

SolidJS: The Complete Guide
A comprehensive guide to reactive web development with SolidJS and TypeScript

Sinan Polat

SolidJS: The Complete Guide by Sinan Polat

Copyright © 2025 Sinan Polat. All rights reserved.

October 2025: First Edition, V8

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission by the author, except in the case of
brief quotations embedded in critical articles or reviews.

The effort has been made to ensure the accuracy of the information and instructions presented.
However, the information contained in this work is sold without warranty, either express or implied.
Neither the author, nor its dealers or distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this work. Use of the information and instructions
contained in this work is at your own risk.

If any code samples or other technology this work contains or describes is subject to the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

i

Table of Contents
1. Introduction . 15

Code Examples 16
Contact and Feedback 16
Requirements 16
Trying Solid via Online Playground 17
Creating a Project From a Template 18
Note For React Developers 19

2. Setting Up a Development Environment . 21

3. On SolidJS . 27
The Problem Solid Solves 27
How Solid Works? 30

Reactive Data 30
Composable UI 33

The Advantages of Solid Over Its Alternatives 37

4. How Solid’s Reactive System Works . 43
Observer Pattern 44
The Essence of Reactive Core 45

Improving Type Definitions for createComputation 51
Deriving Reactive Values from Signals 52

Uses of Computations 53

5. Tracking State with Signals . 57
Overwriting the Comparison Logic 58
Updating Signals 60
Deriving Values 60
Destructuring Signals 61
Batching Updates 61

6. Running Side-Effects with Effects . 63
Effects Can Be Nested 64
Explicit Dependency Tracking 66
Opting Out of Tracking 67
Handling External Dependencies 67

ii

7. Caching Values with Memos . 71

8. Rules of JSX . 77
Elements Should Be Closed 79
Elements Can Be Nested 80
Expressions Can Be Used Inside JSX Elements 80
Elements Can Have Attributes 83
Missing Attribute Values Default to true 84
Comments 84
Whitespaces Are Trimmed 85

9. Composing User Interfaces . 87
Components Should Return a Single Root Element 90
Components Accept Data Through Their props 92
Adding Static Types to Components 93
Components Can Have Children 95
How Components Are Rendered 99
Conditional Rendering 103
Reactive props 107
Props Should Be Treated as Read-Only 108
Destructuring Props Changes the Rendering Order 111
Effects Are Executed After Rendering 113
Best Practices 115

10. Working with Props . 117
Passing Data From Parent to Child 117
Sharing State Between Children 118

Providing Controlled Access to Parent’s State 119
Passing Data From Child to Parent 120
Destructuring and Spreading Props 121
Forwarding Multiple Props at Once 122
Validating Props 124

11. Sharing Data Through the Context API . 125
How Context API Works 126
Best Practices 134

12. Component Lifecycle . 135
onMount 136

iii

onCleanup 137
Best Practices 138

13. Accessing DOM Nodes With `ref` . 141
When ref Functions Execute 145
Forwarding Refs 146
Using Refs with External Libraries 147
Best Practices 151

14. Working with Computations . 153
createComputed 154
createRenderEffect 155
createEffect 157
createMemo 157
createDeferred 157
createReaction 158

15. Handling Errors . 163
ErrorBoundary 163
catchError 165
Handling Asynchronous Errors 167

16. Working with Owners . 169
Accessing Currently Executing Computation 173
Reactivity in Asynchronous Context 174

17. Styling Elements . 177
Using Inline Styles 177
Applying Style Definitions 178
Applying Classes Conditionally 179
Using the Imperative API 180

18. Reactive Utilities . 187
batch 187
untrack 187
on 188
createRoot 189
mergeProps 189
splitProps 190

iv

Why Use splitProps and mergeProps? 191
mapArray and indexArray 192
observable 192
from 193
startTransition and useTransition 196

19. A Better Conditional Rendering . 197
Show 200

Keyed Rendering 201
Render Props 202

Switch and Match 203

20. Working with Lists . 205
For 207
mapArray 208
Index 209
indexArray 210
Selecting Items with Selectors 211

21. Rendering Components Outside the Component Hierarchy . 219

22. Managing Complex States with Stores . 223
Accessing Data 226
Updating Stores 227
Limitations Related to Reactivity 229
Store Utilities 230

produce 230
reconcile 230
unwrap 231
createMutable 232

23. Abstracting Behavior With Custom Directives . 235
Extending JSX Type with Custom Directives 238
Using Imported Directives 239

24. Working with Asynchronous Data . 241
Decoupling Fetching From Rendering 246

25. Using Resource API for Data Fetching . 251
Info Object 255

v

Resource Actions 256
Error Handling with Resources 258

Display the Error in the UI 258
Rethrow During Rendering 259
Rethrow inside an Effect or Computated 259

Paginated Data with Resources: A Book List Example 261

26. Managing Loading States with Suspense . 267

27. Achieving Better Consistency with Transitions . 273

28. Coordinating Loading States . 281

29. Code Splitting and Lazy Loading . 283

30. Handling Events . 289
Using JSX Attributes with the on Prefix 289
Using JSX Attributes with the on: Prefix 293
Using Custom Properties 295
Using Refs 297
Using Custom Directives 298
Passing Data to Event Handlers 300

31. Dynamically Rendering Components . 303

32. Solid Without JSX . 311
Solid with Tagged Template Literals 311
Solid with Hyperscript 314
Drawbacks 318

33. Server Side Rendering . 319
Issues With Single Page Applications 319
SSR: Visible Content From the First Byte 321
Three Rendering Approaches for SSR Applications 322
renderToString - Synchronous HTML Generation 322
renderToStringAsync - Asynchronous HTML Generation 323
renderToStream - Streaming with Progressive Rendering 323
Hydration: Breathing Life into Server-Rendered Pages 324
Targeting the Server Context 328
Targeting the Development Build 328

vi

Practical Guide to Server-Rendering 328
Separating Application Shell from Client Logic 337
Building a Full-Stack App with Express and Solid Router 340

34. Solid Router . 351
Setting Up Development Environment 352

Client-Only Development Environment 352
SolidStart Development Environment 354

Installing Solid Router 355
Routing Strategies 355
Anatomy of a URL 358

Clean URLs 361
Introducing the Router Component 362

Error Handling Considerations 362
Defining Routes 363
Lazy Loading Route Components 366
Matching Dynamic Paths 368
Filtering Dynamic Paths 370
Optional Parameters 373
Catch-All Routes and Handling 404s 375

Named Wildcards for Flexibility 376
Wildcards Beyond Catch-All Routes 378
Use Cases for Wildcard Routes 379
Matching Multiple Paths in a Route 380
Attaching Metadata 382

Layouts 382
Rendering Different Layouts Conditionally 386
Rendering Different Layouts via Nested Routes 388

Nested Routes 390
Providing a Shared Layout 391
Nested Routes via Configuration 394

Alternative Routers 399
Hash Mode Router 400
Memory Router 401

Linking and Navigation 401
Using Anchor Elements 402

Targeting New Tabs or Frames 404
Adding Keyboard Shortcuts with accesskey 404

vii

Security Considerations for Anchor Elements 405
Using the A Component 406
Programmatic Navigation 409
The redirect Function 412

Using redirect in Queries and Actions 412
Single Flight Mutations 414
throw vs return 414

Hosting Apps in Subdirectories 414
Preloading 416

Inside the preload Function 420
Manually Preloading with usePreloadRoute 421

Accessing Route Related Data 422
Accessing URL Information with useLocation 422
Managing Query Parameters with useSearchParams 425
Extracting Route Parameters with useParams 429
Matching Routes with useMatch and useCurrentMatches 430

Displaying Transition Indicators 435
Intercepting Route Changes with useBeforeLeave 436
Fetching Async Data 438
Deduplicated Data Fetching 440
Updating Remote Data With Web Forms 443

Working With Web Forms 443
Collecting User Inputs and Performing Data Updates 447
Providing Unique Names For Serialization 449
Passing Arguments Directly 450
Programmatically Invoking Actions 450
Handling Form Errors 451
Helper Functions 452
Tracking Form Submissions with useSubmission and
useSubmissions

453

Reactive Forms with Authentication and Validation 454

35. Isomorphic Apps with SolidStart . 461
Introducing SolidStart 461
Project Setup & Configuration 464
Project Structure 465
Building Navigation with File-Based Routes 468

Dynamic Parameters 469

viii

Optional Parameters 470
Catch-All Routes 470
Logical Naming for Cleaner File Organization 471

Renaming index.tsx for Discoverability 471
Using Folders for Logical Grouping 472

Escaping Folder-Based Nesting 472
Creating Shared Page Structures with Layouts 473
Defining Layouts for Nested Routes 474

Escaping Nested Layouts 475
Serving Static Assets 475

Using import Statements 476
Styling Components 477

Using Stylesheets 477
Using CSS Modules 478
CSS-in-JS 479

Data Exchange Between the Server and Client 479
Basic Data Fetching: API Endpoints 480
Idiomatic Data Fetching: Server Functions 481
Performing Server-Side Mutations: Server Actions 484

Caching Data for Request Deduplication 486
Preloading Data 487
Pre-rendering Routes 488
Registering API Endpoints 489

Using the file router API 489
Using application configuration 490
Using a Middleware 492
Using the GET function 494

Accessing Server Events 495
Managing <head> Elements 496
Setting HTTP Headers and Status Codes 499

Setting HTTP Headers 499
Setting HTTP Status Codes 499

Creating Client-Only Components 500
Building Echoes: A Quote Management App with SolidStart 501

Project Setup 503
Application Structure and Routes 503

Route Organization 503
Protected Routes 504

ix

Public Routes 505
Application Layout 507
Styling 508
Error Handling 509
Fetching Data 510
Updating Data 511

Authentication and Authorization 513
Notifications and Confirmation Dialogs 516

Mounting the Client-Only Layers 516
Notifications: Decoupled, Event-Driven Toasts 517
Confirmation Dialogs: Explicit Consent for Destructive Actions 518

Closing Thoughts 522

A1. Setting Development Environment Using Webpack . 523
Install Dependencies 523
Configuring Webpack 525
Configure the Webpack Dev Server 528
Add TypeScript Support 529
Add Eslint Support 530
Create a Basic Application 530

About the Author . 533

1

CHAPTER 1

Introduction

This is a comprehensive book that aims to teach you the ins and outs of Solid, covering its core
principles, the inner workings, and the API. By the end of this book, you will have a thorough
understanding of Solid to write efficient applications.

Solid is a lightweight JavaScript library for building applications that can run on both the client and
server side. It can be used as a standalone library or alongside other libraries, as it is designed to be small
and efficient.

Solid does not introduce any novel approaches to frontend development, but instead borrows the
best ideas from other battle-tested libraries, including KnockoutJS, React, Vue, and Marko. It is built
on proven concepts and ideas, making it a pleasure to use.

Solid has a relatively small API surface; its core library exposes only a handful of items. However, the
intricacies of reactivity and its implementation involve complex interactions between its parts, which
makes it really hard to explain some of the concepts without a lengthy discussion. While I’ve avoided
repetitions as much as possible, occasional reminders were necessary to present the topic in a complete
and coherent way, eliminating the need to go back and forth between chapters to understand the
concept at hand.

When there are multiple ways of doing something, for instance, accessing underlying DOM elements,
we discuss the pros and cons of each approach, and provide tips on the best practices when
appropriate.

Like any other library, Solid has its own quirks that might leave you puzzled. I have tried to shed light
on the root causes of those quirks, rather than merely mentioning them, and included callouts to help
you steer clear of probable pitfalls around them, if there are any.

This book is based on Solid v1.8, but rest assured, the concepts and principles we explore aren’t closely
tied to any single version. Even as Solid continues to evolve, the core ideas and foundational logic will
stay consistent, so you’ll find lasting value in these pages regardless of version updates. I hope what you
learn here will keep serving you well.

2 | Chapter 1. Introduction

Code Examples
You can download supplemental materials—including code examples and exercises—from the
official GitHub repository:

https://github.com/solid-courses/solidjs-the-complete-guide

If you run into technical issues or have questions about the examples, please start a discussion or open
an issue on the repository.

In general, you are free to use the example code provided with this book in your own programs and
documentation. Permission is not required unless you intend to reproduce a substantial portion of
the code. For example, you may use several snippets in your programs without restriction, and you
may also cite the book or quote short examples when answering a question. However, selling or
redistributing the examples requires prior permission, as does incorporating a significant amount of
code into your product’s documentation.

Contact and Feedback
As we journey together through the contents of this book, your insights and experiences will be
invaluable. Even with our best efforts, we understand that there may be areas that could be improved,
clarified, or corrected. Whether it's a typo, a conceptual error, or a suggestion for improvement, we
welcome your feedback.

To make the process as smooth as possible, we've created a dedicated repository for you to share your
thoughts, criticisms, and suggestions. Please visit https://github.com/solid-courses/solidjs-the-
complete-guide to submit your feedback. You can open a new issue to detail your findings or
suggestions.

Your feedback is crucial not only to improve this book but also to enhance the learning experience of
future readers. By contributing your insights, you'll help create a more accurate, comprehensive, and
user-friendly resource for anyone interested in Solid. We greatly appreciate your time and effort in
helping us achieve this goal.

Requirements
This book requires basic knowledge of JavaScript, HTML, and CSS. We won’t delve into language-
related concepts, maybe briefly touch upon a few of them when there is a need for them.

https://github.com/solid-courses/solidjs-the-complete-guide
https://github.com/solid-courses/solidjs-the-complete-guide
https://github.com/solid-courses/solidjs-the-complete-guide

Chapter 1. Introduction | 3

Examples are written in TypeScript. However, even if you have never used TypeScript before, you
should be able to understand them, as an explanation will accompany any code snippet that is too
complex or requires a certain TypeScript feature to be turned on.

If you don’t want to use TypeScript at all, you need to set up your development environment
accordingly. There is a pre-built template from the core library for using JavaScript only. Ignoring
types will be enough to make the code examples work.

We will need Node.js for both building and running the code examples. Node.js is a JavaScript
runtime environment. There are plenty of resources on the Internet on how to install and run
Node.js. We won’t use the Node.js binary directly but through pnpm commands. Pnpm is a package
manager that is an alternative to npm, the officially supported package manager of Node.js. Pnpm
offers some valuable improvements over npm, which reduces the installation time and the space taken
up by packages.

Trying Solid via Online Playground
The easiest way to get started with Solid is by using the online Playground. Head to the Solid website
and navigate to the playground page: https://playground.solidjs.com.

Figure 1.1 Solid Playground

https://playground.solidjs.com/

4 | Trying Solid via Online Playground

The Playground allows you to experiment with Solid in a safe and interactive environment. You can
run code and check for errors. The playground automatically executes any code you write and displays
the output in the result tab.

NOTE Solid Playground supports TypeScript, but you need to import types explicitly.

Explicit type-only imports were introduced in TypeScript 3.8, allowing types to be imported
from a module while being fully erased during compilation, so they never generate any
runtime side effects in the compiled output.

Here’s how you can import a type:

import { type Component } from "solid-js";

import type { Component } from "solid-js";

At times, automatic execution might result in issues if the code is incomplete. In those situations, you
can use the refresh button to refresh the output window manually.

Solid is a compiled library. You can inspect the compiled output on the output tab. You can select
different compilation targets using the radio buttons at the bottom of the output window.

The playground allows you to work with multiple files. You can share your code using the share
button. This feature comes in very handy when asking for help. You can recreate the issue and share
the link.

You can reset the editor window by clicking on the trash icon.

The bell icon next to the reset button toggles the error reporting.

Creating a Project From a Template
You can create a local Solid project using one of the project templates offered by the core team:
https://github.com/solidjs/templates.

$ npx degit solidjs/templates/js my-app

$ cd my-app

$ pnpm i

$ pnpm run dev

You can use typescript if you like:

$ npx degit solidjs/templates/ts my-app

$ cd my-app

Chapter 1. Introduction | 5

$ pnpm i

$ pnpm run dev

In the next section, we will create our own development environment from scratch using Vite. Until
then, you can use the online playground to get your feet wet.

Note For React Developers
Solid and React have almost nothing in common other than using JSX for their UI layer. Solid has its
own compiler, which produces a different output than React’s. It has its own rendering paradigm and
its own way of keeping state. If you are familiar with React, it is best to leave your assumptions and
expectations aside and try to adapt to Solid’s way of doing things to save your time and effort.

7

CHAPTER 2

Setting Up a Development Environment

In this chapter, we will create a basic development environment for writing single-page Solid
applications using Vite.

The Solid documentation recommends using Vite for building apps, so we will use Vite for the
majority of our examples. However, occasionally we will need additional tools, for instance, when
working with server-side rendering, which we will introduce in their respective chapters.

It is important to note that Vite is not a hard dependency for Solid. Solid’s only dependency is its Babel
plugin which is babel-preset-solid. We have chosen Vite for its features, such as fast refresh, which
enables us to swap the application’s code while maintaining its state, built-in TypeScript support, and
the ability to use CSS modules for styling components.

If you prefer alternative bundlers, please refer to Appendix 1, Setting Up the Development
Environment with Webpack for guidance on using Solid with Webpack. These instructions can easily
be adapted for other bundlers as well.

We are going to use pnpm to run npm commands for it offers a better developer experience over npm.
However, you can keep using npm if you like.

With that being said, let’s begin our development journey.

First, create an empty folder:

mkdir my-app

And navigate into it:

cd my-app/

Once you are inside, initialize a new npm project by running:

pnpm init

8 | Chapter 2. Setting Up a Development Environment

Open the folder in your preferred code editor. Here, I use Visual Studio Code to open the current
directory:

code .

Then install the required dependencies:

pnpm i -D vite solid-js vite-plugin-solid typescript

As you see, Vite reduces the number of dependencies to a few modules.

Next, we create a few files at the root of our project:

touch index.html tsconfig.json vite.config.ts

index.html will be served by Vite’s development server and it contains the entry point to our Solid
application:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 <title>My App</title>

 </head>

 <body>

 <div id="root"></div>

 <script src="/src/index.tsx" type="module"></script>

 </body>

</html>

The index.html file loads index.tsx which we are going to create in a moment.

tsconfig.json provides the TypeScript configuration:

{

 "compilerOptions": {

 "strict": true,

 "target": "ESNext",

 "module": "ESNext",

 "moduleResolution": "node",

 "allowSyntheticDefaultImports": true,

 "esModuleInterop": true,

 "isolatedModules": true,

 "jsx": "preserve",

 "jsxImportSource": "solid-js",

 "types": ["vite/client"],

 "noEmit": true

 }

}

Chapter 2. Setting Up a Development Environment | 9

"jsx": "preserve" instructs TypeScript not to compile JSX files but to pass them as-is so that we can
use Babel-js for that task.

"jsxImportSource": "solid-js" sets solid-js as the JSX runtime. The jsxImportSource setting is
required to provide static types to JSX elements.

NOTE jsxImportSource declares the module from which to import the jsx and jsxs factory
functions when running files with tsx and jsx extensions.

https://www.typescriptlang.org/tsconfig#jsxImportSource

CAUTION

If you are using VSCode and did not set TypeScript properly, the editor will emit an error like
the one below:

Cannot find name 'React'

If you fail to set jsxImportSource option, you will have an error like this one:

JSX element implicitly has type 'any' because no interface

'JSX.IntrinsicElements' exists.

These are the only Solid-specific options we need to set.

"types": ["vite/client"], option imports types from the vite/client module. You can learn
more about this feature in the Vite documentation:

https://vitejs.dev/guide/features.html#client-types

You can consult the TypeScript docs for the remaining settings:

https://www.typescriptlang.org/tsconfig

Now, open the vite.config.js file and add the following content:

import { defineConfig } from 'vite';

import solid from 'vite-plugin-solid';

export default defineConfig({

 plugins: [solid()],

});

https://www.typescriptlang.org/tsconfig#jsxImportSource

10 | Chapter 2. Setting Up a Development Environment

Here we modified the default Vite configuration with an additional plugin. vite-plugin-solid
internally uses Babel-JS to transform jsx/tsx files and provides hot module replacement with fast-
refresh support.

Now, let’s open the package.json file and add a few scripts:

"scripts": {

 "dev": "vite --port 3000",

 "build": "vite build",

 "serve": "vite preview --port 3000"

}

The dev script runs Vite’s development server. The port parameter sets the port number for the
server.

Although the port value is not required, we set it to provide clear instructions. If the specified port is
busy, Vite will continuously increment the port number and connect to the first available port.

The build script builds the application while the serve script serves the application we built.

Now, it’s time to create a simple Solid application. First, add a new folder called src on the root
directory, and then create the index.tsx file inside. Make sure the file path matches the src attribute
we used in the index.html file.

mkdir src

touch src/index.tsx

Add the following script to index.tsx:

import { render } from 'solid-js/web';

export const App = () => {

 return (

 <div>Hello World!</div>

);

}

render(() => <App />, document.getElementById('root')!);

This SolidJS code imports the render function from the solid-js/web package and then defines an
App component that returns a single div element with the text "Hello World!". Finally, the render
function is called to mount the App component to the DOM element with the ID root. The HTML-
like syntax used here is called JSX, which is employed to define the component's structure in a manner
that resembles HTML. Solid utilizes JSX to construct the view layer.

The render function requires us to provide a component that returns a JSX element.

Chapter 2. Setting Up a Development Environment | 11

Although we wrap the App component in an anonymous function in our example, both of these
usages are valid because the App function itself is a component that returns a JSX element:

render(App, document.getElementById('root'));

render(() => <App />, document.getElementById('root'));

In this book, we prefer the second method due to difficulties with Vite's HMR using the first one; it
fails to replace the imported modules. In other words, you may have issues with HMR if you pass the
App component directly to the render function:

render(App, document.getElementById('root'));

In those situations, try changing App to () => <App /> to resolve the issue:

render(() => <App />, document.getElementById('root'));

If the problem persists, you can try to force a full-page refresh by using the @refresh reload pragma.
Open the module file that you wish to refresh the page for when changes are made, and insert the
following comment at the top of the file:

// @refresh reload

This pragma instructs the HMR system to fully reload the page when this module is updated.

NOTE In the context of Hot Module Replacement (HMR), a pragma is a special comment or
annotation in the source code that directs the HMR system on how to handle module
updates. The @refresh reload pragma, in particular, triggers a full page reload, ensuring all
changes are applied cleanly.

The ! symbol that follows the mount point in the render call is known as the non-null assertion
operator. It tells the TypeScript compiler to treat the element as if it is guaranteed to not be null or
undefined:

document.getElementById('root')!

To run the development server, we need to execute the dev command in the terminal:

pnpm run dev

Now, visit http://localhost:3000/ in your browser to see the result.

12 | Chapter 2. Setting Up a Development Environment

Now, let’s update the application by adding a few exclamation marks, just to see if fast-refresh works:

<div>Hello World!!</div>

You should see the exclamation marks appear on the screen without the need to restart the server or
refresh the page. If not, it means your development server does not work as expected. You need to
check if you’ve made any mistakes while setting it up.

With the setup complete, we are now ready to dive into how Solid works.

13

CHAPTER 3

On SolidJS

In this chapter, we will have a high-level overview of Solid, covering the fundamental principles that
Solid is built upon. If you find any of these concepts difficult to grasp, don’t worry as we will delve
into each one of them in greater detail later in the book.

Before getting into how Solid works, let’s talk about the problems Solid aims to solve.

The Problem Solid Solves
We create applications to manipulate data. Data may come from various sources, such as databases or
files, or it may be hard-coded into the program.

The data that an application operates on lives inside the computer’s memory. What we see on the
screen is its visual representation. Data is the source of truth, but the pixel on the screen is its
manifestation.

In an actual application, data changes over time. We use the term state to describe the state of data at a
specific point in time. When data changes, we need to change its visual representation too, to avoid
inconsistencies.

For example, consider a character’s position in a 2D video game:

Position { x: 0, y: 0 }

When the player presses an arrow key for moving or jumping, the data that controls the character’s
position changes. The program needs to update the character’s visual representation on the screen
too. It is essential to keep track of data and ensure that all its representations reflect its actual state.

There are different approaches to solving this synchronization problem.

14 | The Problem Solid Solves

In non-reactive systems, when we update the state we update its visual representation too. This is a
tedious and error-prone task, so we structure our application in a certain way to minimize errors,
which is commonly referred to as an architectural pattern. MVC, MVP, and Flux are some well-
known examples of architectural patterns.

For example, in the MVC pattern, the Model represents the state of data, the View is the visual
representation of the model, and the Controller is the glue code that runs the synchronization logic
between the Model and the View. After updating the state, the Model calls the controller and the
controller updates the UI layer. Usually, there is an explicit invocation of the method that notifies the
view layer of a change.

However, adhering to a specific architectural pattern can be limiting, especially for large applications,
and they bring their own set of problems.

In reactive systems, data is reactive and the UI derives its state directly from the data.

Updating data triggers a synchronization logic that updates the UI. This practically makes the UI a
side effect, reducing potential errors.

View = fn(State)

In this approach, fn is a transform function that takes the state as input and produces a corresponding
view. Since fn is pure, it always outputs the same result for a given state, making it easy to reason about
the behavior of the system.

Synchronizing the state and the UI is important, but it is not the only problem we face when working
with browsers. Modern browsers have a very complex rendering pipeline. A piece of data goes through
several successive stages before being displayed on the page.

Let’s take a look at these stages briefly and then talk about how Solid helps us with them:

1. Construction of the DOM Tree
This is the initial step where data is converted into a tree-like structure called the DOM.
Depending on the source of the data, DOM nodes can be created programmatically using the
browser API or it could be generated automatically by the browser using the HTML code that is
returned from the server.

2. Construction of the CSSOM Tree
The CSS is parsed into a CSS Object Model (CSSOM) tree. The browser takes the CSS code
and constructs another tree-like structure called the CSSOM, which represents the styles and
visual rules for the web page. This step is crucial because it determines the visual appearance of
the elements on the page.

Chapter 3. On SolidJS | 15

3. Render Tree Construction
The browser takes the DOM and CSSOM trees and combines them into a single tree, called the
Render Tree. This tree represents the visual structure of the web page, including the styles and
positions of each element, determining which elements should be displayed and how they
should be laid out.

4. Layout
In this stage, the browser figures out where the elements go on the page. It calculates the position
and size of each element in the Render Tree, based on factors like the viewport size and element
dimensions.

5. Painting
The browser takes the Render Tree and paints the elements onto the screen, applying styles,
colors, and textures. At this stage, the end user can see the element on the page, however,
elements that are part of the composited layers may not be fully interactive until the compositing
stage is complete.

6. Compositing
The painted elements are composited together to form the final image displayed on the screen
called a frame. Elements are stacked together or put into layers based on their properties like z-
index. Once the layers are created, they are organized into a Layer Tree. This tree structure
maintains the hierarchy of the visual elements and their relationships, allowing the browser to
understand which elements are in front of or behind others.

This stage is especially important for complex animations and scrolling. The composited frame
is then sent to the screen for display. High refresh rate displays require this process to occur at a
minimum of 60 times per second (60 Hz) to provide a smooth and fluid user experience.

It’s important to note that this pipeline is not a strictly linear process. Modern browsers employ
various optimization techniques, such as speculative parsing and incremental rendering, to improve
the perceived performance and responsiveness of web pages. However, improper actions on our part
can disrupt this process, leading to significant performance degradation and user experience issues.

For example, if you modify the element’s size after it is painted, you will force the browser to
recalculate the layout and repaint the element. Applying certain CSS properties like opacity,
transform, or filter can cause the browser to create a new compositing layer for the affected element.

Layout calculations and repaints are expensive operations that can significantly impact performance.
If you manipulate DOM nodes while they go through these stages, you will break the pipeline and
make the process fall back to the previous stage, or worse it will make the browser cancel all the work it
did and start over.

16 | The Problem Solid Solves

Understanding the rendering pipeline is vital for performance optimization. By minimizing
unnecessary reflows and repaints, we can enhance the efficiency of our web applications.

Solid, like many modern frameworks, observes the browser's rendering pipeline when building and
modifying the DOM tree. It helps us to minimize DOM modifications, allowing us to batch them
and apply them together, as this can minimize the number of reflows and repaints.

Long-running JavaScript tasks can block the main thread, causing the browser to freeze and
preventing updates to the rendering pipeline. Solid employs a scheduler to gain more control over the
rendering pipeline, allowing it to optimize performance, prioritize updates, and maintain a smooth
and responsive user experience. Because of this, even if we run a state update in a tight loop, Solid's UI
never becomes unresponsive.

Solid also helps us to take advantage of various optimization techniques like code splitting and lazy
loading which can improve the application's initial load time and perceived performance.

In conclusion, Solid helps us to write more efficient JavaScript code, ensuring a smoother user
experience.

How Solid Works?
At its core, Solid has two guiding principles and everything else revolves around them:

Reactive data
Composable UI

Reactive data means the changes to the data are propagated to all interested parties, including the UI
layer. This ensures that the UI is always up-to-date and reflects the current state of the data.

Composable UI means the UI layer is constructed from small, reusable pieces called components.
Components can be combined to build highly complex applications. This approach makes it easier to
develop, test, and maintain the UI code.

Reactive Data
Solid uses signals for reactive data. The concept of a signal is quite simple: It is a wrapper around a
regular JavaScript value that keeps a list of subscribers which are notified whenever the value changes.

To create a signal, we import the createSignal function into the current module and call it with an
initial value:

import { createSignal } from "solid-js";

Chapter 3. On SolidJS | 17

const [getCount, setCount] = createSignal(0);

 ↑ ↑

// accessor setter

createSignal returns an array with two items: a getter and a setter. The getter function, commonly
referred to as the signal accessor, retrieves the stored value, while the setter function updates it.

We use array destructuring to extract them onto local variables.

Array destructuring is a deliberate design choice because:

We can use any variable name we prefer.
It provides separation of concerns by enforcing read-and-write segregation.

Signals provide unidirectional data flow by design. Data is always updated at its source, only then the
new value trickles down to its consumers through effects.

Although having an isolated setter and a getter function is not a requirement for unidirectional data
flow, it prioritizes readability over the co-location of the said functions.

Signals can store any type of data, including complex objects.

Signals are tracked within a tracking scope. A tracking scope, also known as a reactive context, is a
function scope created by createEffect or similar functions from the core module that can create
subscribers to monitor reactive values. These subscribers are designed to perform specific tasks, such
as running side effects, and are deeply integrated into the reactive system.

import { createEffect } from "solid-js";

createEffect(() => {

 console.log(getCount());

});

createEffect creates an effect that is called whenever the signal updates. The callback function we
pass to createEffect needs to read the signal in order to subscribe to it. Subscription takes place
automatically upon reading the signal.

Since getCount is a function, we had to call it to retrieve the value.

Solid uses a naming convention for the getter functions that do not include the get prefix, for example,
count instead of getCount.

18 | Reactive Data

While this convention may be confusing at first, it is an intentional design choice that promotes clear
and concise variable names. The benefit becomes more apparent when we introduce the concept of
derived signals which are pure functions that transform reactive values.

const double = () => count() * 2;

Note that double is not a reactive value itself but recalculates its value each time it is called. When used
within a reactive scope, like in createEffect, it re-runs its transformation whenever the effect re-
executes:

createEffect(() => {

 console.log(double());

});

We will revisit this topic later in Chapter 5, Tracking State With Signals.

Now that we have created our effect, we can update the signal. We will use the setInterval function:

setInterval(() => {

 setCount(count() + 1);

}, 1000);

This code sets a timer that increments the count value by 1 every second.

Each signal keeps its own subscribers. When an effect reads a signal, it will be added to the signal’s
subscribers queue.

There is a dynamic dependency between an effect and a signal.

There is no manual process for subscribing or unsubscribing; it all occurs automatically. When the
code is executed, the effect reads the signal and gets added to the signal’s subscribers and called back
when the signal’s value is updated. Once it is called back, the effect will be removed from the
subscribers. If the effect re-reads the signal while it is being called back, it will be added to the
subscribers again to be called upon the next update. We will explain the reason for this later when
learning about Solid’s reactive core.

If an effect fails to read a signal for some reason, such as the signal being wrapped in a conditional
statement, the effect will not be able to subscribe to the signal.

let x = 0;

createEffect(() => {

 if(x > 5) {

 console.log(count());

 }

});

Chapter 3. On SolidJS | 19

There are many-to-many relationships between signals and effects. An effect can subscribe to multiple
signals. A signal can be observed by multiple effects.

Composable UI
We already mentioned that being composable means the UI layer is made up of small, independent,
reusable pieces called components that can be put together to form complex structures.

A Solid component is a JavaScript function that returns a JSX element. JSX is a special syntax that
resembles HTML or XML but is more powerful, as it allows the execution of JavaScript expressions
within it. We use JSX elements to describe what we want to see on the page.

Components serve as building blocks for applications.

Here is a simple Solid component that returns H1 element with "Hello World!" as its content:

const Greeting = () => {

 return <h1>Hello World!</h1>

}

Solid uses a compiler to convert JSX elements into native DOM nodes. The component above will be
converted into the following code:

import { template as _$template } from "solid-js/web";

var _tmpl$ = /*#__PURE__*/_$template(`<h1>Hello World!`);

const Greeting = () => {

 return _tmpl$();

}

Solid does not use document.createElement calls in the compiled output but instead uses HTML
strings that produce HTML fragments. That is for achieving a better performance while producing a
smaller bundle size.

The template function creates DOM nodes from the provided string value.

The /*#__PURE__*/ comment is a directive for the compiler indicating that the function call it
precedes is pure. This means the function always returns the same result if given the same arguments.

We will revisit this topic later in Chapter 09, Composing User Interfaces.

Now that we have a component, it is time to display it on the screen. We use the render function for it.

20 | Composable UI

The entry point for any Solid application is the render function. It takes two arguments: a
component to render (commonly called the root component) and a DOM element where the root
component’s output will be mounted.

Listing 3.1 The render function mounts the root component to the DOM (ch03/example-01)
import { render } from 'solid-js/web';

const Greeting = () => {

 return <h1>Hello World!</h1>

}

render(Greeting, document.body);

NOTE Although mounting applications directly onto the body element is strongly discouraged, we
will do it for clarity and simplicity. It is discouraged because body is a common ancestor for all
page elements, and it could be mutated by other libraries as well, causing inconsistencies and
hard-to-catch bugs.

The render function is not exported by the core module but through solid-js/web. The aim is to
isolate the core library from runtime-dependent logic, allowing Solid to be used inside different
runtime environments without conflict.

Solid owes its composable traits to JSX, and JSX supports a variety of features that make it very
practical and easy to work with.

Listing 3.2 JSX allows components to be nested like HTML elements (ch03/example-02)
const Heading = () => <h1>Hello World!</h1>;

const Message = () => <p>Here is a message for you.</p>;

const App = () => {

 return (

 <div>

 <Heading />

 <Message />

 </div>

);

}

We can use expressions inside a JSX element via {}. An expression is a unit of code that evaluates to a
value.

Listing 3.3 Use curly braces to embed JavaScript expressions inside a JSX element (ch03/example-
03)

Chapter 3. On SolidJS | 21

const Counter = () => {

 const [count, setCount] = createSignal(0);

 setInterval(() => {

 setCount(count() + 1);

 }, 1000);

 return (

 <div>Count: {count()}</div>

);

}

Listing 3.4 Use a ternary expression for conditional rendering inside a JSX element
(ch03/example-04)

const Counter = () => {

 const [count, setCount] = createSignal(0);

 setInterval(() => {

 setCount(count() + 1);

 }, 1000);

 return (

 <div>Count: {count()} {count() % 2 === 0 ? 'Even' : 'Odd'}</div>

);

}

Components receive data via props — special attributes passed in JSX:

<Greeting name="John Doe" age={25} />

JSX attributes are collected into a single props object, which is passed as the first argument to the
component function.

Listing 3.5 Attributes are passed to the component definition as the props object (ch03/example-
05)
function Greeting(props) {

 return <h1>Hello, {props.name}! You are {props.age} years old!</h1>;

}

const App = () => {

 return <Greeting name="John Doe" age={25} />

};

Composition and reactivity give us all the flexibility we need to write efficient and developer-friendly
applications.

22 | Composable UI

Please note that these examples fall short of displaying the true power of JSX. Since we are going to
have a dedicated chapter on JSX, we will move on now.

Solid uses a compiler to convert JSX into DOM elements. Using a compiler brings certain benefits
like producing smaller bundles with better-optimized code that we cannot write by hand, at least not
consistently.

If you look at the frontend frameworks benchmarks, you will see that Solid applications are as
performant as their vanilla JavaScript counterpart:

https://krausest.github.io/js-framework-benchmark/

TIP Rendering benchmarks gives us an idea of how fast a library is, but we should approach these
benchmarks with caution because the browser’s rendering pipeline will be the bottleneck for
all competing projects. That is why there is a tiny difference between libraries unless the
library does something very costly.

In Solid, state is completely decoupled from the UI, enabling a more maintainable and scalable
architecture.

In Listing 3.6, the Counter component defines its state using a signal scoped to the Counter function
itself. However, as demonstrated in Listing 3.7, we can move the state outside the component and into
a broader scope — in this case, the global scope — and the component continues to function as
before.

Listing 3.6 State is declared locally inside the component using a signal (ch03/example-06)
import { createSignal } from "solid-js";

import { render } from "solid-js/web";

const Counter = () => {

 const [count, setCount] = createSignal(0);

 const handleClick = () => {

 setCount(count() + 1);

 };

 return (

 <div onClick={handleClick}>Count: {count()}</div>

)

}

render(() => <Counter />, document.querySelector('#root')!);

Listing 3.7 State can reside outside a component (ch03/example-07)
import { createSignal } from "solid-js";

https://krausest.github.io/js-framework-benchmark/

Chapter 3. On SolidJS | 23

import { render } from "solid-js/web";

const [count, setCount] = createSignal(0);

const Counter = () => {

 const handleClick = () => {

 setCount(count() + 1);

 };

 return (

 <div onClick={handleClick}>Count: {count()}</div>

)

}

render(() => <Counter />, document.querySelector('#root')!);

The Advantages of Solid Over Its Alternatives
Now, let’s talk about what makes Solid a valuable tool for developing front-end applications.

Performance
First and foremost, Solid is a performant library and its performance can be attributed to its fine-
grained reactive updates.

If you inspect the following code inside the browser’s developer tools, you will see that only the
innerText of the div element gets updated:

Listing 3.8 Solid performs fine-grained updates (ch03/example-08)
import { createSignal } from "solid-js";

import { render } from "solid-js/web";

const Counter = () => {

 const [count, setCount] = createSignal(0);

 setInterval(() => {

 setCount(count() + 1);

 }, 1000);

 return (

 <div>Count: {count()}</div>

);

}

render(() => <Counter />, document.body);

Solid achieves this by compiling components into dynamic and static parts which we will discuss
later in the book. Static parts remain unchanged, whereas dynamic parts are wrapped in an effect
so that their content can be updated surgically.

24 | The Advantages of Solid Over Its Alternatives

Unlike many popular frontend frameworks, Solid does not use a virtual DOM. Instead, it
compiles components to native DOM nodes. This approach, combined with fine-grained
reactive updates, makes Solid applications more resistant to performance degradation.

The virtual DOM is a programming abstraction that keeps a copy of the UI in memory and
synchronizes it with the actual DOM only when the application state changes. This strategy
exists because direct DOM manipulation is traditionally slow and expensive. However, the
virtual DOM itself can introduce performance overhead — especially as it re-evaluates and re-
renders entire sections of the DOM tree, even when only part of it has changed. To mitigate this,
frameworks often implement techniques like diffing and batching, which reduce unnecessary
updates but add complexity and can still incur costs.

One consequence of Solid’s use of native DOM nodes is that a DOM node cannot be inserted in
multiple places without moving it. This is a natural limitation of the DOM: a node can only
exist in one place at a time.

Listing 3.9 A DOM node moves when re-inserted (ch03/example-09)
import { render } from "solid-js/web";

function App() {

 let button = <button>Click</button>;

 return (

 <div>

 {button}

 <h1>Hello World</h1>

 {button}

 </div>

);

}

render(() => <App />, document.body);

When rendered in the browser, the App component produces the following output:

<div>

 <h1>Hello World</h1>

 <button>Click</button>

</div>

This behavior can lead to subtle bugs in your application if not handled properly. Always ensure
that nodes are cloned or recreated when they need to appear in multiple parts of the DOM to
avoid unintended side effects.

A simple solution is to wrap the element in a function:

Chapter 3. On SolidJS | 25

function App() {

 let button = () => <button>Click</button>;

 return (

 <div>

 {button()}

 <h1>Hello World</h1>

 {button()}

 </div>

);

}

Each call to button() returns a fresh DOM node, which prevents problems caused by reusing
the same node in multiple places.

An alternative approach is to define the button as a component:

import { render } from "solid-js/web";

function App() {

 let Button = () => <button>Click</button>;

 return (

 <div>

 <Button />

 <h1>Hello World</h1>

 <Button />

 </div>

);

}

While this method introduces a bit more complexity — since each <Button /> triggers a
createComponent call under the hood — it improves modularity and maintainability by
encapsulating the button in its own component.

Synchronous Execution
In Solid, both state updates and effects are executed synchronously, making it straightforward to
work with.

Some libraries use asynchronous logic, utilizing either the microtasks or the event loop to
execute effects. This is done to ensure consistency as an update may trigger subsequent updates
that can put the UI layer in an inconsistent state or cause unnecessary re-renders. However,
asynchronous rendering can make code difficult to reason about, limiting our ability to manage
it effectively since we have less room for maneuvering.

Vanishing Components
In Solid, components serve the purpose of organizing code. They are executed only once when
the application is loaded. Subsequent updates operate independently of the component

26 | The Advantages of Solid Over Its Alternatives

structure. This approach gives way to better-optimized code with better developer experience as
updates are not affected by the component structure.

Compiled Code
Solid employs a compiler to transform JSX into native DOM elements, resulting in smaller
bundles. The use of a compiler offers several advantages, such as producing more optimized
code, more consistent and predictable performance, and the ability to modify the output
without altering the API or the semantics.

Unidirectional Data Flow
Signals offer unidirectional data flow by design which reduces code complexity and makes it
easier to manage the flow of information within the application. In other words, it is easier to
track data through the component tree.

Declarative data and declarative UI
Declarative programming is a style where the consuming code describes what it needs, and the
component handles how it gets done. The imperative logic is abstracted away — hidden from
the outside world.

For example, imagine we have a list of images and want to display them as a slideshow. Instead of
manually writing code to create slides, manage timers, and switch images, we can simply write:

<Slider

 images={['1.png', '2.png', '3.png']}

 duration={5}

 autoplay={true}

/>

This tells the Slider component everything it needs: a list of images, how long to show each one,
and whether it should autoplay. Our code — the consuming side — doesn’t need to worry
about how the slideshow actually works. The component takes care of transitions, timing, and
state management behind the scenes.

This approach keeps our code clean and focused. We can build powerful interfaces just by
describing our intent, without getting lost in implementation details.

Composable UI
Solid components can be nested and they can be passed around like any other variable which
makes them highly flexible and powerful, leading to more efficient and maintainable code.

Modular and Portable

Chapter 3. On SolidJS | 27

Solid components offer clear boundaries and well-established relationships between data and
UI, making them highly modular.

With Solid, we can extract parts of our application into separate modules and use them
anywhere we like, aligning well with React’s “write once, use everywhere” motto. However,
unlike React components, Solid components do not trigger unexpected re-renders, thereby
reducing potential bugs and performance issues.

Furthermore, Solid’s custom directives allow us to abstract not only UI elements but also event
listeners into reusable pieces. This means that you can write fully-functioning services in one
project and import and use them in another one.

SSR with streams
Solid allows us to write isomorphic applications with server-side rendering. It provides a reactive
API for fetching and rendering asynchronous data, which also supports streaming.

Alternative rendering methods
If you are unable to use a compiler for some reason, you can use Tagged Template Literals or
HyperScript to skip the compilation step. While the output may not be as performant or as
small as the compiled code, these alternative methods offer a viable option.

Solid has a small API surface, produces small bundles, and offers good results in performance
benchmarks.

Thanks to these qualities, re-implementing a library in Solid is often easier than in frameworks like
React. In many cases, you can achieve comparable performance without needing special
optimizations or workarounds. Porting existing libraries into Solid also tends to be faster and more
straightforward than with other libraries.

29

CHAPTER 4

How Solid’s Reactive System Works

In the previous chapter, we covered reactive data just enough to get started. In this chapter, we will
learn how Solid implements reactivity by writing our own reactive core that works the same way and
has the same API as Solid’s.

Solid’s reactivity is built on three core components: signals, computations, and memos.

Signals serve as the data sources for other components in the system. They are observable values that
other components can subscribe to, enabling them to receive notifications when the signal’s value
changes.

const [count, setCount] = createSignal(0);

A signal stores a single value of any data type. Each signal keeps its own subscribers and notifies them
when its value changes.

It is the computation object that subscribes to signals and gets notified when a signal’s value changes.

createEffect(() => {

 console.log(`Count is ${count()}`);

});

Understanding computations is crucial for developing the correct mental model of the Solid runtime.
Many challenges in Solid stem from misunderstandings about how computations work and interact
within the reactivity system. The most frequently asked questions in the community often relate to
how computations are created or executed and how dependencies are tracked. Without a solid grasp
of these fundamentals, it’s easy to encounter unexpected behavior or performance issues. That’s why
we’ve dedicated this chapter to an in-depth discussion of the internal APIs and mechanics of
computations, providing the foundational knowledge needed to work effectively with Solid’s
reactivity model.

A computation is not an abstract concept but a concrete object with methods and properties. They
are used within the core module and are not directly exposed to the outside world.

30 | Chapter 4. How Solid’s Reactive System Works

There are various ways to create a computation. The createEffect function we have been using so
far is just one of them. Other methods include createRenderEffect, createComputed, createMemo,
createDeferred, and createReaction.

Although each function creates a computation internally, they either execute at different times to
meet specific requirements for the tasks they perform or offer a different API suited to a particular
need. For instance, the effects and the render effects are almost identical, except that the render effects
are used specifically for rendering DOM nodes and have priority over the effects during their initial
execution. Once the rendering phase is completed, they behave like regular effects. We will discuss each
of these functions in their respective topics.

Solid doesn’t execute computations immediately; instead, it relies on a scheduler. When a signal
triggers a computation, the computation is placed on the scheduler’s queue. The scheduler is an
interruptible task queue that pauses briefly to run more critical code while updating the UI. Due to
this feature, even if you update a signal within an effect in a way that could cause an infinite loop, the
browser will not become unresponsive.

Although computations don’t inherently have priority, the scheduler’s execution logic achieves a
similar outcome by effectively prioritizing their execution order.

Observer Pattern
Solid employs the observer pattern internally but doesn’t rely on event streams or message passing,
which might confuse those familiar with other reactive libraries.

There are numerous implementations of the observer pattern, but they all boil down to three styles:
those that push the state to observers, those that let observers pull the state as needed, and those that
use both methods.

Libraries such as RxJS and CycleJS use the push style: An observable pushes the updated state to a
subscriber in the form of an event or a message. Subscribers always receive the new state through an
event.

A typical callback function for executing side-effects in such libraries is as follows:

function callback(event) {}

Chapter 4. How Solid’s Reactive System Works | 31

SolidJS, Mobx, and Knockout use a combination of both the pull and push styles: An observable
notifies its subscribers, which constitutes the push phase, and each subscriber reaches for the new
state as part of the pull phase. The most noteworthy aspect of this approach is that the new data is
received from the source directly through re-execution, without any intermediate values or events.
Consequently, their callback functions for executing side effects do not rely on events:

function callback() {}

Re-execution provides a simpler mental model with better performance characteristics, while the
event streams can quickly get unwieldy with multiple observables because now we need to use
conditionals to handle different events in the subscriber’s logic, or we have to transform them before
they are passed to their consumers so that they can be consumed directly. This is why libraries like
RxJS include numerous operators for creating new observables from existing ones by merging,
splitting, and transforming them.

Although Solid uses the observer pattern, its documentation avoids explicitly using terms associated
with it. The reasons for this avoidance are not clearly stated, but it may be an intentional effort to
minimize technical jargon and reduce the cognitive load that comes with the observer pattern.

It’s time to get our hands dirty. We will start with a very crude implementation to understand the
relationship between the underlying components and then refactor to a more accurate one. You can
explore the full code examples in the repository under ch04.

The Essence of Reactive Core
Let’s start with the requirements for a signal.

A signal should:

Store a value that changes over time.
Maintain a list of subscribers.
Notify subscribers whenever the value changes.
Add and remove subscribers, as a subscriber’s dependency may change over time.
Provide read-write segregation through getter and setter functions.

With these requirements in mind, we can define the Signal type. As outlined, a signal stores a value
and maintains a list of subscribers.

interface Signal<T> {

 value: T;

 observers: Set<Computation<any>>;

}

	Chapter 01. Introduction
	Code Examples
	Contact and Feedback
	Requirements
	Trying Solid via Online Playground
	Creating a Project From a Template
	Note For React Developers

	Chapter 02. Setting Up a Development Environment
	Chapter 03. On SolidJS
	The Problem Solid Solves
	How Solid Works?
	Reactive Data
	Composable UI

	The Advantages of Solid Over Its Alternatives

	Chapter 04. How Solid’s Reactive System Works
	Observer Pattern
	The Essence of Reactive Core

