The Complete Guide

Solid Router

Wl '

Sinan Polat

Solid Router: The Complete Guide

Solid Router: The Complete Guide by Sinan Polat
Copyright © 2025 Sinan Polat. All rights reserved.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission by the author, except in the case of
brief quotations embedded in critical articles or reviews.

The effort has been made to ensure the accuracy of the information and instructions presented.
However, the information contained in this work is sold without warranty, either express or implied.
Neither the author, nor its dealers or distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this work. Use of the information and instructions
contained in this work is at your own risk.

If any code samples or other technology this work contains or describes is subject to the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

1. Introduction

34.

Table of Contents

Requirements
Beyond This Book
Code Examples
Contact and Feedback

Solid Router
Setting Up Development Environment
Client-Only Development Environment
SolidStart Development Environment
Installing Solid Router
Routing Strategies
Anatomy of a URL
Clean URLs
Introducing the Router Component
Error Handling Considerations
Defining Routes
Lazy Loading Route Components
Matching Dynamic Paths
Filtering Dynamic Paths
Optional Parameters
Catch-All Routes and Handling 404s
Named Wildcards for Flexibility
Wildcards Beyond Catch-All Routes
Use Cases for Wildcard Routes
Matching Multiple Paths in a Route
Attaching Metadata
Layouts
Rendering Different Layouts Conditionally
Rendering Different Layouts via Nested Routes
Nested Routes
Providing a Shared Layout
Nested Routes via Configuration
Alternative Routers

Hash Mode Router

& 0 o &0

11
12
12
14
15
15
18
21
22
22
23
26
28
30
33
35
36
38
39
40
42
42
46
48
50
51
54
59
60

Memory Router 61

Linking and Navigation 61
Using Anchor Elements 62
Targeting New Tabs or Frames 64
Adding Keyboard Shortcuts with accesskey 64
Security Considerations for Anchor Elements 65
Using the A Component 66
Programmatic Navigation 69
The redirect Function 72
Using redirect in Queries and Actions 72
Single Flight Mutations 74
throw vs return 74
Hosting Apps in Subdirectories 74
Preloading 76
Inside the preload Function 80
Manually Preloading with usePreloadRoute 81
Accessing Route Related Data 82
Accessing URL Information with useLocation 82
Managing Query Parameters with useSearchParams 85
Extracting Route Parameters with useParams 89
Matching Routes with useMatch and useCurrentMatches 90
Displaying Transition Indicators 95
Intercepting Route Changes with useBeforelLeave 96
Fetching Async Data 98
Deduplicated Data Fetching 100
Updating Remote Data With Web Forms 103
Working With Web Forms 103
Collecting User Inputs and Performing Data Updates 107
Providing Unique Names For Serialization 109
Passing Arguments Directly 110
Programmatically Invoking Actions 110
Handling Form Errors 111
Helper Functions 112
Tracking Form Submissions with useSubmission and 113
useSubmissions
Reactive Forms with Authentication and Validation 114

About the Author - - TR ERrs 21

CHAPTER 1

Introduction

Every modern web application needs navigation. Whether it is a small single-page app or a full-fledged
platform with nested layouts, dynamic segments, and preloaded data, routing is the connective tissue
that ties the user experience together. In the Solid]S world, that job is handled by Solid Router.

This book provides a focused and practical guide to Solid Router.

The content presented here is adapted from my larger work, Solzd/S: The Complete Guide. In that
book, routing is covered alongside the broader fundamentals of SolidJS, including reactivity,
component design, state management, server-side rendering. Because routing is a distinct and
essential subject, I have extracted the original chapter to serve as a standalone reference for developers

who wish to study this topic in depth.

If you are already comfortable with SolidJS basics and want to dive straight into building real
applications with routing, this book is for you. Itis lean, focused, and ready to get you up and running.

If you are new to Solid]S altogether, this book assumes just enough knowledge of components and
reactivity to keep you moving. For a complete learning journey, you can always consult the parent
book, where routing is explained in context as part of the broader SolidJS ecosystem.

My hope is that this slim volume serves as a practical companion—something you can keep by your
side while building apps, and a direct way to level up your routing skills without unnecessary detours.

By working through this book, you will learn how to:

® Correctly configure and integrate Solid Router into a SolidJS project.

® Define routes, navigate between them, and work with route parameters.

¢ Build and manage layouts, including nested and dynamic routes.

¢ Use navigation techniques such as links, redirects, and programmatic navigation.
® Access route-related data, query parameters, and transitions.

® Implement preloading and data loading strategies.

® Handle asynchronous fetching, form submissions, and validation.

® Apply performance optimization techniques to ensure fast, efficient routing in
applications of any size.
® Develop a mental model of routing that scales from simple to complex applications.

Requirements

This book is not an introduction to SolidJS itself. It assumes familiarity with the following:

® SolidJS fundamentals: signals, stores, components, and JSX usage.

® Reactivity: understanding how SolidJ$ tracks dependencies and updates the DOM.

® TypeScript: while not strictly required, examples and best practices in this book use
TypeScript for type safety and clarity.

® Basic web development concepts: including HTML, CSS, and JavaScript modules.

Beyond This Book

This volume addresses only routing. If you wish to acquire a complete and progressive understanding
of SolidJS, I recommend consulting the parent book. That work contains:

® A thorough introduction to SolidJS fundamentals.

® Practical coverage of routing with Solid Router (the basis of this book).

® Advanced topics such as SolidStart for building full-stack applications.

® Numerous examples that build on one another to create a cohesive learning path.

In short, this book is designed as a concise reference for routing. For a comprehensive view of Solid]S
development—from first principles through advanced application architecture—Solid/S: The
Complete Guide is the resource to explore next.

Code Examples

All code examples used in this book are available on GitHub:
https://github.com/solid-courses/solidjs-the-complete-guide

Navigate to the examples/ch34/ folder to find the examples for this book. You are encouraged to
download, run, and experiment with the code as you follow along in the text.

In general, you are free to use the example code provided with this book in your own programs and
documentation. Permission is not required unless you intend to reproduce a substantial portion of

the code. For example, you may use several snippets in your programs without restriction, and you

2 | Chapter 1. Introduction

may also cite the book or quote short examples when answering a question. However, selling or
redistributing the examples requires prior permission, as does incorporating a significant amount of
code into your product’s documentation.

Contact and Feedback

To share feedback, suggestions, or corrections, please visit the repository:
https://github.com/solid-courses/solidjs-the-complete-guide

You can open an issue to provide your input. Your contributions will help improve both this book and
the learning experience of future readers.

Chapter 1. Introduction | 3

CHAPTER 34

Solid Router

A router helps manage application complexity by leveraging the browser’s address bar. It interprets
the URL to determine what should be displayed by mapping parts of the URL to route parameters

and components.

To illustrate, consider an e-commerce application with four key sections: the home page, a catalog
page, a product details page, and a shopping cart. These sections can be mapped to distinct URLs:

<Router>
<Route path="/" component={Home} />
<Route path="/products" component={Products} />
<Route path="/product/:id" component={Product} />
<Route path="/cart" component={Cart} />

</Router>

The router matches the current URL to the defined routes and renders the corresponding
component:

® /loads the home page.

® /products displays a list of products.

® /product/:id shows details for a specific product, where :id represents a product’s
unique identifier.

® /cart presents the shopping cart, listing items the user has added.

With this setup, the application dynamically updates the displayed content based on the active URL.
For instance, visiting /product/42 loads the details for the product with the ID of 42, while navigating
to /cart brings up the shopping cart.

This routing mechanism enhances usability by ensuring each section of the application has a distinct,
shareable URL. Users can bookmark pages, share links, and return to the same view.

Beyond determining which view to render, the router plays a crucial role in managing application
state. It treats the active URL as the single source of truth, parsing it into structured data that
influences the application’s behavior.

To maintain consistency, the router listens for URL changes and responds appropriately—whether
the user enters a URL manually, clicks a link, uses the browser’s back and forward buttons, or triggers
programmatic navigation. Handling all these navigation methods seamlessly ensures that the
application remains predictable and behaves consistently as paths and query parameters change.

A router also handles cases where the requested path does not match any registered route. In such
cases, it can display a fallback view, like a 404 page, or redirect users to a default path.

Setting Up Development Environment

Before diving into the details of Solid Router, let’s first establish our development environment.

Solid Router can be used in client-only applications as well as full-stack projects. For examples that run
entirely on the client side, we’ll use a standard Vite-based setup. This will help us focus on the core
features of Solid Router without involving server-side logic.

However, in most cases, Solid Router is used within SolidStart projects, Solid’s official meta-
framework that supports isomorphic rendering. SolidStart allows routes to be handled on both the
server and client sides, enabling features like server-side rendering (SSR), API routes, and more.

To cover both scenarios, we’ll set up environments for client-only and SolidStart projects. You can
pick the approach that best matches your needs and stick with it as you work through the examples in
this chapter. If you’re not familiar with SolidStart or want to ensure you can confidently run the
SolidStart examples, you'll find the next chapter especially useful—we cover the SolidStart framework
in depth, complete with detailed explanations and practical examples.

Client-Only Development Environment

For this chapter, we’re going to use readily available templates. Feel free to use your preferred package
manager—whether it’s npm, yarn, or pnpm. In this guide, we’ll be using pnpm.

Start by creating a new Solid project using the following command:

pnpm create solid

This will launch an interactive prompt to guide you through the setup as shown in Figure 34.1.

Figure 34.1 Creating a single-page Solid application using a template.
Create-Solid v0.5.14

|r

¢ Project Name
| demo-app

|

6 | Chapter 34. Solid Router

¢ Is this a SolidStart project?
No

<o

Template
ts

<o

Use TypeScript?
Yes

Project successfully created! &

o — 90

To get started, run: —

cd demo-app
pnpm install
pnpm dev

For a more detailed walkthrough on setting up a development environment from scratch, check out
Chapter 2.

Now, move into your newly created project directory:

cd demo-app

Next, install the Solid Router library:

pnpm i @solidjs/router

Open the App. tsx file and replace its contents with the code from Listing 34.3.

import { render } from "solid-js/web";
import { Route, Router, RouteSectionProps } from "@solidjs/router";
import { Component } from "solid-js";

const Home: Component<RouteSectionProps> = () => {

return (
<div>
<h1l>Home</h1>
<nav>About</nav>
</div>
)
}
const About: Component<RouteSectionProps> = () => {
return (
<div>
<h1l>About</h1>
<nav>Home</nav>
</div>

)

Chapter 34. Solid Router | 7

};
function App() {
return (
<Router>
<Route path="/" component={Home} />
<Route path="/about" component={About} />
</Router>
);
}

render(() => <App />, document.body);

This adds two components for two static paths, each with a link to navigate between them.
Start the development server with:

pnpm run dev

Open the URL provided in your terminal and use the links to navigate between pages. Everything
should work as expected. Feel free to clean up files and folders as you like. We’ll tweak this setup for
client-side-only examples or add similar examples later, as needed.

SolidStart Development Environment

With the client-only setup complete, let’s now configure a SolidStart project, which ofters a more
robust foundation for full-stack applications.

To getsstarted, run the Solid project initializer:

pnpm create solid

The prompt will guide you through creating a SolidStart project, as in Figure 34.2.

Figure 34.2 Creating a SolidStart application using a template.
r Create-Solid v0.5.14

O —

Project Name
demo-app

¢ Is this a SolidStart project?
Yes

¢ Which template would you like to use?
bare

Use TypeScript?
Yes

<o

8 | Client-Only Development Environment

o Project successfully created! &

o To get started, run: —

|

| cd demo-app
| pnpm install
| pnpm dev

|

|

We'll go deeper into SolidStart and learn how to set it up properly in its own chapter. For now, we just
need a simple SolidStart app that uses Solid Router for navigation.

Installing Solid Router

Since SolidStart doesn’t include a router by default, we need to install it explicitly, just as we did earlier:

pnpm i -D @solidjs/router

Next, we'll open the App.tsx file and replace its contents with the code from Listing 34.3 as we did
earlier.

Finally, we can start the development server:

pnpm run dev

Open the URL shown in your terminal and try navigating between pages using the links. Feel free to
tidy up the project files and structure them however you prefer.

Now that we have both client-only and SolidStart environments ready, let’s dive into the core routing
strategies used across different setups.

Routing Strategies

Routers can be categorized based on where they handle navigation: server-only, client-only, or

isomorphic. Each approach has distinct trade-offs that affect performance, SEO, and user experience.

A server-only router processes every navigation request on the server. When a user navigates to a new
page, the browser makes a request to the server, which returns a fully rendered HTML page. This
approach, common in traditional multi-page applications (MPAs), ensures good SEO and works
without JavaScript but can feel slower due to full-page reloads.

Chapter 34. Solid Router | 9

In contrast, a client-only router handles navigation entirely on the client side. It intercepts link clicks
and updates the view without making full page requests, allowing for smooth transitions and fast
navigation. However, since the initial page is loaded via JavaScript, it may require additional work for
SEO and first-load performance optimization, such as pre-rendering or hydration techniques.

An isomorphic (or universal) router combines the best of both worlds. It renders the initial page on
the server for fast first paint and SEO benefits, then switches to client-side navigation for subsequent
interactions. This allows applications to achieve fast initial loads while maintaining a smooth, single-
page app (SPA) experience.

Solid Router is designed to work in an isomorphic fashion when paired with SolidStart, enabling
developers to choose whether specific routes should be pre-rendered on the server or dynamically
handled on the client.

In the context of server-side rendering, a router takes on additional responsibilities to manage the
server’s response lifecycle effectively. It sits on the rendering path, where it intercepts incoming
requests, parses the URL to extract relevant information such as route parameters and query strings,
and evaluates the URL against defined routes to locate the corresponding handler component. Based
on the handler’s return value, the router then constructs and delivers the appropriate response to the
client.

Another key benefit of using a router is the ability to optimize application performance through
features like code splitting and lazy loading. By loading only the code necessary for the current view,
the router reduces the application’s initial load time and improves its responsiveness. This is especially
valuable for larger applications with numerous routes.

Solid Router also introduces powerful utilities that enhance data fetching and state management:

Request Deduplication
Prevents redundant requests to the server, reducing load.

Form Actions
Enable server-side mutations directly through form submissions, improving interactivity while
keeping logic centralized.

Solid Router also offers additional functionalities that enhance the overall developer experience:

Lazy Loading
Defers loading of components and data until the corresponding route is accessed, reducing
initial load times.

Pre-Fetching

10 | Routing Strategies

	Chapter 01. Introduction
	Requirements
	Beyond This Book
	Code Examples
	Contact and Feedback

	Chapter 34. Solid Router
	Setting Up Development Environment
	Client-Only Development Environment
	SolidStart Development Environment

	Installing Solid Router
	Routing Strategies

