

เกิดอยากจะเขียน App ด้วย Flutter
บันทึกการศึกษาเขียน Flutter ของผู้แต่งเอง

Tanasak Tantitarntong
This book is for sale at http://leanpub.com/soon-to-be-flutter-programmer

This version was published on 2021-09-17

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

© 2021 Tanasak Tantitarntong

http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Tanasak Tantitarntong by spreading the word about this book on Twitter!

The suggested hashtag for this book is #soontobeflutterprogrammer.

Find out what other people are saying about the book by clicking on this link to search for
this hashtag on Twitter:

#soontobeflutterprogrammer

http://twitter.com
https://twitter.com/search?q=%23soontobeflutterprogrammer
https://twitter.com/search?q=%23soontobeflutterprogrammer

สารบัญ

1. เตรียมเครื่อง . 1
1.1 สำหรับ Mac . 1
1.2 สำหรับคนใช้ windows . 2
1.3 วิธีใช้ fvm . 2

fvm releases . 2
fvm install . 3
fvm use . 4
fvm use -f . 4
fvm global . 4
fvm flutter . 4

1.4 Text Editor . 5

2. สร้าง Project แรก . 8
2.1 Running Your Application . 8
2.2 ใช้ VSCode เพื่อทำการ Debug . 10
2.3 Hot reload . 11
2.4 เริ่มแก้ไข Code . 11
2.5 Adding External Package . 13
2.6 Stateless vs Stateful Widget . 14
2.7 Stateful Widget . 15
2.8 Listview and Stateful Widget . 17
2.9 Divider ใน ListView . 21

สารบัญ

3. Dart . 23
3.1 Overview . 23

Dart Libraries . 23
3.2 Platforms . 23
3.3 Samples . 23

Hello world . 24
3.4 Variables . 24
3.5 Variable Null Safety . 24

if else . 24
for in . 24
for loop . 24
while loop . 25

3.6 Functions . 25
3.7 Comments . 25
3.8 Import . 25
3.9 Printing . 25
3.10 Assert . 25

4. Dart Class . 26
4.1 Class Members . 26
4.2 Constructor . 26
4.3 null . 26
4.4 final . 26
4.5 fromJson . 27
4.6 Named Constructor . 27
4.7 Subclassing Constructor . 27
4.8 Class Variable . 27
4.9 Constant constructor . 27
4.10 Methods in class . 27
4.11 Operators . 28
4.12 Getter Setters . 28

สารบัญ

4.13 Abstract Class . 28
4.14 Implicit Interface . 28
4.15 overriding . 28
4.16 Mixins . 28
4.17 Summary . 29

5. Dart ก่อนจะกลับไป Flutter . 30
5.1 Future . 30
5.2 Async Await . 31
5.3 Exceptions . 33

6. Widget . 34
6.1 Real Hello, world . 34
6.2 Basic Widgets . 35
6.3 Material’s Widgets . 40
6.4 handle event . 42
6.5 Gesture Detector . 42
6.6 Handling Simple State . 44
6.7 Stateless with Stateful . 46

7. Layout . 49

8. Basic Routes with GETX . 62
8.1 Installing getx . 62
8.2 Create Project with getx . 62
8.3 Files / Folders Structure . 62
8.4 Creating new page . 62
8.5 Search field . 63
8.6 Show Manga Detail Page . 63

1. เตรียมเครื่อง
วิธีการเตรียมเครื่องของผมนั้น ผมไม่ได้ทำตาม web official ของ

https://flutter.dev/docs/get-started/install

เพราะว่าผมเจอปัญหาบ่อยๆกับการต้อง manage binary หลายๆ version บนเครื่อง

ผมจึงค้นหาไปเจอ fvm หรือ flutter Version Manager

https://fvm.app/

1.1 สำหรับ Mac

เนื่องจากผมเป็น Mac User โดยตรง ผมจะละเอียดหน่อย

1. ก่อนอื่นผมขอแนะนำให้ลง Xcode จาก Mac App Store
- เมื่อลงเสร็จแล้วให้รัน

- sudo xcode-select --switch /Applications/Xcode.app/Contents/Developer

- sudo xcodebuild -runFirstLaunch

- ทดสอบ Simulator ด้วย open -a Simulator

2. ไปลง https://github.com/rvm/rvm เพื่อที่จะลง Ruby
3. ลง Ruby version 3.0.0 หรือล่าสุด เช่น rvm install 3.0.0

- ลง gem ชื่อว่า CocoaPods สำหรับใช้งานกับ iOS Development
- gem install cocoapods

4. เมื่อลง rvm และ ruby เสร็จ เราจะได้ brew มาใช้งานด้วย

เตรียมเครื่อง 2

5. รัน brew tap AdoptOpenJDK/openjdk

6. รัน brew cask install adoptopenjdk8 เพื่อลง Java Development Kit
7. Install Android Studio https://developer.android.com/studio

เมื่อทำเสร็จแล้ว ค่อยมาลง fvm ต่อ ดังนี้

1 brew tap leoafarias/fvm
2 brew install fvm

1.2 สำหรับคนใช้ windows

ผมไม่ได้ใช้ Windows เขียนโปรแกรมเป็น 10 ปีแล้ว แต่เท่าที่อ่านมาคือ
ให้ใช้ powershell รัน command นี้ครับ

1 choco install fvm

1.3 วิธีใช้ fvm

สำหรับคนที่คุ้นเคยกับ rvm nvm pyenv นั้น วิธีการใช้ fvm แทบจะไม่แตกต่างเลยครับ

fvm releases

เป็นคำสั่งที่จะ List versions ของ flutter ที่เราสามารถลงได้ ออกมา

จะได้ output ตัวอย่างดังนี้

เตรียมเครื่อง 3

1 Mar 3 21 │ 2.0.0
2 Mar 3 21 │ 2.1.0-10.0.pre
3 Mar 3 21 │ 2.0.0
4 Mar 4 21 │ 2.0.1
5 Mar 4 21 │ 2.0.1
6 Mar 12 21 │ 2.0.2
7 Mar 13 21 │ 2.1.0-12.1.pre
8 Mar 15 21 │ 2.0.2
9 Mar 18 21 │ 2.1.0-12.2.pre

10 Mar 19 21 │ 2.0.3
11 Apr 2 21 │ 2.0.4
12 Apr 15 21 │ 2.2.0-10.1.pre
13 Apr 15 21 │ 2.2.0-10.1.pre
14 Apr 16 21 │ 2.0.5
15 Apr 27 21 │ 2.3.0-0.1.pre
16 Apr 29 21 │ 2.2.0-10.2.pre
17 Apr 30 21 │ 2.0.6
18 May 10 21 │ 2.2.0-10.3.pre
19 May 10 21 │ 2.3.0-1.0.pre
20 --------------------------------------
21 May 18 21 │ 2.2.0 stable
22 --------------------------------------
23 --------------------------------------
24 May 18 21 │ 2.3.0-12.1.pre dev
25 --------------------------------------
26 --------------------------------------
27 May 19 21 │ 2.2.0 beta
28 --------------------------------------

fvm install

เป็นคำสั่งที่จะลง flutter version ที่เราต้องการ เช่น

1 fvm install 2.2.0

ก็จะเป็นการลง flutter version 2.2.0 ลงในเครื่องเราทันที

เตรียมเครื่อง 4

เราจะลง Version อื่นอีกก็ได้ เช่น
fvm install 2.0.6

fvm use

หากเราเปิด project ที่เป็น flutter อยู่ จะทำให้เราสามารถสั่งให้ใช้ flutter version ที่เราต้องการได้เช่น

ถ้าเราเปิด project ที่ใช้ flutter 2.0.6 อยู่ เราต้องรัน

1 fvm use 2.0.6

เพื่อที่จะสั่งให้ flutter มาใช้ version 2.0.6 ที่เราต้องการ

fvm use -f

เป็นการบังคับใช้ version ที่เราต้องการเช่น

1 fvm use 2.2.0 -f

จะทำให้ flutter กลายเป็น version 2.2.0 โดยถูกบังคับใช้

fvm global

ใช้เหมือนกับ fvm use แต่ว่า เป็นการตั้งค่านี้เป็น global ทำให้ทุกๆที่ที่ เราเรียก command จะกลายเป็น
version นี้ทั้งหมด

fvm flutter

คำสั่งนี้เกิดมาเพื่อ PROXY คำสั่ง flutter มายัง fvm

เช่น

เตรียมเครื่อง 5

1 flutter --version

จะเป็นการรัน flutter version ที่เราตั้งค่าไว้เป็น global

แต่ว่าถ้าเรารัน

1 fvm flutter --version

จะกลายเป็น flutter version ที่เราสั่ง fvm use เอาไว้

1.4 Text Editor

จากเวป

https://flutter.dev/docs/get-started/editor?tab=vscode

เราจะเห็นได้ว่า มีไม่กี่ options ของ text editor ที่ flutter แนะนำ

ส่วนตัวแล้ว ทุกอันที่ List อยู่นี้ ผมไม่ชอบเลย ผมชอบ Sublime กับ Atom มากกว่า

แต่เพื่อทำให้เราเขียนโปรแกรมได้สะดวก เราก็ควรจะใช้สิ่งที่เค้าแนะนำ

ผมขอเลือก VSCode ครับ โดยสามารถ Download ได้ที่นี่

https://code.visualstudio.com/

หรือลงผ่าน brew ก็ได้ ง่ายๆ

1 brew install --cask visual-studio-code

เมื่อลงโปรแกรมเสร็จแล้ว ให้เปิด VSCode ขึ้นมาและเปิด Command Palette

กด View > Command Palette หรือ กด cmd+shift+p

และพิมคำว่า Extensions: Install Extensions แล้วกด Enter

ต่อมาให้พิมค้นหาคำว่า Flutter และ กด Install

เตรียมเครื่อง 6

เมื่อลง Flutter ใน VSCode เสร็จแล้ว ให้สั่งคำสั่ง

Flutter: Run Flutter Doctor.

ใน Command Palette อีกครั้ง และรอดู output ใน VSCode ว่าเครื่องเราขาดอะไรบ้าง

1 [flutter] flutter doctor -v
2 [✓] Flutter (Channel unknown, 2.2.0, on Mac OS X 10.15.7 19H2 darwin-x64, locale en)
3 • Flutter version 2.2.0 at /Users/sakko/fvm/versions/2.2.0
4 • Framework revision b22742018b (6 days ago), 2021-05-14 19:12:57 -0700
5 • Engine revision a9d88a4d18
6 • Dart version 2.13.0
7
8 [✓] Android toolchain - develop for Android devices (Android SDK version 29.0.2)
9 • Android SDK at /Users/sakko/Library/Android/sdk

10 • Platform android-29, build-tools 29.0.2
11 • ANDROID_HOME = /Users/sakko/Library/Android/sdk
12 • Java binary at: /Applications/Android Studio.app/Contents/jre/jdk/Contents/Home/bin\
13 /java
14 • Java version OpenJDK Runtime Environment (build 1.8.0_202-release-1483-b49-5587405)
15 • All Android licenses accepted.
16
17 [✓] Xcode - develop for iOS and macOS
18 • Xcode at /Applications/Xcode.app/Contents/Developer
19 • Xcode 12.4, Build version 12D4e
20 • CocoaPods version 1.10.1
21
22 [✓] Chrome - develop for the web
23 • Chrome at /Applications/Google Chrome.app/Contents/MacOS/Google Chrome
24
25 [✓] Android Studio (version 3.5)
26 • Android Studio at /Applications/Android Studio.app/Contents
27 • Flutter plugin can be installed from:
28 � https://plugins.jetbrains.com/plugin/9212-flutter
29 • Dart plugin can be installed from:
30 � https://plugins.jetbrains.com/plugin/6351-dart
31 • Java version OpenJDK Runtime Environment (build 1.8.0_202-release-1483-b49-5587405)
32
33 [✓] VS Code (version 1.56.2)
34 • VS Code at /Applications/Visual Studio Code.app/Contents
35 • Flutter extension version 3.22.0
36
37 [✓] Connected device (1 available)
38 • Chrome (web) • chrome • web-javascript • Google Chrome 90.0.4430.212

เตรียมเครื่อง 7

39
40 • No issues found!
41 exit code 0

สุดท้ายสำหรับ VSCode ไปเปิด Format on Save เพื่อจะทำให้โค้ดอ่านง่ายขึ้น

format on save

โดยพื้นฐานแล้ว ควรจะเป็น • No issues found! ครับ
หากติดอะไร ให้อ่านแล้วแก้ไขครับ

2. สร้าง Project แรก
จากการลง flutter ใน chapter ที่แล้ว ตอนนี้เราจะมาเริ่มสร้าง Project แรกของเรากัน

ก่อนอื่นผมจะเริ่มจากการสร้าง _workspace สำหรับเก็บ code ของผม

‘หากใครมี folder อยู่แล้ว ข้ามส่วนนี้ไปได้เลย’

1 cd ~/
2 mkdir _workspace
3 cd _workspace
4 mkdir flutter
5 cd flutter

เมื่ออยู่ใน folder ที่ต้องการสร้าง project แล้ว เราจะรันคำสั่ง

1 flutter create demo_flutter_app

ให้สังเกตุ Log ด้วยว่าสร้างสำเร็จไหม

หากไม่มีปัญหา เราจะได้ folder ใหม่ขึ้นมาชื่อว่า demo_flutter_app เข้าไปใน folder เพื่อเตรียมพร้อม

1 cd demo_flutter_app

2.1 Running Your Application

ก่อนที่เราจะรันโปรแกรม ให้เราเปิด Simulator ขึ้นมาก่อน

1 open -a Simulator

เมื่อ Simulator พร้อมแล้ว ให้รัน

สร้าง Project แรก 9

1 flutter devices

ให้สังเกตุว่าจะมี devices แสดงมาสองอัน เช่น

1 iPhone 12 Pro Max (mobile) • xxx-xx-xx • ios • com.apple...
2 Chrome (web) • chrome • web-javascript • Google Chrome...

นั่นหมายความว่าเราสามารถรัน Flutter ไปยังที่ใดก็ได้ เช่น

1 flutter run -d chrome

จะเป็นการรันไปยัง chrome โดยที่เราจะเห็น chrome เด้งขึ้นมาเอง

แต่ว่าถ้ารัน

1 flutter run -d xxx-xx-xx

ซึ่ง xxx-xx-xx เป็น id ของ simulator ก็จะกลายเป็นรันโปรแกรมบน iOS Simulator ที่เราเปิดอยู่

preview app

สร้าง Project แรก 10

หากเรากด ctrl+c ที่ terminal ก็จะเป็นการ Stop application
ให้เราเข้าไป Stop app ให้หมดก่อนที่เราจะไป section ต่อไป

2.2 ใช้ VSCode เพื่อทำการ Debug

หลังจากนี้ไป ผมจะเริ่มทดสอบผ่าน Chrome และ เป็นครั้งคราว จะไปรันผ่าน Simulator

ที่ผมเลือก Chrome เพราะว่า Chrome น่าจะ Lightweight สุดครับ

ก่อนอื่นให้ เปิด Project ของเราขึ้นมาด้วย VSCode และ เปิด File ที่ชื่อว่า

lib/main.dart

และกดปุ่ม Start Debugging ด้านบนขวา ตามใน Screenshot

start debugging

เราสามารถใช้คำสั่งใน Command Palette สั่งให้รันใน Device อื่นได้โดยการพิมคำว่า
Flutter: Select Device และ เลือก Device ที่ต้องการ ดังรูป
ให้เราเลือกเป็น Chrome ไว้ก่อน

สร้าง Project แรก 11

start debugging

เมื่อกด Start Debuging แล้ว จะได้ Chrome ขึ้นมาหนึ่ง Session ไว้ให้เราทดสอบ

2.3 Hot reload

ให้เลื่อนลงมาด้านล่างของ lib/main.dart เพื่อแก้คำว่า

'You have clicked the button this many times:',

ให้กลายเป็น

'You have pushed the button this many times:',

แล้วลองกด save (cmd+s) ดู แล้วสังเกตว่า Chrome นั้นทำการ Hot reload หลังเรากด Save หรือไม่

Hot reload จริงๆแล้วไม่ใช่เรื่องใหม่ มันคือการที่ทำให้ App ของเรา Reload ทุกครั้งที่มีการแก้ไข Code แล้ว
save

สำหรับผม ปัญหาที่ผมเจอมาหลายๆครั้งกับ Hot reload คือ บางที Save บ่อยไปจนทำให้ Hot reload ไม่ทัน
หากเจอบัคที่บางทีไม่เข้าใจ ลอง Restart Debugging ก็อาจจะช่วยได้ครับ

2.4 เริ่มแก้ไข Code

สำหรับผม ปัญหาของการเรียนรู้เรื่องใหม่ๆคือ มันช่างมีอะไรเยอะแยะไปหมดเหลือเกิน

เรามาเริ่มจากสิ่งที่ Flutter.dev แนะนำน่าจะดีที่สุด ดังนี้ครับ

สร้าง Project แรก 12

นำ code ด้านล่างไปแปะไว้ที่ lib/main.dart

1 // Copyright 2018 The Flutter team. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 import 'package:flutter/material.dart';
6
7 void main() => runApp(MyApp());
8
9 class MyApp extends StatelessWidget {

10 @override
11 Widget build(BuildContext context) {
12 return MaterialApp(
13 title: 'Welcome to Flutter',
14 home: Scaffold(
15 appBar: AppBar(
16 title: Text('Welcome to Flutter'),
17),
18 body: Center(
19 child: Text('Hello World'),
20),
21),
22);
23 }
24 }

หน้าจอควรจะเปลี่ยนไปเป็น Hello world

• ก่อนอื่น ตัวอย่างนี้ ใช้ Material Design ของ Flutter ซึ่งมีการ Config uses-material-design:

true ไว้ที่ pubspec.yaml ซึ่งจะช่วยให้เราสามารถใช้ Feature ต่างๆของ Material Design ได้
• main() => เป็น Arrow Function ใช้สำหรับการรัน method ใน 1 บรรทัด
• MyApp เป็นการ extends StatelessWidget หรือการที่เราจะ Inherit ค่าต่างๆจาก สิ่งที่เรา extends

ตาม concept ของ OOP.
• ส่วนอื่นๆผมว่ายังข้ามไปก่อนได้ เดี๋ยวค่อยอธิบายเพิ่มเติม

สร้าง Project แรก 13

2.5 Adding External Package

สำหรับผมแล้ว มันเป็นได้ยากมากที่เราจะเขียนทั้งแอพโดยไม่พึ่ง Library อะไรเลย
ซึ่งในตัวอย่างก็มีการ Import english_words ให้ดู และเราจะมาลองทำกัน

ให้เปิด File ชื่อว่า pubspec.yaml เพื่อเพิ่ม english_words: ^4.0.0-0

โดยให้เพิ่มไปตรงที่อยู่ใต้ dependencies ดังนี้

1 dependencies:
2 flutter:
3 sdk: flutter
4 english_words: ^4.0.0-0

เมื่อเพิ่มเสร็จแล้ว เราจะต้องให้ flutter ไปดึง package มาโดยรันคำสั่ง

1 flutter pub get

การรันคำสั่งนี้ จะทำให้ flutter ลง package ตามที่อยู่ใน pubspec.yaml และ pubspec.lock โดยที่จะอ้างอิง
Version ของ Package ต่างๆใน pubspec.lock สำหรับสิ่งที่เคยลงไว้แล้วใน Project และ ทำการลง Package
ใหม่ที่ถูกเพิ่มใน pubspec.yaml

เมื่อทุกอย่างลงเสร็จ pubspec.lock จะถูกแก้ไขให้มีชื่อ Package ใหม่ พร้อมกับ Version ที่ถูกลงตอนที่เรา
Add Package นี้ไว้ด้วย

กลับมาที่ ‘lib/main.dart’

เราจะแก้ไข Code ดังนี้

สร้าง Project แรก 14

1 import 'package:flutter/material.dart';
2 import 'package:english_words/english_words.dart';
3
4 void main() => runApp(MyApp());
5
6 class MyApp extends StatelessWidget {
7 @override
8 Widget build(BuildContext context) {
9 final wordPair = WordPair.random();

10 return MaterialApp(
11 title: 'Welcome to Flutter',
12 home: Scaffold(
13 appBar: AppBar(
14 title: Text('Welcome to Flutter'),
15),
16 body: Center(
17 child: Text(wordPair.asPascalCase),
18),
19),
20);
21 }
22 }

เพิ่มบรรทัด Import english_words และ แก้ไข body ให้ใช้ WordPair.random() มาแสดงแทน

หากทดลองรัน Code จะเห็นว่า Body ของ App เราจะเปลี่ยน Text ไปเรื่อยๆ

2.6 Stateless vs Stateful Widget

ที่เราทำการเขียนมาทั้งหมดนั้น เป็น Stateless Widget ซึ่ง ความหมายของ Stateless Widget คือ

Stateless Widget ทุกอย่างจะไม่สามารถเปลี่ยนค่าใดๆได้ (Immutable)

ซึ่งการเขียนโปรแกรมนั้น ก็มี Stateful ด้วยเช่นกัน

Stateful Widget สามารถบันทึกการเปลี่ยนแปลงบางสิ่งบางอย่างได้ตลอดช่วงอายุของ Widget
นั้นๆใน Application ของเรา โดยที่ Stateful Widget จำเป็นต้องใช้ StatefulWidget class และ
State class

สร้าง Project แรก 15

• StatefulWidget class - เป็น Widget ที่ใช้สร้าง Instance ของ Widget Class
• StatefulWidget class นั้นเป็น Immutable เช่นกัน แต่ว่าสามารถใช้ร่วมกับ State ซึ่ง

เป็น Mutable และ สามารถถูกนำมาใช้งานซ้ำได้ตลอดช่วงอายุของ StatefulWidget

2.7 Stateful Widget

ใน ตัวอย่าง ต่อ มา เรา จะ สร้าง StatefulWidget ชื่อ ว่า RandomWords ที่ มี State ชื่อ ว่า
_RandomWordsState

และเราจะนำ RandomWords ไปใช้กับ MyApp ซึ่งเป็น Stateless Widget

ให้ ไปด้านล่างสุดของ file lib/main.dart และพิมคำว่า stful แล้วกด Enter ซึ่ง VSCode จะทำ Auto
Complete ให้ดังรูป

start debugging

ให้สังเกตว่า Cursor จะกระพริบใน VSCode หลายๆจุดพร้อมกัน ซึ่ีงสิ่งนี้จะทำให้เราสามารถพิมตัวหนังสือได้
หลายที่พร้อมกัน ให้ลองพิมคำว่า RandomWords จะทำให้ได้ Code ดังนี้

สร้าง Project แรก 16

1 class RandomWords extends StatefulWidget {
2 @override
3 _RandomWordsState createState() => _RandomWordsState();
4 }
5
6 class _RandomWordsState extends State<RandomWords> {
7 @override
8 Widget build(BuildContext context) {
9 return Container(

10
11);
12 }
13 }

ให้แก้ไข _RandomWordsState ให้ return ค่าดังนี้

1 class _RandomWordsState extends State<RandomWords> {
2 @override
3 Widget build(BuildContext context) {
4 final wordPair = WordPair.random();
5 return Text(wordPair.asPascalCase);
6 }
7 }

ข้อสังเกตุ State จะขึ้นด้วย _ อย่าลืมใช้ให้ถูกต้อง

กลับไปยัง MyApp และ แก้ไขดังนี้

สร้าง Project แรก 17

start debugging

เมื่อทดลอง restart application จะเห็นว่าผลลัพท์ได้เหมือนเดิม แต่ว่าเดี๋ยวเราจะมาดูกันว่ามันแตกต่างกัน
อย่างไรทีหลัง

2.8 Listview and Stateful Widget

เพื่อทำการทดสอบ Stateful Widget เราจะทำการใช้ Listview เพื่อดูว่า _RandomWordsState นั้นเป็น
mutable (เปลี่ยนแปลงได้) ไม่เหมือน Stateless ซึ่งเป็น Immutable

ก่อนอื่น ผมจะเริ่มที่ class _RandomWordsState

เราจะแก้ไข build ให้ Return AppBar ออกมา กับ body ซึ่งจะเป็น Listview ดังนี้

สร้าง Project แรก 18

1 @override
2 Widget build(BuildContext context) {
3 return Scaffold(
4 appBar: AppBar(
5 title: Text('Startup Name Generator'),
6),
7 body: _buildWordsListView(),
8);
9 }

ต่อมาใน class _RandomWordsState เราก็จะเพิ่ม _buildWordsListView ซึ่งจะ Return Widget ที่ เป็น
ListView กลับไป

1 Widget _buildWordsListView() {
2 return ListView.builder(
3 padding: EdgeInsets.all(16.0),
4 itemBuilder: (context, i) {
5 return Text("test")
6 });
7 }

ใน ListView เรา return แค่ text “test” ออกมา โดยที่อ้างอิงจาก itemBuilder: (context, i)

ซึ่ง i จะเป็น index ที่ ListView พยายามจะแสดงค่า

การที่เรา return Text(“test”) ออกมาตลอดไม่ว่า i จะเป็นอะไรก็ตาม ผลลัพท์ที่ได้จะเป็นแบบนี้

สร้าง Project แรก 19

ต่อมาเราจะเพิ่ม State ให้กับ class _RandomWordsState โดยเพิ่มไว้ที่นี่

1 class _RandomWordsState extends State<RandomWords> {
2 final _words = <WordPair>[];
3
4 ...
5 ...
6 ...
7 }

_words - คือ Array ที่เราจะเก็บ WordPair เอาไว้ และ WordPair เป็น Class ของ english_words lib

แก้ไข _buildWordsListView ดังนี้ เพื่อให้ ใช้ data จาก _words state

สร้าง Project แรก 20

1 Widget _buildWordsListView() {
2 return ListView.builder(
3 padding: EdgeInsets.all(16.0),
4 itemCount: _words.length,
5 itemBuilder: (context, i) {
6 return Text(_words[i].asPascalCase);
7 });
8 }

สิ่งที่เกิดขึ้นใน function นี้คือ

• itemCount เป็น ตัว บอก ว่า ListView นี้ มี Data ทั้งหมด กี่ Rows ซึ่ง จะ เป็น ตัว Link ไป บอก
itemBuilder ด้วยว่า i จะสิ้นสุดที่ index ที่เท่าไหร่

• นำ _words[i] (ตำแหน่งที่ i) return ออกไปใน Text
• ตอนนี้ _words ยังไม่มีค่าอะไร จึงเป็น Empty List

ต่อมาเราจะไปเพิ่ม _words กัน ดังนี้

ใน class _RandomWordsState ที่ build Widget ให้เพิ่ม Code เข้าไป 1 บรรทัด

1 Widget build(BuildContext context) {
2 _words.addAll(generateWordPairs().take(20));
3 return Scaffold(
4 ...
5 ...
6 ...
7);
8 }

ซึ่งจะเพิ่ม Words มาทั้งหมด 20 words เข้าไปใน _words Array

จะได้ผลลัพท์ ดังนี้

สร้าง Project แรก 21

2.9 Divider ใน ListView

ต่อมา เราจะทำการเพิ่ม Divider เข้าไปใน ListView จะได้มีเส้นคั่นระหว่าง Rows

ให้แก้ ListView.builder เป็น ListView.separated และเพิ่ม option separatorBuilder เข้าไปดังนี้

สร้าง Project แรก 22

1 Widget _buildWordsListView() {
2 return ListView.separated(
3 padding: EdgeInsets.all(16.0),
4 itemCount: _words.length,
5 itemBuilder: (context, i) {
6 return Text(_words[i].asPascalCase);
7 },
8 separatorBuilder: (context, i) {
9 return Divider();

10 });
11 }

separatorBuilder มีหน้าที่ return Divider Widget ออกมาเพื่อคั่นระหว่าง Row

เพื่อความเข้าใจ ลองแก้ Divider() เป็น Text("_______________") ดูก็ได้

3. Dart
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

3.1 Overview

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

Dart Libraries

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

3.2 Platforms

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

3.3 Samples

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer

Dart 24

Hello world

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

3.4 Variables

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

3.5 Variable Null Safety

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

if else

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

for in

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

for loop

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer

Dart 25

while loop

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

3.6 Functions

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

3.7 Comments

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

3.8 Import

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

3.9 Printing

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

3.10 Assert

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer

4. Dart Class
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.1 Class Members

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.2 Constructor

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.3 null

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.4 final

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer

Dart Class 27

4.5 fromJson

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.6 Named Constructor

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.7 Subclassing Constructor

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.8 Class Variable

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.9 Constant constructor

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.10 Methods in class

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer

Dart Class 28

4.11 Operators

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.12 Getter Setters

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.13 Abstract Class

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.14 Implicit Interface

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.15 overriding

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

4.16 Mixins

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer

Dart Class 29

4.17 Summary

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

http://leanpub.com/soon-to-be-flutter-programmer

5. Dart ก่อนจะกลับไป Flutter
วกออกไปดู Class ตั้งนาน ขอย้อนกลับมาส่วนสำคัญของ Dart อีกนิดหน่อยก่อนจะกลับไปยัง Flutter กันครับ

5.1 Future

บางทีเราจะทำอะไรก็ตาม มันไม่เสร็จทันที มันต้องรอ มันก็เลยเกิดสิ่งที่ขึ้นมาทดแทน concept นี้

ใน Dart เรียกว่า Future ใน JS เรียกว่า Promise

Future

เปรียบเสมือน Promise ใน javascript สำหรับคนที่ไม่เคยเขียนเลยก็คือ มันเป็นสิ่งที่อาจจะยังทำไม่เสร็จ
แต่ว่าเมื่อเสร็จ จะสามารถแยกออกมาทำต่อได้ดังนี้

.then

คือการบอกว่า เมื่อ Future ทำเสร็จ ให้มาทำสิ่งนี้ต่อ
.catchError

หากมีปัญหาอะไรใน Future ให้มาแก้ปัญหาในนี้

ตัวอย่างเช่น

Dart ก่อนจะกลับไป Flutter 31

1 Future<void> fetchUserOrder() {
2 return Future.delayed(
3 Duration(seconds: 2), () => print('Order done: Large Latte'));
4 }
5
6 void main() {
7 print("program started");
8 fetchUserOrder();
9 print("program should end");

10 }

หากเรารัน โปรแกรมนี้ เราจะได้ log ดังนี้

1 program started
2 program should end
3 Order done: Large Latte

ให้สังเกตว่า Order done: Large Latte นั้น print ช้ากว่า program should end ตามที่เราตั้งไว้ 2 วินาที

เคสนี้เกิดได้ในชีวิตจริงบ่อยมากเช่น ถ้าเราต้องไป query database แล้วต้องรอซัก 0.5s หรือว่าไปเรียก API
แล้วต้องรอ 1s

5.2 Async Await

หากเราต้องการให้ program should end นั้น รันเป็นบรรทัดสุดท้าย เราจะทำแบบนี้

Dart ก่อนจะกลับไป Flutter 32

1 Future<void> fetchUserOrder() {
2 return Future.delayed(
3 Duration(seconds: 2), () => print('Order done: Large Latte'));
4 }
5
6 void main() async {
7 print("program started");
8 await fetchUserOrder();
9 print("program should end");

10 }

การที่เราใช้ await กับ fetchUserOrder ได้ก็เพราะว่า return type ของ fetchUserOrder นั้นเป็น Future
Object. และมีการใส่คำว่า async ไว้ใน function main() แล้วด้วย

ในการใช้ Future นั้น เราใช้ .then ก็ได้ แต่ว่า การใช้ .then นั้นก็อาจจะทำให้เราเจอปัญหา Callback hell
เหมือนใน Javascript

1 const oneSecond = Duration(seconds: 10);
2
3 Future<void> printWithDelay(String message) {
4 return Future.delayed(oneSecond).then((_) {
5 print(message);
6 });
7 }

หากเราไม่อยากใช้ .then ก็ใช้ แบบนี้ได้

1 const oneSecond = Duration(seconds: 10);
2
3 Future<void> printWithDelay(String message) async {
4 await Future.delayed(oneSecond);
5 print(message);
6 }

เป็นการเพิ่ม async และ await เข้าไปใน code เหมือน javascript เลย

Dart ก่อนจะกลับไป Flutter 33

5.3 Exceptions

เมื่อเราเจออะไรก็ตามที่ เราสังหรใจไว้ว่า อาจจะมีความผิดพลาดเกิดขึ้นใน เราอาจจะต้องพึ่งพาการ throw
error ออกมาเพื่อให้ code ส่วนๆอื่นๆทำงานได้ถูกต้อง เช่น

1 void launchShip(List<String> astronauts) {
2 if (astronauts.length == 0) {
3 throw StateError('No astronauts.');
4 }
5 }

ถ้าเราลองให้ launchShip([]); โดยการส่ง Array เปล่าๆเข้าไป ก็จะเห็นได้ว่ามีการ throw error ออกมา
และแอพจะ crash เลย

ซึ่งถ้าเรารู้อยู่แล้วว่าอาจจะเกิดปัญหานี้ เราก็อาจจะต้อง catch error ด้วย

1 try {
2 launchShip([]);
3 } on StateError catch (e) {
4 print(e);
5 }

ซึ่งจะทำให้ Application ของเราไม่ crash เพราะว่าเรา catch error ไว้แล้ว

สำหรับ error type อื่นๆ และการใช้ให้ถูกต้อง ดูได้ที่

https://api.dart.dev/stable/1.10.1/dart-core/Error-class.html

ตอนนี้ขอข้ามไปก่อน เริ่มเบื่อกับ Dart ละครับ

6. Widget
หลังจากออกไป Dart ซะนาน เรากลับมาที่ Widget ใน Flutter กันครับ

Widget ถ้าสังเกตดีๆ มันได้รับแรงบันดาลใจมาจาก React คล้ายๆกับเป็น Component หรือ View เดี๋ยวเรา
มาดูกันว่าใช้อย่างไรบ้าง

6.1 Real Hello, world

เริ่มจากการเขียน Project ใหม่ดังนี้

1 flutter create hello_world
2 cd hello_world
3 code . # open project in VSCode

ใน VSCode กด Start Debugging

แก้ lib/main.dart ดังนี้

1 import 'package:flutter/material.dart';
2
3 void main() {
4 runApp(
5 Center(
6 child: Text(
7 'Hello, world!',
8 textDirection: TextDirection.ltr,
9),

10),
11);
12 }

Widget 35

สังเกตได้ว่า เราจะเห็นแค่ text ชื่อว่า Hello, world เปล่าๆ ซึ่งเกิดจาก Center และ Text Widget

ซึ่งทั้งหมดเป็นส่วนหนึ่งของ package:flutter/material.dart

เรา เขียน StatelessWidget และ StatefulWidget มาแล้ว โดยที่ ทดสอบมาแล้ว ว่ามันต่างกันอย่างไร ซึ่ง
Widget ที่เราจะเขียนทั้งหมด ก็จะ Subclass มาจาก สองอันนี้นี่แหละ เมื่อ Subclass ออกมาแล้ว สิ่งที่เรา
จะทำก็คือ override build() ซึ่งเราจะลองทำกันต่อๆไป

6.2 Basic Widgets

Flutter มี Widgets standard มาให้เราใช้ ขอยกตัวอย่างดังนี้

Text ไว้แสดงตัวหนังสือ ประมานว่าเหมือน Label
Row, Column

ไว้จัด Layout ในจอ Row คือการจัดช่องแนวนอน ส่วน Column คือ แบ่งช่องแนวตั้ง จริงๆอันนี้ทำผม
งงเหมือนกัน รู้สึกว่ามันสลับๆกัน แต่ก็ต้องจำไว้

Stack

มีไว้ให้วาง Widget ซ้อนๆกันไปเรื่อย เมื่อวาง เราก็เลือกวางได้ว่าเราจะวางเรียงจากไหน เป็นการเรียง
stack แบบ web โดยคล้ายกับการใช้ absolute ในเวป layout

Widget 36

Container

มีไว้สร้างกล่องสี่เหลี่ยม สามารถตกแต่งได้ ใส่สี แรเงา ใส่เส้น มี margin เรียกว่าเป็น div ก็ได้มั้ง เห็นว่า
เปลี่ยนเป็น 3d ได้ด้วย ถ้าตั้งเป็น matrix

สมมุติว่าสร้าง MyAppBar Widget ขึ้นมา 1 อัน

1 class MyAppBar extends StatelessWidget {
2 final Widget title;
3
4 // constructor
5 MyAppBar({required this.title});
6
7 @override
8 Widget build(BuildContext context) {
9 return Container(

10 height: 56.0,
11 padding: const EdgeInsets.symmetric(horizontal: 8.0),
12 decoration: BoxDecoration(color: Colors.blue[500]),
13 child: Row(
14 children: <Widget>[
15 IconButton(
16 icon: Icon(Icons.menu),
17 tooltip: 'Navigation menu',
18 onPressed: null,
19),
20 Expanded(
21 child: title,
22),
23 IconButton(
24 icon: Icon(Icons.search),
25 tooltip: 'Search',
26 onPressed: null,
27),
28],
29),
30);
31 }
32 }

มาลองอ่าน Code กัน

Widget 37

1. MyAppBar เป็น Subclass ของ StatelessWidget โดยบังคับห้าม Widget title (สังเกตุว่าเป็น final)
เป็น null และ Assign ได้แค่ครั้งเดียว

2. มี Constructor ที่ จะ รับ ค่า เป็น MyAppBar({required this.title}); บังคับ ให้ ส่ง มาส ร้าง
MyAppBar

3. @override build() เพื่อสร้าง Widget Container แล้ว Return กลับไป
4. Container สามารถตั้งค่า height, padding, decoration ได้
5. เมื่อตั้งค่า Container แล้ว ข้างใน Container จะมี child (ซึ่งจะเก็บ Widget อื่นๆไว้)
6. ใน child ก่อนอื่นเลยมี Widget ชื่อว่า Row

7. ใน Row (1 บรรทัดแนวนอน) ต้องการให้มี children 3 อัน
8. มี IconButton, Expanded, IconButton
9. IconButton ถ้า onPressed เป็น null คือ เทียบเท่า Disable

10. Icon นี่น่าจะมาจาก Material Icon
11. Expanded คือ อะไรก็ตามในนั้นจะขยายกว้างตามพื้นที่ที่เหลืออยู่

ถ้าอ่าน Code เสร็จแบบยังไม่ได้นำไปใช้ก็คือ มี AppBar ด้านบน ที่มีปุ่ม hamburger, มี text, มีปุ่ม search
ด้านขวานั่นเอง

ต่อมาเราจะนำ MyAppBar มาใช้งาน แต่ว่าเราจะให้ Application ของเรามีทั้ง AppBar และ Body

เราจะตั้งหน้าใหญ่หน้านี้ว่า MyApp

1 class MyApp extends StatelessWidget {
2 @override
3 Widget build(BuildContext context) {
4 return Material(
5 child: Column(
6 children: <Widget>[
7 MyAppBar(
8 title: Text(
9 'Example title',

10 style: Theme.of(context) //
11 .primaryTextTheme
12 .headline6,
13),
14),
15 Expanded(

Widget 38

16 child: Center(
17 child: Text('Hello, world!'),
18),
19),
20],
21),
22);
23 }
24 }

สิ่งที่ MyApp ทำก็คือ

1. return Widget Material ออกมา ซึ่ง Material มันเป็นแค่สิ่งที่ทำให้แอพดูเป็น Material
- อ้างอิงจาก

2. ข้างใน Material จะมี child ซึ่งรับเป็น Widget ซึ่งเราจะทำการส่ง Column เข้าไป
3. Column เป็นการแบ่งจอในรูปแบบแนวตั้ง ซึ่งรับ children เข้าไป
4. เราส่ง <Widget> Array เข้าไปใน children ดังนี้ MyAppBar และ Expanded
5. MyAppBar เราแค่สร้าง Text ส่งไปยัง Initializer เพื่อตั้ง Title ที่ถูก required ไว้
6. Expanded เราส่ง Text ชื่อ Hello, world เข้าไปเฉยๆ
7. เนื่องจากว่า MyAppBar สูงแค่ 56 Pixel ทำให้ Hello, world นั้นถูกขยายจนเต็มจอ

ทดลองใช้ Code ของเราโดยการแก้ไข main() ดังนี้

1 void main() {
2 runApp(MaterialApp(
3 title: 'My app',
4 home: SafeArea(
5 child: MyApp(),
6),
7));
8 }

เป็นการใช้ runApp ซึ่งเป็นส่วนหนึ่งของ material.dart อ้างอิงจาก
https://api.flutter.dev/flutter/widgets/runApp.html
ซึ่งเป็นการรัน Widget ขึ้นมาเต็มจอ

Widget 39

จากที่อ่าน ณ ตอนนี้คือ ถ้าสั่ง runApp จะต้องใช้ MaterialApp ซึ่งผมก็ยังไม่เข้าใจว่าทำไม แต่ว่าอ่านไปเรื่อยๆ
เดี๋ยวก็คงเข้าใจเอง

Material App ต้องการให้ส่ง title เพราะว่าต้องใช้ใน Task Switcher และ home ซึ่งต้องการให้ส่ง Widget
เข้าไป

ซึ่ง home ของเรานั้นจะใช้ SafeArea ซึ่งเป็นตัวบ่งบอกว่า เราต้องการให้ใช้ขนาดของจอที่ปลอดภัยจาก status
bar, notch, ปุ่ม navigation ใน Android ซึ่งเราจะโยน MyApp() เข้าไปใช้ใน SafeArea นั้นเอง

เอาเป็นว่าอ่านมาถึงนี่ สงสัยมากว่า ทำไมมันใช้อะไรเยอะจัง (�_�|||) แต่เดี๋ยวอ่านไปเรื่อยๆก็น่าจะเข้าใจ
ขึ้นอีกเองแหละ

ลองรัน code ดูแล้วได้แบบนี้ไหม

Widget 40

6.3 Material’s Widgets

จริงๆแล้วที่เราทำใน Section ที่แล้วนั้น มันเป็นอะไรที่ปรกติมาก และ Material เค้าก็มี AppBar มาให้อยู่แล้ว

ลบ Code ทิ้งให้หมดแล้วลองแปะ

1 class TutorialHome extends StatelessWidget {
2 @override
3 Widget build(BuildContext context) {
4 return Scaffold(
5 appBar: AppBar(
6 leading: IconButton(
7 icon: Icon(Icons.menu),
8 tooltip: 'Navigation menu',
9 onPressed: null,

10),
11 title: Text('Example title'),
12 actions: <Widget>[
13 IconButton(
14 icon: Icon(Icons.search),
15 tooltip: 'Search',
16 onPressed: null,
17),
18],
19),
20 // body is the majority of the screen.
21 body: Center(
22 child: Text('Hello, world!'),
23),
24 floatingActionButton: FloatingActionButton(
25 tooltip: 'Add', // used by assistive technologies
26 child: Icon(Icons.add),
27 onPressed: null,
28),
29);
30 }
31 }

ถ้าลองอ่านดู จะเห็นสิ่งแรกที่แปลกตาคือ Scaffold ซึ่งส่วนใหญ่แล้วเวลาเจอคำนี้ ผมจะกลัวมันนิดๆ เพราะว่า
ไม่รู้ว่ามันทำอะไรให้บ้าง มันเหมือนคำสั่งทำให้ทุกอย่างเลย ไม่ต้องเขียนเอง

Widget 41

อ้างอิงจาก https://api.flutter.dev/flutter/material/Scaffold-class.html
สิ่งที่ Scaffold ทำก็คือ จัด Layout ให้เหมือนกับของ Material Design ประมาณในรูป

รับ appBar, body, floatingActionButton ซึ่งเป็น style ของ Material Design

ซึ่ง appBar ก็รับ Widget ชื่อว่า AppBar ของ Material เข้าไปเลย ประกอบด้วย leading, title, actions แต่
ถ้าใครลองรันแล้วมองไม่เห็นปุ่ม actions ไม่ต้องตกใจนะครับ น่าจะโดนคำว่า DEBUG บังอยู่

ใน body ก็มีแค่ Center Widget ที่มี Text อยู่

และสุดท้าย floatingActionButton ก็เป็นแค่ปุ่มลอยๆอยู่ด้านล่างขวา

Widget 42

6.4 handle event

ใน FloatingActionButton มันมี onPressed ซึ่งเป็น null อยู่ ด้วยความสงสัย ผมลองเพิ่ม Methods เข้าไปใน
Class TutorialHome ดูเล่นๆชื่อว่า handleAddButton และแก้ onPressed ให้ไป call handleAddButton
ดังนี้

1 class TutorialHome extends StatelessWidget {
2 @override
3 Widget build(BuildContext context) {
4 ...
5 ...
6 ...
7 ...
8 floatingActionButton: FloatingActionButton(
9 tooltip: 'Add',

10 child: Icon(Icons.add),
11 onPressed: handleAddButton,
12),
13);
14 }
15
16 void handleAddButton() {
17 print("test");
18 }
19 }

ลองรันแล้วกดปุ่ม + ดู จะเห็น Log ใน Console

6.5 Gesture Detector

หรือหากเราต้องการเช็ค Gesture บน Widget ด้วยตนเอง ก็ใช้ GestureDetector ครอบไว้แล้วเช็ค onTap

Widget 43

1 import 'package:flutter/material.dart';
2
3 class MyButton extends StatelessWidget {
4 @override
5 Widget build(BuildContext context) {
6 return GestureDetector(
7 onTap: () {
8 print('MyButton was tapped!');
9 },

10 child: Container(
11 height: 50.0,
12 padding: const EdgeInsets.all(8.0),
13 margin: const EdgeInsets.symmetric(horizontal: 8.0),
14 decoration: BoxDecoration(
15 borderRadius: BorderRadius.circular(5.0),
16 color: Colors.lightGreen[500],
17),
18 child: Center(
19 child: Text('Engage'),
20),
21),
22);
23 }
24 }
25
26 void main() {
27 runApp(
28 MaterialApp(
29 home: Scaffold(
30 body: Center(
31 child: MyButton(),
32),
33),
34),
35);
36 }

ความจริงแล้วมีอีกเยอะเลย นอกจาก onTap
onDoubleTap, onDoubleTapCancel, onDoubleTapDown, onForcePressEnd, ..
https://api.flutter.dev/flutter/widgets/GestureDetector-class.html

Widget 44

6.6 Handling Simple State

ก่อนหน้านี้ใน Stateless ทุกอย่างเป็น final ทำให้เราแก้ค่าอะไรไม่ได้เลยหลังจากแอพรัน

ตอนนี้เราจะลองทำให้แอพเรามีการเปลี่ยนแปลงตามปุ่มที่กดดูบ้าง

ลบโค้ดทิ้งให้หมดยกเว้น import แล้ว เริ่มสร้าง StatefulWidget กัน

1 class Counter extends StatefulWidget {
2 @override
3 _CounterState createState() => _CounterState();
4 }

สร้าง Counter ซึ่ง เป็น StatefulWidget และ มี แค่ method ชื่อ ว่า createState() ซึ่ง จะ return
_CounterState กลับไป

สังเกตุ Naming Convention ว่า State นั้นจะขึ้นต้น Class ด้วย _ เสมอ เช่น _CounterState

1 class _CounterState extends State<Counter> {
2 int _counter = 0;
3
4 void _increment() {
5 setState(() {
6 _counter++;
7 });
8 }
9

10 @override
11 Widget build(BuildContext context) {
12 return Row(
13 mainAxisAlignment: MainAxisAlignment.center,
14 children: <Widget>[
15 ElevatedButton(
16 onPressed: _increment,
17 child: Text('Increment'),
18),
19 SizedBox(width: 16),
20 Text('Count: $_counter'),
21],
22);

Widget 45

23 }
24 }

ใน _CounterState นั้นมี instance variable ชื่อว่า _counter เป็น int (สังเกตว่าขึ้นด้นด้วย _ เหมือนกัน)
เป็นการตั้งชื่อเพื่อไม่ให้เข้าใจผิดกับส่วนอื่นๆ

ใน class นี้จะมี method ชื่อว่า _increment() ซึ่งภายในจะ call setState() ซึ่งเป็นสิ่งที่ flutter บังคับ
ให้ เรา call ทุกครั้งที่ เราต้องการให้ build() methods นั้นรันใหม่ หรือ! เราต้องการให้ Widget เรานั้น
เปลี่ยนแปลงตาม State ใหม่

ใน build() นั้น เราแค่ return widget Row ออกไปโดยที่ให้

• align center
• มีปุ่ม เมื่อกดแล้ว call _increment()
• มี Text ที่อัพเดทตาม int _counter

เมื่อกดปุ่ม Increment ตัว code จะรัน _increment() ซึ่งจะรัน setState() เมื่อ setState() เสร็จ จะ
ทำให้ build() ถูกบังคับให้รันใหม่และหน้าจอเปลี่ยนตามสิ่งที่ return ออกมาจาก build()

State ของ Counter นั้นใช้งานแยกกัน ลองดูตัวอย่างนี้

1 void main() {
2 runApp(MaterialApp(
3 home: SafeArea(
4 child: Scaffold(
5 body: Center(
6 child: Column(children: [
7 Expanded(child: Text("")),
8 Counter(),
9 Counter(),

10 Expanded(child: Text(""))
11]),
12),
13),

Widget 46

14),
15));
16 }

Counter() ถูกสร้างสองครั้ง ลองรัน Code ดูจะเห็นว่า _CounterState นั้นนับแยกออกจากกัน

6.7 Stateless with Stateful

จริงๆแล้ว ที่เราเขียนเนี่ย เรามีการใช้ Stateless widget ไปในโค้ดของเราด้วย เช่น

ElevatedButton (ซึ่งผมเข้าใจว่า เป็น Stateless Widget) ที่เรานำมาใช้

แต่เพื่อให้เข้าใจว่า Stateless และ Stateful ทำงานร่วมกันอย่างไร เราจะดูตัวอย่าง code นี้

Stateless widget ที่จะแสดงค่าแค่ Text Count: ออกไป ไม่มีการเปลี่ยนแปลงค่า

1 class CounterDisplay extends StatelessWidget {
2 CounterDisplay({required this.count});
3
4 final int count;
5
6 @override
7 Widget build(BuildContext context) {
8 return Text('Count: $count');
9 }

10 }

Widget 47

ปุ่มไว้กด เปลี่ยนค่า count แต่ว่าปุ่มไม่มีค่าอะไรเปลี่ยน มีหน้าที่แค่ส่ง event

1 class CounterIncrementorButton extends StatelessWidget {
2 CounterIncrementorButton({required this.onPressed});
3
4 final VoidCallback onPressed;
5
6 @override
7 Widget build(BuildContext context) {
8 return ElevatedButton(
9 onPressed: onPressed,

10 child: Text('Increment'),
11);
12 }
13 }

CounterDisplay และ CounterIncrementorButton เป็น Stateless Widget เพราะว่าไม่มีค่าอะไรเปลี่ยน
ข้างในเลย หรือ ไม่มีอะไร Mutate เลย (mutate ที่แปลว่ากลายพันธ์)

ต่อมาเราก็จะนำ Stateless Widget เนี่ยไปใช้กับ Stateful Widget

1 class Counter extends StatefulWidget {
2 @override
3 _CounterState createState() => _CounterState();
4 }
5
6 class _CounterState extends State<Counter> {
7 int _counter = 0;
8
9 void _increment() {

10 setState(() {
11 ++_counter;
12 });
13 }
14
15 @override
16 Widget build(BuildContext context) {
17 return Row(
18 mainAxisAlignment: MainAxisAlignment.center,
19 children: <Widget>[
20 CounterIncrementorButton(onPressed: _increment),
21 SizedBox(width: 16),

Widget 48

22 CounterDisplay(count: _counter),
23],
24);
25 }
26 }

Counter เป็น Stateful Widget ซึ่งพึ่งพา _CounterState ที่มีการเปลี่ยนค่า int _counter เรื่อยๆ

ใน _CounterState ซึ่ง ถูก ใช้ โดย Counter เนี่ย ก็ มี การ ใช้ CounterIncrementorButton และ
CounterDisplay ที่เป็น Stateless ใน build()

สังเกตว่า ทั้งสองอย่างนั้น ทำงานแยกกันอย่างเห็นได้ชัดว่า เฉพาะคนที่ต้องการมีค่าเปลี่ยนเท่านั้นที่จะเป็น
Stateful

1 void main() {
2 runApp(
3 MaterialApp(
4 home: Scaffold(
5 body: Center(
6 child: Counter(),
7),
8),
9),

10);
11 }

ลอง Start Debugging ดู ผลได้เหมือนเดิม แต่ว่าการใช้ Widget ต่างกัน

7. Layout
การสร้าง Layout เป็นพื้นฐานของการเขียน Flutter เนื่องจากว่าเราจะต้องสร้าง View เยอะมากๆ

ยกตัวอย่างด้านล่าง

จะวาดออกมาเป็น Widget Layout Diagram ได้แบบนี้

ซึ่งเป็นการทำ Container ซ้อน Row ซ้อน Column ลงไปเรื่อยๆ

ในบทนี้ ผมอ่านจาก

Layout 50

https://flutter.dev/docs/development/ui/layout/tutorial

แล้วลองทำความเข้าใจไปเรื่อยๆ อันไหนงงก็หาอ่านเพิ่ม

เริ่มต้นจากผลลัพท์ของบทนี้ ที่เราจะเขียนโค้ดกัน

เริ่มต้นจาก Code นี้เป็นหลัก

‘lib/main.dart’

1 import 'package:flutter/material.dart';
2
3 void main() => runApp(MyApp());
4
5 class MyApp extends StatelessWidget {
6 @override
7 Widget build(BuildContext context) {
8 return MaterialApp(
9 title: 'Flutter layout demo',

10 home: Scaffold(
11 appBar: AppBar(
12 title: Text('Flutter layout demo'),
13),

Layout 51

14 body: Center(
15 child: Text('Hello World'),
16),
17),
18);
19 }
20 }

ต่อมา เริ่มมาแบ่งสัดส่วนของจอ ว่ามันมีอะไรบ้าง

เริ่มจาก Column ดังนี้

ต่อมา เราจะมาแบ่งส่วนที่ดูเหมือนจะมีอะไรซ้อนข้างในเยอะๆ เริ่มจาก

Layout 52

สังเกตส่วน Row และ Column ด้านในให้ดีว่าแบ่งอย่างไร

หากลองเขียนโต้ดดู จะเขียนได้ดังนี้

1 Widget titleSection = Container(
2 padding: const EdgeInsets.all(32),
3 child: /*1*/ Row(
4 children: [
5 /*2*/
6 Expanded(
7 child: /*3*/ Column(
8 crossAxisAlignment: CrossAxisAlignment.start,
9 children: [

10 /*4*/
11 Container(
12 padding: const EdgeInsets.only(bottom: 8),
13 child: Text(
14 'Oeschinen Lake Campground',
15 style: TextStyle(
16 fontWeight: FontWeight.bold,
17),
18),
19),
20 /*5*/
21 Text(
22 'Kandersteg, Switzerland',
23 style: TextStyle(
24 color: Colors.grey[500],
25),
26),
27],
28),

Layout 53

29),
30 /*6*/
31 Icon(
32 Icons.star,
33 color: Colors.red[500],
34),
35 /*7*/
36 Text('41'),
37],
38),
39);

/*1*/ Row

เราเริ่มจากกรอบนอกสุด ซ้ายไปขวา มีทั้งหมด 3 Widget ประกอบด้วย Widget ดังนี้
/*2*/ /*6*/ /*7*/

/*2*/ Expanded

มีส่วนช่วยให้ Widget ของเรานั้น ขยายตามพื้นที่ที่เหลืออยู่ ยืดจนเต็มจอโดยหัก space จาก /*6*/ /

7/

/*3*/ Columns

ต่อมา Widget ที่มีแต่ Text ด้านใน บนลงล่าง ประกอบด้วย
/*4*/ /*5*/

/*4*/ Container

จริงๆแล้ว ไม่จำเป็นต้องมี Container ก็ได้ แต่ว่ามีไว้เพื่อให้เราสามารถ set padding ได้ก็ที่จะเข้าไป
set Text ทำให้ห่างออกจาก /*5*/ ด้วย

ลองนำโค้ดไปใช้ โดยแก้ไข body: ดังนี้

Layout 54

1 class MyApp extends StatelessWidget {
2 @override
3 Widget build(BuildContext context) {
4 return MaterialApp(
5 title: 'Flutter layout demo',
6 home: Scaffold(
7 appBar: AppBar(
8 title: Text('Flutter layout demo'),
9),

10 body: Column(
11 children: [titleSection],
12),
13),
14);
15 }
16 }

ต่อมา ส่วนของปุ่ม เราสามารถแบ่งได้ดังนี้

Layout 55

แต่ว่าเนื่องจากว่า ปุ่มแต่ละปุ่มนั้น หน้าตาเกือบเหมือนกันเลย ต่างกันแค่ Icon และ Text เราจึงจะเริ่มจากการ
สร้าง Method เพื่อสร้างปุ่ม

1 Column _buildButtonColumn(Color color, IconData icon, String label) {
2 return Column(
3 mainAxisSize: MainAxisSize.min,
4 mainAxisAlignment: MainAxisAlignment.center,
5 children: [
6 Icon(icon, color: color),
7 Container(
8 margin: const EdgeInsets.only(top: 8),
9 child: Text(

10 label,
11 style: TextStyle(
12 fontSize: 12,
13 fontWeight: FontWeight.w400,
14 color: color,
15),
16),
17),
18],
19);
20 }

การสร้างปุ่มก็แค่รับค่า สี icon label มาเท่านั้น และสร้าง Column เพื่อมาเก็บ Widget Icon ไว้บน และ Text
ไว้ล่าง

หากใคร call function นี้ไป ก็จะได้ Widget Column กลับไปใช้งาน

Layout 56

ใน build() เราแค่เข้าไปเพิ่มว่าเราจะสร้าง ปุ่ม 3 ปุ่มด้วยสีอะไร

1 Color color = Theme.of(context).primaryColor;
2 Widget buttonSection = Container(
3 child: Row(
4 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
5 children: [
6 _buildButtonColumn(color, Icons.call, 'CALL'),
7 _buildButtonColumn(color, Icons.near_me, 'ROUTE'),
8 _buildButtonColumn(color, Icons.share, 'SHARE'),
9],

10),
11);

และนำ buttonSection ไปเพิ่ม children ใน body ต่อจาก titleSection ดังนี้

1 body: Column(
2 children: [titleSection, buttonSection],
3),

แอพที่ได้จะหน้าตาแบบนี้

ต่อมาแค่เพิ่ม Text ที่ต้องการให้ Wrap ขึ้นบรรทัดใหม่หากเกินจอง่ายๆ ดังนี้

Layout 57

1 Widget textSection = Container(
2 padding: const EdgeInsets.all(32),
3 child: Text(
4 'Lake Oeschinen lies at the foot of the Blüemlisalp in the Bernese '
5 'Alps. Situated 1,578 meters above sea level, it is one of the '
6 'larger Alpine Lakes. A gondola ride from Kandersteg, followed by a '
7 'half-hour walk through pastures and pine forest, leads you to the '
8 'lake, which warms to 20 degrees Celsius in the summer. Activities '
9 'enjoyed here include rowing, and riding the summer toboggan run.',

10 softWrap: true,
11),
12);

และนำ textSection ไปแปะต่อจาก buttonSection ใน build() ดังนี้

1 body: Column(
2 children: [titleSection, buttonSection, textSection],
3),

แอพที่ได้จะหน้าตาแบบนี้

Layout 58

สุดท้ายการเพิ่มรูปภาพ

รูปภาพนั้นถือเป็น asset ชนิดหนึ่งที่ต้องถูกตั้งค่าไว้ก่อนใน project ก่อนที่จะนำมาใช้งานได้

สามารถโหลดรูปได้ที่นี่

https:// raw.githubusercontent.com/ flutter/ website/ master/ null_safety_examples/

layout/lakes/step5/images/lake.jpg

หรือใช้รูปอะไรก็ได้ ให้สร้าง folder ชื่อว่า assets/images และนำ lake.jpg ไปไว้ใน folder

ต่อมาให้เปิด file ชื่อว่า pubspec.yaml แล้วเลื่อนไปหา flutter:

1 flutter:
2
3 # The following line ensures that the Material Icons font is
4 # included with your application, so that you can use the icons in
5 # the material Icons class.
6 uses-material-design: true
7
8 # To add assets to your application, add an assets section, like this:
9 assets:

10 - assets/images/lake.jpg

ให้มองหาคำว่า assets: ที่อยู่ใต้ flutter: แล้วเพิ่มรูปที่เราต้องการใช้เข้าไป

• podspec เป็น case sensitive จะต้องพิมทุกอย่างให้เป๊ะ ตัวเล็ก ตัวใหญ่ space
• เมื่อเพิ่ม Assets แล้ว สิ่งที่ผมเจอก็คือ ต้อง restart ตัว debuging ที่เรารันอยู่ ไม่งั้น assets จะไม่ถูก

โหลด

สุดท้าย ไปเพิ่มรูปเข้า build() ในส่วนของ body: ดังนี้

Layout 59

1 body: Column(
2 children: [
3 Image.asset('assets/images/lake.jpg',
4 width: 600, height: 240, fit: BoxFit.cover),
5 titleSection,
6 buttonSection,
7 textSection
8],
9),

Layout 60

สุดท้าย การที่เราสร้าง Layout แล้ว Content เกินจอนั้น มันจะมีแถบเหลืองๆขึ้นมาบอกว่ามันเกินจอไปกี่
pixels ซึ่งในกรณีนี้ หากเราต้องการให้แอพของเราสามารถเลื่อนขึ้นลง (scroll) ได้นั้น เราจะใช้ ListView แทน
Column ครับ

ไปแก้ที่ build() ในส่วน body เหมือนเดิมโดยเปลี่ยน Column เป็น ListView

Layout 61

1 body: ListView(
2 children: [
3 Image.asset('assets/images/lake.jpg',
4 width: 600, height: 240, fit: BoxFit.cover),
5 titleSection,
6 buttonSection,
7 textSection
8],
9),

กลับไปดูที่แอพ แถบเหลืองๆก็จะหายไปและ scroll ได้แล้ว

สำหรับบทนี้ ขอจบแต่เพียงเท่านี้ เพื่อที่จะให้เข้าใจ Layout ทั่วๆไป

8. Basic Routes with GETX
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

8.1 Installing getx

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

8.2 Create Project with getx

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

8.3 Files / Folders Structure

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

8.4 Creating new page

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer

Basic Routes with GETX 63

8.5 Search field

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

8.6 Show Manga Detail Page

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/soon-to-be-flutter-programmer.

http://leanpub.com/soon-to-be-flutter-programmer
http://leanpub.com/soon-to-be-flutter-programmer

	Table of Contents
	เตรียมเครื่อง
	สำหรับ Mac
	สำหรับคนใช้ windows
	วิธีใช้ fvm
	fvm releases
	fvm install
	fvm use
	fvm use -f
	fvm global
	fvm flutter

	Text Editor

	สร้าง Project แรก
	Running Your Application
	ใช้ VSCode เพื่อทำการ Debug
	Hot reload
	เริ่มแก้ไข Code
	Adding External Package
	Stateless vs Stateful Widget
	Stateful Widget
	Listview and Stateful Widget
	Divider ใน ListView

	Dart
	Overview
	Dart Libraries

	Platforms
	Samples
	Hello world

	Variables
	Variable Null Safety
	if else
	for in
	for loop
	while loop

	Functions
	Comments
	Import
	Printing
	Assert

	Dart Class
	Class Members
	Constructor
	null
	final
	fromJson
	Named Constructor
	Subclassing Constructor
	Class Variable
	Constant constructor
	Methods in class
	Operators
	Getter Setters
	Abstract Class
	Implicit Interface
	overriding
	Mixins
	Summary

	Dart ก่อนจะกลับไป Flutter
	Future
	Async Await
	Exceptions

	Widget
	Real Hello, world
	Basic Widgets
	Material's Widgets
	handle event
	Gesture Detector
	Handling Simple State
	Stateless with Stateful

	Layout
	Basic Routes with GETX
	Installing getx
	Create Project with getx
	Files / Folders Structure
	Creating new page
	Search field
	Show Manga Detail Page

