	
	

		
	
	
	
	
	
	
	
	
	
	
	
	

		
	
	
	
	
	
	
	
	
	
	

		
	
	
	
	
	
	
	
	
	
	
	
	
	

		
	
	
	
	
	
	
	
	

		
	
	

		
	
	
	
	
	
	
	
	

		
	
	
	
	
	

		
	
	
	

		
	
	

		
	
	
	

	

 Guide

 	
 Cover

Acknowledgments

Thank you to Shaama M for making this new revision possible, Especially the way you helped me with the migration from the old version to the new one. Your support has been invaluable.

Thank you to Madhana Gopala Ramachandran and Agalya for their invaluable support in testing code, fixing bugs, and editing.

Special thanks to Peter Uballed for encouraging me to complete this project. Without that push, this draft might have remained unfinished for another year.

I am also deeply grateful to my mentors, Prabagar Ganapathy and Senthilkumar Sundararajan, who have always been there when I needed guidance and have helped me take the next step.

Lastly, heartfelt thanks to my family and friends for their unwavering support throughout this journey.

Preface

I began exploring Spring AI and Vertex AI with the simple goal of gaining a deeper understanding. Along the way, I realized I had valuable insights to share with the Spring community, which led me to write this book. This isn’t an “I’m an expert, look at me” kind of project—it’s a practical, dev-to-dev guide. In the middle of writing, I even found myself contributing to the Spring AI framework.

If you’re familiar with Spring and eager to add AI-driven features like chatbots, natural language data querying, multimedia capabilities, RAG, text embeddings, multimedia embeddings, and using Model Garden—all specifically with GCP Vertex AI—this Spring AI handbook walks you through each step. With hands-on examples, we’ll cover everything from setting up your environment to building intelligent, context-aware systems. Each chapter builds on the last, aiming to make your Spring applications not just smarter, but more intuitive and user-focused.

I hope this book becomes your go-to guide for integrating AI into your Spring projects using GCP Vertex AI, helping you build products quicker and more efficiently. Let’s dive in together and explore the exciting possibilities!

Trademark Notice

This document and the associated project incorporate technologies developed by various organizations and are used solely for educational and instructional purposes. Trademark acknowledgments are as follows:

	
Spring is a trademark of Broadcom Inc. and/or its subsidiaries.

	
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle Corporation and/or its affiliates.

	
Google Cloud Platform (GCP) and Vertex AI are trademarks of Google LLC. No affiliation with or endorsement by Google LLC is implied.

	
PostgreSQL and the Slonik Logo are trademarks or registered trademarks of the PostgreSQL Community Association of Canada.

	
Any other trademarks mentioned are the property of their respective owners.

This project and its documentation are independent of the companies and entities listed and do not imply endorsement. The use of the above trademarks is strictly for identification purposes and does not signify any association with Oracle Corporation, Broadcom Inc., Google LLC, the PostgreSQL Community Association of Canada, or any other mentioned affiliates.

Chapter 1: 1 Introduction

Artificial Intelligence (AI) has evolved significantly, impacting every domain and reshaping how software is built and deployed. Java, a language renowned for its stability and enterprise focus, has been a key player in AI’s history, contributing through frameworks like AIML for rule-based chatbots and Deeplearning4j for deep learning. However, with the rise of Python and its dominance in AI development, Java developers faced a gap in leveraging AI’s latest advancements, especially with generative AI models like GPT.

This book bridges that gap by introducing Spring AI, a framework that seamlessly integrates AI into the Spring ecosystem. Spring AI simplifies complex tasks such as maintaining conversation history, implementing Retrieval-Augmented Generation (RAG), and using LLM functions, enabling developers to focus on building robust, scalable, and intelligent applications.

By leveraging tools like Google Cloud’s Vertex AI, this book offers practical guidance on how Java developers can embrace the capabilities of generative AI without abandoning their existing ecosystem. From building chatbots to creating enterprise-ready AI applications, this book provides a comprehensive approach to mastering AI integration with Spring, transforming how we approach modern software development.

1.1 Evolution of AI Frameworks in Java

Java has been a key player in the development of artificial intelligence (AI) applications, offering a robust ecosystem of libraries and frameworks. Early AI tools in Java included:

	
AIML (Artificial Intelligence Markup Language) (1995): AIML’s first widely recognized implementation was in Java. The ALICE project (Artificial Linguistic Internet Computer Entity), which introduced AIML, heavily relied on Java for building its chatbot infrastructure. Java’s platform independence and robust ecosystem made it a popular choice for early AI-related projects, including ALICE. The original interpreter for AIML, Program D, was also written in Java and became the foundation for many AIML-based chatbots. Java’s simplicity and scalability at the time contributed to the adoption of AIML for creating rule-based conversational agents.

	
Apache OpenNLP (2010): A library for natural language processing tasks, including entity recognition, tokenization, and text classification.

	
Stanford CoreNLP (2014): A Java-based framework for natural language processing, offering robust tools for part-of-speech tagging, named entity recognition, dependency parsing, and sentiment analysis.

	
Deeplearning4j (2014): A suite for building deep neural networks in Java, with support for distributed training and GPU acceleration.

1.1.1 Rise of Python in AI

The landscape of AI development shifted with the introduction of PyTorch (2016). PyTorch’s dynamic computation graph, native C bindings, and strong GPU support made it a favorite for building and training deep learning models. Python’s simplicity and vast ecosystem of AI libraries like TensorFlow, Scikit-learn, and PyTorch propelled it to the forefront of AI development, particularly with the emergence of generative AI.

1.2 Emergence of Spring AI

Generative AI and large language models (LLMs) have introduced transformative opportunities for developers. While Python has dominated due to its rich AI libraries, the introduction of generative models through APIs brought challenges such as:

	
Managing conversation history.

	
Implementing Retrieval-Augmented Generation (RAG) workflows.

	
Leveraging LLM functions for complex tasks.

Manually handling these complexities can lead to inefficiencies. Recognizing this gap, the Spring community launched Spring AI.

Spring AI extends Spring’s core principles—portability, modularity, and the use of Plain Old Java Objects (POJOs)—to simplify AI integration. Features include:

	
Built-in support for conversation history and RAG workflows.

	
Unified API for multiple AI providers like OpenAI, Google Vertex AI, and Microsoft Azure.

	
Seamless integration with the Spring ecosystem, allowing developers to leverage familiar tools and methodologies.

By abstracting the complexities of AI, Spring AI empowers developers to create scalable, enterprise-ready AI applications efficiently.

1.3 Introduction to Generative AI

Generative AI focuses on creating new content, such as text, images, or audio, based on patterns learned from training data. Unlike traditional AI models that predict or classify, generative AI learns underlying structures and generates creative outputs.

For example:

	
Traditional AI: Predicts the next word in a sentence or identifies an image as a cat or dog.

	
Generative AI: Composes entire paragraphs, generates realistic images, or creates music.

Generative AI opens up vast possibilities for innovation, such as:

	
Chatbots producing human-like responses.

	
Art and music creation.

	
Summarizing and analyzing complex datasets.

This shift in capabilities pushes AI from prediction to creation, transforming applications in industries like education, entertainment, and customer service.

1.4 Overview of Spring AI

Spring AI is a Java framework that integrates artificial intelligence capabilities into applications. Key features include:

	
A unified API supporting chat, text-to-image, and embedding models from providers like OpenAI, Google Vertex AI, and Microsoft Azure.

	
Seamless compatibility with the Spring ecosystem, enabling modular and scalable application design.

	
Easy switching between AI components with minimal code changes, promoting flexibility.

Spring AI is designed for enterprise-level applications, offering:

	
Portability: Avoid vendor lock-in with support for multiple AI services.

	
Scalability: Grow AI capabilities alongside business needs.

	
Efficiency: Leverage Spring’s existing infrastructure to save development time.

With Spring AI, Java developers can incorporate AI into applications without needing to switch to Python or learn new frameworks.

1.5 Introduction to Google Cloud’s Vertex AI

Vertex AI on Google Cloud provides powerful tools to integrate AI into applications, such as:

	
Chatbots with memory for conversational continuity.

	
Natural language queries for SQL-like interactions.

	
Handling diverse inputs like text, PDFs, and images.

Vertex AI works seamlessly with other Google Cloud services, including:

	
Cloud Run: For scalable, serverless deployments.

	
Cloud SQL: For database integration.

	
Cloud Storage: For managing multimedia files.

This integration makes Vertex AI an ideal platform for deploying intelligent, data-driven applications.

1.6 Goals of the Book (What You Will Learn)

This book is a practical guide for Spring developers to integrate Generative AI into their applications. By the end of this book, you will learn to:

	
Integrate AI into Java Applications: Discover how Spring AI bridges traditional Java development with AI.

	
Build AI-Powered Chatbots: Create chatbots capable of understanding and responding naturally.

	
Handle Complex Data Formats: Process text, PDFs, and multimedia inputs.

	
Leverage Retrieval-Augmented Generation (RAG): Enhance chatbot intelligence using internal data.

	
Utilize LLM Functions: Streamline workflows with advanced AI functionalities.

	
Optimize and Deploy AI Applications: Deploy enterprise-ready applications on Google Cloud Platform (GCP) using services like Cloud Run.

This combination of conceptual knowledge, practical implementation, and deployment strategies makes this book a comprehensive resource for integrating AI with Spring.

1.7 Who Should Read This Book

This book caters to:

	
Backend Developers: Whether seasoned or new, this book enhances your skills for building AI-driven applications.

	
Managers Returning to Technical Roles: Gain practical insights into integrating AI into projects.

	
Java Developers Exploring AI: Transition to AI development without switching to Python.

	
Engineers Building Scalable AI Solutions: Access hands-on examples and real-world use cases.

Whether you’re diving into AI for the first time or looking to enhance your expertise, this book equips you to navigate the evolving landscape of Generative AI.

1.8 Prerequisites

1.8.1 Technical Requirements

To get started, you need the Java Development Kit (JDK) version 17 or higher. You can verify the installation with the following command:

java -version

The preferred build tool for this book is Gradle, which can be checked using:

gradle -version

You also need the Google Cloud SDK (gcloud CLI) installed. Verify its installation with:

gcloud --version

For development, an IDE like IntelliJ IDEA or Eclipse is recommended. Lastly, ensure you have an active Google Cloud Platform (GCP) account. You can sign up here.

1.8.2 Knowledge Requirements

	
Familiarity with Java & Spring Boot.

	
Understanding of generative AI concepts and cloud platforms.

1.8.3 GCP Setup

To set up your Google Cloud Platform (GCP) environment, start by visiting the GCP Console and creating a new project named myspringai. Once the project is created, navigate to the API Library and enable the Vertex AI API. This ensures the project is ready to integrate AI functionalities.

Next, configure the gcloud CLI on your system. Begin by authenticating your GCP account using the following command:

gcloud auth login

This will open a browser for authentication. After successful authentication, set the newly created project as the default for your gcloud CLI:

gcloud config set project myspringai

Finally, configure the default region for Cloud Run to us-central1:

gcloud config set run/region us-central1

This setup ensures that your environment is ready to deploy AI-enabled applications using Vertex AI and other GCP services.

1.9 What’s Next

This chapter covered setting up Java, Gradle, and the Google Cloud SDK, along with creating a GCP project, enabling the Vertex AI API, and configuring the gcloud CLI. With these essentials in place, the next chapter will guide you through building a Spring AI chatbot, starting with project setup and designing a RESTful API for chatbot interactions, while integrating Vertex AI with Spring Boot.

Chapter 2: Creating ChatBot with Spring AI

We begin our journey into building a Spring AI chatbot by establishing the project’s foundation. This section will guide you through the initial setup, design considerations, and integration steps. We’ll utilize Spring Boot to develop an application that interacts with Google Cloud Platform (GCP) and leverages its powerful AI capabilities. Through this process, we’ll construct a chatbot that can engage users in conversation and respond to their inquiries.

2.1 Chapter Highlights:

	
Project Initialization with Spring AI:

	
We start by initializing our project using Spring Initializr, selecting essential dependencies such as Spring Web, Vertex AI Gemini, and Google Cloud Support. This lays the groundwork for building a robust Spring Boot application.

	
Setting Up the Gradle Build File:

	
Next, we configure the Gradle build file, adding necessary repositories and properties. This step ensures that our project is equipped with the right tools and dependencies needed for seamless integration with GCP and Vertex AI.

	
Designing the ChatBot Endpoint:

	
Here, we focus on creating the endpoint for our ChatBotController. This section guides you through creating a structured endpoint that processes user queries and generates appropriate responses, making the chatbot interactive and functional.

	
Integrating Vertex AI for Intelligent Responses:

	
We explore the integration of Vertex AI into our Spring Boot application. This includes autowiring the VertexAiGeminiChatModel and modifying the chatbot’s functionality to utilize this client for intelligent, AI-powered interactions.

	
Practical Application and Deployment:

	
Finally, we put theory into practice by deploying our application to GCP Cloud Run. This step marks the transition from development to a live environment, where the chatbot can interact with real users.

By the end of this chapter, you will have a fully functional Spring AI chatbot, integrated with GCP’s Vertex AI, ready to respond to user queries with intelligence and context.

2.2 How to Initialize the project

We’re about to create a Spring Boot application that interacts with GCP to respond to user queries. This setup involves incorporating specific dependencies:

	
Open Spring Initializr at start.spring.io and create a project named ‘hello-spring-ai’

	
Choose Gradle as your build tool (although Maven is also an option, this book will focus on Gradle)

	
Include the following dependencies:

	
Spring Web

	
Lombok

	
Vertex AI Gemini

	
Google Cloud Support

After configuring these settings, click “Generate” to create the project and then open it in your IDE.

The generated Gradle file will include an additional repository for downloading Spring AI-related artifacts and configurations for managing dependencies related to GCP and Vertex AI Gemini:

repositories {
 mavenCentral()
 maven { url 'https://repo.spring.io/snapshot' }
}

The additional repository specifies the Spring snapshot repository, which is necessary for obtaining Spring AI-related dependencies as on when writing this book.

Additionally, the Gradle properties (ext) will define versions for Spring Cloud, GCP, and Spring AI to ensure compatibility and stability:

ext {
 set('springAiVersion', "1.0.0-SNAPSHOT")
 set('springCloudGcpVersion', "5.4.3")
 set('springCloudVersion', "2023.0.0")
}

Besides the regular dependencies such as Spring Web and Lombok, your Gradle build file will also include:

implementation 'com.google.cloud:spring-cloud-gcp-starter'
implementation 'org.springframework.ai:spring-ai-vertex-ai-gemini-spring-boot-starter'

These dependencies are essential for managing GCP configurations and leveraging Vertex AI capabilities within your Spring Boot application. To further enhance API testing and documentation, we will also include the following dependency:

implementation 'org.springdoc:springdoc-openapi-starter-webmvc-ui:2.6.0'

This addition allows you to test the REST APIs directly from a browser by navigating to http://{host}:{port}/swagger-ui.html, typically accessible at http://localhost:8080/swagger-ui.html. The Springdoc OpenAPI UI integration facilitates seamless API testing and documentation management.

2.2.1 Configure VertexAI Gemini Integration

Modify the application.properties file to set up the necessary properties for Vertex AIi Gemini:

spring.ai.vertex.ai.gemini.projectId=myspringai
spring.ai.vertex.ai.gemini.location=us-central1
spring.ai.vertex.ai.gemini.chat.options.model=gemini-1.5-flash

Ensure that the projectId matches your Google Cloud project ID. Select the location based on your project. Here are the details regarding the available model options:

	
gemini-1.5-pro: A more advanced multimodal model designed for complex tasks, offering superior performance in reasoning and nuanced tasks. While it has a higher cost (approximately $7.00 for input and $21.00 for output per million tokens) and slower output speed, it excels in complex reasoning, creative writing, and coding.

	
gemini-1.5-flash: A lightweight Multimodal model optimized for speed and efficiency, featuring fast output speed (163.6 tokens per second) and more cost-effective pricing($0.53 per million tokens). While it may not match Pro’s performance in nuanced tasks, it excels in rapid responses, long context handling, and scalability.

For the most current model options, refer to Google Cloud’s model versioning guide.

For this book, we would be using gemini-1.5-flash model due to its relevance, comprehensive features, and affordability also we will be using .

2.3 Creating a RESTful Chat Endpoint

In this section, we’ll design a RestController for our chat application, the core component that handles user requests and responses. Our goal is to create an interactive and functional chatbot.

Before we create an endpoint, we must structure the input and output formats. For testing purposes, we will establish a POST endpoint that accepts a JSON containing a ‘question’ property and returns a JSON with ‘question’ and ‘answer’ properties.

Define a request record named ChatBotRequest with a ‘question’ property:

public record ChatBotRequest(String question) {}

Define a response record named ChatBotResponse with ‘question’ and ‘answer’ properties:

public record ChatBotResponse(String question, String answer) { }

Implement a RestController named ChatBotController that listens on the /api/chat endpoint with a method named askQuestion:

@RestController
public class ChatBotController {

 @PostMapping("/api/chat")
 public ChatBotResponse askQuestion(@RequestBody ChatBotRequest
 chatBotRequest) {
 return null;
 }
}

2.4 Connecting to Vertex AI Gemini

With the Vertex AI Gemini dependency included, a VertexAiGeminiChatModel class is available as a bean. This class has a method named ‘call’ which takes a string (the question) and returns a response (the answer).

To obtain an answer, use:

 String answer = vertexAiGeminiChatModel.call(question);

Spring automatically constructs the URL for the Vertex AI API based on the configured properties and uses the gcloud application credentials to execute the API call.

2.5 Implementing the Chat Endpoint

Now that the basic chat application setup is complete, it’s time to integrate it with the Vertex API. This integration is crucial for enabling our application to send user queries to Vertex AI and receive responses:

Inject the VertexAiGeminiChatModel bean for autowiring:

import org.springframework.ai.vertexai.gemini.VertexAiGeminiChatModel;

private final VertexAiGeminiChatModel vertexAiGeminiChatModel;

public ChatBotController(VertexAiGeminiChatModel vertexAiGeminiChatModel) {
 this.vertexAiGeminiChatModel = vertexAiGeminiChatModel;
}

Update the askQuestion method to utilize the ‘call’ method and construct the response:

@PostMapping("/api/chat")
public ChatBotResponse askQuestion(@RequestBody ChatBotRequest chatBotRequest) {

 String answer = vertexAiGeminiChatModel.call(chatBotRequest.question());
 return new ChatBotResponse(chatBotRequest.question(), answer);
}

2.6 How to Test the Application

To test the API, start the Spring Boot application and execute the following curl command:

curl -X POST http://localhost:8080/api/chat \
 -H "Content-Type: application/json" \
 -d '{"question": "What's your name?"}'

Alternatively, you can utilize the Swagger UI for a comprehensive and interactive testing experience. Follow these steps:

	
Start the Spring Boot application.

	
Navigate to http://localhost:8080/swagger-ui.html in your browser.

	
Locate the /api/chat endpoint within the Swagger UI.

	
Enter your request payload (e.g., {"question": "What's your name?"}) and execute the request.

You should receive a response similar to:

{
 "question": "What's your name?",
 "answer": "I am a chatbot built with Spring AI and Vertex AI."
}

Code The source code for the above section is available on github

By following these steps, you can successfully design, implement, and test a RESTful chat controller in your Spring Boot application, integrating it with GCP’s Vertex AI to provide intelligent and responsive chat functionalities.

2.7 Configuring Chat Options for Vertex AI

This section covers how to customize chat interactions in our Spring application using VertexAiGeminiChatOptions. Configuring these options is essential for tailoring AI responses to specific requirements and managing the behavior of the chatbot.

2.7.1 Key Configuration Options

We will focus on two primary options:

	
MaxOutputTokens: This sets the maximum number of tokens (words and parts of words) that the AI model can generate in a response. Limiting the token count ensures that responses are concise and relevant, which helps manage verbosity. Each token is approximately four characters long, equating to about 60-80 words for 100 tokens.

	
Temperature: This determines the randomness of AI responses. A lower value results in more predictable responses, while a higher value increases creativity. A temperature setting of 0.5 strikes a balance, allowing for reliable yet dynamic answers.

2.7.2 Implementing ChatOptions in Chat Interaction

Chat configuration options are encapsulated within the ChatOptions object, which guides the AI to produce responses that are aligned with the user’s input:

Building ChatOptions:

 ChatOptions options = VertexAiGeminiChatOptions.builder()
 .maxOutputTokens(10)
 .temperature(0.5)
 .build();

Creating a Prompt with Chat Options:

 Prompt prompt = new Prompt(messages, options);

Calling the Chat Client:
Pass the configured prompt to the VertexAiGeminiChatModel

ChatResponse chatResponse = vertexAiGeminiChatModel.call(prompt);

String answer = chatResponse.getResult().getOutput().getText();

This method sends the user’s question to Vertex AI and receives a tailored response based on the configured chat options. Note that the response is now an object, and the answer needs to be manually extracted from this object.

2.7.3 Integrating Chat Options in the API Endpoint

Now, incorporate the chat options into the ChatBotController to effectively manage user requests:

@PostMapping("/api/chat")
public ChatBotResponse askQuestion(@RequestBody ChatBotRequest chatBotRequest) {

 String question = chatBotRequest.question();

 // Setup options
 ChatOptions options = VertexAiGeminiChatOptions.builder()
 .maxOutputTokens(100)
 .temperature(0.5)
 .build();
 Prompt prompt = new Prompt(question, options);

 // Invoke Gemini client
 ChatResponse chatResponse = vertexAiGeminiChatModel.call(prompt);

 // extract answer
 String answer = chatResponse.getResult().getOutput().getText();

 // return response
 return new ChatBotResponse(chatBotRequest.question(), answer);
}

This configuration allows the Spring Boot application to fully leverage Vertex AI’s capabilities, ensuring nuanced and well-configured AI responses for each interaction.

2.8 How to Test the Application

To ensure the functionality of the updated chatbot, start the Spring Boot application and follow these steps to test the API using the Swagger UI:

	
Access the Swagger UI: Navigate to http://localhost:8080/swagger-ui.html in your web browser.

	
Send a POST request: Select the /api/chat endpoint, and use the following JSON payload in the Swagger UI’s interactive interface:

POST http://localhost:8080/api/chat
content-type: application/json

{
 "question": "write a short story in simple words about freedom"

}

The expected result should look something like this:

{
 "question": "write a short story in simple words about freedom",
 "answer": "In a distant land, nestled amidst towering mountains and sparkling rivers"
}

This response, truncated due to the MaxOutputTokens setting, demonstrates how you can control the verbosity of AI responses. Experiment with different Temperature settings to see how the AI’s creativity varies

Code The source code for the above section is available on github

2.9 Understanding API Interaction with Vertex AI

When you invoke the vertexAiGeminiChatModel.call(prompt) method in your Spring Boot application, it triggers an API call to Google Cloud’s Vertex AI service.

2.9.1 The API Request to Vertex AI

When you invoke vertexAiGeminiChatModel.call(prompt);, it sends an API request to Vertex AI like this:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/myspringai/locations/us-central1/publishers/google/models/gemini-1.5-flash:generateContent
Authorization: Bearer {{gcloud_token}}
Content-Type: application/json

{
 "contents": [{
 "role": "user",
 "parts": [
 {
 "text": "write a short story in simple words about freedom"
 }
]
 }]
}

Endpoint and Authorization: The request is sent to your project’s specific Vertex AI endpoint, using the gemini-1.5-flash model in the us-central1 region. It includes an Authorization header with your gcloud_token, obtained via:

 gcloud auth application-default print-access-token

Payload: The body of the request contains the user’s prompt formatted as a JSON object:

	
contents: An array that encapsulates the messages within the conversation.

	
role: Designates the sender of the message; in this case, set to "user" for inputs provided by the user.

	
parts: An array within each message detailing the content.

	
text: The actual content of the user’s prompt.

This structure informs Vertex AI that the message is from the user and includes the text that needs processing. The parts array is flexible, allowing for the message to be divided into several segments if necessary.

2.9.2 API Response from Vertex AI

Vertex AI processes the request and returns a response similar to this:

{
 "candidates": [
 {
 "content": {
 "role": "model",
 "parts": [
 {
 "text": "In a distant land, nestled amidst towering mountains and sparkling rivers..."
 }
]
 },
 "finishReason": "STOP",
 "safetyRatings": [...],
 "avgLogprobs": -0.53441956718012973
 }
],
 "usageMetadata": {
 "promptTokenCount": 9,
 "candidatesTokenCount": 265,
 "totalTokenCount": 274
 },
 "modelVersion": "gemini-1.5-flash"
}

Here’s what each part means:

	
candidates: An array of responses generated by the AI. Typically, you’ll use the first candidate.

	
content:

	
role: Indicates the sender of the message. Here, "model" means it’s the AI’s response.

	
parts: Contains the generated text.

	
text: The actual response from the AI.

	
finishReason: Explains why the AI stopped generating text. "STOP" means it completed as expected.

	
avgLogprobs: The average log probability of the generated tokens, reflecting confidence.

	
usageMetadata:

	
promptTokenCount: Tokens used in your input.

	
candidatesTokenCount: Tokens used in the AI’s response.

	
totalTokenCount: Total tokens used in the interaction.

	
modelVersion: The specific AI model used.

String answer = chatResponse.getResult().getOutput().getText();

This retrieves the text from the first candidate’s content.Understanding this response structure allows you to effectively map the data to your application’s classes and manage additional features such as safety ratings or token usage.

The main distinction with GCP Vertex AI libraries is that they use gRPC instead of REST APIs for communication.

2.10 How to Deploy in GCP Cloud Run

Deploying your Spring Boot application to GCP Cloud Run involves a straightforward process that starts right from your project’s root directory.

2.10.1 Step-by-Step Deployment Guide

1. Create the project.toml File:

	
Since our application utilizes Java 17, we must ensure that Cloud Run builds it using the correct Java version. Create a project.toml file in your project’s root folder and add the following configuration:

 [[build.env]]
 name = "GOOGLE_RUNTIME_VERSION"
 value = "17"

	
This file configures the Cloud Run build environment to use Java 17, aligning with our application’s requirements.

Quick Fact:

The project.toml file is essential in customizing the build settings for Cloud Run deployments. It specifies critical configurations like the runtime environment. In Java-based projects for GCP, this file instructs Cloud Run to utilize a specified Java version. Our example uses Java 17, aligning the build process with the application’s requirements

2. Initiate the Deployment:

	
Execute the following command in your terminal:

gcloud run deploy

3. Verify Source Code Location:

	
During the deployment, gcloud will inquire about the source code location. Since we are executing from the project root, simply confirm the default location when prompted.

4.Provide Deployment Details:

	
You will be asked a series of questions to configure your deployment:

	
Service Name: Assign a name to your Cloud Run service.

	
Container Registry: Choose whether to create a new container registry or use an existing one.

	
Allow Unauthenticated Access: Opt for ‘yes’ to make your service publicly accessible on the internet, allowing easy access without authentication.

5. Get Your Service URL:

	
Once deployment completes, Cloud Run provides a URL where your application is now hosted, marking the transition from local development to a live service.

6. Validate Your Deployment:

	
Test the deployment using the service URL to ensure your application functions as expected. You can substitute the local testing URL with the Cloud Run service URL in any testing tool like curl or Postman.

And that’s it! Your Spring Boot application, configured for Java 17, should now be up and running on Cloud Run.

2.11 Review Questions

1 When deploying a Spring Boot application to Cloud Run that uses Java 17, what is the purpose of creating a project.toml file?

 a) To specify the version of Java used for building the application.
 b) To define the application’s routes and endpoints.
 c) To configure the database connections.
 d) To set up application-specific environment variables.

2. In the context of deploying to Cloud Run, what does setting ‘Allow Unauthenticated Access’ to ‘yes’ do?

 a) It enables the application to connect to GCP services without credentials.
 b) It makes your service publicly accessible on the internet.
 c) It disables all security features of the application.
 d) It allows users to bypass login screens in the application.

2.12 Answers to Review Questions

Here are the answers to the review questions from the previous section:

1. Answer: a) To specify the version of Java used for building the application.

	
Explanation: The project.toml file is used in Cloud Run deployments to specify certain build configurations, including the version of Java to be used. In this case, creating this file with the specified content informs GCP Cloud Run to build the application using Java 17.

2. Answer: b) It makes your service publicly accessible on the internet.

	
Explanation: Setting ‘Allow Unauthenticated Access’ to ‘yes’ during the deployment process on Cloud Run makes the service publicly accessible on the internet. This means that anyone can access the service without needing authentication, which is particularly important for services meant to be available to the general public.

2.13 What We Learned

By the end of this chapter, we’ve accomplished quite a bit. Here’s a quick recap of what we’ve learned:

	
GCP Setup: We started by creating a new GCP project and enabling Vertex AI, setting the foundation for our AI-powered application.

	
gcloud CLI Configuration: We installed and configured the gcloud CLI, connecting our local development environment to the GCP project.

	
Spring Boot Application Creation: We then stepped into the world of Spring Boot, creating a new project with essential dependencies for our AI application.

	
Designing a Chat Controller: Our focus shifted to designing a RestController, crucial for handling user interactions within our application.

	
Vertex AI Integration: We integrated Vertex AI into our Spring Boot application, enabling us to process and respond to user queries with AI-driven insights.

	
Application Deployment: Finally, we deployed our application to Cloud Run, bringing our project to life and making it accessible for real-world testing and use.

Chapter 3: Building Context-Aware Chatbots with Spring AI: Memory Management and Conversational Continuity

In this chapter, we tackle the challenge of building a chatbot that can maintain context throughout a conversation. The ability to remember user information across multiple interactions is crucial for creating a natural and engaging chatbot experience. Without this feature, chatbots can appear disconnected and impersonal, which ultimately limits their usefulness. This chapter focuses on enhancing our chatbot endpoint to support contextual conversations, enabling more personalized interactions with users.

3.1 Chapter Highlights

	
Challenges with Contextual Conversations: We explore the limitations of traditional chatbots, which struggle to remember previous exchanges, and the significance of maintaining context in conversational AI.

	
Implementing Conversation History: Learn how to use the ChatBotHistoryManager to maintain chat history effectively by storing messages in a list and managing them through session IDs.

	
Utilizing Spring AI Advisors: Simplify chat history management using the MessageChatMemoryAdvisor, which streamlines handling request and response cycles by automatically managing conversation memory.

	
Endpoint Enhancements: Update the chatbot’s API to support session-aware, contextually rich interactions.

	
Resetting Session History: Create a DELETE endpoint that allows users to clear session history, providing flexibility in managing conversations.

3.2 The Challenge of Contextual Conversation

Imagine having a conversation where each new sentence seems to forget the last one. Frustrating, right? That’s the challenge with our current chatbot. While it’s great for single questions, it struggles to remember past interactions. For instance, if you tell the bot your name, it won’t recall it in your next chat. Here’s how this looks:

3.2.1 Example: Traditional Chatbot Limitation

Question 1: Informing the Bot About Your Name

POST http://localhost:8080/api/chat
Content-Type: application/json

{
 "question": "My name is Mr. Rich, remember it."
}

Response:

{
 "question": "My name is Mr. Rich, remember it.",
 "answer": "Nice to meet you, Mr. Rich."
}

Question 2: Asking the Bot to Recall Your Name

POST http://localhost:8080/api/chat
Content-Type: application/json

{
 "question": "Do you remember my name?"
}

Response:

{
 "question": "Do you remember my name?",
 "answer": "I do not have access to personal information, including names."
}

This forgetfulness is due to how Large Language Models (LLMs), like our Vertex AI, are built. They don’t automatically remember previous conversations, which can lead to disjointed and unsatisfying interactions.

3.3 Understanding LLMs and Contextual Conversations

In this section, we will explore how Large Language Models (LLMs) handle contextual conversations and why this is crucial for a more engaging chatbot experience.

3.3.1 How LLMs Handle Context

LLMs, like Vertex AI, manage context by maintaining entire conversation histories. This allows the chatbot to generate responses that consider previous interactions. However, without specific implementation, the chatbot may lose this context, resulting in responses that seem unaware of previous dialogue.

3.3.2 Why Context Matters

Contextual conversations are essential for creating engaging chatbots. Users often reference previous parts of the conversation or expect the chatbot to recall specific details. By enabling context, we create a more natural and intuitive user experience.

To maintain context in a conversation, Large Language Models (LLMs) like ours rely on three essential types of messages:

	
SystemMessage: This is the initial setup message that defines the LLM’s role.

	
UserMessage: These are the queries or inputs sent by the user.

	
AssistantMessage: These are the responses generated by the LLM.

It’s crucial to include all previous messages when sending a new query to the LLM. This comprehensive approach enables the LLM to understand and respond effectively, keeping track of the ongoing conversation.

So the Endpoint should be designed to accept all the messages , something like this

POST https://somedomain.com/some-endpoint
Content-Type: application/json

[
 {"role": "system", "content": "You are my personal assistant"},
 {"role": "user", "content": "My name is Mr. Rich, remember it"},
 {"role": "assistant", "content": "Noted, Mr. Rich."},
 {"role": "user", "content": "Do you remember my name?"}
]

Here, the conversation is tracked systematically, with the latest query being added to the end of the array. This format has become standard for LLMs to effectively manage and maintain conversation context.

3.4 Implementing Conversation History in Spring AI

In Spring AI, maintaining a conversation history is managed using a list of Message objects. These objects store messages from both the user and the assistant in chronological order. Let’s look at how to implement this:

import org.springframework.ai.chat.messages.AssistantMessage;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.UserMessage;

// Initialize the list to store conversation messages
List<Message> messages = new ArrayList<>();
// Adding System message from history
messages.add(new SystemMessage("You are my personal assistant"));
// Adding user message for history
messages.add(new UserMessage("My name is Mr Rich, remember it"));
// Adding assistant response for history
messages.add(new AssistantMessage("Nice to meet you Mr. Rich."));
// Adding another user message to test memory recall
messages.add(new UserMessage("Do you remember my name?"));

By storing and recalling conversation history, chatbots can provide responses that are relevant and personalized.

Modifying the Vertex AI Interaction:
Initially, our interaction with Vertex AI was straightforward, accepting a string as a question and returning a string as an answer:

String answer = vertexAiGeminiChatModel.call(question);

To incorporate the conversation context, we now use a Prompt object containing our list of Message objects. The method returns a ChatResponse, from which we extract the answer:

import org.springframework.ai.chat.model.ChatResponse;

List<Message> messages = new ArrayList<>();
messages.add(new SystemMessage("You are my personal assistant"));
messages.add(new UserMessage("My name is Mr Rich, remember it"));
messages.add(new AssistantMessage("Nice to meet you Mr. Rich."));
messages.add(new UserMessage("Do you remember my name?"));

Prompt prompt = new Prompt(messages);

ChatResponse chatResponse = vertexAiGeminiChatModel.call(prompt);
String answer = chatResponse.getResult().getOutput().getText();

This method ensures the response from Vertex AI considers the entire conversation, allowing for more context-aware interactions.

3.5 Managing ChatBot Conversations with Session IDs

Depending on clients (or frontends or react applications) to provide complete conversation histories is not always ideal. A more efficient and secure method involves managing chat histories on the server using session IDs.

Storing Chat History:
Chat history for each session is stored in a ConcurrentHashMap:

ConcurrentHashMap<String, List<Message>> chatBotHistory = new ConcurrentHashMap<>();

Retrieving Chat History:
To access the chat history for a specific session, implement getChatHistory method to retrieve from the the ConcurrentHashMap

public List<Message> getChatHistory(String sessionId) {
 return chatBotHistory.getOrDefault(sessionId, new ArrayList<>());
}

Check SessionId is New:
To check if a session ID is new, use the following method. This can be useful for setting a SystemMessage

public boolean isNewSession(String sessionId) {
 return !chatBotHistory.containsKey(sessionId);
}

Add System Message to session:
To add a new System Message , implement addSystemMessage as below :

public void addSystemMessage(String sessionId, String message) {
 List<Message> messages = new ArrayList<>();
 messages.add(new SystemMessage(message));
 chatBotHistory.put(sessionId, messages);
}

The SystemMessage should be the first one for any session, so we create a new list and set it as the first message.

Updating Chat History :
After each interaction, update the chat history with the new messages:

public void addChatHistory(String sessionId, String question, String answer) {
 var existingHistory = getChatHistory(sessionId);
 var messages = new ArrayList<>(existingHistory);
 messages.add(new UserMessage(question));
 messages.add(new AssistantMessage(answer));
 chatBotHistory.put(sessionId, messages);
}

3.5.1 Implementing ChatBotHistoryManager

To efficiently handle the history management, we introduce ChatBotHistoryManager as a service:

@Service
public class ChatBotHistoryManager {

 ConcurrentHashMap<String, List<Message>> chatBotHistory = new ConcurrentHashMap<>();

 public void addChatHistory(String sessionId, String question, String answer) {
 var existingHistory = getChatHistory(sessionId);
 var messages = new ArrayList<>(existingHistory);
 messages.add(new UserMessage(question));
 messages.add(new AssistantMessage(answer));
 chatBotHistory.put(sessionId, messages);
 }

 public List<Message> getChatHistory(String sessionId) {
 return chatBotHistory.getOrDefault(sessionId, new ArrayList<>());
 }

 public boolean isNewSession(String sessionId) {
 return !chatBotHistory.containsKey(sessionId);
 }

 public void addSystemMessage(String sessionId, String message) {
 List<Message> messages = new ArrayList<>();
 messages.add(new SystemMessage(message));
 chatBotHistory.put(sessionId, messages);
}

}

With ChatBotHistoryManager, the chat history for each session is effectively managed, ensuring a smooth and context-aware conversation experience.

3.6 Updating the ChatBot Endpoint for Conversational Context

Now, let’s begin the process of updating our existing endpoint. This update is crucial to ensure that our chatbot responds with context awareness. By making this change, the chatbot will be able to maintain the continuity of the conversation, taking into account the entire dialogue history when replying. This enhancement marks a significant step towards more intelligent and personalized interactions, transforming our chatbot into a truly conversational partner

3.6.1 Modifying the ChatBot Request Model Class

Initially, our ChatBotRequest class contained only a single property, question:

public record ChatBotRequest(String question) {
}

To incorporate session tracking, we’ll add a sessionId property. This allows us to maintain a chat history:

public record ChatBotRequest(String question, String sessionId) {
}

The sessionId represents the identifier of the chat session, which correlates with the history managed by ChatBotHistoryManager.

3.6.2 Integrating ChatBotHistoryManager

Add a dependency for ChatBotHistoryManager in the ChatBotController class through constructor injection:

private final VertexAiGeminiChatModel vertexAiGeminiChatModel;
private final ChatBotHistoryManager chatBotHistoryManager;

public ChatBotController(VertexAiGeminiChatModel vertexAiGeminiChatModel, ChatBotHistoryManager chatBotHistoryManager) {
 this.vertexAiGeminiChatModel = vertexAiGeminiChatModel;
 this.chatBotHistoryManager = chatBotHistoryManager;
}

3.6.3 Create System Prompt for New Session

Update the chatBotHistoryManager to add a System Message when session is new

if(chatBotHistoryManager.isNewSession(sessionId))
 chatBotHistoryManager.addSystemMessage(sessionId, "You are my personal assistant");

3.6.4 Building the Prompt

Construct the prompt by merging existing chat history with the new user message, if existing chat history is empty add a system Message:

var chatHistory = chatBotHistoryManager.getChatHistory(sessionId);
var messages = new ArrayList<>(chatHistory);
messages.add(new UserMessage(question));

Then, use these messages to create the prompt:

Prompt prompt = new Prompt(messages);

3.6.5 Invoking Vertex AI with Context

Make the Vertex AI call with the constructed prompt:

ChatResponse chatResponse = vertexAiGeminiChatModel.call(prompt);

Retrieve the response from the chat client:

String answer = chatResponse.getResult().getOutput().getText();```

3.6.6 Updating Chat History

Add the new question and its answer to the chat history:

```java
chatBotHistoryManager.addChatHistory(sessionId, question, answer);






3.6.7 The Final Endpoint Implementation


The fully implemented endpoint now incorporates conversation history:



    @PostMapping("/api/chat")
    public ChatBotResponse askQuestion(@RequestBody ChatBotRequest chatBotRequest) {
        String sessionId = chatBotRequest.sessionId();
        String question = chatBotRequest.question();

        // Setup System Message for new Session
        if(chatBotHistoryManager.isNewSession(sessionId))
            chatBotHistoryManager.addSystemMessage(sessionId, "You are my personal assistant");

        //Combine chat history with the new question
        var chatHistory = chatBotHistoryManager.getChatHistory(sessionId);
        var messages = new ArrayList<>(chatHistory);
        messages.add(new UserMessage(question));

        // create a prompt
        Prompt prompt = new Prompt(messages);
        // call the chat client
        ChatResponse chatResponse = vertexAiGeminiChatModel.call(prompt);

        // get the answer
        String answer = chatResponse.getResult().getOutput().getText();

        // add the chat history to our local cache
        chatBotHistoryManager.addChatHistory(sessionId, question, answer);
        return new ChatBotResponse(question, answer);
    }





This approach effectively manages conversation history in Spring AI, using a cache with ConcurrentHashMap. Note that for production environments, more robust solutions like Redis or similar open-source alternatives should be used for managing conversation history.






3.7 Testing the Enhanced ChatBot with Session History


With the introduction of session IDs in our chatbot, we can now maintain a conversation history, overcoming the previous challenge. Let’s test this improved functionality:




Question 1: Informing the Bot About Your Name



POST http://localhost:8080/api/chat
Content-Type: application/json

{
  "question": "My name is Mr Rich, remember it",
  "sessionId": "cljXX1"
}





Response:



{
  "question": "My name is Mr Rich, remember it",
  "answer": "Hello Mr Rich, I will remember your name."
}





Question 2: Asking the Bot to Recall Your Name



POST http://localhost:8080/api/chat
Content-Type: application/json

{
  "question": "Do you remember my name?",
  "sessionId": "cljXX1"
}





Response:



{
  "question": "Do you remember my name?",
  "answer": "Yes, your name is Mr Rich."
}





Now, as demonstrated, the chatbot responds accurately and contextually, remembering previous interactions within the same session.






Code The source code for the above section is available on github









3.8 Simplifying Chat History Management with Advisors


So far, we have implemented a service class to maintain chat history as a list of messages. Fortunately, Spring AI provides a similar feature called Advisors, which can wrap requests and responses, similar to Spring AOP. These advisors update the requests when they are sent and also handle responses when received, allowing custom operations to be performed.




Previously, we invoked methods in ChatBotHistoryManager before and after calling the chat client to manage the chat history. Instead, we can use an advisor called MessageChatMemoryAdvisor, which will manage messages in memory automatically. This advisor requires a ChatMemory interface, and for this example, we will use InMemoryChatMemory. However, you can also use persistent options like Redis or your database by implementing the ChatMemory interface.




First, we will create a ChatMemory bean, defined in any configuration class or in the main application class.



import org.springframework.context.annotation.Bean;
import org.springframework.ai.chat.memory.ChatMemory;
import org.springframework.ai.chat.memory.InMemoryChatMemory

@Bean
ChatMemory chatMemory() {
    return new InMemoryChatMemory();
}





Next, in the ChatBotController class, remove the chatBotHistoryManager dependency and add properties inMemoryChatClient of type ChatClient and chatMemory of type ChatMemory:



import org.springframework.ai.chat.client.ChatClient;

@RestController
@Slf4j
public class ChatBotController {

private  final  ChatClient inMemoryChatClient;
private  final  ChatMemory chatMemory;
//... Other stuff

}





We can create a MessageChatMemoryAdvisor from chatMemory like this:



MessageChatMemoryAdvisor messageChatMemoryAdvisor = MessageChatMemoryAdvisor.builder(chatMemory).build();





Then, create an inMemoryChatClient by setting the default advisors:



inMemoryChatClient = ChatClient.builder(vertexAiGeminiChatModel)
        .defaultAdvisors(messageChatMemoryAdvisor)
        .build();





Now The Constructor will look like this



public ChatBotController(VertexAiGeminiChatModel vertexAiGeminiChatModel ,ChatMemory chatMemory) {

 this.chatMemory = chatMemory;
 var messageChatMemoryAdvisor = new MessageChatMemoryAdvisor(chatMemory);
 inMemoryChatClient = ChatClient.builder(vertexAiGeminiChatModel)
                            .defaultAdvisors(messageChatMemoryAdvisor)
                            .build();
}





In the endpoint, simply retrieve the sessionId from ChatBotRequest:



@PostMapping("/api/chat")
public ChatBotResponse askQuestion(@RequestBody ChatBotRequest chatBotRequest) {
    String sessionId = chatBotRequest.sessionId();
    String question = chatBotRequest.question();
    // To be Implemented ...
}





The MessageChatMemoryAdvisor uses a default parameter called CHAT_MEMORY_CONVERSATION_ID_KEY to manage conversation sessions. To make it specific to our session, we replace this parameter with our session ID. When configuring the advisors, we set up the system prompt, add the user’s question, update the advisor with the session ID, and then create the chat request:



import static org.springframework.ai.chat.memory.ChatMemory.CONVERSATION_ID;

var chatRequest = inMemoryChatClient
        .prompt()
        .system("You are my personal assistant")
        .user(question)
        .advisors(a -> a.param(CONVERSATION_ID, sessionId));





Now, get the response by invoking the call method:



        var chatResponse = chatRequest.call().chatResponse();
        String answer = chatResponse.getResult().getOutput().getText();```

The updated endpoint will look like this:

```java

 @PostMapping("/api/chat")
 public ChatBotResponse askQuestion(@RequestBody ChatBotRequest chatBotRequest) {
 String sessionId = chatBotRequest.sessionId();
 String question = chatBotRequest.question();

 var chatRequest = inMemoryChatClient
 .prompt()
 .system("You are my personal assistant")
 .user(question)
 .advisors(a -> a.param(CHAT_MEMORY_CONVERSATION_ID_KEY, sessionId));

 var chatResponse = chatRequest.call().chatResponse();
 String answer = chatResponse.getResult().getOutput().getText(); return new ChatBotResponse(question, answer);
 }

You can test the updated implementation in the same way as before. The new approach is more concise and leverages Spring AI’s built-in capabilities for managing conversation history.

Code The source code for the above section is available on github

3.9 Creating a DELETE Endpoint to Reset Chat Session History

We will create an endpoint to delete the conversation history, allowing users to reset the session and start fresh. In this example, we’re using MessageWindowChatMemory as our ChatMemory implementation. Let’s first define it in our application:

@Bean
ChatMemory chatMemory() {
 return MessageWindowChatMemory.builder().build();
}

Next, we’ll add a DELETE endpoint to clear the conversation history by invoking the chatMemory.clear method:

@DeleteMapping("/api/chat/{sessionId}")
public ResponseEntity<Void> deleteChatHistory(@PathVariable String sessionId) {
 chatMemory.clear(sessionId);
 return ResponseEntity.noContent().build();
}

3.9.1 Testing the Endpoint

	
Initial Context Setup:

	
Start by establishing a conversation context where the chatbot is informed of the user’s name:

POST http://localhost:8080/api/chat
Content-Type: application/json

{
 "question": "My name is Mr. Rich, remember it",
 "sessionId": "cljXX1"
}

	
The expected response should acknowledge the user’s name:

{
 "question": "My name is Mr. Rich, remember it",
 "answer": "Hello Mr. Rich, I will remember your name."
}

	
Clear the Session History:

	
Use the DELETE endpoint to clear the history for the session:

DELETE http://localhost:8080/api/chat/cljXX1

	
Verify Chatbot’s Memory Reset:

	
After clearing the session history, test if the chatbot has forgotten the context:

POST http://localhost:8080/api/chat
Content-Type: application/json

{
 "question": "Do you remember my name?",
 "sessionId": "cljXX1"
}

	
Expect a response indicating the chatbot doesn’t remember the user’s name, such as:

{
 "question": "Do you remember my name?",
 "answer": "I'm sorry, I don’t recall your name."
}

Code The source code for the above section is available on github

3.10 Understanding System Prompts in Chatbot Responses

In developing advanced chatbots, it’s often beneficial to guide the bot’s responses into specific formats. System prompts is helpful in achieving this. Imagine a scenario where you want your chatbot to do a factCheck , It should respond with only ‘True’, ‘False’, or ‘Not sure’ to any statement. Let’s see how system prompts can enable this functionality.

3.10.0.1 Example Scenario: True/False/Not Sure Responses

Initial Request without System Prompt:

Consider the question: “Rich Hickey Created Clojure”. Without a system prompt, the chatbot might provide a detailed answer:

POST /api/chat
Content-Type: application/json

{
 "question": "Rich Hickey Created Clojure",
 "sessionId": "cljXXx1"
}

Typical Response:

{
 "question": "Rich Hickey Created Clojure",
 "answer": "That's not entirely accurate. Rich Hickey is the primary creator of Clojure..."
}

Modifying the Request with a Specific Prompt:
To constrain the chatbot to respond with ‘True’, ‘False’, or ‘Not sure’, modify the question:

POST /api/chat
Content-Type: application/json

{
 "question": "Rich Hickey Created Clojure, you should reply only either True or False or Not sure",
 "sessionId": "cljXXx1"
}

Constrained Response:

{
 "question": "Rich Hickey Created Clojure, you should reply only either True or False or Not sure",
 "answer": "True"
}

3.10.1 Implementing System Prompts for Uniform Response Style

To consistently receive responses in this True/False/Not sure format, use a system prompt at the beginning of each session. For example:

if(chatBotHistoryManager.isNewSession(sessionId))
 chatBotHistoryManager.addSystemMessage(sessionId, "You should only answer true or false or not sure going forward.");

Let’s create a specialized endpoint, /api/fact-check, to handle these specific types of queries. This endpoint will ensure that all responses adhere to the format set by our system prompt

@PostMapping("/api/fact-check")
public ChatBotResponse factCheck(@RequestBody ChatBotRequest chatBotRequest) {
 String sessionId = chatBotRequest.sessionId();
 String question = chatBotRequest.question();

 if (chatBotHistoryManager.isNewSession(sessionId))
 chatBotHistoryManager.addSystemMessage
 (sessionId,
 "You are my personal assistant, you should only answer true or false or not sure going forward.");

 //Combine chat history with the new question
 var chatHistory = chatBotHistoryManager.getChatHistory(sessionId);
 var messages = new ArrayList<>(chatHistory);

 messages.add(new UserMessage(question));

 // create a prompt
 Prompt prompt = new Prompt(messages);

 // call the chat client
 ChatResponse chatResponse = vertexAiGeminiChatModel.call(prompt);

 // get the answer
 String answer = chatResponse.getResult().getOutput().getText();

 // add the chat history to our local cache
 chatBotHistoryManager.addChatHistory(sessionId, question, answer);

 return new ChatBotResponse(question, answer);

}

Now, any question asked via this endpoint will be answered strictly within the True/False/Not sure format:

Question:

POST /api/fact-check
Content-Type: application/json

{
 "question": "The sum of 1 + 2 = 5",
 "sessionId": "cljXX1"
}

Response:

{
 "question": "The sum of 1 + 2 = 5",
 "answer": "False"
}

With this setup, all responses from the /api/fact-check endpoint will align with our specified format, thanks to the initial system prompt. This approach is particularly useful for chatbots functioning in scenarios where binary or straightforward answers are preferred.

Code The source code for the above section is available on github

3.10.2 Customizing System Prompts

Customize the system prompt to suit your chatbot’s specific needs. This approach is particularly useful in scenarios like automated FAQs, quick decision-making tools, or streamlined customer service interactions, where straightforward answers are preferred.

In summary, system prompts offer a powerful way to control the style and format of your chatbot’s responses, ensuring consistency and relevance in its interactions.

3.11 What We Learned

	
How to update the chatbot endpoint to maintain conversation context using session IDs.

	
How to modify the request model to support session tracking, enabling the chatbot to remember previous interactions.

	
How to use ChatBotHistoryManager to manage and store conversation history efficiently.

	
How to implement system prompts to set the context for new sessions.

	
How to use Spring AI’s MessageChatMemoryAdvisor to simplify chat history management without manually invoking history methods.

	
How to create a DELETE endpoint to clear session history, allowing users to reset their conversations.

Chapter 4: Creating Structural Data Bots
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.1 Chapter Highlights:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.2 Make Inventory to be queried by Natural Language
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.3 Update Dependencies
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.3.1 Required Dependencies
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.4 Setting up an SQL database in GCP Cloud SQL
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.4.1 Create a Database in GCP
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.4.2 Import and execute the SQL file
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.4.3 Setting up project
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.5.1 Create Model class
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.5.2 Create a Repository class
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.5.3 Create an Endpoint to Test
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.5.4 Test The endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.6 Getting Ready for Natural Language Processing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.7 From Natural Queries to SQL
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.7.1 Organizing Prompts in the Resources Folder
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.7.2 Building the SQL Generator
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.7.3 Implementing the Service Class
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.7.5 Fine-Tuning Version 2
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.8 JSON Conversion of SQL Results
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.8.1 Testing and Output
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.9 SQL to Natural Language Response
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.10 Bringing It All Together: The Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.11 Testing the Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.12 Exercise: Implement it using CSV instead of JSON
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.12.1 Objective
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.12.2 Task Description
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.12.3 Implementation Guidance
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.12.4 Testing the Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.13 Improving SQL Query Flexibility for User Queries
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.14 Handling multiple questions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.14.1 Adjusting the Prompt for Enhanced Functionality
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.14.1.1 Modifications include:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.14.2 Testing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

4.15 What We Learned
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

Chapter 5: LLM Tool Calling with Spring AI
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.1 Chapter Highlights:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.2 Understanding LLM Tool Calls
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.2.1 What is Tool Calling?
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.2.2 The Tool Calling Solution
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.2.3 How Tool Calling Works
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.2.4 Implementation Requirements
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.3 Implementing Tool Calling with REST API
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.3.1 Define Available Tools
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.3.2 Receive Tool Call Request
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.3.3 Execute Function and Return Results
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.3.4 Receive Natural Language Response
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.4 Java Implementation with Direct API Calls
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.4.1 Service Structure
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.4.2 Key Helper Methods
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.4.3 Main Implementation Logic
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.4.4 Testing the Implementation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.5 Handling Multiple Tool Calls
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.5.1 Implementation Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.6 Simplifying with Spring AI
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.6.1 Understanding Spring AI Tool Annotations
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.6.2 Integrating Tools in Controllers
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.6.3 Benefits of Spring AI’s Approach
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.7 Advanced Tool Calling: Sequential Tool Routing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.7.1 Understanding Sequential vs. Parallel Tool Calls
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.7.2 Creating SQL Tools with Routing Logic
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.7.3 Controller Implementation with Routing Instructions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.7.4 Observing Sequential Tool Routing in Action
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.7.5 The Power of Sequential Tool Routing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.7.6 Behind the Scenes: Raw API Calls
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.8 Few Words
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

5.9 What We Learned
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

Chapter 6: Building Chatbots with Text and PDF Files
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.1 Chapter Highlights:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.2 Use Case: Answering Questions About Vacuum Cleaners based on text file
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.2.1 Setting Up System Message
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.2.2 Making File Ready for Chat
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.2.3 Formulating the User Message with Media
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.2.4 Querying the LLM Client
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.2.5 Endpoint implementation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.2.6 Testing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.3 Use Case: Answering Questions About Laptop based on pdf manual
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.3.1 Setting Up System Message
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.3.2 Preparing the PDF File for Chat
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.3.3 Formulating the User Message with Media
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.3.4 Querying the LLM Client
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.3.5 Endpoint implementation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.3.6 Testing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

6.3.7 What We Learned:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

Chapter 7: Building Chatbots with Multimedia Capabilities
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.1 Chapter Highlights:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.2 Use Case: Answering Questions About Coupons from an Image
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.3 Invoking the Chatbot with Image Data
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.3.1 Setting Up System Message
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.3.2 Making Image Ready for Chat
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.3.3 Formulating the User Message with Image Input
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.3.4 Querying the LLM Client with Images
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.3.5 Endpoint Implementation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.4 Testing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.5 Use Case: Answering Questions based on a Customer Care Audio
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.5.1 Setting Up System Message
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.5.2 Setting Up Media Objects
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.5.3 Formulating the User Message with Audio
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.5.4 Querying the LLM Client with Audio
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.5.5 Endpoint Implementation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.6 Testing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.7 Use Case: Answering Questions from a Vaccum Cleaner Advertisement video
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.8 Invoking the Chatbot with Video Data
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.8.1 Setting Up System Message
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.8.2 Making Video to be Ready for Chat
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.8.3 Formulating the User Message with Video Media
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.8.4 Querying the LLM Client with Video
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.8.5 Endpoint Implementation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.9 Testing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

7.9.1 What We Learned:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

Chapter 8: Using RAG to Make LLMs Smarter with Internal Data
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.1 Integrating Internal Data with LLM
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.2 Chapter Highlights:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.2.1 The Challenge of Specificity
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.2.2 Bridging the Gap: Retrieval Augmented Generation (RAG)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.2.3 The Role of Embeddings and Vector Databases
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.3 How to Create Embeddings
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.3.1 Embedding Models available in Vertex AI
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.3.2 Create embeddings from VertexAI
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.3.3 The Embeddings Endpoint Definition
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.3.4 Setting Up Embeddings With Spring AI
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.3.5 Adding dependency
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.3.6 Configuring the Embedding Model in application.properties
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.3.7 Implement Endpoint to convert text to Embedding
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.3.8 Testing the Embedding Model
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4 Vector Database
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.1 The Role of Postgres as a Vector Database
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.2 Setting Up Postgres PGVector in Spring
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.3 Managing Unstructured Data
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.4 Inserting Data
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.5 Testing Insert Document
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.6 Inserting Multiple Data
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.7 Testing the Insertion of Multiple Documents
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.8 Retrieving Relevant Data - Usecase
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.9 Retrieving Relevant Data - Implementation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.10 Testing the Similarity Search
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.11 Refining the Retrieval Process with Limits and Maximum Distance
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.11.1 Enhancing the SimilaritySearchRequest
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.11.2 Configuring the SearchRequest for limit
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.11.3 Configuring the SearchRequest for Maximum Distance
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.11.4 Updating the retrieval endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.12 Testing the Enhanced Similarity Search
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.13 Organizing Departmental Data - Usecase
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.13.1 The Challenge of Data Segregation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.13.2 Organizing Unstructured Data by Department
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.14 Organizing Departmental Data - Implementation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.15 Inserting Data with Department
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.16 Retrieving Data with Department
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.4.17 Testing the Similarity Search By department
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.5 Making Similar Documents as Conversational
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.5.1 Implementing Answers Based on Relevant Documents
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.5.2 Testing the Conversational Search by Department
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.6 Exercise: Modify Chatbot to Search All Records When Department Is Not Specified
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.6.1 Objective
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.6.4 Implementation Guidance
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.6.5 Testing the Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

8.6.6 What We Learned:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

Chapter 9: Building Internal Knowledge based assistant
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.1 Chapter Highlights:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.2 Integrating Google Cloud Storage Bucket
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.2.0.1 Setting Up the StorageBucketService Class
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.2.0.2 Creating the Upload Method
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.2.0.3 Creating the getFile Method
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.2.0.4 Creating the deleteFile Method
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.2.1 Testing File Upload and Download
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3 Building a Chatbot with Internal Documents
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.1 Workflow Overview
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.1.1 Configuring the Vector Store
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.1.2 Create an Endpoint with Dependency Injection
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.2 Extract Text from Files
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.3 Create an Upload Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.4 Testing the Document Upload Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.5 Uploading Larger Documents
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.6 Interacting with Internal Data
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.6.1 Constructing the Query Expression
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.6.1.1 Adding Extension Criteria
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.6.1.2 Adding Category Criteria
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.6.1.3 Finalizing the Query Expression
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.6.1.4 Creating the Search Request
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.6.1.5 Creating Chat Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.7 Testing the Internal Data end point
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.8 Streamlining Chat Interactions without Advisors
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.9 Extract and Prepare Data
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.9.1 Fetch Contextual Documents
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.9.2 Compile the Context History
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.9.3 Set Up Prompts for the AI
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.9.4 Initialize the Chat Client
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.3.10 Detailed Endpoint Implementation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.4 Adding File References on Chat
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.4.1 Creating a File Download Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.4.2 Testing the File Download Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.4.3 Enhancing Chat Interactions with Document References
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.4.3.1 Key Enhancements:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.4.3.2 Building Context with URLs
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.4.3.3 Adjusting the Chat Prompt
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.4.3.4 Enhanced Response Output
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.4.4 Testing Chat with Document Reference endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

9.4.5 What We Learned:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

Chapter 10: PDF Documents & Image Embeddings
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.1 Chapter Highlights:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.1 Saving PDF Document Pages as Image Embeddings
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.1.1 Updating the Configuration for Image Embedding
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.1.2 Transforming PDF Resources into Image Resources
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.1.2.1 Detailed Process of Converting PDFs to Images
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.1.3 Building Component for PDF Embeddings
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.1.4 Processing Single Pdf Image
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.1.5 Implementing processPdfToDocuments
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.1.6 Building the Upload Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.1.7 Testing the Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.2 Updating Chat Endpoint to use Image embeddings
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.2.1 Modifications for Image Embedding Support
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.2.2 Creating a Method to Get Media
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.2.3 Update the Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.2.4 Testing the Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

10.2.5 What We Learned:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

Chapter 11: Accessing other models in GCP Model Garden
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

11.1 Chapter Highlights:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

11.1 Setting Up GCP
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

11.2 Setting Up Gradle and Configuration
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

11.3 Setting Up Authentication Tokens for Llama Requests
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

11.3.1 Creating the Interceptor Class
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

11.3.2 Adding the Authorization Header
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

11.3.3 Creating a Bean to Use Interceptor
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

11.3.4 Creating an Endpoint to Use Llama
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

11.3.5 Testing the Endpoint
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

11.3.6 What We Learned:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

Chapter 12: Whats Next
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/springai.

 EPUB/media/resources/title_page.jpg
SPRING Al

FOR YOUR
ORGANIZATION

The GCP Vertex Al Edition

WITH SPRING Al V1.0 GA

MUTHUKUMARAN
NAVANEETHAKRISHNAN

EPUB/styles/resources/leanpub_warning.png

EPUB/styles/resources/leanpub_comments.png

EPUB/styles/resources/leanpub_bug.png

EPUB/styles/resources/leanpub_info-circle.png

EPUB/styles/resources/leanpub_pencil.png

EPUB/styles/resources/leanpub_question-circle.png

EPUB/media/resources/publisher-logo.png
[

Leanpub

EPUB/styles/resources/leanpub_key.png

