POCKET-SIZED INSIGHTS FOR SOFTWARE TEAMS

D
/

TEAM GUIDE TO

SOFTWARE RELEASABILITY

Manuel Pais & Chris O’Dell

@conflux

Team Guide to Software
Releasability

Manuel Pais and Chris O’Dell

This book is for sale at http://leanpub.com/softwarereleasability
This version was published on 2021-06-24

ISBN 978-1-912058-61-7

econflux

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2016 - 2021 Conflux Books

http://leanpub.com/softwarereleasability
http://leanpub.com/
http://leanpub.com/manifesto

CONTENTS

Contents

1. Team Guides for Software

2. Foreword

3. Introduction

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

What is software releasability?

What does resilient delivery feel like?
Warning signs of software delivery debt
Why invest in software releasability?
Relationship to Continuous Delivery
What this book is (not) about
How to use thisbook
Feedback and suggestions

4. Treat your pipeline as a product for resiliency and

fast feedbackloops,
4.1 Make your pipeline the single route to production
4.2 Your pipeline is now a product: invest in it
43 Avoid simply retro-fitting CD into a CI server . .
44 Measure delivery to visualize flow and identify
bottlenecks L.
45 Design the delivery system to evolve with your
needs.
4.6 Apply monitoring and logging to minimize issues

and downtime

0 N U1 Ul

10
11
12
12
13

14

15
18

20

22

24

ReleasabilityBook.com

CONTENTS

10.

11.

12.

13.

14.

4.7 Scale the infrastructure to avoid pipelines queu-

INEUP . . .o oo 25
4.8 Scale the practices and pipelines to support grow-

ingusage 27
4.9 Care for pipeline testability and usability to en-

courage adoption L. 28
4.10 Build security into and around the pipeline 29
411 Getstarted! L oo 30
412 Summary o 31

Ensure delivery system is recoverable to endure dis-
aster 32

Ensure delivery system is operable to minimize down-
time o 33

Ensure both practices and infrastructure can scale to
meetusagegrowth 34

Care for pipeline testability and usability to encour-
ageadoption 35

Measure delivery to visualize flow and identify bot-
tlenecks L 36

Treat your pipeline as a value stream to tackle largest
bottlenecks first 37

Organize teams to promote build and release ownership 38

Appendix A:build security into and around the pipeline 39

Terminology, 40
References and furtherreading 41
14.1 Introduction. 41
14.2 Chapter 1 - Treat Your Pipeline as a Product . . . 42

ReleasabilityBook.com

CONTENTS

15. About the authors

...................... 44
15,1 ChrisODell. 44
15.2 ManuelPais, 45

16. ConfluxBooks 46

ReleasabilityBook.com

1. Team Guides for
Software

Pocket-sized insights for software teams

The Team Guides for Software series takes a team-first approach
to software systems with the aim of empowering whole teams
to build and operate software systems more effectively. The Team
Guides for Software books are written and curated by experienced
software practitioners and emphasise the need for collaboration
and learning, with the team at the centre.

The books focus on specific techniques and approaches that have
been proven to work well for teams building software systems, and
contain several case studies from people in the field, bringing
to life the concepts in real situations. You can use the chapter
headings like a roadmap or backlog of things to adopt and improve
as a team, and each chapter begins with an overview of the key
points, making it straightforward to adopt the techniques and
practices.

b ul & R

TEAM GUIDE TO TEAM GUIDE T0 TEAM GUIDE T0 TEAM GUIDE T0

SOFTWARE OPERABILITY METRICS FOR BUSINESS SOFTWARE TESTABILITY SOFTWARE RELEASABILITY,
[sr—— DECISIONS s e

Titles in the Team Guides for Software series include:

1. Software Operability by Matthew Skelton, Alex Moore, and
Rob Thatcher

http://operabilitybook.com/

Team Guides for Software 2

2. Metrics for Business Decisions by Mattia Battiston and Chris
Young

3. Software Testability by Ash Winter and Rob Meaney

4. Software Releasability by Manuel Pais and Chris O’Dell

0 Find out more about the Team Guides for Software

series by visiting: http://teamguidesforsoftware.com/

ReleasabilityBook.com

http://bizmetricsbook.com/
http://testabilitybook.com/
http://releasabilitybook.com/
http://teamguidesforsoftware.com/

2. Foreword

(This chapter is not available in this edition of the book.)

3. Introduction

Would your organization survive an estimated loss of over $100
million over a single weekend?

That was the initial estimated direct cost after an accidental shut-
down of British Airways IT systems (Butler2017) in May 2017 that
brought down most of their IT systems and left 75,000 passengers
stranded worldwide for a couple of days. British Airways’ share
value also plummeted by over $170 million.

Besides the discussion on what led to the disaster (initial blame fell
on a power surge (Hern2017) and how it could have been avoided,
we are interested in the fact that it took British Airways over 2 days
to bring their systems back up and running.

Did they not store artifacts released into production in a secure
and readily available repository? Did they not regularly provision
(manually or automatically) a minified replica of their production
environments?

We can only speculate but the key here is that every organization
should be able to positively answer these and other questions,
if they want to be resilient and recover quickly from disaster.
Coincidentally, the same practices that help with recoverability also
support faster and safer delivery.

In today’s world, being able to quickly release changes to our
software (including infrastructure updates), either incrementally or
from scratch, is mandatory for survival.

Introduction 5

3.1 What is software releasability?

Software releasability is the capability to release changes to our IT
systems with minimal delays, 24x7. To achieve software releasabil-
ity, we must design and evolve the delivery system to continuously
improve reliability and reduce time to feedback for everyone in-
volved in delivery - from developers to testers, operations, security
and business owners.

A resilient delivery system allows us to recover swiftly from
mistakes and even disasters in our production systems, safe in the
knowledge that our pipelines will be up and running, feedback will
be provided in a timely fashion, and, crucially, any production sys-
tem can be fully rebuilt from scratch (notwithstanding production
data issues).

Increasing software releasability encompasses an adequate pipeline
design - including its evolution over time, a reasoned choice of
toolset, version controlling all the intervening pieces in a pipeline,
and caring about the operability, scalability, security, testability
and usability of our delivery system.

3.2 What constitutes a delivery
system?

A delivery system encompasses all the tooling, configuration and
practices required to get a change from idea into our customer’s
hands, by progressing all the required artifacts through a delivery
pipeline. Such a system needs to evolve along with both the
software technology and the organization’s processes.

In particular, the delivery system includes at least these compo-
nents:

« Continuous Integration (CI) tool

ReleasabilityBook.com

Introduction 6

« Pipeline orchestration tool, also known as a Continuous
Delivery (CD) tool

+ CI + CD infrastructure

+ Orchestration plugins and 3rd party tools

« Pipeline definitions

« Source code repositories

Throughout this book we will be referencing and giving examples
of the above components.

Cl/CD Toolchain

App 1
<I>) o
Pipelines
App 2
<> Infra

An example delivery system with CI/CD/3rd party tools in container images
and respective configuration code under version control (top left box with blue
background), source repositories including pipeline definitions for two apps
and, finally, the running toolchain (Jenkins and Artifactory inside containers)
over the CI/CD infrastructure.

3.3 What does resilient delivery feel
like?

The best way to describe what resilient delivery means is to

highlight how it feels.

Everyone involved in product development today, from developers
to testers or product owners, is under pressure to deliver results

ReleasabilityBook.com

Introduction 7

as soon as possible. Fast feedback is paramount to validate results.
Therefore a resilient delivery means that upgrading to the latest
major version of a pipeline tool, adding a new plugin or changing
the pipeline configuration does not stop delivery or delay feedback
for hours. Changes to the delivery system itself are deployed
transparently and quickly roll backed in cases of failure (ap-
plying patterns such as immutable infrastructure (Stella2015) and
blue-green deployments (Fowler2010), which we cover in chapter
5). There is no need for maintenance windows or downtime in our
delivery system or after hours updates.

A resilient delivery system gracefully handles peak load of build
and pipeline runs, while maintaining an efficient resource
usage. This has all to do with scalability, and is especially relevant
in organizations with a large number of teams which make capacity
planning for CI/CD challenging. There are several ways to go
about this, from distributing the delivery system itself, to auto-
scaling with cloud resources (see chapter 4). The point is to prevent
queued builds and pipelines that force teams to wait for feedback
due to unexpected lack of capacity (Christian Deger calls this the
“deployment pipeline elasticity” (Deger2018a)).

Issues with CI/CD infrastructure or tools during regular oper-
ation are detected and handled swiftly in a resilient delivery
system, with adequate (aggregated) logging, monitoring and
alert mechanisms in place. Impact on development teams, while
not 100% avoidable, is at least greatly minimized. For instance, a
build does not fail due to lack of disk space because resource usage is
being monitored and alerts get triggered when a defined threshold
gets hit. Anomalies are dealt with before they become blocking
issues for the teams. Chapter 6 covers these aspects.

Resiliency means that disaster recovery is possible (almost) at a
click of a button, at least in terms of getting systems ready to
deploy again. With nothing but source repositories for setup and
configuration of our CI/CD toolchain and infrastructure - as well as
the applications repositories themselves - we can recreate the entire

ReleasabilityBook.com

Introduction 8

delivery system from scratch on a regular basis, not only after a
disaster. Supporting practices here include (applications) pipeline-
as-code and CI/CD infrastructure as code, and others described in
chapter 2.

Perhaps the greatest benefit of a predictable and reliable delivery
system is to remove the unnecessary stressful situation of not
knowing if/when we can recover from disaster. It’s not hard to
imagine the high levels of stress and management pressure on the
engineers working to bring BA’s systems back to normal operations.
Avoiding teams and individuals from suffering burnout is more
valuable than anything else.

3.4 Warning signs of software
delivery debt

Strong software releasability capabilities are key to rapid and
reliable delivery of modern software systems. However, it’s easy to
underestimate its importance until a failure of serious consequences
takes place. Like testability or operability, releasability is a “silent
enabler” for delivering and running software effectively:

“Low drama flow doesn’t look like progress to most people” - John
Cutler (Cutler2017)

The analogy here is that a low drama software release looks effort-
less, just changes flowing smoothly through the delivery pipeline.
But without putting in the necessary work on an on-going basis,
releases become painful, undesired but necessary procedures - like
going to the dentist (for many of us, at least).

An ad-hoc, “as needed” approach to releasing software can work
temporarily in a small startup or engineering department where
everyone in the team is more or less abreast of how everything
works. But changes in the software, technology and tools quickly
pile up and any team, no matter how brilliant, will eventually find it

ReleasabilityBook.com

Introduction 9

impossible to keep the entire delivery process in their heads. Issues
start to mount because of the increasing number of moving parts
in our delivery system, consistency and reproducibility takes a hit
and more of developers’ time gets spent fixing them rather than
working on the software itself.

Some warning signs that the delivery approach needs re-thinking
include:

« time from committing changes until they are deployed to
production has increased significantly

« dependency conflicts (for instance different teams depend
on different versions of the same component in the same
environment) becoming more frequent

« drifting release processes between teams (a new engineer in
the team has to re-learn how to release)

« most commits are at end-of-day to avoid wait time during
the day, leading to the pipeline being broken in the morning
more often than not

« issues in the CI/CD toolchain or infrastructure detected by
developers first, and taking a long time to diagnose

« having to rebuild artifacts for a redeploy because an artifact
management repository and policy are not in place

« failing manual steps that only one engineer knows how to fix

« no simple method for determining if a change has been
released to production or is still “in the pipeline”

These signs of an ad-hoc approach to software releasability while
rare at first, tend to manifest and bundle together quickly to a point
where delivery becomes extremely slow, causing revenue and/or
reputation loss for the organization.

ReleasabilityBook.com

Introduction 10

Lack of software releasability is akin to drinking a Kwak beer, it flows fine
until reaching the tipping point in the middle. If not careful, things will end up
messy.

3.5 Why invest in software
releasability?

Software releasability has costs, no doubt. Infrastructure (especially
to support scalability), people (we cover different organization
models for CI/CD in chapter 8) and tooling all have costs.

But investing the necessary CI/CD capabilities means we save
the time and effort (usually taken out of product development)
previously spent on things like fixing the pipeline, restoring depen-
dencies, searching for artifacts, or rolling forward deployment fixes.

On the customer side, new releases become an eventless routine,
instead of a scheduling nightmare with consecutive delays. Down-
time during release is minimized meaning higher availability and
less disruption to the business and/or end users. Also, roll backs in
case of blocking issues become a straightforward process.

ReleasabilityBook.com

Introduction 11

3.6 Relationship to Continuous
Delivery

This book wouldn’t exist without the ground breaking work in
the “Continuous Delivery” book by Dave Farley and Jez Humble
(HumbleFarley2010), a compendium of good practices around build-
ing, testing, deploying, and managing software. In fact, software
releasability is one of the outcomes of fully implementing contin-
uous delivery practices and principles (you can find a list of the
book’s chapters and practices that can serve as a checklist for your
continuous delivery adoption at Skelton2016).

You could look at the practices and patterns described in this book
as an extension of the “Continuous Delivery” (CD) book. We’ve
seen them work well across different clients and we hope this book
provides a contextualized approach for teams adopting continuous
delivery.

The deployment pipeline is a key technique introduced by Farley
and Humble. Since the book came out in 2010, pipelines and the
tooling around them have evolved significantly as more and more
organizations adopted CD. This book is fundamentally about the
sustainability part in Farley and Humble’s definition of Continuous
Delivery:

“The ability to get changes of all types, into production, or into
the hands of users, safely and quickly in a sustainable way”

We believe sustainability of the delivery system is a key enabler for
speed and safety in the deployment pipeline.

Our aim with this book is in part to collect the patterns and anti-
patterns we’ve collected from helping customers move to CD and
experiencing their benefits and their pain, respectively. A core
pattern here is to focus first on goals, principles and practices and
later on automation and tooling.

ReleasabilityBook.com

Introduction 12

3.7 What this book is (not) about

This book focuses on good practices around releasing software that
emerged from both our consulting work with multiple clients and
industry experience. Although it touches on multiple aspects of
software delivery, it does not specifically address the following:

« How to write good build scripts (or Makefiles for that matter)
« Software operability and testability (if you're interested on
those topics please see the dedicated books in this book series)

« Defining the contents of a software release (this is highly
contextual, our only advice is to keep them as small as you
can)

« Deciding whether a given software release is a “go” or “no
go” (again highly contextual, we only recommend asking
yourselves “how confident are we with the testing we've
done?”)

« How to build C#, Java or applications in any other stack (there
are plenty of resources available out there, we would not be
adding anything new)

« Change management processes (although we might have a
suggestion or two if your delivery is being held back by slow
change approval boards)

+ Deployment strategies (we recommend reading chapters 6
and 10 of the “Continuous Delivery” book and look at exam-
ples of how other organizations implemented said strategies)

3.8 How to use this book

Each chapter is readable independently, containing the necessary
level of detail to be understood and actionable on its own, without
requiring any of the other chapters in the book to be read first
(although certainly reading the full book will provide a more

ReleasabilityBook.com

Introduction 13

comprehensive understanding of the concepts and practices and
their inter-relations).

Chapter 1 explains why we need to consider our pipelines and
the delivery system as a product, rather than just another (set of)
tools. Focusing on operability (as detailed in SkeltonThatcher2018)
is fundamental for safe and rapid delivery today.

Chapters 2 to 6 detail the benefits and techniques for ensuring the
delivery system is: recoverable, operable, scalable, testable, usable,
and measurable.

Chapter 7 explains why mapping the value stream activities in the
pipeline is crucial for reducing time to deliver and promote global
optimization of the delivery flow, rather than local.

Chapter 8 covers different team structures supporting software
releasability and the pros and cons of each.

3.9 Feedback and suggestions

We’d welcome feedback and suggestions for changes: please con-
tact us at publications@confluxdigital.net, via @ReleasabilityY on
Twitter, or on the Leanpub discussion at https://leanpub.com/SoftwareReleasability/1

Chris O’Dell & Manuel Pais

ReleasabilityBook.com

mailto:publications@confluxdigital.net
https://twitter.com/ReleasabilityY

4. Treat your pipeline as
a product for resiliency
and fast feedback
loops

Key Points

« Your pipeline is an extension of production because
it is the only route to reliably releasing your code.

« Development teams are your pipeline customers (among

others). They need the delivery system to behave like

a customer-facing system: reliable, responsive and

non-intrusive.

Treating the pipeline as a product requires on-going

maintenance and evolution. Invest in build and release

capabilities and allocate adequate effort to run a reliable
delivery system.

« Measure your delivery performance so you can let
the data drive (global) optimizations, instead of best
guess (local) optimizations.

+ Apply production level monitoring and logging to
delivery to minimize issues and downtime.

« Scale both your delivery infrastructure and practices.
Pipeline needs will change as you grow.

Treat your pipeline as a product for resiliency and fast feedback loops 15

Your delivery pipeline encompasses everything that must be done
in order to release an application change. This includes code
changes, infrastructure changes, and configuration updates. A pipeline
is the orchestration of activities, whereby some of them require
environments for testing, QA, up to production.

4.1 Make your pipeline the single
route to production

The tools used in most delivery pipelines are treated poorly - poorly
maintained, patched, backed up, etc - and yet, if these tools were
to break down, a company’s ability to release software would be
brought to a halt. Tools are also not regularly updated, missing out
on useful new features. Often because no-one feels responsible for
them. It is shocking how many forward thinking, diligent teams,
where emphasis is put on code quality, can neglect the suite of tools
they so heavily rely upon.

As the pipeline is your route to production, it becomes a part
of production as well and all its parts should be treated as such.
Pipeline configuration should be in source control, secrets should
be secured, and backups taken regularly. Another activity that takes
place in production is monitoring and logging. They should also be
present in your pipeline tooling.

4.2 Your pipeline is now a product:
invest in it

High performing teams deploy changes to production multiple
times per day (ForsgrenHumbleKim2017). They rely on the delivery
pipeline to build, secure, test and validate those changes before
deployment. The pipeline is the system through which work flows
into the customer’s hands.

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 16

In other words, the software delivery system has now become an
essential product for internal use in any organization producing
modern software. Because the delivery system is often a compo-
sition of 3rd party tools (vendor or open source or a mix) with
some “glue code” (scripts), configurations and customizations, it
is tempting to look at it as just another set of tools, not as a full-
fledged system that provides a critical service to the organization
(Christian Deger recommends thinking of it as “CD-as-a-Service”
(Deger2018b), an approach taken by ING Bank (Romano2017) for
example).

Instead, we should be thinking of modern IT as running at least
three types of interconnected systems (inspired by a conversation
with Mirco Hering (Hering2018)):

« customer-facing business systems (we include here internal
customers as well)

« operations-facing runtime health check systems (including
monitoring, alerting and repairing)

« development-facing software delivery systems

When we say “operations-facing” or “development-
facing” we’re not referring to particular roles but to
anyone performing operational or development tasks.

All of them need to be managed as critical systems for the organiza-
tion, not just the customer-facing apps or services. Without reliable
runtime health checks, we won’t be aware that a customer-facing
system is facing issues until customers are complaining. Without
fast and safe delivery, we can’t put out fixes predictably and with
confidence.

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 17

Delivery

System

Interdependent systems that make up today’s critical IT landscape

Having these systems in place is a fundamental enabler of the first
two of “The Three Ways of DevOps”, as outlined by Gene Kim
(Kim2012):

« Systems thinking (first way): the delivery system connects
dev to ops by visualizing status of changes and highlighting
bottlenecks between commit and deploy to production.

« Amplify feedback loops (second way): the runtime health
check system provides critical feedback on the performance
of the commercial systems back to development.

The First Way: The Second Way: The Third Way:
Systems Thinking Amplify Feedback Loops Culture Of Continual Experimentation And
Learning

Dev —_— Ops ﬁ
om0 G, GUEELEE)
—_—)

The three ways of DevOps

(Note: the third way is about establishing a culture of continual ex-
perimentation and learning. While systems can help, organizational
culture (Westrum2004) and psychological safety (Delizonna2017)
are the key enablers here)

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 18

4.3 Avoid simply retro-fitting CD into
a Cl server

In many organizations, teams installed Jenkins (or its cousin Hud-
son) in order to build their applications in a central server, in a clean
environment that was not subject to the “works on my machine”
syndrome. In some cases, this backfired into the “it only builds
on the CI server” syndrome, but overall CI servers helped make
the build process more predictable and traceable. While that’s only
one of multiple steps needed to achieve continuous integration
(Fowler2006), it helped many teams move a bit faster.

With the advent of Continuous Delivery those teams typically
extended their use of the CI server from running a set of jobs to
a structured pipeline that orchestrates a set of activities required
to validate and deploy a change to production. However, it fell
short of actually adopting continuous delivery. Often developers
took initiative to adopt new plugins or even tools that supported
the pipeline. Rushed fixes prevailed because there was never effort
allocated explicitly to the evolution of the delivery system.

1 I | I I 1

%) (&)
Pl || ||

: || ||
(%)

= L L

Anti-patterns: build requests queueing up (left), unclear borders between
activities, manual steps (testing, approvals) not part of the deployment pipeline

All this gets compounded by the fact that our pipelines include
more and more activities (infrastructure updates, shift-left security
testing, and so on). Execution time is already long, teams cannot
afford adding wait time or downtime due to half-baked solutions

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 19

in the delivery system.

The problem is not thinking about requirements or pipeline design.
It can be ok to use simply Jenkins with plugins if that fits the
requirements. It’s important to regularly reassess the requirements,
ensuring that we use the best tool for the job and avoiding stretch-
ing tools beyond their purpose. Nevertheless, at some point it
becomes important to consider adopting tools that natively embed
CD concepts as these will tend to make it easier to adopt the CD
practices.

Integration Acceptance Production

https:/github.com/S...

. - No instance of this

trigger new build
e pipeline has run for any of

the direct upstream

dependency revision

Perfermance

No instance of this
pipeline has run for any of
the direct upstream
dependency revision

Security

Mo instance of this
pipeline has run for any of
the direct upstream
dependency revision

User_Acceptance

No instance of this
pipeline has run for any of
the direct upstream
dependency revision

Staging

No instance of this
pipeline has run for any of
the direct upstream
dependency revision

Pattern: full delivery workflow mapped in the pipeline, clear separation be-
tween activities, (short and wide) pipeline design allows risk-based options for
faster delivery

In the next few sections, we will cover some important yet often
overlooked approaches for an effective delivery system that pro-
motes fast and safe delivery of changes.

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 20

4.4 Measure delivery to visualize
flow and identify bottlenecks

It’s natural to focus our attention on the build-test-deploy activities
in the delivery pipeline. The whole team can immediately see that
the latest build took 13 minutes to complete or that deployment to
staging failed.

These are recurring, easy to observe results around automated
activities in the pipeline. But how long did it take for someone to
look into that failed deployment? What if it failed because a port
must be opened in the staging and that can only be done by the IT
security team sometime within the next couple of days?

We don’t usually track the answers to these other questions which
are not directly provided by the pipeline.

But if we want to deliver changes faster and reduce lead time we
need to have a good picture of all the activities that take place and,
especially, the wait times getting a change into customer’s hands.
Let’s walk through an example.

The team is working on this new feature that requires a new port for
communication. This feature might require 20 to 30 pipeline runs
until ready for production. If the team is able to reduce the build
time from 13 to 10 minutes then we’d be reducing lead time by up
to 3 minutes x 30 runs = 90 minutes.

Once the feature progresses through the pipeline, we stumble
against that deployed failure to staging because of the missing
open port. This is a one time fix (by the IT security team) but
will take between a couple of hours and a few days, depending on
the security team’s availability. Removing the dependency on the
staging environment - for example, by dynamically provisioning
ephemeral acceptance environments - would have reduced the lead
time for this feature by at least 2h (33% more than the build time
improvement).

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 21

Often there’s also no direct correlation between cost of the im-
provement and the benefit it brings. Simple changes can have
a much higher impact in lead time than complicated technical
changes. However, there’s a tendency to prefer those technical
improvements that do not require approval or buy in from peers
or managers. But we need to leave our comfort zone to make any
significant progress.

And we need to measure to understand the highest bottlenecks in
our delivery.

Chapter 7 details the practices for measuring delivery
by mapping all the activities involved in the pipeline.

Another aspect to consider are trends and deviations. Looking at
discrete pipeline metrics (latest build or test execution time, for
example) without keeping in mind historical trends can lead to
acceptance of an increasingly longer lead time. For example, if a
suite of automated tests takes 1h to run in our pipeline today, and
we increase it by 5 minutes (perhaps because we’'re adding more
tests for a new feature) we will probably find it reasonable. And
if this happens again next week also. And next week. After only
a month, we’ve now increased the test run time by one third! We
need trends to put metrics in perspective and highlight deviations
over time.

Chapter 6 talks about identifying and tracking metrics
for continuous delivery, as well as thresholds and
alerting on deviations.

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 22

4.5 Design the delivery system to
evolve with your needs

When setting up the delivery system there are a multitude of
choices along the way. And your requirements, like with any
customer-facing system, will change over time.

We recommend first of all focusing on (and documenting) the
practices that the team wants to promote. Take for example the
practice that all artifacts built should be stored for a set period of
time:

+ 1 day for all artifacts that did not get deployed to staging
+ 1 week for all artifacts deployed to staging
« forever for all artifacts deployed to a live environment

A tool with artifact management capabilities will come in handy.
Some initial functional requirements for this tool could include
separate repositories per application, artifact promotion (for e.g.
after deployment to staging), and of course defining the retention
policies.

Now imagine you’ve containerized your application and you want
your pipeline artifacts to be container images. Ideally, you would
have included support for multiple binary formats, including con-
tainer images, in the initial requirements. But chances are that this
was not an anticipated move at the time.

After some research, the team concludes they need to migrate to
another tool that supports the original requirements plus the new
multi-format requirement. This should not be a headache in a
delivery system that is maintainable and easy to change.

Choosing tools that support pipeline evolution means considering
their (inter)operability capabilities. To begin with:

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 23

« does it expose features via an API (or at least an easy to install
command-line interface)?

does the API cover the entire feature set, not just a subset?

+ does it provide access to logs?

does it have good error handling and expose it in the logs?

In particular, the integration of disparate tools in our pipeline
becomes much more maintainable when API-driven. If both the
new and old artifact management tools support the operational
requirements above then swapping them should be a matter of
changing from the old to the new API calls (migrating existing
artifacts is possibly more complicated, but the APIs should help
if there’s no easy export/import mechanism).

ORCHESTRATE
PIPELINE

BUILD PACKAGE DEPLOY

An example pipeline where all the orchestrated tools can be driven via an APL

The requirements for logging access and error handling support log
aggregation and collecting metrics, as you would in a production
system. We can dig deeper when tooling issues arise and we can
look for trends related to build and other activities timings, failure
rates and so on. In short, there is a wealth of tools in this space so it
is important to pick ones which aid your process and help recover
from failure, not hamper evolution by being a closed system.

Any delivery system - even if based on cloud managed services -
needs some “glue code” and configuration to orchestrate different

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 24

activities/tools at some point. The less code you need to maintain
the better. But especially with self-managed delivery systems (even
if tool agents and environments run in the cloud) the amount of
pipeline code keeps increasing. We need to watch out for the same
code smells (duplication, coupling, magic numbers, to name a few)
and apply the same good practices (refactoring, single responsibility
principle, design patterns) and code analysis (especially security
wise) to ensure we keep that code clean and easy to extend.
Avantika Mathur referred, jokingly, to a “Script-ocalypse” as the
proliferation of poorly written scripts that become more and more
costly to maintain (Mathur2018).

4.6 Apply monitoring and logging to
minimize issues and downtime

Monitoring is the act of collecting real time data about your system
and possibly alerting people when values go above, or below, a
threshold. This includes, among others, low level monitoring of
resources such as CPU load, remaining disk space and memory. You
would never run a production system without these basic checks.
As your pipeline is now a product and an extension of production,
these checks should also be run on it.

We talk about monitoring in chapter 3 (monitoring the
health of the delivery system) as well as in chapter

6 (monitoring CI and CD metrics, thresholds and
deviations).

Much like monitoring, no production system should be run without
logging - diagnosing and debugging issues depends on it. In the case
of a pipeline, the logs will be coming from the automation tools
themselves. As a pipeline is generally composed of multiple tools
running on multiple instances, log aggregation is required to make
sense of what’s going on when the tooling breaks.

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 25

Log aggregation can help both the investigation of issues with
the tools themselves (for example a new API version that returns
a slightly different response to a call, breaking our delivery) or
with the actual pipeline activities by providing more in-depth
information on obscure failures.

o Chapter 3 exemplifies how to include log aggregation

in your delivery system and how to detect issues early.

Resiliency in software delivery requires continuous monitoring and
alerting to detect failures early, just like business systems do. Issues
that escape monitoring are good candidates for new tests or alert
conditions on the delivery system.

4.7 Scale the infrastructure to avoid
pipelines queuing up

As with customer-facing systems, when the usage grows the system
must also scale, which generally requires a redesign of the architec-
ture. The pipeline for a single team or a small number of teams
does not look the same as a pipeline for a hundred or more teams.
When scaling a production system it is important to identify your
blockers so that efforts on scaling are targeted at the right place.
The same applies for your pipeline (for more insights see “theory
of constraints”, as introduced in GoldrattCox2014).

The most straightforward aspect that will need to scale with
growing usage is the infrastructure. Ideally, if we want to prevent
build and pipeline queues (as well as reduce execution time via
parallelization), we need an elastic CI/CD infrastructure that can
(auto-)scale up when necessary, and scale down. When using cloud
infrastructure, that becomes straightforward as elasticity is a core
selling point for cloud providers.

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 26

However, most organizations we’ve consulted for still prefer to run
their delivery system on-premise. In this case, running pipeline
agents in ephemeral containers (that live only during a given
pipeline execution) can achieve a more efficient resource usage
when compared to virtual machines or actual physical machines
being used as agents. Still, this approach can only take you so far.

] Team A - leam b

@ g Artifactory

A delivery system where each team is responsible for their own delivery infras-
tructure and practices, but still can benefit from a centralized infrastructure
and toolchain setup, as well as default pipeline definitions.

Monitoring low level resource usage (CPU, disk and memory) in
your CI/CD infrastructure, and alerting when certain thresholds are
reached, are the first steps to trigger a re-evaluation of the system
capacity to cope with current usage. Again, trends are important
here. 90% CPU usage might be an anomaly if it never passed 80%
for the last 3 months, or it could be a sign of danger if usage has
been steadily increasing in the last 3 months.

Chapter 4 details some techniques for scaling the
CI/CD infrastructure, namely infrastructure as code,
agent farms, or ephemeral agents in containers.

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 27

4.8 Scale the practices and pipelines
to support growing usage

A less obvious concern when scaling CI/CD to a growing number
of teams and users is the capacity to quickly onboard new teams
and quickly spread good practices to all the teams already using the
system.

Pipeline-as-code, in similar fashion to infrastructure-as-code, al-
lows defining all the steps, parameters, sources, dependencies and
any other aspects of a given pipeline. This means that the pipeline
can be defined before it’s actually created. Modern CD tools can
search for pipeline definitions in a given repository and instantiate
them, and update them every time a change to the definition is
committed.

Besides reducing the chance for human error when configuring
pipelines via the CD tool’s GUI, pipeline-as-code offers other far
reaching benefits:

« creating a full pipeline from zero for a new application in
a matter of minutes, by leveraging pipeline definitions with
similar technological stack and delivery requirements

+ promote reuse by parameterizing and pushing code to execute
the pipeline stages down to be shared by multiple pipelines

+ clearly assign the responsibility for defining the pipeline
to the team that delivers the application (more on team
organization patterns and responsibilities in chapter 8)

« allowing teams to share good practices by merging pipeline
code (this requires making the practices explicit and decou-
pled from specific tools as much as possible)

Chapter 4 provides concrete examples and guidance
on how to adopt pipeline-as-code for scaling CI/CD

across teams.

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 28

Focus on making practices easy to understand and
easy to adopt, rather than enforce standards. Reason-

able policies (such as not deploying artifacts to pro-
duction with known vulnerabilities) can be manda-
tory without enforcing specific practices.

4.9 Care for pipeline testability and
usability to encourage adoption

Testability and usability are as important for a delivery system as
for a customer-facing system. Testability helps reduce downtime
due to untested changes to the pipeline and tools. Usability makes
the pipeline actions and data accessible to a wider range of users,
namely business owners.

It is all too common to find the delivery system that the application
teams rely on being directly modified (for example, adding new
tools), without prior testing. This has a high probability of leading
to failures and possibly downtime. There is no reason not to run
a CI/CD development environment (a scaled down replica of the
delivery system) for testing those changes in isolation beforehand
(further made easier when the CI/CD infrastructure is already
codified).

By leveraging pipeline-as-code and creating pipelines for sim-
ple “Hello World” applications that mimic the actual application
pipelines we can perform a sort of “smoke tests” of changes to the
delivery system. This should include deployment to a production
environment, knowing that the presence of the example app is
harmless.

We are not done after testing in isolation though. By deploying
with a blue-green approach we can then monitor for instabilities
in the pipeline, and rollback to the previous version if necessary.

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 29

Simultaneously reducing downtime and impact on the pipeline
users.

4.10 Build security into and around
the pipeline

Unfortunately, we can’t simply monitor security and wait to take
measures when some threshold is reached. Very much like testing,
we can never say security work is complete or that our system is
fully secure.

Security needs to be a continuous activity and the earlier we
embedded it in the software lifecycle the better. That is of course
one of the core premises of DevSecOps (Riley2017), which focuses
on building security in the pipeline.

Some straightforward techniques that we can and should be using
today to improve the security of the applications we’re delivering
and their dependencies:

« relying on a mature secrets management tool

« minimizing attack surface by keeping OS images as small as
possible

» scanning for vulnerabilities at the last responsible moment
(before deployment)

« restricting access to production ecosystem from the delivery
system (pull new artifacts, don’t push)

But we also need to consider the security of the delivery system
itself. Are we hardening the underlying infrastructure? Are we
isolating and using minimal OS images on the build agents? Do we
regularly recreate the underlying infrastructure not only as proof
of disaster recovery, but also to eliminate potentially unauthorized
access? Are critical activities in the pipeline protected by role-based
access?

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 30

While we might not be able to address everything at once, the key
is to keep security in mind. Start small but make security a key
concern in the design and evolution of the delivery system.

o This is a wide subject that could easily be the subject

of an entire other book by security experts. Neverthe-
less, in appendix A, we give you some pointers on
how to get started with security inside and around
the pipeline, including concrete examples for some of
the techniques mentioned above.

4.11 Get started!

1. Identify your software delivery system. What are all the
tools, plugins, pipeline definitions, code repositories, and
infrastructure required to deliver software today?

2. Document your current and future practices. Take a step
back to extract what are the key practices in your pipelines
today, besides the traditional build-test-deploy. How are ar-
tifacts managed and retained? How is infrastructure provi-
sioned? Do you create dynamic acceptance environments?
Establish a baseline of what are critical practices today and
start defining what are the desired practices to adopt.

3. Adopt pipeline-as-code. Most CD tools now support config-
uring (YAML, JSON) or coding (Groovy, Java) all the steps
and dependencies for any given pipeline. This relatively low
effort step can dramatically increase predictability, ease boot-
strapping of new pipelines, and scale new practices across
multiple teams.

4. Start moving to CI/CD infrastructure-as-code. If this in-
frastructure is still running on snowflake servers and/or
agents, start by documenting it (most configuration manage-
ment tools have utilities to reverse engineer a server) and then

ReleasabilityBook.com

Treat your pipeline as a product for resiliency and fast feedback loops 31

take small steps to automate a replica of that. Don’t go all in
with any given tool, experiment a few and get a feeling for
which best fits your requirements and skills.

5. Start gathering core pipeline metrics. You don’t want to
go crazy and start tracking all sorts of metrics. But there are
core analytics you can quickly start measuring like cycle time,
execution time for each activity, and, if possible, wait times
(when you have manual steps in the pipeline). These will be
building blocks for later analysis of trends and deviations.

4.12 Summary

The deployment pipeline and its tooling are an extension of your
production system and require similar levels of product ownership,
maintenance and product development. As with a customer facing
product, there are tasks that you would not imagine skipping, such
as using source control or monitoring server health, and this atten-
tion to detail needs to be extended to the pipeline too. The increased
visibility and traceability will greatly improve the development and
deployment experience and the focus on monitoring and logging
will help keep the pipeline healthy and recover quickly from tooling
issues.

-t
b 1S
W 1

ReleasabilityBook.com

5. Ensure delivery system
is recoverable to
endure disaster

(This chapter is not available in this edition of the book.)

6. Ensure delivery system
is operable to
minimize downtime

(This chapter is not available in this edition of the book.)

7. Ensure both practices
and infrastructure can
scale to meet usage
growth

(This chapter is not available in this edition of the book.)

8. Care for pipeline
testability and
usability to encourage
adoption

(This chapter is not available in this edition of the book.)

9. Measure delivery to
visualize flow and
identify bottlenecks

(This chapter is not available in this edition of the book.)

10. Treat your pipeline as
a value stream to
tackle largest
bottlenecks first

(This chapter is not available in this edition of the book.)

11. Organize teams to
promote build and
release ownership

(This chapter is not available in this edition of the book.)

12. Appendix A: build
security into and
around the pipeline

(This chapter is not available in this edition of the book.)

13. Terminology

14. References and
further reading

14.1 Introduction

Butler2017 - Sarah Butler, The Guardian, ‘British Airways could
face £100m compensation bill over IT meltdown’, 2017. [Online].
Available: https://www.theguardian.com/business/2017/may/28/british-
airways-faces-100m-compensation-bill-over-it-meltdown [Accessed:
2-July-2018]

Cutler2017 - J. Cutler, ‘Crack The WIP (Work In Progress)’, 2017.
[Online]. Available: https://medium.com/@johnpcutler/crack-the-
wip-work-in-progress-7b0c646a7cf8 [Accessed: 2-July-2018]

Deger2018a - C. Deger, ‘Cloud Native Continuous Delivery’, Con-

tinuous Lifecycle London, 2018. [Online]. Available: https://youtu.be/H0Ae38_-
J-y8 [Accessed: 2-July-2018]

Fowler2010 - M. Fowler, ‘BlueGreenDeployment’, 2010. [Online].

Available: https://martinfowler.com/bliki/BlueGreenDeployment.html
[Accessed: 2-July-2018]

Hering2018 - M. Hering, DevOps for the Modern Enterprise, 1
edition. IT Revolution Press, 2018.

Hern2017 - Alex Hern, The Guardian, British Airways IT fail-
ure: experts doubt ‘power surge’ claim’, 2017. [Online]. Avail-
able: https://www.theguardian.com/business/2017/may/30/british-

https://www.theguardian.com/business/2017/may/28/british-airways-faces-100m-compensation-bill-over-it-meltdown
https://www.theguardian.com/business/2017/may/28/british-airways-faces-100m-compensation-bill-over-it-meltdown
https://medium.com/@johnpcutler/crack-the-wip-work-in-progress-7b0c646a7cf8
https://medium.com/@johnpcutler/crack-the-wip-work-in-progress-7b0c646a7cf8
https://www.theguardian.com/business/2017/may/30/british-airways-it-failure-experts-doubt-power-surge-claim

References and further reading 42

airways-it-failure-experts-doubt-power-surge-claim [Accessed: 2-
July-2018]

HumbleFarley2010 -]J. Humble and D. Farley, Continuous Delivery:
Reliable Software Releases Through Build, Test, and Deployment
Automation, 1 edition. Upper Saddle River, NJ: Addison Wesley,
2010.

Riley2017 - C. Riley, ‘Preventing Security from Slowing Down Soft-
ware Delivery’, 2017. [Online]. Available: https://www.twistlock.com/2017/09/13/pre
security-slowing-software-delivery [Accessed: 7-July-2018]

Skelton2016 - M. Skelton, Skelton Thatcher Consulting, ‘Continu-
ous Delivery checklist template’, 2016. [Online]. Available: http://cdchecklist.info
[Accessed: 2-July-2018]

SkeltonThatcher2018 - M. Skelton and R. Thatcher, Team Guide to
Software Operability, 1 edition. Conflux Digital, 2018.

Stella2015 - Josh Stella, O’Reilly, ‘An introduction to immutable in-
frastructure’, 2015. [Online]. Available: https://www.oreilly.com/ideas/an-
introduction-to-immutable-infrastructure [Accessed: 2-July-2018]

14.2 Chapter 1 - Treat Your Pipeline
as a Product

Deger2018b - C. Deger, ‘Cloud Native Continuous Delivery’, Con-
tinuous Lifecycle London, 2018. [Online]. Available: https://youtu.be/H0Ae38_-
J-y8 [Accessed: 2-July-2018]

Delizonna2017 - L. Delizonna, ‘High-Performing Teams Need Psy-
chological Safety. Here’s How to Create It’, Harvard Business
Review, 2017. [Online]. Available: https://hbr.org/2017/08/high-per-
forming-teams-need-psychological-safety-heres-how-to-create-it [Ac-
cessed: 3-July-2018]

ForsgrenHumbleKim2017 - N. Forsgren, J. Humble, G. Kim, 2017

ReleasabilityBook.com

https://www.theguardian.com/business/2017/may/30/british-airways-it-failure-experts-doubt-power-surge-claim
https://www.theguardian.com/business/2017/may/30/british-airways-it-failure-experts-doubt-power-surge-claim
http://cdchecklist.info/

References and further reading 43

State of DevOps Report’, 2017. [Online]. Available: https://puppet.com/resources/wh
of-devops-report [Accessed: 3-July-2018]

Fowler2006 - M. Fowler, ‘Continuous Integration’, 2006. [Online].
Available: https://martinfowler.com/articles/continuousIntegration.html
[Accessed: 3-July-2018]

GoldrattCox2014 - E. Goldratt, J. Cox, The Goal: A Process of
Ongoing Improvement, 30th anniversary edition. North River Press,
2014.

Kim2012 - G. Jim, ‘The Three Ways: The Principles Underpinning
DevOps’, 2012. [Online]. Available: https://itrevolution.com/the-
three-ways-principles-underpinning-devops [Accessed: 3-July-2018]

Mathur2018 - A. Mathur, ‘Surviving the “Script-ocalypse” on the
Road to Scaling Enterprise DevOps’, 2018. [Online]. Available:
https://www.youtube.com/watch?v=2rQMrt2H4zQ [Accessed: 4-July-
2018]

Romano2017 - D. Romano, ‘Global Continuous Delivery in a Finan-
cial Organization’, DevOps Enterprise Summit London, 2017. [On-
line]. Available: https://www.youtube.com/watch?v=A8Qwu1bYIO8
[Accessed: 3-July-2018]

Westrum2004 - R. Westrum, ‘A typology of organisational cultures’,
Qual Saf Health Care, 2004. [Online]. Available: https://qualitysafety.bmj.com/conte
2/ii22.full.pdf [Accessed: 3-July-2018]

ReleasabilityBook.com

15. About the authors

15.1 Chris O'Dell

71\

Chris has been developing software with Microsoft technologies
for nearly fourteen years. She currently works at Monzo helping to
build the future of banking.

She has led teams delivering highly available Web APIs, distributed
systems and cloud based services. She has also led teams developing
internal build and deployment tooling using the unconventional
mix of .Net codebases onto AWS infrastructure.

Chris promotes practices we know as Continuous Delivery, includ-
ing TDD, version control, and Continuous Integration.

About the authors 45

15.2 Manuel Pais

Manuel Pais is an independent DevOps and Delivery Consultant,
focused on teams and flow.

With a diverse experience including development, build manage-
ment, testing and QA, Manuel has helped large organizations in
finance, legal, telecom and manufacturing adopt test automation
and continuous delivery, as well as understand DevOps from both
technical and human perspectives.

Manuel is co-author of the Team Guide to Software Releasability
book and lead editor for the remaining books in the Team Guide
series.

ReleasabilityBook.com

16. Conflux Books

Books for technologists by technologists

Our books help to accelerate and deepen your learning in the field
of software systems. We focus on subjects that don’t go out of date:
fundamental software principles & practices, team interactions, and
technology-independent skills.

fluxbooks.com

o Find out more about Conflux Books by visiting con-

Lconflux

Build Quality In

,a// Continuous Delivery
and DevOps
experience reports
from 20 contributors

Build Quality In - a book of Continuous Delivery and DevOps
experience reports. Edited by Steve Smith and Matthew Skelton.
Conflux Books, April 2015

http://confluxbooks.com/
http://confluxbooks.com/
http://buildqualityin.com/

Conflux Books 47

INTERNAL TECH
CONFERENCES

TERNAL TECH
I‘IE‘ONFERENCES

Accelerate Multi-team
Learning Across Technology

Departments

Book and Training

@
L N

VICTORIA MATTHEW
MORGAN-SMITH SKELTON

CP CO nfl U X confluxbooks.com

Internal Tech Conferences by Victoria Morgan-Smith and
Matthew Skelton. Conflux Books, April 2019

BETTER
WHITEBOARD
SKETCHES

How to Sketch Clear
Technical Diagrams

BETTER
WHITEBOARD
SKETCHES

MATTHEW SKELTON

@

Book and Training

e

MATTHEW
SKELTON

cconflux |E——

Better Whiteboard Sketches by Matthew Skelton. Conflux
Books, August 2019

ReleasabilityBook.com

http://internaltechconf.com/
http://betterwhiteboardsketches.com/

Conflux Books

INSIGHTS AND TRAINING FOR
SOFTWARE TEAMS

Releasability
Business Metrics

Testability

Discover team-friendly techniques for building modern software:
testability mapping, Run Book dialogue sheets, releasability
checklists, cumulative flow diagrams, and more.

Accelerate and improve team practices for web, cloud, mobile, desktop, IoT,
and embedded software with the Team Guide books and training: Software
Operability, Metrics for Business Decisions, Software Testability,
Software Releasability.

Register for a 15% DISCOUNT at:

SKELTONTHATCHER.COM/PUBLICATIONS

ASKELTON THATCHER
W usLicaTi

from Conflux Books | confluxbooks.com

48

Team Guides for Software: Software Operability, Metrics for
Business Decisions, Software Testability, Software Releasability.

Skelton Thatcher Publications, 2016-2019

ReleasabilityBook.com

http://teamguidesforsoftware.com/

	Table of Contents
	Team Guides for Software
	Foreword
	Introduction
	What is software releasability?
	What constitutes a delivery system?
	What does resilient delivery feel like?
	Warning signs of software delivery debt
	Why invest in software releasability?
	Relationship to Continuous Delivery
	What this book is (not) about
	How to use this book
	Feedback and suggestions

	Treat your pipeline as a product for resiliency and fast feedback loops
	Make your pipeline the single route to production
	Your pipeline is now a product: invest in it
	Avoid simply retro-fitting CD into a CI server
	Measure delivery to visualize flow and identify bottlenecks
	Design the delivery system to evolve with your needs
	Apply monitoring and logging to minimize issues and downtime
	Scale the infrastructure to avoid pipelines queuing up
	Scale the practices and pipelines to support growing usage
	Care for pipeline testability and usability to encourage adoption
	Build security into and around the pipeline
	Get started!
	Summary

	Ensure delivery system is recoverable to endure disaster
	Ensure delivery system is operable to minimize downtime
	Ensure both practices and infrastructure can scale to meet usage growth
	Care for pipeline testability and usability to encourage adoption
	Measure delivery to visualize flow and identify bottlenecks
	Treat your pipeline as a value stream to tackle largest bottlenecks first
	Organize teams to promote build and release ownership
	Appendix A: build security into and around the pipeline
	Terminology
	References and further reading
	Introduction
	Chapter 1 - Treat Your Pipeline as a Product

	About the authors
	Chris O'Dell
	Manuel Pais

	Conflux Books

