SolidJS

The Complete Guide

A Cﬂﬂm'w Gride to Keactive Wel- EMM With Solid /S and @}&edoi(’ﬁé

Sinan Polat

SolidJS: The Complete Guide

A comprebensive guide to reactive web development with Solid]S and TypeScript

Sinan Polat

SolidJS: The Complete Guide by Sinan Polat
Copyright © 2025 Sinan Polat. All rights reserved.
October 2025: First Edition, V8

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission by the author, except in the case of
brief quotations embedded in critical articles or reviews.

The effort has been made to ensure the accuracy of the information and instructions presented.
However, the information contained in this work is sold without warranty, either express or implied.
Neither the author, nor its dealers or distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this work. Use of the information and instructions
contained in this work is at your own risk.

If any code samples or other technology this work contains or describes is subject to the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

Table of Contents

1. Introduction - -

Code Examples

Contact and Feedback
Requirements

Trying Solid via Online Playground
Creating a Project From a Template
Note For React Developers

2. Settmg Up a Development Environment - .

3.0nSolidJS -

The Problem Solid Solves
How Solid Works?
Reactive Data
Composable UI
The Advantages of Solid Over Its Alternatives

4. How Solid's Reactive System Works
Observer Pattern
The Essence of Reactive Core
Improving Type Definitions for createComputation
Deriving Reactive Values from Signals
Uses of Computations

5. Tracking State with Signa|s ..

Overwriting the Comparison Logic
Updating Signals

Deriving Values

Destructuring Signals

Batching Updates

6. Running Side-Effects with Effects - - - - L

Effects Can Be Nested

Explicit Dependency Tracking
Opting Out of Tracking
Handling External Dependencies

16
16
16
17
18
19

21

27
27
30
30
33
37

43
44
45
51
52
53

57
58
60
60
61
61

63
64
66
67
67

7. Caching Values with Memos - A

8. Rules of JSX , , , , , , , 77
Elements Should Be Closed 79
Elements Can Be Nested 80
Expressions Can Be Used Inside JSX Elements 80
Elements Can Have Attributes 83
Missing Attribute Values Default to true 84
Comments 84
Whitespaces Are Trimmed 85

9. Composing User Interfaces - : : : : : - 87
Components Should Return a Single Root Element 20
Components Accept Data Through Their props 92
Adding Static Types to Components 93
Components Can Have Children 95
How Components Are Rendered 929
Conditional Rendering 103
Reactive props 107
Props Should Be Treated as Read-Only 108
Destructuring Props Changes the Rendering Order 111
Effects Are Executed After Rendering 113
Best Practices 115
Passing Data From Parent to Child 117
Sharing State Between Children 118

Providing Controlled Access to Parent’s State 119
Passing Data From Child to Parent 120
Destructuring and Spreading Props 121
Forwarding Multiple Props at Once 122
Validating Props 124

11. Sharing Data Through the Context APl .- 125
How Context API Works 126
Best Practices 134

12. Component Lifecyc|e ... 135

onMount 136

13.

14.

15.

16.

17.

18.

onCleanup
Best Practices

Accessing DOM Nodes With ‘ref” .-

When ref Functions Execute
Forwarding Refs

Using Refs with External Libraries
Best Practices

WOrking with Computations

createComputed
createRenderEffect
createEffect
createMemo
createDeferred
createReaction

Hand"ng EITOrS -

ErrorBoundary
catchError
Handling Asynchronous Errors

Accessing Currently Executing Computation
Reactivity in Asynchronous Context

Using Inline Styles

Applying Style Definitions
Applying Classes Conditionally
Using the Imperative API

Reactive Utilities - -

batch
untrack

on
createRoot
mergeProps
splitProps

137
138

141
145
146
147
151

153
154
155
157
157
157
158

163
163
165
167

169
173
174

177
177
178
179
180

187
187
187
188
189
189
190

19.

20.

21.

22.

23.

24.

25.

Why Use splitProps and mergeProps?
mapArray and indexArray
observable
from
startTransition and useTransition

A Better Conditional Rendering .

Show
Keyed Rendering
Render Props
Switch and Match

wOrking withLists -

For

mapArray

Index

indexArray

Selecting Items with Selectors

Rendering Components Outside the Component Hierarchy - ... :

Managing Complex States with Stores - ...

Accessing Data
Updating Stores
Limitations Related to Reactivity
Store Utilities
produce
reconcile
unwrap
createMutable

Abstracting Behavior With Custom Directives - ...
Extending JSX Type with Custom Directives

Using Imported Directives

WQrkingwithAsynchronousData o

Decoupling Fetching From Rendering

Using Resource API for Data Fetching -

Info Object

191
192
192
193
196

197
200
201
202
203

- 205

207
208
209
210
211

219

223
226
227
229
230
230
230
231
232

235
238
239

241

246

- 251

255

26.

27.

28.

29.

30.

31.

32.

33.

Resource Actions
Error Handling with Resources

Display the Error in the UI

Rethrow During Rendering

Rethrow inside an Effect or Computated
Paginated Data with Resources: A Book List Example

Managing Loading States with Suspense - - ...
Achieving Better Consistency with Transitions .- -
CoordmatmgLoadmgStates

Code Sphttmg and Lazy Loading

Handling Events

Using JSX Attributes with the on Prefix
Using JSX Attributes with the on: Prefix
Using Custom Properties

Using Refs

Using Custom Directives

Passing Data to Event Handlers

Dynamica"yRenderingComponents..... P

Solid Without JSX - -

Solid with Tagged Template Literals
Solid with Hyperscript
Drawbacks

Server Side Rendering o

Issues With Single Page Applications

SSR: Visible Content From the First Byte

Three Rendering Approaches for SSR Applications
renderToString - Synchronous HTML Generation

renderToStringAsync - Asynchronous HTML Generation
renderToStream - Streaming with Progressive Rendering

Hydration: Breathing Life into Server-Rendered Pages
Targeting the Server Context
Targeting the Development Build

256
258
258
259
259
261

267

273

281

283

- 289

289
293
295
297
298
300

303

311
311
314
318

-319

319
321
322
322
323
323
324
328
328

34.

Practical Guide to Server-Rendering
Separating Application Shell from Client Logic

Building a Full-Stack App with Express and Solid Router

Solid Router -

Setting Up Development Environment
Client-Only Development Environment
SolidStart Development Environment

Installing Solid Router

Routing Strategies

Anatomy of a URL
Clean URLs

Introducing the Router Component
Error Handling Considerations

Defining Routes

Lazy Loading Route Components

Matching Dynamic Paths

Filtering Dynamic Paths

Optional Parameters

Catch-All Routes and Handling 404s
Named Wildcards for Flexibility
Wildcards Beyond Catch-All Routes
Use Cases for Wildcard Routes
Matching Multiple Paths in a Route
Attaching Metadata

Layouts
Rendering Different Layouts Conditionally
Rendering Different Layouts via Nested Routes

Nested Routes
Providing a Shared Layout
Nested Routes via Configuration

Alternative Routers
Hash Mode Router
Memory Router

Linking and Navigation
Using Anchor Elements

Targeting New Tabs or Frames
Adding Keyboard Shortcuts with accesskey

vi

328
337
340

351
352
352
354
355
355
358
361
362
362
363
366
368
370
373
375
376
378
379
380
382
382
386
388
390
391
394
399
400
401
401
402
404
404

35.

Security Considerations for Anchor Elements
Using the A Component
Programmatic Navigation
The redirect Function
Using redirect in Queries and Actions
Single Flight Mutations
throw vs return
Hosting Apps in Subdirectories
Preloading
Inside the preload Function
Manually Preloading with usePreloadRoute
Accessing Route Related Data
Accessing URL Information with useLocation
Managing Query Parameters with useSearchParams
Extracting Route Parameters with useParams

Matching Routes with useMatch and useCurrentMatches

Displaying Transition Indicators
Intercepting Route Changes with useBeforelLeave
Fetching Async Data
Deduplicated Data Fetching
Updating Remote Data With Web Forms
Working With Web Forms
Collecting User Inputs and Performing Data Updates
Providing Unique Names For Serialization
Passing Arguments Directly
Programmatically Invoking Actions
Handling Form Errors
Helper Functions
Tracking Form Submissions with useSubmission and
useSubmissions
Reactive Forms with Authentication and Validation

Isomorphic Apps with SolidStart

Introducing SolidStart

Project Setup & Configuration

Project Structure

Building Navigation with File-Based Routes
Dynamic Parameters

vii

405
406
409
412
412
414
414
414
416
420
421
422
422
425
429
430
435
436
438
440
443
443
447
449
450
450
451
452
453

454

461
461
464
465
468
469

Optional Parameters
Catch-All Routes
Logical Naming for Cleaner File Organization
Renaming index.tsx for Discoverability
Using Folders for Logical Grouping
Escaping Folder-Based Nesting
Creating Shared Page Structures with Layouts
Defining Layouts for Nested Routes
Escaping Nested Layouts
Serving Static Assets
Using import Statements
Styling Components
Using Stylesheets
Using CSS Modules
CSS-in-JS
Data Exchange Between the Server and Client
Basic Data Fetching: API Endpoints
Idiomatic Data Fetching: Server Functions
Performing Server-Side Mutations: Server Actions
Caching Data for Request Deduplication
Preloading Data
Pre-rendering Routes
Registering API Endpoints
Using the file router API
Using application configuration
Using a Middleware
Using the GET function
Accessing Server Events
Managing <head> Elements
Setting HT'TP Headers and Status Codes
Setting HT'TP Headers
Setting HT'TP Status Codes
Creating Client-Only Components

Building Echoes: A Quote Management App with SolidStart

Project Setup

Application Structure and Routes
Route Organization
Protected Routes

viii

470
470
471
471
472
472
473
474
475
475
476
477
477
478
479
479
480
481
484
486
487
488
489
489
490
492
494
495
496
499
499
499
500
501
503
503
503
504

A1l.

Public Routes

Application Layout

Styling

Error Handling

Fetching Data

Updating Data

Authentication and Authorization

Notifications and Confirmation Dialogs
Mounting the Client-Only Layers
Notifications: Decoupled, Event-Driven Toasts
Confirmation Dialogs: Explicit Consent for Destructive Actions

Closing Thoughts

Setting Development Environment Using Webpack -

Install Dependencies

Configuring Webpack

Configure the Webpack Dev Server
Add TypeScript Support

Add Eslint Support

Create a Basic Application

About the Author

505
507
508
509
510
511
513
516
516
517
518
522

523
523
525
528
529
530
530

533

CHAPTER 1

Introduction

This is a comprehensive book that aims to teach you the ins and outs of Solid, covering its core
principles, the inner workings, and the API By the end of this book, you will have a thorough
understanding of Solid to write efficient applications.

Solid is a lightweight JavaScript library for building applications that can run on both the client and
server side. It can be used as a standalone library or alongside other libraries, as it is designed to be small
and efficient.

Solid does not introduce any novel approaches to frontend development, but instead borrows the
best ideas from other battle-tested libraries, including KnockoutJS, React, Vue, and Marko. It is built
on proven concepts and ideas, making it a pleasure to use.

Solid has a relatively small AP surface; its core library exposes only a handful of items. However, the
intricacies of reactivity and its implementation involve complex interactions between its parts, which
makes it really hard to explain some of the concepts without a lengthy discussion. While I've avoided
repetitions as much as possible, occasional reminders were necessary to present the topic in a complete
and coherent way, eliminating the need to go back and forth between chapters to understand the
conceptathand.

When there are multiple ways of doing something, for instance, accessing underlying DOM elements,
we discuss the pros and cons of each approach, and provide tips on the best practices when
appropriate.

Like any other library, Solid has its own quirks that might leave you puzzled. I have tried to shed light
on the root causes of those quirks, rather than merely mentioning them, and included callouts to help
youssteer clear of probable pitfalls around them, if there are any.

This book is based on Solid v1.8, but rest assured, the concepts and principles we explore aren’t closely
tied to any single version. Even as Solid continues to evolve, the core ideas and foundational logic will
stay consistent, so you’ll find lasting value in these pages regardless of version updates. I hope what you
learn here will keep serving you well.

Code Examples

You can download supplemental materials—including code examples and exercises—from the

official GitHub repository:
https://github.com/solid-courses/solidjs-the-complete-guide

If you run into technical issues or have questions about the examples, please start a discussion or open
anissue on the repository.

In general, you are free to use the example code provided with this book in your own programs and
documentation. Permission is not required unless you intend to reproduce a substantial portion of
the code. For example, you may use several snippets in your programs without restriction, and you
may also cite the book or quote short examples when answering a question. However, selling or
redistributing the examples requires prior permission, as does incorporating a significant amount of
code into your product’s documentation.

Contact and Feedback

As we journey together through the contents of this book, your insights and experiences will be
invaluable. Even with our best efforts, we understand that there may be areas that could be improved,
clarified, or corrected. Whether it's a typo, a conceptual error, or a suggestion for improvement, we
welcome your feedback.

To make the process as smooth as possible, we've created a dedicated repository for you to share your
thoughts, criticisms, and suggestions. Please visit https://github.com/solid-courses/solidjs-the-
complete-guide to submit your feedback. You can open a new issue to detail your findings or
suggestions.

Your feedback is crucial not only to improve this book but also to enhance the learning experience of
future readers. By contributing your insights, you'll help create a more accurate, comprehensive, and
user-friendly resource for anyone interested in Solid. We greatly appreciate your time and effort in

helping us achieve this goal.

Requirements

This book requires basic knowledge of JavaScript, HTML, and CSS. We won’t delve into language-
related concepts, maybe briefly touch upon afew of them when there is a need for them.

2 | Chapter 1. Introduction

https://github.com/solid-courses/solidjs-the-complete-guide
https://github.com/solid-courses/solidjs-the-complete-guide
https://github.com/solid-courses/solidjs-the-complete-guide

Examples are written in TypeScript. However, even if you have never used TypeScript before, you
should be able to understand them, as an explanation will accompany any code snippet that is too
complex or requires a certain TypeScript feature to be turned on.

If you don’t want to use TypeScript at all, you need to set up your development environment
accordingly. There is a pre-built template from the core library for using JavaScript only. Ignoring
types will be enough to make the code examples work.

We will need Node,js for both building and running the code examples. Node.js is a JavaScript
runtime environment. There are plenty of resources on the Internet on how to install and run
Node.js. We won’t use the Node.js binary directly but through pnpm commands. Pnpm is a package
manager that is an alternative to npm, the officially supported package manager of Node.js. Pnpm
offers some valuable improvements over npm, which reduces the installation time and the space taken

up by packages.

Trying Solid via Online Playground

The easiest way to get started with Solid is by using the online Playground. Head to the Solid website
and navigate to the playground page: https://playground.solidjs.com.

& sOLIDIS PLAYGROUND & L a<e)

main.tsx 8 + u 2 o Result Qutput

1 import { render } from "solid-js/web";
import { createSignal } from "solid-js";

function Counter() {
const [count, setCount] = createSignal(1);

const increment = () => setCount(count => count + 1);
return (
<button type="butten" onClick={increment}>
{count ()}
</button>
)i
}
render(() => <Counter />, document.getElementById("app")!)

| Elements Console Sources Network Application]

B @ tepry @ Defaultlevels ¥ | Nolssues — £83
>

Figure 1.1 Solid Playground

Chapter 1. Introduction | 3

https://playground.solidjs.com/

The Playground allows you to experiment with Solid in a safe and interactive environment. You can
run code and check for errors. The playground automatically executes any code you write and displays
the outputin the result tab.

Solid Playground supports TypeScript, but you need to import types explicitly.

110N

Explicit type-only imports were introduced in TypeScript 3.8, allowing types to be imported
from a module while being fully erased during compilation, so they never generate any
runtime side effects in the compiled output.

Here’s how you can importa type:

import { type Component } from "solid-js";
import type { Component } from "solid-js";

At times, automatic execution might result in issues if the code is incomplete. In those situations, you
can use the refresh button to refresh the output window manually.

Solid is a compiled library. You can inspect the compiled output on the output tab. You can select
different compilation targets using the radio buttons at the bottom of the output window.

The playground allows you to work with multiple files. You can share your code using the share
button. This feature comes in very handy when asking for help. You can recreate the issue and share

the link.
You can reset the editor window by clicking on the trash icon.

The bellicon next to the reset button toggles the error reporting.

Creating a Project From a Template

You can create a local Solid project using one of the project templates offered by the core team:

https://github.com/solidjs/templates.

$ npx degit solidjs/templates/js my-app
$ cd my-app

$ pnpm i

$ pnpm run dev

You can use typescript if you like:

$ npx degit solidjs/templates/ts my-app
$ cd my-app

4 | Trying Solid via Online Playground

$ pnpm i
$ pnpm run dev

In the next section, we will create our own development environment from scratch using Vite. Until
then, you can use the online playground to get your feet wet.

Note For React Developers

Solid and React have almost nothing in common other than using JSX for their Ul layer. Solid has its
own compiler, which produces a different output than React’s. It has its own rendering paradigm and
its own way of keeping state. If you are familiar with React, it is best to leave your assumptions and
expectations aside and try to adapt to Solid’s way of doing things to save your time and effort.

Chapter 1. Introduction | 5

CHAPTER 2

Setting Up a Development Environment

In this chapter, we will create a basic development environment for writing single-page Solid
applications using Vite.

The Solid documentation recommends using Vite for building apps, so we will use Vite for the
majority of our examples. However, occasionally we will need additional tools, for instance, when
working with server-side rendering, which we will introduce in their respective chapters.

Itisimportant to note that Vite is not a hard dependency for Solid. Solid’s only dependency is its Babel
plugin which is babel-preset-solid. We have chosen Vite for its features, such as fast refresh, which
enables us to swap the application’s code while maintaining its state, built-in TypeScript support, and
the ability to use CSS modules for styling components.

If you prefer alternative bundlers, please refer to Appendix 1, Sezting Up the Development
Environment with Webpack for guidance on using Solid with Webpack. These instructions can easily
be adapted for other bundlers as well.

We are going to use pnpm to run npm commands for it offers a better developer experience over npm.
However, you can keep using npmif you like.

With that being said, let’s begin our development journey.
First, create an empty folder:
mkdir my-app
And navigate into it:
cd my-app/
Onceyou are inside, initialize a new npm project by running:

pnpm init

Open the folder in your preferred code editor. Here, I use Visual Studio Code to open the current
directory:

code .

Then install the required dependencies:

pnpm i -D vite solid-js vite-plugin-solid typescript

Asyou see, Vite reduces the number of dependencies to a few modules.
Next, we create a few files at the root of our project:

touch index.html tsconfig.json vite.config.ts

index.html will be served by Vite’s development server and it contains the entry point to our Solid

application:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>My App</title>
</head>
<body>
<div id="root"></div>
<script src="/src/index.tsx" type="module"></script>
</body>
</html>

The index. html fileloads index. tsx which we are going to create in a moment.

tsconfig. json provides the TypeScript configuration:

{
"compilerOptions": {
"strict": true,
"target": "ESNext",
"module": "ESNext",
"moduleResolution”: "node",
"allowSyntheticDefaultImports": true,
"esModuleInterop": true,
"isolatedModules": true,
"jsx": "preserve",
"jsxImportSource": "solid-js",
"types": ["vite/client"],
"noEmit": true
}
}

8 | Chapter 2. Setting Up a Development Environment

"jsx": "preserve" instructs TypeScript not to compile JSX files but to pass them as-is so that we can
use Babel-js for that task.

"jsxImportSource": "solid-js"setssolid-jsasthe]SX runtime. The jsxImportSource setting is

required to provide static types to JSX elements.

= jsxImportSource declares the module from which to import the jsx and jsxs factory
= . G . .
= functions when running files with tsx and jsx extensions.

https://www.typescriptlang.org/tsconfig#jsxImportSource

If you are using VSCode and did not set TypeScript properly, the editor will emit an error like
the one below:

Cannot find name 'React'

If you fail to set j sxImportSource option, you will have an error like this one:

JSX element implicitly has type 'any' because no interface
'JSX.IntrinsicElements' exists.

These are the only Solid-specific options we need to set.

"types": ["vite/client"], option imports types from the vite/client module. You can learn

more about this feature in the Vite documentation:

https:/ /vitejs.dev/guide/features.html#client-types

You can consult the TypeScript docs for the remaining settings:
https://www.typescriptlang.org/tsconfig

Now, open thevite.config. js file and add the following content:

import { defineConfig } from 'vite';
import solid from 'vite-plugin-solid';

export default defineConfig({
plugins: [solid()],
1)

Chapter 2. Setting Up a Development Environment | 9

https://www.typescriptlang.org/tsconfig#jsxImportSource

Here we modified the default Vite configuration with an additional plugin. vite-plugin-solid
internally uses Babel-JS to transform jsx/tsx files and provides hot module replacement with fast-
refresh support.

Now, let’s open the package. json file and add a few scripts:

"scripts": {
"dev": "vite --port 3000",
"build": "vite build",
"serve": "vite preview --port 3000"

}

The dev script runs Vite’s development server. The port parameter sets the port number for the
server.

Although the port value is not required, we set it to provide clear instructions. If the specified port is
busy, Vite will continuously increment the port number and connect to the first available port.

The build script builds the application while the serve script serves the application we built.

Now, it’s time to create a simple Solid application. First, add a new folder called src on the root
directory, and then create the index. tsx file inside. Make sure the file path matches the src attribute
we used in the index . htm1 file.

mkdir src
touch src/index.tsx

Add the following script to index. tsx:

import { render } from 'solid-js/web';

export const App = () => {
return (
<div>Hello World!</div>
)
}

render(() => <App />, document.getElementById('root')!);

This SolidJS code imports the render function from the solid-js/web package and then defines an
App component that returns a single div element with the text "Hello World!". Finally, the render
function is called to mount the App component to the DOM element with the ID root. The HTML-
like syntax used here is called JSX, which is employed to define the component's structure in a manner
that resembles HTML. Solid utilizes JSX to construct the view layer.

The render function requires us to provide a component that returns a JSX element.

10 | Chapter 2. Setting Up a Development Environment

Although we wrap the App component in an anonymous function in our example, both of these
usages are valid because the App function itself is a component that returns a JSX element:

render (App, document.getElementById('root'));

render(() => <App />, document.getElementById('root'));

In this book, we prefer the second method due to difficulties with Vite's HMR using the first one; it
fails to replace the imported modules. In other words, you may have issues with HMR if you pass the
App component directly to the render function:

render (App, document.getElementById('root'));

In those situations, try changing App to () => <App /> to resolve the issue:

render(() => <App />, document.getElementById('root'));

If the problem persists, you can try to force a full-page refresh by using the @refresh reload pragma.
Open the module file that you wish to refresh the page for when changes are made, and insert the
following comment at the top of the file:

// @refresh reload

This pragma instructs the HMR system to fully reload the page when this module is updated.

In the context of Hot Module Replacement (HMR), a pragma is a special comment or

110N

annotation in the source code that directs the HMR system on how to handle module
updates. The @refresh reload pragma, in particular, triggers a full page reload, ensuring all
changes are applied cleanly.

The ! symbol that follows the mount point in the render call is known as the non-null assertion
operator. It tells the TypeScript compiler to treat the element as if it is guaranteed to not be null or
undefined:

document.getElementById('root"')!

To run the development server, we need to execute the dev command in the terminal:

pnpm run dev

Now, visithttp://localhost:3000/ in your browser to see the result.

Chapter 2. Setting Up a Development Environment | 11

Now, let’s update the application by adding a few exclamation marks, just to see if fast-refresh works:

<div>Hello World!!</div>

You should see the exclamation marks appear on the screen without the need to restart the server or
refresh the page. If not, it means your development server does not work as expected. You need to
check if you’ve made any mistakes while setting it up.

With the setup complete, we are now ready to dive into how Solid works.

12 | Chapter 2. Setting Up a Development Environment

CHAPTER 3

On SolidJS

In this chapter, we will have a high-level overview of Solid, covering the fundamental principles that
Solid is built upon. If you find any of these concepts difticult to grasp, don’t worry as we will delve
into each one of them in greater detail later in the book.

Before getting into how Solid works, let’s talk about the problems Solid aims to solve.

The Problem Solid Solves

We create applications to manipulate data. Data may come from various sources, such as databases or
files, or it may be hard-coded into the program.

The data that an application operates on lives inside the computer’s memory. What we see on the
screen is its visual representation. Data is the source of truth, but the pixel on the screen is its
manifestation.

In an actual application, data changes over time. We use the term state to describe the state of data ata
specific point in time. When data changes, we need to change its visual representation too, to avoid
inconsistencies.

For example, consider a character’s position in a 2D video game:

Position { x: 0, y: 0 }

When the player presses an arrow key for moving or jumping, the data that controls the character’s
position changes. The program needs to update the character’s visual representation on the screen
too. Itis essential to keep track of data and ensure that all its representations reflect its actual state.

There are different approaches to solving this synchronization problem.

13

In non-reactive systems, when we update the state we update its visual representation too. This is a
tedious and error-prone task, so we structure our application in a certain way to minimize errors,
which is commonly referred to as an architectural pattern. MVC, MVDP, and Flux are some well-
known examples of architectural patterns.

For example, in the MVC pattern, the Model represents the state of data, the View is the visual
representation of the model, and the Controller is the glue code that runs the synchronization logic
between the Model and the View. After updating the state, the Model calls the controller and the
controller updates the Ul layer. Usually, there is an explicit invocation of the method that notifies the

view layer of a change.

However, adhering to a specific architectural pattern can be limiting, especially for large applications,
and they bring their own set of problems.

In reactive systems, data is reactive and the Ul derives its state directly from the data.

Updating data triggers a synchronization logic that updates the UL This practically makes the Ul a
side eftect, reducing potential errors.

View = fn(State)

In this approach, fn is a transform function that takes the state as input and produces a corresponding
view. Since fn is pure, it always outputs the same result for a given state, making it easy to reason about
the behavior of the system.

Synchronizing the state and the Ul is important, but it is not the only problem we face when working
with browsers. Modern browsers have a very complex rendering pipeline. A piece of data goes through
several successive stages before being displayed on the page.

Let’s take alook at these stages briefly and then talk about how Solid helps us with them:

1. Construction of the DOM Tree
This is the initial step where data is converted into a tree-like structure called the DOM.
Depending on the source of the data, DOM nodes can be created programmatically using the
browser API or it could be generated automatically by the browser using the HTML code that s
returned from the server.

2. Construction of the CSSOM Tree
The CSS is parsed into a CSS Object Model (CSSOM) tree. The browser takes the CSS code
and constructs another tree-like structure called the CSSOM, which represents the styles and
visual rules for the web page. This step is crucial because it determines the visual appearance of
the elements on the page.

14 | The Problem Solid Solves

3. Render Tree Construction
The browser takes the DOM and CSSOM trees and combines them into a single tree, called the
Render Tree. This tree represents the visual structure of the web page, including the styles and

positions of each element, determining which elements should be displayed and how they
should be laid out.

4. Layout
In this stage, the browser figures out where the elements go on the page. It calculates the position
and size of each element in the Render Tree, based on factors like the viewport size and element
dimensions.

S. Painting
The browser takes the Render Tree and paints the elements onto the screen, applying styles,
colors, and textures. At this stage, the end user can see the element on the page, however,
elements that are part of the composited layers may not be fully interactive until the compositing

stage is complete.

6. Compositing
The painted elements are composited together to form the final image displayed on the screen
called a frame. Elements are stacked together or put into layers based on their properties like z-
index. Once the layers are created, they are organized into a Layer Tree. This tree structure
maintains the hierarchy of the visual elements and their relationships, allowing the browser to
understand which elements are in front of or behind others.

This stage is especially important for complex animations and scrolling. The composited frame
is then sent to the screen for display. High refresh rate displays require this process to occur at a

minimum of 60 times per second (60 Hz) to provide a smooth and fluid user experience.

It’s important to note that this pipeline is not a strictly linear process. Modern browsers employ
various optimization techniques, such as speculative parsing and incremental rendering, to improve
the perceived performance and responsiveness of web pages. However, improper actions on our part
can disrupt this process, leading to significant performance degradation and user experience issues.

For example, if you modify the element’s size after it is painted, you will force the browser to
recalculate the layout and repaint the element. Applying certain CSS properties like opacity,
transform, or filter can cause the browser to create a new compositing layer for the affected element.

Layout calculations and repaints are expensive operations that can significantly impact performance.
If you manipulate DOM nodes while they go through these stages, you will break the pipeline and
make the process fall back to the previous stage, or worse it will make the browser cancel all the work it
did and start over.

Chapter 3. On SolidJS | 15

Understanding the rendering pipeline is vital for performance optimization. By minimizing
unnecessary reflows and repaints, we can enhance the efficiency of our web applications.

Solid, like many modern frameworks, observes the browser's rendering pipeline when building and
modifying the DOM tree. It helps us to minimize DOM muodifications, allowing us to batch them
and apply them together, as this can minimize the number of reflows and repaints.

Long-running JavaScript tasks can block the main thread, causing the browser to freeze and
preventing updates to the rendering pipeline. Solid employs a scheduler to gain more control over the
rendering pipeline, allowing it to optimize performance, prioritize updates, and maintain a smooth
and responsive user experience. Because of this, even if we run a state update in a tight loop, Solid's UI
never becomes unresponsive.

Solid also helps us to take advantage of various optimization techniques like code splitting and lazy
loading which can improve the application's initial load time and perceived performance.

In conclusion, Solid helps us to write more efficient JavaScript code, ensuring a smoother user
experience.

How Solid Works?

Atits core, Solid has two guiding principles and everything else revolves around them:

® Reactive data
® Composable UI

Reactive data means the changes to the data are propagated to all interested parties, including the UI
layer. This ensures that the Ul is always up-to-date and reflects the current state of the data.

Composable UI means the UT layer is constructed from small, reusable pieces called components.
Components can be combined to build highly complex applications. This approach makes it easier to
develop, test, and maintain the Ul code.

Reactive Data

Solid uses signals for reactive data. The concept of a signal is quite simple: It is a wrapper around a
regular JavaScript value that keeps a list of subscribers which are notified whenever the value changes.

To create a signal, we import the createSignal function into the current module and call it with an

initial value:

import { createSignal } from "solid-js";

16 | The Problem Solid Solves

const [getCount, setCount] = createSignal(0);
1 1
// accessor setter

createSignal returns an array with two items: a getter and a setter. The getter function, commonly
referred to as the signal accessor, retrieves the stored value, while the setter function updatesit.

We use array destructuring to extract them onto local variables.
Array destructuring is a deliberate design choice because:

® We can use any variable name we prefer.
® It provides separation of concerns by enforcing read-and-write segregation.

Signals provide unidirectional data flow by design. Data is always updated at its source, only then the
new value trickles down to its consumers through eftects.

Although having an isolated setter and a getter function is not a requirement for unidirectional data
flow, it prioritizes readability over the co-location of the said functions.

Signals can store any type of data, including complex objects.

Signals are tracked within a tracking scope. A tracking scope, also known as a reactive context, is a
function scope created by createEffect or similar functions from the core module that can create
subscribers to monitor reactive values. These subscribers are designed to perform specific tasks, such
as running side effects, and are deeply integrated into the reactive system.

import { createEffect } from "solid-js";
createEffect(() => {

console.log(getCount());
s

createEffect creates an effect that is called whenever the signal updates. The callback function we
pass to createEffect needs to read the signal in order to subscribe to it. Subscription takes place
automatically upon reading the signal.

Since getCount is a function, we had to call it to retrieve the value.

Solid uses a naming convention for the getter functions that do notinclude the get prefix, for example,
count instead of getCount.

Chapter 3. On SolidJS | 17

While this convention may be confusing at first, it is an intentional design choice that promotes clear
and concise variable names. The benefit becomes more apparent when we introduce the concept of
derived signals which are pure functions that transform reactive values.

const double = () => count() * 2;

Note that double is not a reactive value itself but recalculates its value each time it is called. When used
within a reactive scope, like in createEffect, it re-runs its transformation whenever the effect re-

executes:

createEffect(() => {
console. log(double());
1)

We will revisit this topic later in Chapter 5, Tracking State With Signals.
Now that we have created our effect, we can update the signal. We will use the setInterval function:

setInterval(() => {
setCount(count() + 1);
}, 1000);

This code sets a timer thatincrements the count value by 1 every second.

Each signal keeps its own subscribers. When an effect reads a signal, it will be added to the signal’s
subscribers queue.

There isa dynamic dependency between an effect and a signal.

There is no manual process for subscribing or unsubscribing; it all occurs automatically. When the
code is executed, the effect reads the signal and gets added to the signal’s subscribers and called back
when the signal’s value is updated. Once it is called back, the effect will be removed from the
subscribers. If the effect re-reads the signal while it is being called back, it will be added to the
subscribers again to be called upon the next update. We will explain the reason for this later when
learning about Solid’s reactive core.

If an eftect fails to read a signal for some reason, such as the signal being wrapped in a conditional
statement, the effect will not be able to subscribe to the signal.

let x = 0;
createEffect(() => {
if(x > 5) {
console.log(count());
}
1)

18 | Reactive Data

There are many-to-many relationships between signals and effects. An effect can subscribe to multiple
signals. A signal can be observed by multiple effects.

Composable Ul

We already mentioned that being composable means the UI layer is made up of small, independent,
reusable pieces called components that can be put together to form complex structures.

A Solid component is a JavaScript function that returns a JSX element. JSX is a special syntax that
resembles HTML or XML but is more powerful, as it allows the execution of JavaScript expressions
within it. We use JSX elements to describe what we want to see on the page.

Components serve as building blocks for applications.
Here is a simple Solid component that returns H1 element with "Hello World!" asits content:

const Greeting = () => {
return <hl>Hello World!</hl1>
}

Solid uses a compiler to convert JSX elements into native DOM nodes. The component above will be
converted into the following code:

import { template as $template } from "solid-js/web";
var tmpl$ = /*# PURE */ $template(<hl>Hello World!");
const Greeting = () => {

return _tmpl$();
}

Solid does not use document . createElement calls in the compiled output but instead uses HTML
strings that produce HTML fragments. That is for achieving a better performance while producing a
smaller bundle size.

The template function creates DOM nodes from the provided string value.

The /*#_PURE__*/ comment is a directive for the compiler indicating that the function call it
precedes is pure. This means the function always returns the same result if given the same arguments.

We will revisit this topic later in Chapter 09, Composing User Interfaces.

Now that we have a component, it is time to display it on the screen. We use the render function for it.

Chapter 3. On SolidJS | 19

The entry point for any Solid application is the render function. It takes two arguments: a
component to render (commonly called the root component) and a DOM element where the root
component’s output will be mounted.

Listing 3.1 The render function mounts the root component to the DOM (ch03/example-01)
import { render } from 'solid-js/web';
const Greeting = () => {
return <hl>Hello World!</h1l>
}

render (Greeting, document.body);

Although mounting applications directly onto the body element is strongly discouraged, we

110N

will do it for clarity and simplicity. It is discouraged because body is a common ancestor for all
page elements, and it could be mutated by other libraries as well, causing inconsistencies and

hard-to-catch bugs.

The render function is not exported by the core module but through solid- js/web. The aim is to
isolate the core library from runtime-dependent logic, allowing Solid to be used inside different
runtime environments without conflict.

Solid owes its composable traits to JSX, and JSX supports a variety of features that make it very
practical and easy to work with.

Listing 3.2 JSX allows components to be nested like HIML elements (ch03/example-02)

() => <hl>Hello World!</hl>;
() => <p>Here is a message for you.</p>;

const Heading
const Message

const App = () => {
return (
<div>
<Heading />
<Message />
</div>
)
}

We can use expressions inside a JSX element via {}. An expression is a unit of code that evaluates to a
value.

Listing 3.3 Use curly braces to embed JavaScript expressions inside a JSX element (ch03/example-
03)

20 | Composable Ul

const Counter = () => {
const [count, setCount] = createSignal(0);

setInterval(() => {
setCount(count() + 1);
}, 1000);

return (
<div>Count: {count()}</div>
);
}

Listing 3.4 Use a ternary expression for conditional rendering inside a JSX element
(ch03/example-04)

const Counter = () => {
const [count, setCount] = createSignal(0);

setInterval(() => {
setCount(count() + 1);
}, 1000);

return (
<div>Count: {count()} {count() % 2 === 0 ? '"Even' : '0Odd'}</div>
);

Components receive data via props — special attributes passed in JSX:

<Greeting name="John Doe" age={25} />

JSX attributes are collected into a single props object, which is passed as the first argument to the
component function.

Listing 3.5 Artributes are passed to the component definition as the props object (ch03/example-
05)

function Greeting(props) {
return <hl>Hello, {props.name}! You are {props.age} years old!</hl>;

}

const App = () => {
return <Greeting name="John Doe" age={25} />

+s

Composition and reactivity give us all the flexibility we need to write efficient and developer-friendly
applications.

Chapter 3. On SolidJS | 21

Please note that these examples fall short of displaying the true power of JSX. Since we are going to
have a dedicated chapter on JSX, we will move on now.

Solid uses a compiler to convert JSX into DOM elements. Using a compiler brings certain benefits
like producing smaller bundles with better-optimized code that we cannot write by hand, at least not
consistently.

If you look at the frontend frameworks benchmarks, you will see that Solid applications are as
performant as their vanilla JavaScript counterpart:

https://krausest.github.io/js-framework-benchmark/

—

= Rendering benchmarks gives us an idea of how fast a library is, but we should approach these
benchmarks with caution because the browser’s rendering pipeline will be the bottleneck for
all competing projects. That is why there is a tiny difference between libraries unless the

library does something very costly.

In Solid, state is completely decoupled from the UI, enabling a more maintainable and scalable
architecture.

In Listing 3.6, the Counter component defines its state using a signal scoped to the Counter function
itself. However, as demonstrated in Listing 3.7, we can move the state outside the component and into
a broader scope — in this case, the global scope — and the component continues to function as

before.

Listing 3.6 State is declared locally inside the component using a signal (ch03/example-06)
import { createSignal } from "solid-js";
import { render } from "solid-js/web";

const Counter = () => {
const [count, setCount] = createSignal(0);

const handleClick = () => {
setCount(count() + 1);

};

return (
<div onClick={handleClick}>Count: {count()}</div>
)
}

render(() => <Counter />, document.querySelector('#root')!);

Listing 3.7 State can reside outside a component (ch03/example-07)

import { createSignal } from "solid-js";

22 | Composable Ul

https://krausest.github.io/js-framework-benchmark/

import { render } from "solid-js/web";
const [count, setCount] = createSignal(0);

const Counter = () => {
const handleClick = () => {
setCount(count() + 1);

};

return (
<div onClick={handleClick}>Count: {count()}</div>
)
}

render(() => <Counter />, document.querySelector('#root')!);

The Advantages of Solid Over Its Alternatives

Now, let’s talk about what makes Solid a valuable tool for developing front-end applications.

Performance

Firstand foremost, Solid is a performant library and its performance can be attributed to its fine-
grained reactive updates.

If you inspect the following code inside the browser’s developer tools, you will see that only the
innerText of the div element gets updated:

Listing 3.8 Solid performs fine-grained updates (ch03/example-08)
import { createSignal } from "solid-js";
import { render } from "solid-js/web";

const Counter = () => {
const [count, setCount] = createSignal(0);

setInterval(() => {
setCount(count() + 1);
}, 1000);

return (
<div>Count: {count()}</div>
);
}

render(() => <Counter />, document.body);

Solid achieves this by compiling components into dynamic and static parts which we will discuss
later in the book. Static parts remain unchanged, whereas dynamic parts are wrapped in an eftect
so that their content can be updated surgically.

Chapter 3. On SolidJS | 23

Unlike many popular frontend frameworks, Solid does not use a virtual DOM. Instead, it
compiles components to native DOM nodes. This approach, combined with fine-grained
reactive updates, makes Solid applications more resistant to performance degradation.

The virtual DOM is a programming abstraction that keeps a copy of the UT in memory and
synchronizes it with the actual DOM only when the application state changes. This strategy
exists because direct DOM manipulation is traditionally slow and expensive. However, the
virtual DOM itself can introduce performance overhead — especially as it re-evaluates and re-
renders entire sections of the DOM tree, even when only part of it has changed. To mitigate this,
frameworks often implement techniques like diffing and batching, which reduce unnecessary
updates butadd complexity and can still incur costs.

One consequence of Solid’s use of native DOM nodes is thata DOM node cannot be inserted in
multiple places without moving it. This is a natural limitation of the DOM: a node can only
existin one place ata time.

Listing 3.9 4 DOM node moves when re-inserted (ch03/example-09)

import { render } from "solid-js/web";

function App() {
let button = <button>Click</button>;
return (
<div>
{button}
<h1l>Hello World</hl>
{button}
</div>
);
}

render(() => <App />, document.body);

When rendered in the browser, the App component produces the following output:

<div>
<h1>Hello World</h1l>
<button>Click</button>
</div>

This behavior can lead to subtle bugs in your application if not handled properly. Always ensure
that nodes are cloned or recreated when they need to appear in multiple parts of the DOM to
avoid unintended side effects.

A simple solution is to wrap the element in a function:

24 | The Advantages of Solid Over Its Alternatives

function App() {
let button = () => <button>Click</button>;
return (
<div>
{button()}
<h1l>Hello World</h1l>
{button()}
</div>
);
}

Each call to button() returns a fresh DOM node, which prevents problems caused by reusing
the same node in multiple places.

Analternative approach is to define the button asa component:

import { render } from "solid-js/web";

function App() {
let Button = () => <button>Click</button>;
return (
<div>
<Button />
<h1l>Hello World</hl>
<Button />
</div>
);
}

While this method introduces a bit more complexity — since each <Button /> triggers a
createComponent call under the hood — it improves modularity and maintainability by
encapsulating the button in its own component.

Synchronous Execution
In Solid, both state updates and effects are executed synchronously, making it straightforward to
work with.

Some libraries use asynchronous logic, utilizing either the microtasks or the event loop to
execute effects. This is done to ensure consistency as an update may trigger subsequent updates
that can put the UI layer in an inconsistent state or cause unnecessary re-renders. However,
asynchronous rendering can make code difficult to reason about, limiting our ability to manage
it effectively since we have less room for maneuvering.

Vanishing Components
In Solid, components serve the purpose of organizing code. They are executed only once when
the application is loaded. Subsequent updates operate independently of the component

Chapter 3. On SolidJS | 25

structure. This approach gives way to better-optimized code with better developer experience as
updates are not affected by the componentstructure.

Compiled Code
Solid employs a compiler to transform JSX into native DOM elements, resulting in smaller
bundles. The use of a compiler offers several advantages, such as producing more optimized
code, more consistent and predictable performance, and the ability to modify the output
withoutaltering the APT or the semantics.

Unidirectional Data Flow
Signals offer unidirectional data flow by design which reduces code complexity and makes it
easier to manage the flow of information within the application. In other words, it is easier to
track data through the component tree.

Declarative data and declarative Ul
Declarative programming is a style where the consuming code describes what it needs, and the
component handles how it gets done. The imperative logic is abstracted away — hidden from
the outside world.

For example, imagine we have a list of images and want to display them as a slideshow. Instead of
manually writing code to create slides, manage timers, and switch images, we can simply write:

<Slider
images={['l.png', '2.png', '3.png']}
duration={5}
autoplay={true}

/>

This tells the Slider component everything it needs: a list of images, how long to show each one,
and whether it should autoplay. Our code — the consuming side — doesn’t need to worry
about how the slideshow actually works. The component takes care of transitions, timing, and
state management behind the scenes.

This approach keeps our code clean and focused. We can build powerful interfaces just by
describing our intent, without getting lost in implementation details.

Composable UI
Solid components can be nested and they can be passed around like any other variable which
makes them highly flexible and powerful, leading to more efficient and maintainable code.

Modular and Portable

26 | The Advantages of Solid Over Its Alternatives

Solid components ofter clear boundaries and well-established relationships between data and

UI, making them highly modular.

With Solid, we can extract parts of our application into separate modules and use them
anywhere we like, aligning well with React’s “write once, use everywhere” motto. However,
unlike React components, Solid components do not trigger unexpected re-renders, thereby

reducing potential bugs and performance issues.

Furthermore, Solid’s custom directives allow us to abstract not only UI elements but also event
listeners into reusable pieces. This means that you can write fully-functioning services in one
project and import and use them in another one.

SSR with streams
Solid allows us to write isomorphic applications with server-side rendering. It provides a reactive
API for fetching and rendering asynchronous data, which also supports streaming.

Alternative rendering methods
If you are unable to use a compiler for some reason, you can use Tagged Template Literals or
HyperScript to skip the compilation step. While the output may not be as performant or as
small as the compiled code, these alternative methods offer a viable option.

Solid has a small API surface, produces small bundles, and offers good results in performance
benchmarks.

Thanks to these qualities, re-implementing a library in Solid is often easier than in frameworks like
React. In many cases, you can achieve comparable performance without needing special
optimizations or workarounds. Porting existing libraries into Solid also tends to be faster and more
straightforward than with other libraries.

Chapter 3. On SolidJS | 27

CHAPTER 4

How Solid's Reactive System Works

In the previous chapter, we covered reactive data just enough to get started. In this chapter, we will

learn how Solid implements reactivity by writing our own reactive core that works the same way and
has the same API as Solid’s.

Solid’s reactivity is built on three core components: signals, computations, and memos.

Signals serve as the data sources for other components in the system. They are observable values that
other components can subscribe to, enabling them to receive notifications when the signal’s value
changes.

const [count, setCount] = createSignal(0);

A signal stores a single value of any data type. Each signal keeps its own subscribers and notifies them
when its value changes.

Itis the computation object that subscribes to signals and gets notified when a signal’s value changes.

createEffect(() => {
console.log(Count is ${count()}");

1)

Understanding computations is crucial for developing the correct mental model of the Solid runtime.
Many challenges in Solid stem from misunderstandings about how computations work and interact
within the reactivity system. The most frequently asked questions in the community often relate to
how computations are created or executed and how dependencies are tracked. Without a solid grasp
of these fundamentals, it’s easy to encounter unexpected behavior or performance issues. That’s why
we've dedicated this chapter to an in-depth discussion of the internal APIs and mechanics of
computations, providing the foundational knowledge needed to work eftectively with Solid’s
reactivity model.

A computation is not an abstract concept but a concrete object with methods and properties. They
are used within the core module and are not directly exposed to the outside world.

29

There are various ways to create a computation. The createEffect function we have been using so
far is just one of them. Other methods include createRenderEffect, createComputed, createMemo,

createDeferred,and createReaction.

Although each function creates a computation internally, they either execute at different times to
meet specific requirements for the tasks they perform or offer a different API suited to a particular
need. For instance, the effects and the render effects are almost identical, except that the render effects
are used specifically for rendering DOM nodes and have priority over the effects during their initial
execution. Once the rendering phase is completed, they behave like regular eftects. We will discuss each
of these functions in their respective topics.

Solid doesn’t execute computations immediately; instead, it relies on a scheduler. When a signal
triggers a computation, the computation is placed on the scheduler’s queue. The scheduler is an
interruptible task queue that pauses briefly to run more critical code while updating the UL Due to
this feature, even if you update a signal within an effect in a way that could cause an infinite loop, the

browser will not become unresponsive.

Although computations don’t inherently have priority, the scheduler’s execution logic achieves a
similar outcome by effectively prioritizing their execution order.

Observer Pattern

Solid employs the observer pattern internally but doesn’t rely on event streams or message passing,
which might confuse those familiar with other reactive libraries.

There are numerous implementations of the observer pattern, but they all boil down to three styles:
those that push the state to observers, those that let observers pull the state as needed, and those that
use both methods.

Libraries such as Rx/S and Cycle/S use the push style: An observable pushes the updated state to a
subscriber in the form of an event or a message. Subscribers always receive the new state through an

event.
A typical callback function for executing side-eftects in such libraries is as follows:

function callback(event) {}

30 | Chapter 4. How Solid’s Reactive System Works

Solid]S, Mobx, and Knockout use a combination of both the pull and push styles: An observable
notifies its subscribers, which constitutes the push phase, and each subscriber reaches for the new
state as part of the pull phase. The most noteworthy aspect of this approach is that the new data is
received from the source directly through re-execution, without any intermediate values or events.
Consequently, their callback functions for executing side effects do not rely on events:

function callback() {}

Re-execution provides a simpler mental model with better performance characteristics, while the
event streams can quickly get unwieldy with multiple observables because now we need to use
conditionals to handle difterent events in the subscriber’s logic, or we have to transform them before
they are passed to their consumers so that they can be consumed directly. This is why libraries like
Rx/S include numerous operators for creating new observables from existing ones by merging,
splitting, and transforming them.

Although Solid uses the observer pattern, its documentation avoids explicitly using terms associated
with it. The reasons for this avoidance are not clearly stated, but it may be an intentional effort to
minimize technical jargon and reduce the cognitive load that comes with the observer pattern.

It’s time to get our hands dirty. We will start with a very crude implementation to understand the
relationship between the underlying components and then refactor to a more accurate one. You can
explore the full code examples in the repository under ch4.

The Essence of Reactive Core

Let’s start with the requirements for a signal.
Asignal should:

® Store a value that changes over time.

® Maintain a list of subscribers.

® Notify subscribers whenever the value changes.

® Add and remove subscribers, as a subscriber’s dependency may change over time.
® Provide read-write segregation through getter and setter functions.

With these requirements in mind, we can define the Signal type. As outlined, a signal stores a value
and maintains a list of subscribers.

interface Signal<T> {
value: T;
observers: Set<Computation<any>>;

}

Chapter 4. How Solid’s Reactive System Works | 31

	Chapter 01. Introduction
	Code Examples
	Contact and Feedback
	Requirements
	Trying Solid via Online Playground
	Creating a Project From a Template
	Note For React Developers

	Chapter 02. Setting Up a Development Environment
	Chapter 03. On SolidJS
	The Problem Solid Solves
	How Solid Works?
	Reactive Data
	Composable UI

	The Advantages of Solid Over Its Alternatives

	Chapter 04. How Solid’s Reactive System Works
	Observer Pattern
	The Essence of Reactive Core

