SolidStart ' e,

Build Full-Stack Applications with ‘SflldJS /?‘/ \}
L] ) = ., Ilr]II I







SolidStart: Build
Full-Stack

Applications with
SolidJS



SolidStart: Build Full-Stack Applications with SolidJS by Sinan Polat
Copyright © 2025 Sinan Polat. All rights reserved.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission by the author, except in the case of
brief quotations embedded in critical articles or reviews.

The effort has been made to ensure the accuracy of the information and instructions presented.
However, the information contained in this work is sold without warranty, either express or implied.
Neither the author, nor its dealers or distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this work. Use of the information and instructions
contained in this work is at your own risk.

If any code samples or other technology this work contains or describes is subject to the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.



1. Introduction

33.

34.

Table of Contents

Requirements
Beyond This Book
Code Examples
Contact and Feedback

Server Side Rendering

Issues With Single Page Applications

SSR: Visible Content From the First Byte

Three Rendering Approaches for SSR Applications
renderToString - Synchronous HTML Generation
renderToStringAsync - Asynchronous HTML Generation
renderToStream - Streaming with Progressive Rendering
Hydration: Breathing Life into Server-Rendered Pages
Targeting the Server Context

Targeting the Development Build

Practical Guide to Server-Rendering

Separating Application Shell from Client Logic

Building a Full-Stack App with Express and Solid Router

Solid Router - -

Setting Up Development Environment
Client-Only Development Environment
SolidStart Development Environment

Installing Solid Router

Routing Strategies

Anatomy of a URL
Clean URLs

Introducing the Router Component
Error Handling Considerations

Defining Routes

Lazy Loading Route Components

Matching Dynamic Paths

Filtering Dynamic Paths

Optional Parameters

Catch-All Routes and Handling 404s

10
10
10
11

13
13
15
16
16
17
17
18
22
22
22
31
34

46
46
48
49
49
52
55
56
56
57
60
62
64
67
69



Named Wildcards for Flexibility
Wildcards Beyond Catch-All Routes
Use Cases for Wildcard Routes
Matching Multiple Paths in a Route
Attaching Metadata
Layouts
Rendering Different Layouts Conditionally
Rendering Different Layouts via Nested Routes
Nested Routes
Providing a Shared Layout
Nested Routes via Configuration
Alternative Routers
Hash Mode Router
Memory Router
Linking and Navigation
Using Anchor Elements
Targeting New Tabs or Frames
Adding Keyboard Shortcuts with accesskey
Security Considerations for Anchor Elements
Using the A Component
Programmatic Navigation
The redirect Function
Using redirect in Queries and Actions
Single Flight Mutations
throw vs return
Hosting Apps in Subdirectories
Preloading
Inside the preload Function
Manually Preloading with usePreloadRoute
Accessing Route Related Data
Accessing URL Information with useLocation

Managing Query Parameters with useSearchParams

Extracting Route Parameters with useParams

Matching Routes with useMatch and useCurrentMatches

Displaying Transition Indicators

Intercepting Route Changes with useBeforelLeave
Fetching Async Data

Deduplicated Data Fetching

70
72
73
74
76
76
80
82
84
85
88
93
94
95
95
96
98
98
99
100
103
106
106
108
108
108
110
114
115
116
116
119
123
124
129
130
132
134



35.

Updating Remote Data With Web Forms
Working With Web Forms

Collecting User Inputs and Performing Data Updates

Providing Unique Names For Serialization
Passing Arguments Directly
Programmatically Invoking Actions
Handling Form Errors

Helper Functions

Tracking Form Submissions with useSubmission and

useSubmissions
Reactive Forms with Authentication and Validation

|somorphic Apps with SolidStart - -

Introducing SolidStart
Project Setup & Configuration
Project Structure
Building Navigation with File-Based Routes
Dynamic Parameters
Optional Parameters
Catch-All Routes
Logical Naming for Cleaner File Organization
Renaming index.tsx for Discoverability
Using Folders for Logical Grouping
Escaping Folder-Based Nesting
Creating Shared Page Structures with Layouts
Defining Layouts for Nested Routes
Escaping Nested Layouts
Serving Static Assets
Using import Statements
Styling Components
Using Stylesheets
Using CSS Modules
CSS-in-JS
Data Exchange Between the Server and Client
Basic Data Fetching: API Endpoints
Idiomatic Data Fetching: Server Functions
Performing Server-Side Mutations: Server Actions
Caching Data for Request Deduplication

137
137
141
143
144
144
145
146
147

148

155
158
159
162
163
164
164
165
165
166
166
167
168
169
169
170
171
171
172
173
173
174
175
178
180



Preloading Data
Pre-rendering Routes
Registering API Endpoints
Using the file router API
Using application configuration
Using a Middleware
Using the GET function
Accessing Server Events
Managing <head> Elements
Setting HT'TP Headers and Status Codes
Setting HT'TP Headers
Setting HT'TP Status Codes
Creating Client-Only Components
Building Echoes: A Quote Management App with SolidStart
Project Setup
Application Structure and Routes
Route Organization
Protected Routes
Public Routes
Application Layout
Styling
Error Handling
Fetching Data
Updating Data
Authentication and Authorization
Notifications and Confirmation Dialogs
Mounting the Client-Only Layers
Notifications: Decoupled, Event-Driven Toasts
Confirmation Dialogs: Explicit Consent for Destructive Actions

Closing Thoughts

About the Author - - -

181
182
183
183
184
186
188
189
190
193
193
193
194
195
197
197
197
198
199
201
202
203
204
205
207
210
210
211
212
216



CHAPTER 1

Introduction

Solid]S has quickly established itself as a compelling option for building modern, reactive web
applications. Its fine-grained reactivity system delivers performance that rivals hand-optimized code,
while its developer experience remains approachable for those familiar with component-driven
frameworks.

Within the broader SolidJS ecosystem, however, certain topics stand out for their depth, complexity,
and importance in production scenarios. Chief among these are:

® Server-Side Rendering (SSR): rendering components on the server to improve
perceived performance, enable SEO, and support progressive enhancement.

* Routing (Solid Router): defining and managing application navigation in a way that
integrates seamlessly with Solid’s reactivity model.

* Application Framework (SolidStart): a meta-framework for building full-stack
applications with Solid]S, combining SSR, routing, and data-loading strategies into a
coherent developer workflow.

These subjects require careful treatment not only because they involve more moving parts than client-
only applications, but also because they form the foundation of how applications are structured,

delivered, and scaled.

The book you are reading brings together selected chapters from my larger work: Solzd/S: The
Complete Guide. While the parent book spans the entire SolidJS landscape, this volume narrows its
focus to SolidStart and its surrounding topics. Together, these chapters provide a practical,
production-oriented guide for developers already familiar with the fundamentals of SolidJS. Because
of their depth and significance, they have been published here as a dedicated volume.

In the chapters ahead, we will begin with server-side rendering, move on to routing with Solid Router,
and finally explore SolidStart, which unifies these concepts into a coherent framework for building
tull-stack applications.



If you’re ready to move beyond the fundamentals and see how Solid]S supports production-grade
development, you’re in the right place.

Requirements

This book is not an introduction to Solid]JS itself. It assumes familiarity with the following:

® SolidJS fundamentals: signals, stores, components, and JSX usage.

® Reactivity: understanding how SolidJS tracks dependencies and updates the DOM.

® TypeScript: while not strictly required, examples and best practices in this book use
TypeScript for type safety and clarity.

® Basic web development concepts: including HTML, CSS, and JavaScript modules.

Beyond This Book

This volume is deliberately focused. By concentrating on SSR, routing, and SolidStart, it gives you the
tools to build production-ready Solid]S applications.

If you want the full picture of Solid]S—starting from its foundations and building up to advanced
application architecture—you’ll find it in the parent book, Solid/S: The Complete Guide. There you’ll
discover:

® A thorough introduction to SolidJS fundamentals.

® The inner workings of its reactivity model.

® Component composition patterns and lifecycle strategies.

® State management and performance tuning.

® Step-by-step examples that build from beginner-friendly apps to advanced architectures.

Code Examples

All code examples used in this book are available on GitHub:
https://github.com/solid-courses/solidjs-the-complete-guide

Navigate to the examples folder to find the material for the chapters in this volume. The examples for
this book begin with ch33, corresponding to the first chapter included here.

You are encouraged to download, run, and experiment with the code as you follow along in the text.
Hands-on practice will help reinforce the concepts and give you a clearer sense of how Solid]S
applications come together in real projects.

2 | Chapter 1. Introduction



In general, you are free to use the example code provided with this book in your own programs and
documentation. Permission is not required unless you intend to reproduce a substantial portion of
the code. For example, you may use several snippets in your programs without restriction, and you
may also cite the book or quote short examples when answering a question. However, selling or
redistributing the examples requires prior permission, as does incorporating a significant amount of
code into your product’s documentation.

Contact and Feedback

To share feedback, suggestions, or corrections, please visit the repository:
https://github.com/solid-courses/solidjs-the-complete-guide

You can open an issue to provide your input. Your contributions will help improve both this book and
the learning experience of future readers.

Chapter 1. Introduction | 3






CHAPTER 33

Server Side Rendering

Up until now, we’ve been building client-side—only applications—code that runs entirely in the
browser. The server’s job has been little more than handing over some HTML, JavaScript, and CSS,
and exposing an API for our client code to call. Everything else—fetching data, building UI, rendering
components—has happened in the user’s machine—every click, every data fetch, every DOM update
handled by the browser alone.

Applications built this way are known as Single Page Applications (SPAs). Even if the user navigates to
different “pages,” they’re really just interacting with different views in the same application shell. SPAs
have their strengths: they enable smooth, app-like transitions, and they keep the server out of the
rendering process once the app has loaded. But they also leave a lot of untapped potential on the server
side—and in some cases, they make life harder than it needs to be.

Issues With Single Page Applications

While SPAs offer a smooth, app-like feel, they also come with trade-offs. By relying entirely on the
client for rendering, you inherit a set of limitations, performance bottlenecks, and risks:

SEO limitations
In the age of the internet, success often hinges on discoverability—and discoverability is directly
tied to how well your site performs in search rankings.

Search engines index the HTML they receive from the server, and in a client-rendered SPA, that
initial HTML is often little more than a hollow shell—a <div> awaiting JavaScript to bring it to
life. While some crawlers can execute JavaScript to reconstruct the full page, this behavior is
neither guaranteed nor consistent.

It can break if your app depends on APIs that behave differenty in a headless crawling
environment, or if certain browser features are unavailable. Even when it works, the extra
execution step delays content discovery, making it harder for your pages to be indexed promptly.



Worse still, every second the page remains visually empty before meaningful content appears can
signal poor performance to search engines—negatively impacting both ranking and visibility.

Slow perceived load
When a user requests a page in a SPA, the following has to happen before they see anything:

® The browser downloads the JavaScript bundle.
® The JavaScript executes, bootstrapping the app.
® The app fetches data from APIs.

® The app renders the UL

That’s several steps before the user sees anything useful. In contrast, with server-side rendering
(SSR), the server can send a fully-rendered HTML document immediately. The browser can
start displaying meaningful content as soon as it arrives—no waiting for the JavaScript to finish
running.

More complexity, more points of failure
With client-only rendering, the browser is in charge of everything. That means your carefully

designed app is at the mercy of:

® Slow CPUs or low-memory devices

® Flaky networks

® Browser quirks

® Misbehaving browser extensions

® Users with JavaScript disabled (rare, but not unheard of)

Any one of these can break the experience in ways that are hard to predict and even harder to
debug. SSR gives you a chance to deliver a usable, meaningful page before the client code even
starts running.

Underused server capabilities
Servers are powerful machines. They can prepare content in advance, cache results, aggregate
data from multiple sources, or render pages ahead of time. With SSR, you can leverage these
capabilities to reduce client work, shorten round trips, and improve time-to-first-meaningful-
paint. Even without complex caching strategies, rendering content on the server generally means
faster initial display.

Security considerations

6 | Issues With Single Page Applications



In SPAs, more logic and data handling happen in the browser, where you have less control. This
can expose a larger attack surface. With SSR, sensitive logic can stay on the server, where you can
protect it using tried-and-tested server-side security practices. You still need to secure your client-
side code, but you can reduce its responsibilities and limit its exposure.

Accessibility improvements
A server-rendered application can work even with JavaScript disabled. That’s not the goal in
most modern apps, but it’s a side effect of sending fully-formed HTML to the browser. For
users relying on assistive technologies—or older devices and browsers—this means your content
isimmediately available and correctly structured from the momentitarrives.

SSR: Visible Content From the First Byte

Server-side rendering (SSR) addresses these shortcomings head-on by sending the user—and search
engines—a fully rendered page right from the start. Instead of shipping an empty shell and leaving the
browser to assemble the UT, the server prepares the HTML in advance, complete with real content.

With SSR, the server renders the initial HTML for the requested page and sends it directly to the
browser. The browser displays this content immediately, and then the clientside JavaScript
“hydrates” it—attaching event listeners, restoring state, and making it interactive. From that point on,
navigation can happen entirely on the client, just like in a SPA. You get the best of both worlds: fast
initial load and smooth subsequent navigation.

When that HTML arrives in the browser, the client-side JavaScript “hydrates” it—reconstructing the
component state that existed on the server, attaching event listeners, and wiring up reactivity so the UI
can update dynamically. Hydration ensures that the server-rendered markup becomes a live,
interactive application without having to rebuild the DOM from scratch.

Solid embraces this model with an SSR pipeline that’s deliberately simple yet flexible. At its core, Solid
renders your components to HTML strings or streams directly from the server, then ships them to the
browser along with the minimal JavaScript needed to take over. This approach provides a fast initial
render, better SEO, and a more resilient user experience.

Before we look at the specific rendering strategies Solid offers, it’s worth noting that these same
mechanisms power Solid Start, Solid’s official full-stack framework for building server-rendered
applications. By understanding how SSR works at this lower level, you’ll gain the insight needed to
customize, troubleshoot, and extend your own apps—while also laying the groundwork to take full
advantage of Solid Start when we explore it later in the book.

Chapter 33. Server Side Rendering | 7



With that in mind, let’s examine the three rendering strategies Solid provides for SSR applications and
see how each one balances speed, flexibility, and support for asynchronous data.

Three Rendering Approaches for SSR Applications

To support difterent performance and data-fetching needs, Solid provides three rendering functions
—renderToString, renderToStringAsync, and renderToStream. Each handles asynchronous data
and Suspense boundaries differently, allowing you to choose the right trade-off between speed,
completeness, and interactivity.

Let’s break down how each of these works and when you might use them.

renderToString - Synchronous HTML Generation

The renderToString function is a synchronous function that renders an application into an HTML
string by concatenating the output of all components into a single value, which can then be sent to the
client in one response. There is no streaming and no support for asynchronous data—any
asynchronous values must be resolved later on the client side after hydration. In other words, if your
components use Suspense, their fallback content will be rendered, and any associated data fetching
will happen in the browser once the client-side application takes over.

import { renderToString } from "solid-js/web";
const app = renderToString(() => <App />);

If the returned string from renderToString forms a complete HTML document (with <head>,
<body>, and <title>), it can be sent directly to the client:

const app = express();

app.get('/', (req, res) => {
try {
const app = renderToString(() => <App />);
res.send(app);
} catch (error) {
res.send('Failed to render!');
}
1)

If the output is not a complete HTML document, you need to wrap it in a template that includes the
missing elements. Otherwise, the browser will not interpret it correctly:

app.get('/', (req, res) => {
const app = renderToString(() => <App />);

8 | SSR: Visible Content From the First Byte



const html = °
<html lang="en">
<head>
<title>My SSR App</title>
<meta charset="UTF-8" />
</head>
<body>${app}</body>
</html>

res.send(html);

1)
renderToStringAsync - Asynchronous HTML
Generation

The renderToStringAsync function is an asynchronous function that renders the application into an
HTML string, but unlike renderToString, it waits for all asynchronous resources to resolve before

producing the output. Because it returns a promise, you can use await when calling it.

import { renderToStringAsync } from "solid-js/web";

app.get('/', async (req, res) => {

try {
const app = await renderToStringAsync(() => <App />);

res.send(app);
} catch (error) {
res.send('Failed to render!');

}
1)

This ensures the user gets a fully populated page on the first load—ideal for SEO-sensitive content
and scenarios where data freshness matters. The trade-off is a slower time-to-first-byte (TTEB), since

the server waits until everything is ready before sending any HTML.

renderToStream - Streaming with Progressive
Rendering

The renderToStream function takes advantage of HTTP streaming to send HTML to the client in
chunks. It starts by sending the static parts of the page (often called the “shell”) immediately, then

flushes the content of Suspense boundaries as their data resolves.

Chapter 33. Server Side Rendering | 9



	Chapter 01. Introduction
	Requirements
	Beyond This Book
	Code Examples
	Contact and Feedback

	Chapter 32. Server Side Rendering
	Issues With Single Page Applications
	SSR: Visible Content From the First Byte
	Three Rendering Approaches for SSR Applications
	renderToString - Synchronous HTML Generation
	renderToStringAsync - Asynchronous HTML Generation
	renderToStream - Streaming with Progressive Rendering


