

SolidStart: Build
Full-Stack
Applications with
SolidJS

Sinan Polat

SolidStart: Build Full-Stack Applications with SolidJS by Sinan Polat

Copyright © 2025 Sinan Polat. All rights reserved.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission by the author, except in the case of
brief quotations embedded in critical articles or reviews.

The effort has been made to ensure the accuracy of the information and instructions presented.
However, the information contained in this work is sold without warranty, either express or implied.
Neither the author, nor its dealers or distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this work. Use of the information and instructions
contained in this work is at your own risk.

If any code samples or other technology this work contains or describes is subject to the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

i

Table of Contents
1. Introduction . 9

Requirements 10
Beyond This Book 10
Code Examples 10
Contact and Feedback 11

33. Server Side Rendering . 13
Issues With Single Page Applications 13
SSR: Visible Content From the First Byte 15
Three Rendering Approaches for SSR Applications 16
renderToString - Synchronous HTML Generation 16
renderToStringAsync - Asynchronous HTML Generation 17
renderToStream - Streaming with Progressive Rendering 17
Hydration: Breathing Life into Server-Rendered Pages 18
Targeting the Server Context 22
Targeting the Development Build 22
Practical Guide to Server-Rendering 22
Separating Application Shell from Client Logic 31
Building a Full-Stack App with Express and Solid Router 34

34. Solid Router . 45
Setting Up Development Environment 46

Client-Only Development Environment 46
SolidStart Development Environment 48

Installing Solid Router 49
Routing Strategies 49
Anatomy of a URL 52

Clean URLs 55
Introducing the Router Component 56

Error Handling Considerations 56
Defining Routes 57
Lazy Loading Route Components 60
Matching Dynamic Paths 62
Filtering Dynamic Paths 64
Optional Parameters 67
Catch-All Routes and Handling 404s 69

ii

Named Wildcards for Flexibility 70
Wildcards Beyond Catch-All Routes 72
Use Cases for Wildcard Routes 73
Matching Multiple Paths in a Route 74
Attaching Metadata 76

Layouts 76
Rendering Different Layouts Conditionally 80
Rendering Different Layouts via Nested Routes 82

Nested Routes 84
Providing a Shared Layout 85
Nested Routes via Configuration 88

Alternative Routers 93
Hash Mode Router 94
Memory Router 95

Linking and Navigation 95
Using Anchor Elements 96

Targeting New Tabs or Frames 98
Adding Keyboard Shortcuts with accesskey 98
Security Considerations for Anchor Elements 99

Using the A Component 100
Programmatic Navigation 103
The redirect Function 106

Using redirect in Queries and Actions 106
Single Flight Mutations 108
throw vs return 108

Hosting Apps in Subdirectories 108
Preloading 110

Inside the preload Function 114
Manually Preloading with usePreloadRoute 115

Accessing Route Related Data 116
Accessing URL Information with useLocation 116
Managing Query Parameters with useSearchParams 119
Extracting Route Parameters with useParams 123
Matching Routes with useMatch and useCurrentMatches 124

Displaying Transition Indicators 129
Intercepting Route Changes with useBeforeLeave 130
Fetching Async Data 132
Deduplicated Data Fetching 134

iii

Updating Remote Data With Web Forms 137
Working With Web Forms 137
Collecting User Inputs and Performing Data Updates 141
Providing Unique Names For Serialization 143
Passing Arguments Directly 144
Programmatically Invoking Actions 144
Handling Form Errors 145
Helper Functions 146
Tracking Form Submissions with useSubmission and
useSubmissions

147

Reactive Forms with Authentication and Validation 148

35. Isomorphic Apps with SolidStart . 155
Introducing SolidStart 155
Project Setup & Configuration 158
Project Structure 159
Building Navigation with File-Based Routes 162

Dynamic Parameters 163
Optional Parameters 164
Catch-All Routes 164
Logical Naming for Cleaner File Organization 165

Renaming index.tsx for Discoverability 165
Using Folders for Logical Grouping 166

Escaping Folder-Based Nesting 166
Creating Shared Page Structures with Layouts 167
Defining Layouts for Nested Routes 168

Escaping Nested Layouts 169
Serving Static Assets 169

Using import Statements 170
Styling Components 171

Using Stylesheets 171
Using CSS Modules 172
CSS-in-JS 173

Data Exchange Between the Server and Client 173
Basic Data Fetching: API Endpoints 174
Idiomatic Data Fetching: Server Functions 175
Performing Server-Side Mutations: Server Actions 178

Caching Data for Request Deduplication 180

iv

Preloading Data 181
Pre-rendering Routes 182
Registering API Endpoints 183

Using the file router API 183
Using application configuration 184
Using a Middleware 186
Using the GET function 188

Accessing Server Events 189
Managing <head> Elements 190
Setting HTTP Headers and Status Codes 193

Setting HTTP Headers 193
Setting HTTP Status Codes 193

Creating Client-Only Components 194
Building Echoes: A Quote Management App with SolidStart 195

Project Setup 197
Application Structure and Routes 197

Route Organization 197
Protected Routes 198
Public Routes 199

Application Layout 201
Styling 202
Error Handling 203
Fetching Data 204
Updating Data 205

Authentication and Authorization 207
Notifications and Confirmation Dialogs 210

Mounting the Client-Only Layers 210
Notifications: Decoupled, Event-Driven Toasts 211
Confirmation Dialogs: Explicit Consent for Destructive Actions 212

Closing Thoughts 216

About the Author . 217

1

CHAPTER 1

Introduction

SolidJS has quickly established itself as a compelling option for building modern, reactive web
applications. Its fine-grained reactivity system delivers performance that rivals hand-optimized code,
while its developer experience remains approachable for those familiar with component-driven
frameworks.

Within the broader SolidJS ecosystem, however, certain topics stand out for their depth, complexity,
and importance in production scenarios. Chief among these are:

Server-Side Rendering (SSR): rendering components on the server to improve
perceived performance, enable SEO, and support progressive enhancement.
Routing (Solid Router): defining and managing application navigation in a way that
integrates seamlessly with Solid’s reactivity model.
Application Framework (SolidStart): a meta-framework for building full-stack
applications with SolidJS, combining SSR, routing, and data-loading strategies into a
coherent developer workflow.

These subjects require careful treatment not only because they involve more moving parts than client-
only applications, but also because they form the foundation of how applications are structured,
delivered, and scaled.

The book you are reading brings together selected chapters from my larger work: SolidJS: The
Complete Guide. While the parent book spans the entire SolidJS landscape, this volume narrows its
focus to SolidStart and its surrounding topics. Together, these chapters provide a practical,
production-oriented guide for developers already familiar with the fundamentals of SolidJS. Because
of their depth and significance, they have been published here as a dedicated volume.

In the chapters ahead, we will begin with server-side rendering, move on to routing with Solid Router,
and finally explore SolidStart, which unifies these concepts into a coherent framework for building
full-stack applications.

2 | Chapter 1. Introduction

If you’re ready to move beyond the fundamentals and see how SolidJS supports production-grade
development, you’re in the right place.

Requirements
This book is not an introduction to SolidJS itself. It assumes familiarity with the following:

SolidJS fundamentals: signals, stores, components, and JSX usage.
Reactivity: understanding how SolidJS tracks dependencies and updates the DOM.
TypeScript: while not strictly required, examples and best practices in this book use
TypeScript for type safety and clarity.
Basic web development concepts: including HTML, CSS, and JavaScript modules.

Beyond This Book
This volume is deliberately focused. By concentrating on SSR, routing, and SolidStart, it gives you the
tools to build production-ready SolidJS applications.

If you want the full picture of SolidJS—starting from its foundations and building up to advanced
application architecture—you’ll find it in the parent book, SolidJS: The Complete Guide. There you’ll
discover:

A thorough introduction to SolidJS fundamentals.
The inner workings of its reactivity model.
Component composition patterns and lifecycle strategies.
State management and performance tuning.
Step-by-step examples that build from beginner-friendly apps to advanced architectures.

Code Examples
All code examples used in this book are available on GitHub:

https://github.com/solid-courses/solidjs-the-complete-guide

Navigate to the examples folder to find the material for the chapters in this volume. The examples for
this book begin with ch33, corresponding to the first chapter included here.

You are encouraged to download, run, and experiment with the code as you follow along in the text.
Hands-on practice will help reinforce the concepts and give you a clearer sense of how SolidJS
applications come together in real projects.

Chapter 1. Introduction | 3

In general, you are free to use the example code provided with this book in your own programs and
documentation. Permission is not required unless you intend to reproduce a substantial portion of
the code. For example, you may use several snippets in your programs without restriction, and you
may also cite the book or quote short examples when answering a question. However, selling or
redistributing the examples requires prior permission, as does incorporating a significant amount of
code into your product’s documentation.

Contact and Feedback
To share feedback, suggestions, or corrections, please visit the repository:

https://github.com/solid-courses/solidjs-the-complete-guide

You can open an issue to provide your input. Your contributions will help improve both this book and
the learning experience of future readers.

5

CHAPTER 33

Server Side Rendering

Up until now, we’ve been building client-side–only applications—code that runs entirely in the
browser. The server’s job has been little more than handing over some HTML, JavaScript, and CSS,
and exposing an API for our client code to call. Everything else—fetching data, building UI, rendering
components—has happened in the user’s machine—every click, every data fetch, every DOM update
handled by the browser alone.

Applications built this way are known as Single Page Applications (SPAs). Even if the user navigates to
different “pages,” they’re really just interacting with different views in the same application shell. SPAs
have their strengths: they enable smooth, app-like transitions, and they keep the server out of the
rendering process once the app has loaded. But they also leave a lot of untapped potential on the server
side—and in some cases, they make life harder than it needs to be.

Issues With Single Page Applications
While SPAs offer a smooth, app-like feel, they also come with trade-offs. By relying entirely on the
client for rendering, you inherit a set of limitations, performance bottlenecks, and risks:

SEO limitations
In the age of the internet, success often hinges on discoverability—and discoverability is directly
tied to how well your site performs in search rankings.

Search engines index the HTML they receive from the server, and in a client-rendered SPA, that
initial HTML is often little more than a hollow shell—a <div> awaiting JavaScript to bring it to
life. While some crawlers can execute JavaScript to reconstruct the full page, this behavior is
neither guaranteed nor consistent.

It can break if your app depends on APIs that behave differently in a headless crawling
environment, or if certain browser features are unavailable. Even when it works, the extra
execution step delays content discovery, making it harder for your pages to be indexed promptly.

6 | Issues With Single Page Applications

Worse still, every second the page remains visually empty before meaningful content appears can
signal poor performance to search engines—negatively impacting both ranking and visibility.

Slow perceived load
When a user requests a page in a SPA, the following has to happen before they see anything:

The browser downloads the JavaScript bundle.
The JavaScript executes, bootstrapping the app.
The app fetches data from APIs.
The app renders the UI.

That’s several steps before the user sees anything useful. In contrast, with server-side rendering
(SSR), the server can send a fully-rendered HTML document immediately. The browser can
start displaying meaningful content as soon as it arrives—no waiting for the JavaScript to finish
running.

More complexity, more points of failure
With client-only rendering, the browser is in charge of everything. That means your carefully
designed app is at the mercy of:

Slow CPUs or low-memory devices
Flaky networks
Browser quirks
Misbehaving browser extensions
Users with JavaScript disabled (rare, but not unheard of)

Any one of these can break the experience in ways that are hard to predict and even harder to
debug. SSR gives you a chance to deliver a usable, meaningful page before the client code even
starts running.

Underused server capabilities
Servers are powerful machines. They can prepare content in advance, cache results, aggregate
data from multiple sources, or render pages ahead of time. With SSR, you can leverage these
capabilities to reduce client work, shorten round trips, and improve time-to-first-meaningful-
paint. Even without complex caching strategies, rendering content on the server generally means
faster initial display.

Security considerations

Chapter 33. Server Side Rendering | 7

In SPAs, more logic and data handling happen in the browser, where you have less control. This
can expose a larger attack surface. With SSR, sensitive logic can stay on the server, where you can
protect it using tried-and-tested server-side security practices. You still need to secure your client-
side code, but you can reduce its responsibilities and limit its exposure.

Accessibility improvements
A server-rendered application can work even with JavaScript disabled. That’s not the goal in
most modern apps, but it’s a side effect of sending fully-formed HTML to the browser. For
users relying on assistive technologies—or older devices and browsers—this means your content
is immediately available and correctly structured from the moment it arrives.

SSR: Visible Content From the First Byte
Server-side rendering (SSR) addresses these shortcomings head-on by sending the user—and search
engines—a fully rendered page right from the start. Instead of shipping an empty shell and leaving the
browser to assemble the UI, the server prepares the HTML in advance, complete with real content.

With SSR, the server renders the initial HTML for the requested page and sends it directly to the
browser. The browser displays this content immediately, and then the client-side JavaScript
“hydrates” it—attaching event listeners, restoring state, and making it interactive. From that point on,
navigation can happen entirely on the client, just like in a SPA. You get the best of both worlds: fast
initial load and smooth subsequent navigation.

When that HTML arrives in the browser, the client-side JavaScript “hydrates” it—reconstructing the
component state that existed on the server, attaching event listeners, and wiring up reactivity so the UI
can update dynamically. Hydration ensures that the server-rendered markup becomes a live,
interactive application without having to rebuild the DOM from scratch.

Solid embraces this model with an SSR pipeline that’s deliberately simple yet flexible. At its core, Solid
renders your components to HTML strings or streams directly from the server, then ships them to the
browser along with the minimal JavaScript needed to take over. This approach provides a fast initial
render, better SEO, and a more resilient user experience.

Before we look at the specific rendering strategies Solid offers, it’s worth noting that these same
mechanisms power Solid Start, Solid’s official full-stack framework for building server-rendered
applications. By understanding how SSR works at this lower level, you’ll gain the insight needed to
customize, troubleshoot, and extend your own apps—while also laying the groundwork to take full
advantage of Solid Start when we explore it later in the book.

8 | SSR: Visible Content From the First Byte

With that in mind, let’s examine the three rendering strategies Solid provides for SSR applications and
see how each one balances speed, flexibility, and support for asynchronous data.

Three Rendering Approaches for SSR Applications
To support different performance and data-fetching needs, Solid provides three rendering functions
—renderToString, renderToStringAsync, and renderToStream. Each handles asynchronous data
and Suspense boundaries differently, allowing you to choose the right trade-off between speed,
completeness, and interactivity.

Let’s break down how each of these works and when you might use them.

renderToString - Synchronous HTML Generation
The renderToString function is a synchronous function that renders an application into an HTML
string by concatenating the output of all components into a single value, which can then be sent to the
client in one response. There is no streaming and no support for asynchronous data—any
asynchronous values must be resolved later on the client side after hydration. In other words, if your
components use Suspense, their fallback content will be rendered, and any associated data fetching
will happen in the browser once the client-side application takes over.

import { renderToString } from "solid-js/web";

const app = renderToString(() => <App />);

If the returned string from renderToString forms a complete HTML document (with <head>,
<body>, and <title>), it can be sent directly to the client:

const app = express();

app.get('/', (req, res) => {

 try {

 const app = renderToString(() => <App />);

 res.send(app);

 } catch (error) {

 res.send('Failed to render!');

 }

});

If the output is not a complete HTML document, you need to wrap it in a template that includes the
missing elements. Otherwise, the browser will not interpret it correctly:

app.get('/', (req, res) => {

 const app = renderToString(() => <App />);

Chapter 33. Server Side Rendering | 9

 const html = `

 <html lang="en">

 <head>

 <title>My SSR App</title>

 <meta charset="UTF-8" />

 </head>

 <body>${app}</body>

 </html>

`;

 res.send(html);

});

renderToStringAsync - Asynchronous HTML
Generation
The renderToStringAsync function is an asynchronous function that renders the application into an
HTML string, but unlike renderToString, it waits for all asynchronous resources to resolve before
producing the output. Because it returns a promise, you can use await when calling it.

import { renderToStringAsync } from "solid-js/web";

app.get('/', async (req, res) => {

 try {

 const app = await renderToStringAsync(() => <App />);

 res.send(app);

 } catch (error) {

 res.send('Failed to render!');

 }

});

This ensures the user gets a fully populated page on the first load—ideal for SEO-sensitive content
and scenarios where data freshness matters. The trade-off is a slower time-to-first-byte (TTFB), since
the server waits until everything is ready before sending any HTML.

renderToStream - Streaming with Progressive
Rendering
The renderToStream function takes advantage of HTTP streaming to send HTML to the client in
chunks. It starts by sending the static parts of the page (often called the “shell”) immediately, then
flushes the content of Suspense boundaries as their data resolves.

	Chapter 01. Introduction
	Requirements
	Beyond This Book
	Code Examples
	Contact and Feedback

	Chapter 32. Server Side Rendering
	Issues With Single Page Applications
	SSR: Visible Content From the First Byte
	Three Rendering Approaches for SSR Applications
	renderToString - Synchronous HTML Generation
	renderToStringAsync - Asynchronous HTML Generation
	renderToStream - Streaming with Progressive Rendering

