

Solid Router: The Complete Guide

Sinan Polat

Solid Router: The Complete Guide by Sinan Polat

Copyright © 2025 Sinan Polat. All rights reserved.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission by the author, except in the case of
brief quotations embedded in critical articles or reviews.

The effort has been made to ensure the accuracy of the information and instructions presented.
However, the information contained in this work is sold without warranty, either express or implied.
Neither the author, nor its dealers or distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this work. Use of the information and instructions
contained in this work is at your own risk.

If any code samples or other technology this work contains or describes is subject to the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

i

Table of Contents
1. Introduction . 7

Requirements 8
Beyond This Book 8
Code Examples 8
Contact and Feedback 9

34. Solid Router . 11
Setting Up Development Environment 12

Client-Only Development Environment 12
SolidStart Development Environment 14

Installing Solid Router 15
Routing Strategies 15
Anatomy of a URL 18

Clean URLs 21
Introducing the Router Component 22

Error Handling Considerations 22
Defining Routes 23
Lazy Loading Route Components 26
Matching Dynamic Paths 28
Filtering Dynamic Paths 30
Optional Parameters 33
Catch-All Routes and Handling 404s 35

Named Wildcards for Flexibility 36
Wildcards Beyond Catch-All Routes 38
Use Cases for Wildcard Routes 39
Matching Multiple Paths in a Route 40
Attaching Metadata 42

Layouts 42
Rendering Different Layouts Conditionally 46
Rendering Different Layouts via Nested Routes 48

Nested Routes 50
Providing a Shared Layout 51
Nested Routes via Configuration 54

Alternative Routers 59
Hash Mode Router 60

ii

Memory Router 61
Linking and Navigation 61

Using Anchor Elements 62
Targeting New Tabs or Frames 64
Adding Keyboard Shortcuts with accesskey 64
Security Considerations for Anchor Elements 65

Using the A Component 66
Programmatic Navigation 69
The redirect Function 72

Using redirect in Queries and Actions 72
Single Flight Mutations 74
throw vs return 74

Hosting Apps in Subdirectories 74
Preloading 76

Inside the preload Function 80
Manually Preloading with usePreloadRoute 81

Accessing Route Related Data 82
Accessing URL Information with useLocation 82
Managing Query Parameters with useSearchParams 85
Extracting Route Parameters with useParams 89
Matching Routes with useMatch and useCurrentMatches 90

Displaying Transition Indicators 95
Intercepting Route Changes with useBeforeLeave 96
Fetching Async Data 98
Deduplicated Data Fetching 100
Updating Remote Data With Web Forms 103

Working With Web Forms 103
Collecting User Inputs and Performing Data Updates 107
Providing Unique Names For Serialization 109
Passing Arguments Directly 110
Programmatically Invoking Actions 110
Handling Form Errors 111
Helper Functions 112
Tracking Form Submissions with useSubmission and
useSubmissions

113

Reactive Forms with Authentication and Validation 114

About the Author . 121

1

CHAPTER 1

Introduction

Every modern web application needs navigation. Whether it is a small single-page app or a full-fledged
platform with nested layouts, dynamic segments, and preloaded data, routing is the connective tissue
that ties the user experience together. In the SolidJS world, that job is handled by Solid Router.

This book provides a focused and practical guide to Solid Router.

The content presented here is adapted from my larger work, SolidJS: The Complete Guide. In that
book, routing is covered alongside the broader fundamentals of SolidJS, including reactivity,
component design, state management, server-side rendering. Because routing is a distinct and
essential subject, I have extracted the original chapter to serve as a standalone reference for developers
who wish to study this topic in depth.

If you are already comfortable with SolidJS basics and want to dive straight into building real
applications with routing, this book is for you. It is lean, focused, and ready to get you up and running.

If you are new to SolidJS altogether, this book assumes just enough knowledge of components and
reactivity to keep you moving. For a complete learning journey, you can always consult the parent
book, where routing is explained in context as part of the broader SolidJS ecosystem.

My hope is that this slim volume serves as a practical companion—something you can keep by your
side while building apps, and a direct way to level up your routing skills without unnecessary detours.

By working through this book, you will learn how to:

Correctly configure and integrate Solid Router into a SolidJS project.
Define routes, navigate between them, and work with route parameters.
Build and manage layouts, including nested and dynamic routes.
Use navigation techniques such as links, redirects, and programmatic navigation.
Access route-related data, query parameters, and transitions.
Implement preloading and data loading strategies.
Handle asynchronous fetching, form submissions, and validation.

2 | Chapter 1. Introduction

Apply performance optimization techniques to ensure fast, efficient routing in
applications of any size.
Develop a mental model of routing that scales from simple to complex applications.

Requirements
This book is not an introduction to SolidJS itself. It assumes familiarity with the following:

SolidJS fundamentals: signals, stores, components, and JSX usage.
Reactivity: understanding how SolidJS tracks dependencies and updates the DOM.
TypeScript: while not strictly required, examples and best practices in this book use
TypeScript for type safety and clarity.
Basic web development concepts: including HTML, CSS, and JavaScript modules.

Beyond This Book
This volume addresses only routing. If you wish to acquire a complete and progressive understanding
of SolidJS, I recommend consulting the parent book. That work contains:

A thorough introduction to SolidJS fundamentals.
Practical coverage of routing with Solid Router (the basis of this book).
Advanced topics such as SolidStart for building full-stack applications.
Numerous examples that build on one another to create a cohesive learning path.

In short, this book is designed as a concise reference for routing. For a comprehensive view of SolidJS
development—from first principles through advanced application architecture—SolidJS: The
Complete Guide is the resource to explore next.

Code Examples
All code examples used in this book are available on GitHub:

https://github.com/solid-courses/solidjs-the-complete-guide

Navigate to the examples/ch34/ folder to find the examples for this book. You are encouraged to
download, run, and experiment with the code as you follow along in the text.

In general, you are free to use the example code provided with this book in your own programs and
documentation. Permission is not required unless you intend to reproduce a substantial portion of
the code. For example, you may use several snippets in your programs without restriction, and you

Chapter 1. Introduction | 3

may also cite the book or quote short examples when answering a question. However, selling or
redistributing the examples requires prior permission, as does incorporating a significant amount of
code into your product’s documentation.

Contact and Feedback
To share feedback, suggestions, or corrections, please visit the repository:

https://github.com/solid-courses/solidjs-the-complete-guide

You can open an issue to provide your input. Your contributions will help improve both this book and
the learning experience of future readers.

5

CHAPTER 34

Solid Router

A router helps manage application complexity by leveraging the browser’s address bar. It interprets
the URL to determine what should be displayed by mapping parts of the URL to route parameters
and components.

To illustrate, consider an e-commerce application with four key sections: the home page, a catalog
page, a product details page, and a shopping cart. These sections can be mapped to distinct URLs:

<Router>

 <Route path="/" component={Home} />

 <Route path="/products" component={Products} />

 <Route path="/product/:id" component={Product} />

 <Route path="/cart" component={Cart} />

</Router>

The router matches the current URL to the defined routes and renders the corresponding
component:

/ loads the home page.
/products displays a list of products.
/product/:id shows details for a specific product, where :id represents a product’s
unique identifier.
/cart presents the shopping cart, listing items the user has added.

With this setup, the application dynamically updates the displayed content based on the active URL.
For instance, visiting /product/42 loads the details for the product with the ID of 42, while navigating
to /cart brings up the shopping cart.

This routing mechanism enhances usability by ensuring each section of the application has a distinct,
shareable URL. Users can bookmark pages, share links, and return to the same view.

Beyond determining which view to render, the router plays a crucial role in managing application
state. It treats the active URL as the single source of truth, parsing it into structured data that
influences the application’s behavior.

6 | Chapter 34. Solid Router

To maintain consistency, the router listens for URL changes and responds appropriately—whether
the user enters a URL manually, clicks a link, uses the browser’s back and forward buttons, or triggers
programmatic navigation. Handling all these navigation methods seamlessly ensures that the
application remains predictable and behaves consistently as paths and query parameters change.

A router also handles cases where the requested path does not match any registered route. In such
cases, it can display a fallback view, like a 404 page, or redirect users to a default path.

Setting Up Development Environment
Before diving into the details of Solid Router, let’s first establish our development environment.

Solid Router can be used in client-only applications as well as full-stack projects. For examples that run
entirely on the client side, we’ll use a standard Vite-based setup. This will help us focus on the core
features of Solid Router without involving server-side logic.

However, in most cases, Solid Router is used within SolidStart projects, Solid’s official meta-
framework that supports isomorphic rendering. SolidStart allows routes to be handled on both the
server and client sides, enabling features like server-side rendering (SSR), API routes, and more.

To cover both scenarios, we’ll set up environments for client-only and SolidStart projects. You can
pick the approach that best matches your needs and stick with it as you work through the examples in
this chapter. If you’re not familiar with SolidStart or want to ensure you can confidently run the
SolidStart examples, you’ll find the next chapter especially useful—we cover the SolidStart framework
in depth, complete with detailed explanations and practical examples.

Client-Only Development Environment
For this chapter, we’re going to use readily available templates. Feel free to use your preferred package
manager—whether it’s npm, yarn, or pnpm. In this guide, we’ll be using pnpm.

Start by creating a new Solid project using the following command:

pnpm create solid

This will launch an interactive prompt to guide you through the setup as shown in Figure 34.1.

Figure 34.1 Creating a single-page Solid application using a template.
┌ Create-Solid v0.5.14

│

◇ Project Name

│ demo-app

│

Chapter 34. Solid Router | 7

◇ Is this a SolidStart project?

│ No

│

◇ Template

│ ts

│

◇ Use TypeScript?

│ Yes

│

◇ Project successfully created! 🎉
│

◇ To get started, run: ─╮

│ │

│ cd demo-app │

│ pnpm install │

│ pnpm dev │

│ │

╰────────────────────────╯

For a more detailed walkthrough on setting up a development environment from scratch, check out
Chapter 2.

Now, move into your newly created project directory:

cd demo-app

Next, install the Solid Router library:

pnpm i @solidjs/router

Open the App.tsx file and replace its contents with the code from Listing 34.3.

import { render } from "solid-js/web";

import { Route, Router, RouteSectionProps } from "@solidjs/router";

import { Component } from "solid-js";

const Home: Component<RouteSectionProps> = () => {

 return (

 <div>

 <h1>Home</h1>

 <nav>About</nav>

 </div>

)

};

const About: Component<RouteSectionProps> = () => {

 return (

 <div>

 <h1>About</h1>

 <nav>Home</nav>

 </div>

)

8 | Client-Only Development Environment

};

function App() {

 return (

 <Router>

 <Route path="/" component={Home} />

 <Route path="/about" component={About} />

 </Router>

);

}

render(() => <App />, document.body);

This adds two components for two static paths, each with a link to navigate between them.

Start the development server with:

pnpm run dev

Open the URL provided in your terminal and use the links to navigate between pages. Everything
should work as expected. Feel free to clean up files and folders as you like. We’ll tweak this setup for
client-side-only examples or add similar examples later, as needed.

SolidStart Development Environment
With the client-only setup complete, let’s now configure a SolidStart project, which offers a more
robust foundation for full-stack applications.

To get started, run the Solid project initializer:

pnpm create solid

The prompt will guide you through creating a SolidStart project, as in Figure 34.2.

Figure 34.2 Creating a SolidStart application using a template.
┌ Create-Solid v0.5.14

│

◇ Project Name

│ demo-app

│

◇ Is this a SolidStart project?

│ Yes

│

◇ Which template would you like to use?

│ bare

│

◇ Use TypeScript?

│ Yes

│

Chapter 34. Solid Router | 9

◇ Project successfully created! 🎉
│

◇ To get started, run: ─╮

│ │

│ cd demo-app │

│ pnpm install │

│ pnpm dev │

│ │

╰────────────────────────╯

We’ll go deeper into SolidStart and learn how to set it up properly in its own chapter. For now, we just
need a simple SolidStart app that uses Solid Router for navigation.

Installing Solid Router
Since SolidStart doesn’t include a router by default, we need to install it explicitly, just as we did earlier:

pnpm i -D @solidjs/router

Next, we’ll open the App.tsx file and replace its contents with the code from Listing 34.3 as we did
earlier.

Finally, we can start the development server:

pnpm run dev

Open the URL shown in your terminal and try navigating between pages using the links. Feel free to
tidy up the project files and structure them however you prefer.

Now that we have both client-only and SolidStart environments ready, let’s dive into the core routing
strategies used across different setups.

Routing Strategies
Routers can be categorized based on where they handle navigation: server-only, client-only, or
isomorphic. Each approach has distinct trade-offs that affect performance, SEO, and user experience.

A server-only router processes every navigation request on the server. When a user navigates to a new
page, the browser makes a request to the server, which returns a fully rendered HTML page. This
approach, common in traditional multi-page applications (MPAs), ensures good SEO and works
without JavaScript but can feel slower due to full-page reloads.

10 | Routing Strategies

In contrast, a client-only router handles navigation entirely on the client side. It intercepts link clicks
and updates the view without making full page requests, allowing for smooth transitions and fast
navigation. However, since the initial page is loaded via JavaScript, it may require additional work for
SEO and first-load performance optimization, such as pre-rendering or hydration techniques.

An isomorphic (or universal) router combines the best of both worlds. It renders the initial page on
the server for fast first paint and SEO benefits, then switches to client-side navigation for subsequent
interactions. This allows applications to achieve fast initial loads while maintaining a smooth, single-
page app (SPA) experience.

Solid Router is designed to work in an isomorphic fashion when paired with SolidStart, enabling
developers to choose whether specific routes should be pre-rendered on the server or dynamically
handled on the client.

In the context of server-side rendering, a router takes on additional responsibilities to manage the
server’s response lifecycle effectively. It sits on the rendering path, where it intercepts incoming
requests, parses the URL to extract relevant information such as route parameters and query strings,
and evaluates the URL against defined routes to locate the corresponding handler component. Based
on the handler’s return value, the router then constructs and delivers the appropriate response to the
client.

Another key benefit of using a router is the ability to optimize application performance through
features like code splitting and lazy loading. By loading only the code necessary for the current view,
the router reduces the application’s initial load time and improves its responsiveness. This is especially
valuable for larger applications with numerous routes.

Solid Router also introduces powerful utilities that enhance data fetching and state management:

Request Deduplication
Prevents redundant requests to the server, reducing load.

Form Actions
Enable server-side mutations directly through form submissions, improving interactivity while
keeping logic centralized.

Solid Router also offers additional functionalities that enhance the overall developer experience:

Lazy Loading
Defers loading of components and data until the corresponding route is accessed, reducing
initial load times.

Pre-Fetching

	Chapter 01. Introduction
	Requirements
	Beyond This Book
	Code Examples
	Contact and Feedback

	Chapter 34. Solid Router
	Setting Up Development Environment
	Client-Only Development Environment
	SolidStart Development Environment

	Installing Solid Router
	Routing Strategies

