

Softwareentwurf mit Flow-Design
Programming with Ease - Teil 2

Ralf Westphal

Dieses Buch wird verkauft unter
http://leanpub.com/softwareentwurf-mit-flow-design

Diese Version wurde veröffentlicht am 2021-04-16

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit
Hilfe von Lean-Publishing, neue Möglichkeiten des Publizierens. Lean
Publishing bedeutet die wiederholte Veröffentlichung neuer
Beta-Versionen eines eBooks unter der Zuhilfenahme schlanker
Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei der
Finalisierung und der anschließenden Vermarktung des Buches. Lean
Publishing unterstützt den Autor darin ein Buch zu schreiben, das auch
gelesen wird.

© 2020 - 2021 Ralf Westphal

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Ebenfalls von Ralf Westphal
Test-first Codierung

Software Anforderungsanalyse mit Slicing

Die IODA Architektur im Vergleich

http://leanpub.com/u/ralfw
http://leanpub.com/test-first-codierung
http://leanpub.com/software-anforderungsanalyse-mit-slicing
http://leanpub.com/ioda-architektur-im-vergleich-dnp

Inhaltsverzeichnis

Zum Geleit . 1

Motivation . 2
Programming with Ease . 3
Das Softwareuniversum . 7

Einleitung . 10
Anforderungskategorien . 10
It’s the productivity, stupid! . 12
Produktivitätskiller . 14

Fehlende Korrekheit . 16
Fehlender Wert . 18
Fehlende Ordnung . 20

Zusammenfassung . 23

Die Methode . 27

01 - Die Anforderung-Logik Lücke 28
Logik - Der Stoff aus dem Verhalten entsteht 28

Funktionalität . 31
Effizienz I - Effizienz durch Algorithmen und Datenstrukturen 32
Effizienz II - Effizienz durch Verteilung 33
Zusammenfassung . 35

Von den Anforderungen zur Logik 36
Logik schwer definierbar . 36
Die Phasen der Programmierung 41
Zusammenfassung . 46

Übungsaufgaben . 48

INHALTSVERZEICHNIS

02 - Entwurf im Überblick . 51
Den Entwurf abstecken . 51

Hierarchie der Lösungen . 53
Von der Kunst lernen . 55
Entwerfen ist fachgerecht 57
Entwerfen ist agil . 58

1. Der Lösungsansatz . 60
2. Das Modell . 69

Modellarten . 71
Abstraktion . 79

Zusammenfassung . 82
Übungsaufgaben . 84

Aufgabe - Lösungsansatz finden 84

03 - Radikale Objektorientierung 87
Die Welt bestehend aus Objekten? 87
Der Ursprung der Objektorientierung 87

Wer hat’s erfunden? . 87
Die zentrale Analogie der radikalen Objektorientierung . . . 87

Principle of Mutual Oblivion (PoMO) 88
Unabhängigkeit . 88
Geschlossenheit . 88
Unidirektionalität . 88
Ein Prinzip als Destillat . 88
Implementationsidee . 88

Integration Operation Segregation Principle (IOSP) 89
Objekte verbinden als Verantwortlichkeit 89
Ein Prinzip als Destillat . 89
Implementationsidee . 89

Philosophischer Exkurs . 89
Übungsaufgaben . 89

Aufgabe - Mit PoMO/IOSP implementieren 90

04 - Flow-Design mit 1-dimensionalen Datenflüssen 91
0-dimensionale Datenflüsse . 91

Notation . 91
Implementation . 91

1-dimensionale Datenflüsse . 92
Der Datenfluss als Scope . 92
Fließende Mengen . 92

INHALTSVERZEICHNIS

Implementation . 92
Übungsaufgaben . 92

05 - Flow-Design mit 2-dimensionalen Datenflüssen 93
Abstraktion durch Komposition 93

Stratified Design . 93
2-dimensionale Datenflüsse 93

Notation . 94
Datenflüsse als aufgemotzte Abhängigkeitsdiagramme . . . 94
n:1 Übersetzungen . 94
Rekursion . 94

Reflexion . 95
Übungsaufgaben . 95

06 - Flow-Design mit modularisierten Datenflüssen 96
Abstraktion durch Aggregation 96

Physisch kategorisieren mit dem Dateisystem 96
Module . 96

Abhängigkeiten . 96
Orthogonale Containerdimension 97

Die Modul-Hierarchie . 97
Klasse - Abhängigkeiten mit Kontrakten zähmen 97
Namensraum - Kontraktkollisionen vermeiden 98
Bibliothek - Wiederverwendbarkeit ermöglichen 99
Paket - Abhängigkeiten stabilisieren 99
Komponente - Die Arbeitsteilung befördern 99
Service - Module plattformneutral machen 99
Wave - Softwareevolution zur Laufzeit 99
Die Modul-Hierarchie im Überblick 100

Datenflüsse modularisieren . 100
Notation & Implementation I - Funktionen 100
Notation & Implementation II - Daten 100
Modularisierungsbeispiel 101

Reflexion . 101
Übungsaufgaben . 101

07 - Flow-Design mit 3-dimensionalen Datenflüssen 102
Die wahren Übersetzungsverhältnisse 102
Streams . 102

Einsatzgebiete für Streams 102

INHALTSVERZEICHNIS

Implementation . 103
Continuation . 103
Iterator . 103
Fallunterscheidung in der Integration 103
Polymorphie . 104
Warteschlange . 104

Reflexion . 104
Übungsaufgaben . 104

08 - Die IODA Architektur . 105
Die Softwarezelle . 105

System vs. Umwelt . 105
“Kleiderbügelarchitektur” 105
Die Membran . 105
“Griechische Architekturen” 106
Der Kern . 106
“Vitruvianische Architektur” 107

The Missing Concern: Integration 107
IOSP in der Architektur . 107
Interactors . 107
Processors . 108
IODA: All together now! . 108

Übungsaufgaben . 108

09 - Finale im Softwareuniversum 109
Der Explizite Entwurf ist nötig 109
Der Entwurf ist deklarativ . 109
Das Modell beschreibt Funktionen in Beziehungen 109
Flow-Design im 4-dimensionalen Raum 110

Orientierungshilfe für die Softwareentwicklung 110

Anhang - Musterlösungen 111

Musterlösung: 01 - Die Anforderung-Logik Lücke 113
Aufgabe 1 - Erklären . 113

Vom Nutzen der Modellierung für die Programmierung (ELI5) 114
Reflexion . 116

Aufgabe 2 - Modellieren . 117
Lösungsansatz . 118

INHALTSVERZEICHNIS

Modell . 119
Reflexion . 123

Musterlösung: 02 - Entwurf im Überblick 125
Aufgabe - Lösungsansatz finden 125

Lösungsansatz für die Domänenlogik 125
Reflexion . 125

Musterlösung: 03 - Radikale Objektorientierung 126
Aufgabe - Mit PoMO/IOSP implementieren 126

Modellskizze . 126
Codierung der Integration 126
Codierung der Operationen 126

Reflexion . 127

Musterlösung: 04 - Flow-Design mit 1-dimensionalen Daten-
flüssen . 128
Aufgabe 1 - Modellieren und implementieren 128

Lösungsansatz verfeinern: Prä-Modell 128
Modell . 128
Implementation . 129

Aufgabe 2 - Reverse modeling 129
Aufgabe 3 - Lösen, modellieren, implementieren 129

Lösungsansatz . 129
Modell . 129
Codierung . 129
Reflexion . 130

Musterlösung: 05 - Flow-Design mit 2-dimensionalen Daten-
flüssen . 131
Aufgabe 1 - Implementation eines Modells 131

Reflexion . 131
Aufgabe 2 - Die Dimensionalität eines Modells erhöhen 131

Reflexion . 132
Aufgabe 3 - Anforderungen umsetzen mit 2-dimensionalem

Modell . 132
Verstehen . 132
Lösen . 132
Modellieren . 132
Codieren . 133

INHALTSVERZEICHNIS

Reflexion . 133

Musterlösung: 06 - Flow-DesignmitmodularisiertenDatenflüs-
sen . 134
Aufgabe 1 - Datenfluss modularisieren 134

Schrittweise Modularisierung 134
Klassendiagramm . 134
Bibibliotheken . 135

Aufgabe 2 - Game of Life . 135
Lösungsansatz . 135
Modellierung . 135
Reflexion . 136

Musterlösung: 07 - Flow-Design mit 3-dimensionalen Daten-
flüssen . 137
Aufgabe 1 - Tic-Tac-Toe . 137

Lösungsansatz . 137
Modell . 138
Implementation . 139
Reflexion . 139

Musterlösung: 08 - Die IODA Architektur 140
Aufgabe 1 - Umbau nach IODA 140

Abhängigkeiten zeigen den Abstraktionsgradienten hinab . . 140
Aufgabe 2 - Enturf nach IODA inkl. Implementation 140

Anforderungsanalyse . 140
Lösungsansatz . 141
Modell . 141
Implementation . 142
Reflexion . 142

Zum Geleit
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Motivation
Der Softwareentwicklung fehlt etwas. Was fehlt, ist eine Form von Klar-
heit und vor allem Gelassenheit. So ist zumindest mein Gefühl, wenn ich
Softwareentwickler in meinen Clean Code Trainings oder auch an ihrem
Arbeitsplatz beobachte.

Wo Klarheit und Gelassenheit sind, da ist der Tritt sicher, da ist die
Zuverlässigkeit hoch, da stimmt die Qualität von vornherein umfassend
und die Stimmung ist entspannt. Leider scheint mir das aber nicht die
Atmosphäre in denmeisten Softwareentwicklungsteams zu sein. Oder wie
empfindest du es in deinem Team?

Stattdessen herrscht oft Verwirrung angesichts dessen, was der Kunde
will, es sind die Backlogs voll mit Bugs und das sprichwörtliche “What
the fuck?!” ist ständig hinter den Monitor-Triptychons im Team Room zu
hören (oder zumindest auf den Gesichtern der Entwickelnden zu lesen).

Was mögen die Gründe dafür sein? Es gibt sicher viele. Ein ganz grund-
legender scheint mir jedoch dieser: Die Softwareentwicklung ist ins
Ungleichgewicht gekommen. Sie erfüllt nicht in gleicher Weise sys-
tematisch und kompetent alle Anforderungen des Auftraggebers. Sie
starrt auf die einen und lässt dabei einen blinden Fleck für die anderen
entstehen. Das führt früher oder später zu einem für den Auftraggeber
sehr spürbaren Qualitätsdefizit, dessen Ausgleich schwerer und schwerer
wird. Das Kind ist tief im Brunnen. Es fehlt einfach an Nachhaltigkeit.

Gelassenheit ist in solcher Situation nicht mehr möglich, wenn Klarheit
über so lange Zeit so eklatant gefehlt hat. Programmierung mit Leichtig-
keit sieht anders aus.

Mehr Technologie, mehr Infrastruktur ist darauf keine Antwort. Vielmehr
ist - horribile dictu! - ein Kulturwandel nötig. Ohne grundsätzliches
Umdenken geht es nicht. Die Grundhaltung ist zu verändern: Es braucht
ein Bewusstsein dafür, dass auch soetwas immaterielles wie Software,
Nachhaltigkeit braucht.

Motivation 3

Wenn in deinem Team schon agil gearbeitet wird, hast du eine Ahnung,
was Kultur und Kulturwandel bedeutet. Doch leider ist Agilität nicht
genug für nachhaltige Softwareentwicklung. Sie ist zwar notwendig für
die Nachhaltigkeit, die ich meine, aber nicht hinreichend.

Wie wichtig Nachhaltigkeit ist, weiß zwar schon lange jeder Koch und
jeder Chirurg - doch die Softwareentwicklung hinkt leider noch hinterher.
Die oberste Priorität haben bei Ersteren Sauberkeit und Hygiene; ohne
sie sind Erfolge nur von kurzer Dauer. Wer eine Küche am Ende des
Tages mit dreckigem Geschirr und voller Abfall zurücklässt, beschädigt
die Grundlage für die Arbeit morgen. Wer heute Operationsbesteck nicht
sterilisiert und am Ende einer Operation nicht zählt, riskiert Komplikatio-
nenmorgen. Sauberkeit undHygiene sind der Rahmen, in dem das Kochen
und chirurgische Eingriffe stattfinden.

Ich bin überzeugt, dass für die Softwareentwicklung ein Nachhaltigkeits-
rahmen erst noch solide aufgespannt werden muss. Korrektheit und
Ordnung sind noch nicht in gleicher Weise als Grundanforderungen
in der Softwareentwicklung anerkannt wie Sauberkeit und Hygiene
in anderen Branchen. Das ist die fehlende Klarheit, die die Entwicklung
von Gelassenheit verhindert.

Diese Situation verbessern zu helfen, ist mein Anliegen. Ich möchte dir
helfen, klarer und gelassener zu programmieren. Weniger Stress durch
mehr Nachhaltigkeit für deine Softwareentwicklung ist mein Ziel.Wie das
erreicht werden kann, damit habe ich mich in den vergangenen 15 Jahren
intensiv auseinandergesetzt. Ich hoffe, du empfindest das, was ich hier
nun “an einem Ort” zusammentrage, als Hilfe in deinem Entwickleralltag.

-Ralf Westphal, 2020, Bansko (BG) / Hamburg (DE)

Programming with Ease

Nachhaltigere Softwareentwicklung in Klarheit und Gelassenheit umfasst
für mich mehr, als ich dir in diesem Buch vorstellen kann. Mit ein paar
Tipps&Tricks ist es nicht getan. Es geht durchaus ans Eingemachte: an
deine Glaubenssätze und Gewohnheiten.

Die vielfach fehlende Nachhaltigkeit in der Softwareentwicklung ist ein so
tiefliegendes Problem, dass einige Anstrengungen nötig sind, die Situation

Motivation 4

zu ändern. Du wirst Zeit brauchen, anders wahrzunehmen, zu denken
und dann zu handeln. Dein Team wird Zeit brauchen, denn in der
Zusammenarbeit muss sich einiges ändern. Und schließlich wird sich
sogar dein Management und dein Auftraggeber ebenfalls ändern müssen
in den Erwartungen an dich und dein Team.

Das klingt nach einigem Aufwand, oder? Ja, stimmt. Leider kann ich dir
den nicht ersparen. Das Wurzelproblem von “schwer wartbarer Software”
liegt zu tief, als dass es dafür eine schnelle Lösung gäbe. Wenn du aber
dran bleibst, dann bin ich gewiss, dass sich die Mühe lohnt.

Vermitteln möchte ich dir - und deinem Team - Programming with Ease
als umfassende Herangehensweise an die Softwareentwicklung, die dich
abholt bei der Konfrontation mit Anforderungen und begleitet bis zur
Ablieferung von hochqualitativem Code.

Ummoderne Technologien und technische Feinheiten geht es nicht. React,
NoSql, GraphQL, Docker, Kubernetes, Kafka… all das ist darin kein Thema.
Oder wenn, dann nur indirekt in Form von Prinzipien und Konzepten, die
dir helfen sollen, solche Technologien einzuordnen.

Stattdessen geht es um Prinzipien und Praktiken der Softwareentwicklung.
Das hört sich zwar nach “theoretischem Kram” an, doch sei gewiss,
mir ist es sehr, sehr wichtig, dass die Theorie in der Praxis gegründet
ist. Theoretische Überlegungen müssen zu praktisch hilfreichen Effekten
führen. Deshalb kann ich es dir nicht früh genug mit auf den Weg geben:

Welche Empfehlungen du auch immer hier lesen magst, egal wie sehr
ich sie begründe, sie stehen nie höher als der Zweck. Wenn du in einer
bestimmten Situation also meinst, einem Zweck nachhaltig besser dienen
zu können, als durch Befolgung einer Empfehlung… dann - by all means -
weiche von der Empfehlung ab. Allerdings: Du solltest schon wissen, was
du da tust. Habe also eine belastbare Begründung parat - wenn schon nicht
mir gegenüber, dann aber für deine Teamkollegen.

Das Gesamtthema Programming with Ease ist also umfangreich. Wie ich
es dir nahebringe, habe ich lange überlegt. Am Ende habe ich mich dann
für 3 Bücher entschieden, die 1+3 Themenblöcke behandeln.

Test-first Codierung ist der erste Themenblock, auch wenn Codierung
die letzte Hürde ist, die du in der Programmierung nehmen musst. Den-
noch macht dieses Buch den Anfang in der Trilogie, weil es thema-
tisch dir als Entwickler wahrscheinlich am nächsten liegt. Codierung ist

Motivation 5

praktisch, Codierung wahrlich unausweichlich, Codierung hat technisch-
technologischen Reiz. Ich hoffe, dort kann ich dich am besten abholen,
wenn es schon so ans Eingemachte geht.

Im ersten Band geht es darum, dass Codierung aus meiner Sicht eben
ausschließlich test-first stattfinden sollte. Das zu akzeptieren und dann
auch zu leben, ist die erste Herausforderung auf demWeg zu nachhaltiger
Programmierung. Ich hoffe, dass ich dir die Gründe dafür im ersten
Band ausführlich genug darlegen und dir diese Praxis mit verschiedenen
Problemlösungsansätzen auch schmackhaft machen kann.

Softwareentwurf mit Flow-Design ist der zweite Themenblock, auch
wenn Entwurf als Planung von Code der Codierung vorausgehen sollte.
Weil “Planung” sich für dich aber vielleicht nicht so attraktiv anhört,
wollte ich das Thema nicht im ersten Band der Reihe behandeln, auch
wenn ich es für das wichtigste der drei Themen halte.

Ja, tatsächlich, ich hänge dem Glauben an, dass wir in der Program-
mierung mehr denken sollten. Mehr denken vor dem Codieren, ist der
Nachhaltigkeit absolut zuträglich. Nicht, dass nicht gedacht würde - doch
mein Eindruck ist, dass gewisse Themen dabei unberücksichtigt bleiben.
Es wird z.B. viel über den rechten Einsatz von Technologien und Infra-
struktur nachgedacht. Es wird auch viel über Agilität nachgedacht oder
über DevOps. Und das ist alles gut und richtig. Doch es bleibt ein blinder
Fleck. Um den dreht es sich bei Programming with Ease im Allgemeinen
und bei Flow-Design im Speziellen: das ist die visuelle Modellierung von
Softwarelösungen.

Der letzte Themenblock unter dem Bogen, den Programming with Ease
spannt, ist dann die Software Anforderungsanalysemit Slicing. Damit
gehe ich noch einen Schritt vor den Entwurf und möchte dir empfehlen,
Anforderungen durch eine spezielle Entwicklerbrille zu betrachten. Durch
die Brille der Agilität siehst du Anforderungen als User Stories, Story-
boards, Epics oder gar Event Storms. Auch das ist alles wunderbar. Du
sollst davon nichts aufgeben. Doch in meiner Erfahrung ist auch durch
diese Brille etwas nicht sichtbar, das dir das Programmiererleben aber
leichter machen würde.

Der agilen Herangehensweise fehlt eine gewisse technische Sicht. Das
finde ich ganz verständlich, allemal da sich inzwischen Scrum undKanban
als Vorgehensmodelle etabliert haben und von XP nur noch wenig zu

Motivation 6

hören ist.¹ Damit haben die “Softwarelaien” gewonnen, so dass Anfor-
derungen von ihnen definiert werden, wie es für sie nachvollziehbar ist.
Das soll natürlich auch so sein - nur darf eine Sichtweise, die dir als
Programmierer dient, deshalb nicht vernachlässigt werden. Das scheint
mir jedoch der Fall, so dass nachfolgende Phasen in der Programmierung
dir schwerer fallen als nötig.

Insgesamt wird durch die Dominanz der “Softwarelaien” sogar man-
gelnder Qualität und Unzuverlässigkeit Vorschub geleistet. Ja, du liest
richtig: Real existierende Agilität führt durchaus noch zu suboptimalen
Ergebnissen. Das wird auch nicht besser, wenn du die Zähne noch tiefer in
das agile Manifest schlägst. Es braucht einfach verschiedene Perspektiven.
Agilität ist die eine. Das, was ich dir in Programming with Ease vermitteln
will, ist eine zweite.

Codierung, Entwurf, Anforderungsanalyse sind die drei großen Themen-
blöcke in Programming with Ease. Damit verrate ich dir noch nicht zuviel
an dieser Stelle. Ausführlicher begründet wird das in einem kleineren,
übergreifenden Themenblock. Den umfasst die Einleitung und das erste
Kapitel. Beides inklusive dieser Motivation wiederhole ich in allen Bü-
chern, um dir zu ermöglichen, sie doch in einer anderen Reihenfolge zu
lesen, als der hier vorgestellten. Zwar habe ich mir bei der Ordnung etwas
gedacht - doch auch dafür gilt: zu eng solltest du das nicht sehen.

Einleitung und erstes Kapitel liefern den Hintergrund, vor dem ich die
anderen Themen entfalte. Sie werden zuerst ganz grob in einem Zusam-
menhang entwickelt, damit du weißt, wie sie miteinander verbunden sind.
Danach kommt die blockweise Vertiefung, bei der du diesen Hintergrund
im Hinterkopf haben solltest.

Insgesamt ergibt sich hoffentlich für dich ein Gesamtrahmen, in dem du
dich gut aufgehoben fühlst. Einfach(er) soll dir die Programmierung ja
werden.

¹Vielleicht kann man Software Craftsmanship als einen Arm der Entwicklung von
XP verstehen. Der andere ist dann z.B. Scrum. Damit wären zwei Belange getrennt, die
XP ursprünglich in XP vereint waren. Software Craftsmanship würde in dem Fall für die
technische Seite von XP stehen. Ein blinder Fleck bliebe jedoch aus meiner Sicht. In XP wie
in Software Craftsmanship findet sich schlicht zu wenig Methode. Beide sind Sammlungen
von Bausteinen, zwischen denen kein roter Faden gespannt ist, an dem du dich konkret
voranarbeiten könntest. Um genau den geht es mir aber.

Motivation 7

Das Softwareuniversum

Wenn Programming with Ease ein Bogen ist, den ich über deinen Software-
entwicklungsprozess spannen möchte, also ein Bogen in der Zeit, dann ist
das Softwareuniversum der dazugehörige Raum für Softwarestrukturen

In diesem Raum spielt sich für mich alle Softwareentwicklung ab. Darin
bewegst du dich mal langsamer mal schneller, mal in die eine Richtung,
mal in die andere.

Allerdings ist der Raum des Softwareuniversums kein dreidimensionaler,
sondern ein vierdimensionaler. Er besteht aus vier Dimensionen, die
jede Logik auf eine andere Weise in Container fassen und zu Strukturen
verbinden.

Was Logik ist, verrate ich dir in der Einleitung. An dieser Stelle nur soviel:
sie ist die Essenz von Software. Dass du Logik in hoher Qualität schreibst,
ist für den Kunden von höchster Wichtigkeit, denn sie bestimmt das
Softwareverhalten. Du kannst sie also nicht einfach “hinklieren”, sondern
musst sie sorgfältig schneiden und verpacken.

1. Zunächst musst du das, was die Logik leisten soll, in möglichst feine
Anforderungsscheiben schneiden beim Slicing. Darum geht es im
dritten Band von Programming with Ease.

2. Dannmusst du dir überlegen, wie du vor allem funktionale Anforde-
rungen mit Logik so erfüllst, dass du sicher sein kannst, dass deine
Lösung korrekt ist. Du musst dabei aus unzähligen fremden und
eigenen Bausteinen Kompositionen herstellen, die du testen kannst.
Das geschieht mit Funktionen und ist Thema des ersten Bandes und
auch des zweiten Bandes.

3. Um nicht den Überblick über deine Komposite zu verlieren, teilst
du sie in zweckvolle Gruppen auf mehreren Ebenen ein, die Zusam-
mengehöriges aggregieren und von anderem entkoppeln; das sind
die Module deiner Software. Darum geht es vor allem im zweiten
Band, aber auch schon im ersten.

4. Und schließlichmusst du dich leider noch einigen nicht-funktionalen
Anforderungen widmen, die du auch mit sorgfältiger Komposition
von Logik nicht lösen kannst. Es bleibt dir nichts anderes übrig, als
Logik auf verschiedene Hosts zu verteilen. Darum geht es vor allem
im zweiten Band, aber auch im dritten.

Motivation 8

Zweck des Softwareuniversums ist es, die Strukturelemente, die du im
Grunde schon aus deiner Programmierpraxis kennst - Beispielsweise
Klasse, Thread, Service, Message, Funktion -, in einen Zusammenhang
zu stellen. Sie bekommen alle einen klaren Zweck im Hinblick auf die
umfassenden Anforderungen des Auftraggebers. Vor allem möchte ich dir
jedoch zeigen, welche Rolle sie spielen in Bezug auf die Nachhaltigkeit.

Die vier Dimensionen des Softwareuniversums sind für mich:

• Delivery: Logik in Scheiben (slices) unterschiedlicher Dicke ge-
schnitten für die iterativ-inkrementelle Lieferung an den Kunden.

• Composition: Logik zu Funktionen zusammengestellt, um funktio-
nale wie nicht-funktionale Anforderungen zu erfüllen.

• Decoupling: Funktionen zuModulen (z.B. Klassen) aggregiert, um
Ordnung in die Vielfalt zu bringen. Testbarkeit und Wandelbarbeit
sind der Gewinn.

• Distribution: Funktionen verteilt auf Hosts (z.B. Threads) und
entkoppelt über asynchrone Kommunikation um weitere nicht-
funktionale Anforderungen zu erfüllen.

Grobe Skizze des Softwareuniversums

Motivation 9

Jede Zeile Logik, jeder Tropfen Essenz deiner Software, lässt sich im
Softwareuniversum als Punkt im vierdimensionalen Raum verorten, da
Logik immer gleichzeitig Teil einer Funktion in einem Modul in einem
Host in einem Slice ist.

Das muss dir im Moment abstrakt vorkommen. Es fehlen ja auch noch
viele Definitionen von Begriffen. Dennoch wollte ich dir das Softwareuni-
versum als Ausblick nicht vorenthalten. Als ich es das erste Mal erblickt
habe, war es für mich ein wenig wie beim Overview Effect²: Ich konnte
nun von außen überblicken, wovon ich vorher immer nur Teile gesehen
hatte. Das hat mein Verständnis von Softwareentwicklung grundlegend
verändert.

Deshalb gehören die Bände von Programming with Ease zu einer umfas-
senderen Reihe, die alle “im Softwareuniversum spielen”.

²https://en.wikipedia.org/wiki/Overview_effect

https://en.wikipedia.org/wiki/Overview_effect
https://en.wikipedia.org/wiki/Overview_effect

Einleitung
Bevor ich dir konkrete “Tipps&Tricks” für die nachhaltige Softwareent-
wicklung gebe, möchte ich dir ein big picture skizzieren. Zu oft habe ich
gehört und gelesen, dass einzelne Prinzipien und Praktiken empfohlen
werden, ohne einen Kontext, ohne eine “Herleitung”. Bei aller Richtigkeit
dieser Empfehlungen werden sie dann aber leicht missverstanden oder
eben eingesetzt, wenn der Kontext nicht passt. Das führt zu Frustration.
Die möchte ich dir ersparen, so weit es mir möglich ist.

Es ist schwer genug, all das in Worte, auch noch lineare zu fassen, was ich
dir vermitteln will für nachhaltige Softwareentwicklung. Es wirdmir auch
nur bruckstückhaft gelingen. Dass du mich missverstehst, ist für mich
vorhersehbar und unvermeidbar. Doch ich will mich bemühen, das zu
minimieren. Und eine auf der Hand liegende Maßnahme dafür ist, dass
ich etwas aushole, um einen Rahmen aufzuspannen, in dem das konkrete
Thema dieses Buches und der anderen der Reihe eingehängt werden kann.

Deshalb: Halte einen Moment durch, bis es an das eigentlichen Thema
dieses Bandes. Keine Sorge, du wirst davon genug zu sehen bekommen.

Und nun gehts los. Wo sonst als am Anfang jedes Softwareprojektes, bei
den Anforderungen:

Anforderungskategorien

Softwareentwicklung hat Anforderungen in drei Kategorien zu erfüllen,
um ihr Geld wert zu sein:

• Zunächst muss Softwareentwicklung funktionierende Software lie-
fern. Auftraggeber haben funktionale Anforderungen an Soft-
ware, die sie erfüllt sehen wollen. Nur dann hat die Funktionalität
von Software hohe Qualität. Das ist so natürlich, dass es kaum der
Rede wert ist - dennoch müssen wir da noch genauer hinschauen,
auch wenn ich denke, mit diesen Anforderungen bist du bestens
vertraut. Sie treiben dir genug Schweiß auf die Stirn.

Einleitung 11

• Funktionalität allein ist allerdings nicht genug - auch das ist dir
klar - und noch nicht einmal der Grund für die Beauftragung von
Softwareentwicklung. Software soll vor allem nicht-funktionale
Anforderungen erfüllen! Sie soll Funktionalität besser (Kompa-
rativ!) anbieten als die Alternative (z.B. bisherige Software oder
Handarbeit). Software soll z.B. schneller oder einfacher oder ska-
lierbarer oder sicherer funktionieren als die Alternative. Dann hat
die Effizienz³ von Software hohe Qualität. Das ist ebenso natürlich,
dass es kaum der Rede wert ist - aber diese Anforderungen bereiten
dir womöglich noch mehr Kopfschmerzen als die funktionalen.

Funktionale und nicht-funktionale Anforderungen zusammen sind Ver-
haltensanforderungen an Software. Der Auftraggeber kann durch Aus-
führung der Software überprüfen, ob die geforderte Qualität hergestellt
wurde. Dieser Oberbegriff ist wichtig, wie du im Weiteren sehen wirst.

Vielleicht überraschend für dich, sehe ich Korrektheit darin noch nicht
subsummiert. Korrektheit ist keine explizite weitere Anforderung an
Software, sondern ist impliziet in der Erwartung, dass spezifizierte Anfor-
derungen tatsächlich durch gelieferte Software erfüllt werden. Software
ist also in dem Maße korrekt, in dem sie die Spezifikation erfüllt.

Mach dir an dieser Stelle keinen Kopf über den Begriff Spezifikation.
Ich will damit keine Norm heraufbeschwören, sondern verstehe darunter
lediglich eine irgendwie gearbeitet Liste von gewünschten Eigenschaften.
Ob die auf einer Serviette stehen oder in einem 500seitigen Buch gebunden
sind, ist einerlei. Der Kunde kann zur Laufzeit diese Liste abhaken und den
Erfüllungsgrad seiner Wünsche messen. Korrektheit liegt vor, wenn der
Erfüllungsgrad 100% ist. Fehlt allerdings ein Wunsch in der Spezifikation
und ist deshalb nicht implementiert, ist das Verhalten der Software nicht
inkorrekt, selbst wenn der Kunde bei der Überprüfung das Verhalten
vermisst.

³Effizienz habe ich als Begriff für die nicht-funktionalen Anforderungen wie Perfor-
mance, Skalierbarkeit, Benutzerfreundlichkeit, Sicherheit usw. gewählt, um sie kurz und
knapp unter einer Kategorie zusammenzufassen. Die Benennung ist nicht perfekt, aber ich
finde sie erstmal gut genug. Dem Kunden geht es um Funktionalität und Effizienz bei der
Software. Klingt doch sinnig, oder?

Einleitung 12

It’s the productivity, stupid!

Über die Verhaltensanforderungen hinaus hat der Auftraggeber noch eine
weitere Anforderung, die jedoch selten ausdrücklich formuliert oder gar
vertraglich festgehalten wird. Das ist nun ein ganz wesentlicher Punkt;
pass auf, denn es geht um dich und dein Team! Hier kommt die Motivation
für Agilität und Clean Code Development:

• Die Softwareentwicklung soll stets zügig funktionale wie nicht-
funktionale Anforderungen erfüllen. Auftraggeber haben also auch
noch einen Anspruch an die Produktivität der Softwareentwick-
lung.

Verhaltensanforderungen werden unmittelbar durch Code erfüllt. Die
Produktivitätsanforderung hingegen ist eine an die herstellende Or-
ganisation.

Wie Funktionalität mittels Code hergestellt wird, ist eine Sache von
Programmiersprachen, Bibliotheken und Frameworks. Diese Fähigkeit
ist die primäre, die du als Softwareentwickelnde(r) erwirbst und stetig
verfeinerst.

Wie Effizienzen mittels Code hergestellt werden, ist ebenfalls zunächst
eine Sache von Programmiersprachen, Bibliotheken und Frameworks.
Diese Fähigkeit wird gewöhnlich später erworben, ist letztlich jedoch die,
auf die sich viele Entwickelnde konzentrieren. Bücher wie “Algorithmen
und Datenstrukturen” beschäftigen sich mit diesem Thema.

Nicht immer jedoch lässt sich damit das geforderte Qualitätsniveau schon
erreichen. Performance oder Skalierbarkeit brauchen oft Unterstützung
durch Verteilung von Code zur Laufzeit auf verschiedene Threads im
selben Betriebssystemprozess oder in verschiedenen oder gar auf mehre-
ren Rechnern oder in unterschiedlichen Netzwerken. Damit beschäftigt
sich traditionell die Softwarearchitektur. Hier warten große Herausfor-
derungen! Hier kannst du der Held so mancher Infrastrukturtechnologie
werden.

Doch selbst wenn du gut dabei bist in der Herstellung von Funktionalität
und Effizienz, kann es leicht sein, dass der Auftraggeber nicht mit dir
zufrieden ist. Wie kann das sein? Du bist vielleicht einfach zu langsam.

Einleitung 13

Perfekte Verhaltensqualitäten lieferst du, nur leider zu spät. Potenziert
wird das, wenn du auch noch unzuverlässig bist, d.h. die Lieferung bis
zu einer Frist versprichst und dann doch nicht lieferst.

Für den Auftraggeber gibt es also zwei “Laufzeiten”: die Software-Laufzeit
und die Team-Laufzeit. An beide hat er Anforderungen. Die Software
soll performen, das Team aber auch. Letzteres setzt der Auftraggeber
allerdingsmehr oderweniger voraus. Dafür schreibt er keine Spezifikation.
Er glaubt einfach, dass du professionell arbeitest. Dazu gehört für ihn,
dass du stets “flott dabei bist” und dir kein Bein stellst. Leider ist das oft
nicht der Fall. Softwareentwicklung fällt immer wieder über die eigenen
Füße; sie merkt sozusagen nicht, dass sie mit zusammengebundenen
Schnürsenkeln läuft.

Aber wie kann das sein? Ich denke, dafür gibt es viele Gründe. Neben
historischen, sozusagen systemimmanenten gibt es jedoch einen immer
wieder ganz akuten: Druck. Die Softwareentwicklung wird vom Auf-
traggeber oft sehr mit Deadlines unter Druck gesetzt (und lässt sich
auch unter Druck setzen), so dass sie meint, nie Zeit zu haben, die
Schnürsenkel ordentlich zu binden. Lieber stolpert sie dahin, stets willig,
dem Kunden Verhaltensanforderungen grob zu erfüllen, als dass sie sich
“sauber aufstellt” und “fit hält”.

Einleitung 14

Was der Auftraggeber will: Die Kategorien der Anforderungen

Produktivitätskiller

Der Auftraggeber der Softwareentwicklung schaut gewöhnlich vor allem
auf die Erfüllung von Verhaltensanforderungen. Das ist für ihn am ein-
fachsten. Das merkst du jedes Mal, wenn Abnahme ist. Darum drehen
sich dann die Diskussionen. Über den Herstellungsprozess, wie es zum
präsentierten Verhalten gekommen ist, wird nicht diskutiert. Jedenfalls
nicht direkt. Dafür fehlt ja eine Spezifikation. Was aber eben nicht heißt,
dass der Kunde zur Team-Performance keine Meinung hätte.

Hohe Produktivität von dir und deinem Team wird einfach vorausgesetzt.
Wie die Erfahrung jedoch zeigt, ist es eine naive Erwartung, dass hohe
Produktivität nach einem vielleicht anfänglich guten Start “einfach so”
erhalten bliebe. Die Produktivitätskurve sink vielmehr relativ schnell auf
einen bedauerlich niedrigen Wert. Hier eine typische Darstellung der
Entwicklung (Quelle⁴):

⁴https://blogs.sap.com/2018/05/02/introducing-agile-software-engineering-in-
development/

https://blogs.sap.com/2018/05/02/introducing-agile-software-engineering-in-development/
https://blogs.sap.com/2018/05/02/introducing-agile-software-engineering-in-development/
https://blogs.sap.com/2018/05/02/introducing-agile-software-engineering-in-development/

Einleitung 15

Produktiv sind Entwickelnde nicht einfach, weil sie gerade codieren. Nur
weil du dich gestresst fühlst beim Programmieren, performst du nicht
automatisch im Sinne des Auftraggebers. Das mag enttäuschend klingen,
ist aber die Realität. Solange es da ein Missverständnis zwischen dir und
dem Auftraggeber gibt, sind Konflikte unvermeidlich.

Nicht jede geschriebene/veränderte Codezeile trägt zur Produktivität bei,
wie der Auftraggeber sie sich wünscht. Produktiv ist die Softwareent-
wicklung nur, wenn sie neue Anforderungen erfüllt, d.h. an Features
arbeitet. Das kann durch Codierung geschehen oder durch andere, vorge-
lagerte Tätigkeiten.

Je öfter du Features lieferst, d.h. Erweiterungen, Verbesserungen - keine
Bug Fixes (!) - und die auch noch korrekt lieferst, desto produktiver bist
du aus Sicht des Auftraggebers.

Wenn du also auch die (unausgesprochenen) Anforderungen des Auf-
traggebers an deine Produktivität erfüllen willst, tust du gut daran, alles
was dabei hinderlich sein könnte, zu vermeiden. Wenn du während des
Kochens eines Abendessens merkst, dass dir eine Zutat fehlt und du
losrennst, um sie zu kaufen, bricht deine Produktivität ja auch ein. Dito,
wenn du mit dem Kochen beginnen willst und findest die Spüle voll mit
dreckigen Töpfen. Dito, wenn du dich zum Date fertigmachen willst und
feststellen musst, dass deine beste Hose noch in der Wäsche ist. Wann
immer also etwas fehlt, das du brauchst, um zu tun, was du eigentlich tun
willst, stehst du einem Produktivitätskiller gegenüber.

Vorausgesetzt, dass du technisch und fachlich kompetent bist - auch daran

Einleitung 16

hat ein Auftraggeber Interesse -, sehe ich vor allem drei Produktivitätskil-
ler, die du ausschalten musst:

Fehlende Korrekheit

Die Softwareentwicklung kann sehr geschäftig codieren, ohne produktiv
zu sein. Das ist immer der Fall, wenn sie Bug Fixing betreibt.

Bugs sind Inkorrektheiten, d.h. Qualitätsmängel durch
Nichterfüllung der Spezifikation.

Bugs zu fixen ist Nacharbeit (re-work). Nacharbeit oder Ausbesserung von
Defekten ist eine der Verschwendungsarten in der Lean “Philosophie”⁵.
Aus Sicht des Kunden vertust du deine Zeit mit Dingen, die schon lange
hätten erledigt sein sollen. Statt Bugs zu fixen, wäre es dem Auftraggeber
lieber, dass du schon wieder an neuem Verhalten arbeitest.

Jede Stunde, die du mit Bug Fixing verbringst, fehlt dir für die Feature-
Produktion. Das Bug Fixing zu begrenzen, selbst wenn noch Bugs bekannt
sind, ist daher eine notwendige Maßnahme, um produktiv zu bleiben⁶.
Besser jedoch, wenn die Softwareentwicklung gar nicht erst in diese Ver-
legenheit kommt. Warum nicht Bugs von vornherein einfach vermeiden?

Fehlende Korrektheit ist der Produktivitätskiller #1.

Um die Produktivitätsanforderung des Kunden zu erfüllen, muss Korrekt-
heit die oberste Priorität haben.[^klarheitsprämisse]

[^klarheitsprämisse]: Prämisse hierbei ist, dass klar ist, welches Verhalten
die Software überhaupt haben soll. Korrektheit meine ich nur auf das,
was klar spezifiziert ist. Wo Klarheit fehlt - allemal unwissentlich -,

⁵http://www.lean-production-expert.de/lean-production/7-verschwendungsarten.
html

⁶Siehe dazu z.B. Zero-Bug Software Development

http://www.lean-production-expert.de/lean-production/7-verschwendungsarten.html
http://www.lean-production-expert.de/lean-production/7-verschwendungsarten.html
http://www.lean-production-expert.de/lean-production/7-verschwendungsarten.html
https://medium.com/qualityfaster/the-zero-bug-policy-b0bd987be684

Einleitung 17

sind überraschende Qualitätsmängel unvermeidbar. Das sind dann jedoch
keine Inkorrektheiten.

Korrektheit ergibt sich allerdings nicht einfach, sondern muss systema-
tisch hergestellt und erhalten werden.

• Zunächst ist bei der Feature-Produktion (und auch beim Bug Fixing)
Korrektheit in Form von Reife zu erreichen. Zu jedem Zeitpunkt
bzw. spätestens vor Präsentation/Auslieferung eines Softwarestan-
des musst du prüfen, ob deine Software schon korrekt ist gem.
der Spezifikation. Haben deine Anstrengungen zur Herstellung
gewünschter Qualitäten schon ausreichenden Erfolg gehabt? Wenn
du keine Differenz mehr siehst zwischen spezifiziertem und realem
Verhalten, dann ist dein Code reif für die Präsentation beim Auf-
traggeber.

• Darüber hinaus ist allerdings stets sicherzustellen, dass bei der
Feature-Produktion vorher erreichte Korrektheit nicht zerstört wird.
Es darf keine Regression stattfinden, d.h. kein Rückfall auf ein
früheres, niedrigeres Korrektheitsniveau. Der Auftraggeber erwar-
tet Stabilität der Software in Bezug auf die Korrektheit. Während
der Veränderung von Code bzw. spätestens vor Präsentation/Aus-
lieferung eines Softwarestandes musst du deshalb immer wieder
überprüfen, ob deine Software noch korrekt ist gem. der Spezifikati-
on. “Verschlimmbesserung” ist eines der größten Risiken in der
Softwareentwicklung.

Maßnahmen für die Korrektheit umfassen z.B. den Abnahmetest, eine
Beta-Test-Phase, die Beschäftigung von Testern, die Definition einesDone-
Zustands inkl. Akzeptanzkriterien, automatisierte Tests, eine Continuous
Build/Integration Pipeline oder die Codierung nach Test-Driven Develop-
ment (TDD).

Produktivität braucht Sorgfalt. Es sind “die Dinge richtig zu tun”. So wird
landläufig auch Effizienz beschrieben. Man weiß, was zu tun ist - und tut
es dann auch so, wie es getan werden sollte. Die Verhaltensanforderungen
sind klar, die Softwareentwickelnden sind kompetent, das Ergebnis ist
korrekte Software. So sollte es zumindest sein. Das ist die Erwartung des
Auftraggebers. Doch so einfach ist es nicht…

Einleitung 18

Überlege selbst, welche der obigen (oder auch weiteren) Maßnahmen in
deinemTeam verlässlich getroffenwerden, um hohe Korrektheit zu liefern
und zu erhalten.

Fehlender Wert

Aber was, wenn die Softwareentwicklung nicht weiß, was zu tun ist? Was,
wenn Unklarheit herrscht? Die Voraussetzung dafür, “die Dinge richtig zu
tun” ist, dass man überhaupt “die richtigen Dinge tut”. So wird landläufig
Effektivität beschrieben. Effektivität kann es nur geben, wenn Klarheit
herrscht.

Solange die Softwareentwicklung aber imUnklaren darüber ist, was genau
die Verhaltensanforderung ist oder solange der Auftraggeber selbst sich
noch nicht ganz klar darüber ist, wie für ihn hohe Verhaltensqualität
aussieht, kann Codeproduktion nicht effektiv sein. Und ohne Effektivität
keine Produktivität.

Leider ist das der natürliche Zustand von Softwareprojekten:

• Der Auftraggeber hat eine nur unvollständige Vorstellung davon,
was er braucht.

• Der Auftraggeber kann seine Vorstellungen nur unvollständig for-
mulieren.

• Die Softwareentwicklung versteht die formulierten Anforderungen
nur unvollständig.

• Die Softwareentwicklung setzt ihr Verständnis der Anforderungen
nur unvollständig um.

• Der Auftraggeber hat in der Zeit von der Spezifikation bis zur
Abnahme ihrer Umsetzung⁷ seine Meinung geändert; seine Anfor-
derungen sehen nun anders aus. Selbst eine korrekte Umsetzung

⁷Der Begriff Spezifikation mag sich für dich hier schwergewichtig anhören. Wo bleibt
da die Agilität? Aber ich meine ihn ganz neutral. Er soll einfach nur ausdrücken, dass
ein Auftraggeber in unmissverständlicher Weise irgendwie beschrieben hat, welche Ver-
haltensanforderungen der Code, den du entwickelst, erfüllen soll. “Irgendwie” bedeutet,
dass ich nicht suggerieren will, in welcher Sprache, mit welchem Medium, in welchem
Umfang eine Spezifikation vorliegt. Ebensowenig will ich mitschwingen lassen, wie häufig
der Auftraggeber eine Spezifikation vorlegt oder ihre Umsetzung prüfen will; das kann alle
paar Wochen sein oder jeden Tag. Iterativ-inkrementelles Vorgehen ist für mich mit dem
Begriff also absolut vereinbar.

Einleitung 19

der ursprünglichen Spezifikation passt daher nur unvollständig zum
neuen Stand der Bedürfnisse des Auftraggebers.

Das ist die Erkenntnis der Agilität in der 1990ern gewesen, die zur Min-
destforderung eines iterativ-inkrementellen Softwareentwicklungspro-
zesses geführt hat.

Als Produktivitätskiller hatte sich herausgestellt, dass immer wieder über-
raschend bei der Abnahme von Software nicht der erwartete Wert ge-
liefert wurde. Selbst spezifikationsgemäße Lieferung hatte nicht die im
praktischen Einsatz erforderlichen Nutzen.⁸

Das Missverständnis von Auftraggebern und Softwareentwicklung bis in
die 1990er war (und ist leider auch heute noch in einigen Projekten), dass
Verhaltensanforderungen sich in einem mehr oder weniger länglichen
Prozess einmalig vor Beginn der Umsetzung festzurren lassen könnten
(Stichwort “Wasserfall”).

Diese Vorstellung hat zu Spezifikationen geführt, die große, unvermutete
Missweisungen enthielten, die in Software gegossen große negative Über-
raschungen ausgelöst haben. Umfangreiche Nacharbeiten waren nötig,
nicht wegen Inkorrektheit, sondern wegen Wertlosigkeit. Auch korrekt
implementierte Spezifikationen haben zum Lieferzeitpunkt nichts oder zu
wenig genützt.

Dem hat die Agilität eine Desillusionierung entgegen gesetzt. Nicht noch
bessere, umfangreichere, längere Anforderungsanalyse soll die Produk-
tivität steigern, sondern das Gegenteil: eine radikale Verkürzung bei
gleichzeitiger Vervielfachung von Analyse, Spezifikation und Umsetzung.

In der Agilität gibt es weiterhin eine Spezifikation und insofern eine
Erwartung an hohe Korrektheit (Stichwort “Definition of Done”). Doch
es wird nicht mehr angenommen, dass diese Spezifikation schon “die
letzte Wahrheit” sei. Stattdessen soll die Softwareentwicklung bestrebt
sein, nur schmale Ausschnitte eines Gesamtverhaltens zu spezifizieren
(auch Inkremente genannt), die zügig umgesetzt werden können, um

⁸Wert ist also nicht einfach gleich hochqualitative Software. ZumWert gehört natürlich,
dass Software hohe Qualität hat, d.h. der Spezifikation möglichst genau entspricht. Darüber
hinaus muss diese hohe Qualität allerdings auch noch nützlich sein in dem Moment, wo
sie geliefert wird. Daraus ergibt sich, dass Qualitätsproduktion und Wertproduktion zwei zu
unterscheidende Prozesse braucht. Für Ersteren bist du als Softwareentwickler zuständig, für
Letzeren z.B. in Scrum aber der Product Owner!

Einleitung 20

vom Auftraggeber Feedback zu bekommen. Wert kann man sich nur
schrittweise annähern, nicht, weil Auftraggeber oder Softwareentwick-
lung inkompetent sind, sondern weil es in der Natur der Sache komplexer
Anforderungen liegt; da ist kein geradliniger Weg zu hohemWert sichtbar.

Man bekämpft beim iterativ-inkrementellen Vorgehen die Ineffektivi-
tät dadurch, dass man ihr den Zahn der Überraschung zieht.Denn nur
die Überraschung macht aus mangelndem Wert frustrierende Nacharbeit.
Ist mangelnder Wert jedoch zu erwarten, ja, geradezu die Norm, dann
ist die nächste Iteration keine Nacharbeit, keine Verschwendung, sondern
ein erwartetes Inkrement und insofern produktiv - auch wenn man gern
schneller vorangehen würde.

Softwareentwicklung wie Auftraggeber hegen beim agilem Vorgehen
nicht mehr den Glauben, dass wertvolle Software “in einem Rutsch”
entstehen kann. Vielmehr muss man sich hohem Wert experimentierend
mit hochqualitativen Inkrementen annähern. Das ist keine Last, das ist
eine Tugend, weil unvermeidbar.

Wie steht es mit diesem Verständnis in deinem Team? Geht ihr iterativ-
inkrementell vor? Versteht der Auftraggeber die Vorläufigkeit seiner An-
forderungen und eurer Lösungen?

Fehlende Ordnung

Auch wenn fehlende Korrektheit der naheliegende und greifbare Produk-
tivitätskiller ist, ging ihm geschichtlich fehlenderWert in der Bewusstwer-
dung der Softwareentwicklung voraus, denke ich.

Nicht genau zu wissen, was der Auftraggeber wirklich will, was für ihn
Wert darstellt, für das Geld, das er auszugeben bereit ist, war zunächst
ein größeres Problem. Erst als eine Verbesserung des Vorgehensmodells in
den 1990ern hier mehr Klarheit gebracht hatte und dadurch die Zahl der
Softwarelieferungen zur Feedback-Generierung, die potenziell inkorrekt
sein konnten, gestiegen war, trat der Produktivitätskiller Inkorrektheit
deutlich(er) zutage. Beleg ist aus meiner Sicht dafür die späte Erfindung
automatisierter Tests. Erst Ende der 1990er bekam das Thema breite
Sichtbarkeit.

Wenn man weiß, was das Richtige ist (Wert), lohnt es, das auch richtig zu
tun (Korrektheit). Wenn man es kann.

Einleitung 21

Und da steckt schließlich der dritte Produktivitätskiller, den ich dir vorstel-
len möchte: die Unordnung. Solange du nicht bewusst darauf achtest,
Ordnung imCode herzustellen, hast du es immer schwer, das Richtige
auch richtig zu tun.

Für langfristig hohe Produktivität muss das Richtige or-
dentlich richtig getan werden.

Code, der sich mit jedem neuen Feature, mit jedem Bug Fix weniger leicht
verändern lässt, wird zum Morast, in dem deine Softwareentwicklung
alsbald steckenbleibt. Oder wenn nicht steckenbleibt, dann zumindest
nur noch schwerfällig vorankommt. Das ist nicht, was Auftraggeber sich
wünschen.

Code ist eine Ressource, mit und an der Softwareentwicklung arbeitet.
Wie andere Ressourcen kann sie pfleglich behandelt werden - oder
man treibt an ihr Raubbau. Ohne weitere Maßnahmen geschieht Letzte-
res.

Für den Auftraggeber sind Inkorrektheit und Wertarmut von Code noch
vergleichsweise leicht zu spüren. Beide zeigen sich als mangelnde Quali-
täten im Verhalten.

Unordnung jedoch entzieht sich der direkten und zeitnahen Wahrneh-
mung des Auftraggebers. Deshalb hat sie Gelegenheit, sich hinter der
Fassade des Verhaltens aufzubauen. Wenn sie dann indirekt über deutlich
sinkende Produktivität auch für den Auftraggeber spürbar wird, ist es
jedoch eigentlich schon zu spät. Deshalb musst du ständig ein Auge auf
die Ordnung haben!

Wenn du die Ordnung zu lange hast schleifen lassen, sind die nöti-
gen “Aufräumarbeiten” meist zu umfangreich, als dass sie sich rechnen
würden. Und sie ließen sich auch kaum dem Kunden gegenüber ver-
heimlichen. Also schleppt sich die Softwareentwicklung weiter durch
den selbst verschuldeten Sumpf. Denn selbst verschuldet ist er, da der
Kunde sich Unordnung nicht gewünscht hat. Sie ist mangels Bewusstsein
und/odermangels Fähigkeit und/oder wider besserenWissens “auf Befehl”
(Ignoranz) und/oder in naivemGlauben an baldige Korrektur (so genannte
Technische Schuld) entstanden.

Einleitung 22

Nicht, dass fehlende Ordnung eine neue Ursache für Produktivitäsabnah-
me wäre. Sie wurde schon in den 1960ern oder gar früher identifiziert.
Auch die Strukturierte Programmierung (structured programming⁹) ist
aus dieser Erkenntnis entstanden. Man könnte wohl auch sagen, dass
Objektorientierung von ihr ursprünglich inspiriert war. Ebenso das struc-
tured design¹⁰ und der Begriff des Moduls.

Wer mit Code zu tun hat, erwartet, ordentlichen Code vorzufinden,
d.h. Code, der nicht unnötig behindert, ihn zu verstehen (“easy to
reason about”), und der nicht unnötig behindert, ihn zu verändern.
Denn darum geht es letztlich ja immer: Code wird nur betrachtet, um ihn
neuen Anforderungen anzupassen oder zu korrigieren. Dass du Code aus
Spaß am prasselnden Kaminfeuer studierst, passiert wahrscheinlich selten,
oder?

Nach Jahrzehnten des mehr oder weniger latenten Bewusstseins der
Branche, dass Ordnung eine Qualität ist, auf die es ebenfalls zu achten
gilt bei der Softwareentwicklung, hat dann im Jahr 2008 der Begriff Clean
Code dem Thema neue Sichtbarkeit und Konkretheit gegeben.

Dass Robert C. Martin von sauberem Code und nicht von ordentlichem
spricht, mag dem von Martin Fowler im Zusammenhang mit dessen Buch
Refactoring geprägten Begriff code smell geschuldet sein. Was sauber ist,
riecht nicht.

Doch letztlich ist Sauberkeit als Bild zu schwach für die nötige Eigenschaft,
die Code haben muss, um deine Softwareentwicklung nicht schwerfällig
zu machen. Was sauber ist, kann immer noch unordentlich, d.h. unüber-
schaubar bis zu Unbrauchbarkeit sein.

Wenn du dir jetzt allerdings Ordnung vorstellst, denkst du sehr wahr-
scheinlich nicht nur an Sauberkeit als Selbstzweck, sondern auch noch
an Eignung für weitere Nutzung. Sauberkeit schützt vor Schaden.

Ordnung hat als Zweck Befähigung!

⁹https://en.wikipedia.org/wiki/Structured_programming
¹⁰https://www.amazon.de/Structured-Design-Fundamentals-Discipline-Programme/

dp/0138544719

https://en.wikipedia.org/wiki/Structured_programming
https://www.amazon.de/Structured-Design-Fundamentals-Discipline-Programme/dp/0138544719
https://www.amazon.de/Structured-Design-Fundamentals-Discipline-Programme/dp/0138544719
https://en.wikipedia.org/wiki/Structured_programming
https://www.amazon.de/Structured-Design-Fundamentals-Discipline-Programme/dp/0138544719
https://www.amazon.de/Structured-Design-Fundamentals-Discipline-Programme/dp/0138544719

Einleitung 23

Und genau darum geht es, wenn ich hier von ordentlichem Code, von
Ordnung im Code spreche. Code soll ordentlich sein, um zu zügiger
Veränderung zu befähigen.

Zusammenfassung

Auftraggeber wollen Software, die umfassend tut, was sie tun soll; sie soll
funktional und effizient sein. Diese Qualitäten sollst du in der Software-
entwicklung stets zügig liefern; du sollst produktiv sein und bleiben.

Unglücklicherweise ist schon die Herstellung von funktionalem und effizi-
entem Code eine Sache, die sehr komplex ist. Ich denke, davon kannst du
ein Lied singen. Sich mit all den Technologien und Produkten und Ansät-
zen auszukennen, die zur Herstellung von funktionalem und effizientem
Code zur Verfügung stehen, ist eine Kunst für sich.

Und nun soll die Herstellung von Code, der hochqualitatives Verhalten
zeigt, auch noch stets zügig stattfinden, obwohl dieser Code ständigen
Änderungen unterliegt und die Anforderungen an ihn notorisch unklar
sind? Das steigert die Komplexität der Softwareentwicklung erheblich!

Wie es für die Herstellung von Verhaltensanforderungen Werkzeuge gibt,
so gibt es zum Glück aber auch Werkzeuge, die dir helfen, hohe Produkti-
vität zu produzieren.

• Agilität
• Automatisierte Tests
• Prinzipien und Praktiken des Clean Code Development

Einleitung 24

Voraussetzungen für Produktivität

Du musst diese Werkzeuge kennen und auch einsetzen. Sie sind nicht neu,
sie sind womöglich noch nicht einmal schwierig zu beherrschen - doch
sie haben eines gemeinsam: sie gehen ans Eingemachte. Damit du sie
konsequent benutzt, musst du eine passende Grundhaltung entwickeln;
die Kultur der Softwareentwicklung in deinem Team und darüber hinaus
muss darauf ausgerichtet sein. Das braucht Zeit.

Die Agilität hat es inszwischen geschafft, breit ins Bewusstsein (oder
zumindest auf die Lippen) der Branche zu dringen. Auf die eine oder an-
dere Weise wird also in vielen Softwareentwicklungsteams versucht, die
Wertproduktion hoch zu halten durch iterativ-inkrementelles Vorgehen.

Mit der Korrektheit und der Ordnung hingegen, steht es weniger gut. Das
liegt daran, dass das eine vom anderen abhängig ist: ohne Ordnung ist es
schwer, Korrektheit zuverlässig und nachvollziehbar herzustellen und zu
überprüfen. Aber gerade die Ordnung hat es in sich. Nicht umsonst ist sie
geschichtlich der letzte Produktivitätskiller, für den breites Bewusstsein
geschaffen werden musste.

So verständlich es war, dass der Fokus von der Steigerung der Produk-
tivität in Bezug auf den Wert von Software (in den 1990er Jahren) zur
Steigerung der Produktivität durch Erhöhung der Korrektheit (in den

Einleitung 25

2000er Jahren) gewandert ist - so ist es andererseits auch verständlich,
dass die Produktivitätssteigerung dann gegen eine gläserne Decke stoßen
musste. Erst durch einen weiterenWechsel des Fokus hin zurOrdnung (in
den 2010er Jahren) kann nämlich die Behinderung aus dem Weg geräumt
werden, die mehr Korrektheit und auch zügigerer Wertherstellung im
Wege stand.

Dauerhaft hohe Produktivität braucht…

• eineOrganisation, die ihr höchste Priorität zuweist, um langfristig
wettbewerbsfähig zu bleiben,

• ein Verständnis dafür, wasOrdnung im Code bedeutet, wie er stets
wandlungsfähig gehalten werden kann,

• den Willen zur Produktion von stabil korrektem Code, um die
Kapazität für die Erweiterung von Code maximal zu halten,

• den Mut, nur auf der Basis von unzweideutigen Spezifikationen
Code zu produzieren

• und schließlich die Einsicht, dass Unklarheit und Volatilität ständi-
ge Begleiter der Softwareentwicklung sein werden, so dass Vorläu-
figkeit auf allen Ebenen akzeptiert werden muss.

Leider ist es in der Softwareentwicklung so, wie es der Buddha für das
Leben konstatiert hat:

“Frische Milch braucht Zeit zum Sauerwerden, / Unheilsames
Handeln braucht Zeit zum Reifen, / So schwelen im Toren die
Folgen seines Handelns, / Wie unter der Asche verborgene
glühende Kohlen.”, Dhammapada - Die Weisheitslehren des
Buddha, Munish B. Schiekel

Die negativen Auswirkungen deines heutigen Handelns zeigen sich nicht
immer sofort. Sie wachsen unsichtbar und schleichend an – bis du sie
irgendwann und oft zu spät deutlich spürst.

Deshalb ist es wichtig, die Produktivität als im Grunde höchstes Gut,
als wichtigste Anforderung zu verstehen und die Softwareentwick-
lung dahingehend zu organisieren. Das ist nachhaltige Softwareent-
wicklung. Zuerst und unverbrüchlich soll Produktivität geliefert werden,
dann erst Funktionalität, dann Effizienz.

Einleitung 26

Maßnahmen zur korrekten Wertproduktion in Ordnung müssen einen
Rahmen aufspannen, in dem konkrete funktionale und nicht-funktionale
Anforderungen umgesetzt werden. Derzeit geschieht es vielfach noch
umgekehrt: Verhaltensanforderungen werden “irgendwie” realisiert und
insbesondere Korrektheit und Ordnung sind nachrangig.

Alles, was ich dir im Folgenden präsentiere, darfst du vor diesem Hinter-
grund verstehen. Ichmöchte dir einmethodisches Rahmenwerk vorstellen,
mit dem du systematisch für höhere Korrektheit und Ordnung in deinem
Code sorgen kannst. Mich treibt die eigene leidvolle Erfahrung an, dass
darauf einfach zu wenig und zu spät geachtet wird. Mir ist das früher
auch oft passiert - weil ich es nicht besser wusste. Dir möchte ich diese
Erfahrung ersparen. Dir möchte ich eine Guideline an die Hand geben, mit
der du während der Codierung deinen Weg zur Korrektheit und Ordnung
findest. Keine Angst mehr vor dem blinkenden Cursor, der dich auffordert,
vor allem Funktionalität zu produzieren. Mit ein bisschen System, gutem
Willen und Übung wirst du es schaffen, Funktionalität und dauherhaft
hohe (oder zumindest höhere) Produktivität herzustellen.

Die Methode

01 - Die Anforderung-Logik
Lücke
Um die Softwareentwicklung vom Kopf auf die Füße zu stellen, d.h. ihr
einen Rahmen für Nachhaltigkeit zu geben, ist es hilfreich, wenn wir ihr
Produkt genauer betrachten. Woraus bestehen “die Maschinen”, die du in
der Softwareentwicklung produzierst, von denen sich der Auftraggeber so
viel Hilfe verspricht?

Logik - Der Stoff aus dem Verhalten
entsteht

Die offensichtlichen Anforderungen des Auftraggebers sind die Verhal-
tensanforderungen an Software. Verhalten wird durch Code hergestellt -
aber nicht der gesamte Code ist dafür verantwortlich.

Hier als Beispiel eine Software, die eine Datei als Hex Dump ausgeben soll
wie in diesem Bild dargestellt (Quelle: C# von Kopf bis Fuß¹¹):

¹¹https://www.amazon.de/gp/product/B06XDVW33W

https://www.amazon.de/gp/product/B06XDVW33W
https://www.amazon.de/gp/product/B06XDVW33W

01 - Die Anforderung-Logik Lücke 29

Der C#-Code dafür sieht im Ausschnitt so aus:

1 using System;
2 using System.IO;
3 using System.Text;
4
5 namespace hexdump
6 {
7 // source: "C# von Kopf bis Fuß"
8 class MainClass
9 {

10 public static void Main (string[] args)
11 {
12 if (args.Length != 1) {
13 Console.Error.WriteLine ("Usage: hexdump <dateiname>");
14 Environment.Exit (1);
15 }
16
17 if (!File.Exists(args[0])) {
18 Console.Error.WriteLine("No such file: {0}", args[0]);
19 Environment.Exit(2);
20 }
21
22 using (var input = File.OpenRead (args [0])) {
23 int position = 0;
24 var buffer = new byte[16];
25
26 while (position < input.Length) {
27 var charsRead = input.Read (buffer, 0, buffer.Length);
28 if (charsRead > 0) {
29 Console.Write ("{0}: ", string.Format ("{0:x4}", position));
30 position += charsRead;
31
32 for (int i = 0; i < 16; i++) {
33 if (i < charsRead) {
34 var hex = string.Format ("{0:x2}", buffer [i]);
35 Console.Write (hex + " ");
36 } else {
37 Console.Write (" ");
38 }
39 ...

Erkennst du, welche Zeilen des Code verhaltensrelevant sind? Die Verän-
derung welcher Zeilen würde für einen Anwender unmittelbar spürbar

01 - Die Anforderung-Logik Lücke 30

sein?

Könnte using System gelöscht werden, ohne dass sich das Programm-
verhalten ändert?¹² Nein, das Programmverhalten würde sich nicht än-
dern.

Sind die Leerzeilen oder der Kommentar relevant für das Programmver-
halten? Nein.

Spürt ein Anwender, ob es die Funktion Main() gibt? Nein.¹³

Aber wenn eine Zeile mit Console.Error.WriteLine(...) fehlen
würde, dann würde der Anwender das (in manchen Fällen) bemerken.

Oder wenn die Zeile if (i < charsRead) fehlen würde oder darin das
< durch ein > ersetzt würde, dann würde das zu einem anderen Verhalten
des Programms führen.

Code ist also nicht gleich Code. Mancher Code/manche Codezeilen sind
für das Verhalten relevant, manche nicht.

Die für das Verhalten relevanten Codezeilen stellen die
Logik von Software dar.¹⁴

Logik besteht aus

• Transformationen/Operatoren, z.B. <, ++, args.Length
• Kontrollstrukturen, z.B. if-else, for, try-catch
• I/O- bzw. allgemeiner API-Calls, z.B.Console.Write(), File.OpenRead()

¹²Vorausgesetzt die dadurch syntaktischen/semantischen Probleme im Quellcode wür-
den durch weitere Eingriffe kompensiert.

¹³Dass Main() in C# nötig ist, um ein Programm ausführbar zu machen, ist unwe-
sentlich. In anderen Programmiersprachen sind keine Klassen wie MainClass und keine
Methode wie Main() nötig, um ein Programm (übersetzen und) laufen zu lassen.

¹⁴So nenne ich diesen Teil des Code jedenfalls im Weiteren, weil ich keinen anderen
Namen dafür kenne. Wenn du einen besseren weißt oder einen schon etablierten, dann lass
ihn mich wissen. Statements finde ich zu wenig, weil damit im Grunde alles gemeint ist, was
in C# (und anderen Sprachen) mit einem ; abgeschlossen wird. Dazu gehört, wie du bald
lesen wirst, aber auch Code, der keine Logik ist.

01 - Die Anforderung-Logik Lücke 31

Wenn nun das für Auftraggeber so wichtige Verhalten - Funktionalität
+ Effizienz - nur durch Logik hergestellt wird, stellt sich die Frage, was
der übrige Code für Zweck hat. Welche Anforderungen hilft er erfüllen?
Warum solltest du irgendetwas anderes codieren als Logik?

Nicht-Logik Code dient der Herstellung von Produktivität.

Einige Beispiele:

• Namespaces reduzieren das Rauschen im Code, das lange Namen
mit redundanten Anteilen verursachen. Sie erhöhen die Ordnung.

• Leerzeilen strukturieren den Code vertikal, indem sie unterschied-
liche inhaltliche Kohäsion anzeigen. Sie erhöhen die Ordnung.

• Funktionen “komponieren” Logik zu Funktionseinheiten, die As-
pekte eines Verhaltens unter einem Namen zusammenfassen. Sie
erhöhen die Ordnung und die Testbarkeit.

• Klassen aggregieren Funktionen (und Daten) und stellen damit
zweckvolle Einheiten zusammen. Sie erhöhen die Ordnung.

Funktionalität

Die erste Kunst bei der Herstellung (oder Entwicklung) von Logik ist,
sie so zu wählen, dass sie die gewünschte Funktionalität hat. Das lernst
du auf alle Fälle in jedem Buch einer Programmiersprache oder einem
Programmierkurs.

Logik, die die Zahlen in einem Array summiert, sieht dann z.B. so aus:

1 static int Sum(int[] numbers) {
2 var sum = 0;
3 foreach(var n in numbers)
4 sum += n;
5 return sum;
6 }

Logik, die die Zahlen in einem Array sortiert, sieht hingegen z.B. so aus:

01 - Die Anforderung-Logik Lücke 32

1 // Quelle: https://www.geeksforgeeks.org/bubble-sort/
2 static void BubbleSort(int []arr)
3 {
4 int n = arr.Length;
5 for (int i = 0; i < n - 1; i++)
6 for (int j = 0; j < n - i - 1; j++)
7 if (arr[j] > arr[j + 1])
8 {
9 int temp = arr[j];

10 arr[j] = arr[j + 1];
11 arr[j + 1] = temp;
12 }
13 }

Welche Logik-Bausteine du aus den von deiner Programmiersprachen,
deinen Bibliotheken und Frameworks angebotenen auswählst und wie du
sie in Beziehung setzt, macht den Unterschied, ob das eine oder das andere
Verhalten entsteht.

Auch Code, der nur aus Logik besteht, hat insofern eine Struktur. Im
BubbleSort-Beispiel ist die augenfällig durch die Schachtelung der Kon-
trollstrukturen.

Effizienz I - Effizienz durch Algorithmen und
Datenstrukturen

Logik so zu strukturieren, dass sie die gewünschte Funktionalität hat,
ist jedoch nicht alles. Sie soll auch z.B. performant sein. Logik über die
Funktionalität hinaus auch noch mit Effizienzen auszustatten, ist die
zweite Kunst, die du lernen musst, wenn du programmieren willst.

Hier ein Beispiel dafür, wie anders Logik aussehen kann, nur weil sie mehr
Effizienz bieten soll. Bubblesort ist ein bekanntermaßen imperformanter
Sortieralgorithmus. Radixsort soll diesen Makel beseitigen:¹⁵

¹⁵Die Funktionalität ist dieselbe, die Logik-Struktur ist aber eine völlig andere, weil an-
dere Effizenzanforderungen erfüllt werden. Doch es kommt noch schlimmer: Sogar dieselbe
Funktionalität mit denselben Effizienzanforderungen kann zu sehr unterschiedlicher Logik
führen. Unter anderem das macht es dir so schwierig, aus Logik herauszulesen, welches
Verhalten sie eigentlich erzeugt.

01 - Die Anforderung-Logik Lücke 33

1 // Quelle: https://www.geeksforgeeks.org/radix-sort/
2 static void Radixsort(int[] arr, int n)
3 {
4 int mx = arr[0];
5 for (int i = 1; i < n; i++)
6 if (arr[i] > mx)
7 mx = arr[i];
8
9 for (int exp = 1; mx/exp > 0; exp *= 10)

10 {
11 int[] output = new int[n];
12
13 int i;
14 int[] count = new int[10];
15
16 for(i = 0; i < 10; i++)
17 count[i] = 0;
18
19 for (i = 0; i < n; i++)
20 count[(arr[i]/exp)%10]++;
21
22 for (i = 1; i < 10; i++)
23 count[i] += count[i - 1];
24
25 for (i = n - 1; i >= 0; i--)
26 {
27 output[count[(arr[i]/exp)%10] - 1] = arr[i];
28 count[(arr[i]/exp)%10]--;
29 }
30
31 for (i = 0; i < n; i++)
32 arr[i] = output[i];
33 }
34 }

Logik (und zugehörige Datenstrukturen) für Effizienz-Anforderungen
passend zu wählen, erfordert also mehr als die Kenntnis von Logik-
Bausteinen. Dass du dir z.B. der algorithmischen Komplexität¹⁶ deiner
Logik bewusst bist, gehört dazu, wenn du mit Logik den Auftraggeber
umfassend erfreuen willst. Es kommt auf die Auswahl und Zusammen-
stellung der Logik-Bausteine an, auf ihre Komposition.

Effizienz II - Effizienz durch Verteilung

Performance und Skalierbarkeit oder auch andere Effizienzanforderungen
lassen sich allerdings nicht immer allein durch Auswahl und Anordnug
von Logik erfüllen. Dann ist zusätzlich Verteilung gefragt, d.h. die Aus-
führung von Logik verteilt auf mehrere Threads.

Als simples Beispiel mag die Sortierung von zwei Arrays dienen. Eine
Lösung nur mit Logik kann das auch mit dem schnelleren Algorithmus
nur sequenziell bewerkstelligen:

¹⁶https://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/
https://www.bigocheatsheet.com/

01 - Die Anforderung-Logik Lücke 34

1 Radixsort(arr1, arr1.Length);
2 Radixsort(arr2, arr2.Length);

Die Gesamtlaufzeit ist dann die Summe der Laufzeiten der einzelnen
Aufrufe der Funktion, die die Sortierlogik kapselt.

Wenn die Sortierung jedoch parallel, d.h. auf zwei Threads (verschiedener
Prozessorkerne) stattfinden kann…

1 var t1 = Task.Factory.StartNew(() => Radixsort(arr1, arr1.Length));
2 var t2 = Task.Factory.StartNew(() => Radixsort(arr2, arr2.Length));
3 Task.WaitAll(new[] {t1, t2});

…dann entspricht die Gesamtlaufzeit (ungefähr) nur der des Funktionsauf-
rufs, der länger gebraucht hat.

Logik mit mehr Effizienz auszustatten durch Verteilung ist traditionell ein
Teil der Disziplin Softwarearchitektur. Sie kannst du als die dritte Kunst
der Softwareentwicklung ansehen.

Hierarchie der Hosts

Softwarearchitektur verteilt Logik, indem sie sie in Hosts ausführt. So
nenne ich geschachtelte Laufzeit-Kontexte/Container, die mit mehr oder
weniger Infrastruktur aufgesetzt, betrieben und in Verbindung gebracht
werden.

• Thread: Multithreading ist der erste Schritt, um Latenz zu ver-
bergen oder zu verringern oder den Durchsatz zu erhöhen. Die
Kommunikation schon zwischen Logik auf verschiedenen Threads
ist aber nicht mehr direkt, d.h. langsamer als die zwischen Logik
auf demselben Thread. Vorsicht ist geboten, wenn Threads auf die
selben Daten zugreifen.

• Process: Logik parallel in verschiedenen Betriebssystemprozessen
zu betreiben, entkoppelt sie stärker, was zur Robustheit beiträgt.
Dass es keinen gemeinsamen Hauptspeicher mehr gibt, reduziert
das Risiko von Fehlern. Allerdings ist die Kommunikation deutlich
aufwändiger zwischen Prozessen.

01 - Die Anforderung-Logik Lücke 35

• Machine: Logik in mehreren Threads verteilt auf mehrere Prozesse
auf verschiedenen (physischen oder virtuellen) Maschinen auszu-
führen, ermöglicht ein scale-out oder auch die Ansiedelung von
Logik näher an Ressourcen. Allerdings ist die Kommunikation zwi-
schen Maschinen noch langsamer als zwischen Prozessen, so dass
sehr auf Häufigkeit und Granularität der Nachrichtenübermittlung
geachtet werden muss.

• Network: Logik auf Maschinen in verschiedenen Netzwerken zu
verteilen, ist allemal unvermeidbar, wenn Speicher- und Prozessor-
ressourcen flexibel genutzt werden sollen (Stichwort “Cloud Com-
puting”). Der Nutzen bei der Skalierbarkeit ist mit den Gefahren
für die Sicherheit abzuwägen. Und die Kommunikationsgeschwin-
digkeit sinkt abermals.

Effizienz durch Verteilung steigern zu müssen, ist oft unvermeidbar.
Simpel ist das jedoch nicht. Die Zahl der hilfreichen Technologien nimmt
jeden Tag zu und erfordert von dir ein fleißiges Studium, wenn du mithal-
ten willst. Vorsicht ist dennoch weiterhin ganz grundsätzlich gegenüber
den fallacies of distributed computing¹⁷ geboten.

Im Weiteren spielen Hosts als Container für Logik jedoch keine größere
Rolle mehr. Die Darstellungen hier drehen sich nicht um die Herstellung
von Effizienzen, sondern vor allem um die Qualitäten Wert, Korrektheit
und Ordnung für die Anforderung Produktivität. Du wirst es mit Struk-
turen zu tun bekommen, aber nur vergleichsweise wenigen Strukturen
bestehend aus mehreren Hosts.

Zusammenfassung

Logik und ihre Verteilung ist das, was für den Auftraggeber unmittelbar
spürbar ist. Mit Logik und Verteilung Verhalten herzustellen, sind die
grundlegenden Künste der Programmierung. In ihnen können Software-
entwickelnde ständig reifen; für sie werden ständig neue Paradigmen,
Technologien und Produkte entwickelt.

Logik und Verteilung in hoher Qualität herzustellen, ist auch bei guten
Spezifikationen ein komplexes Unterfangen. Umso naheliegender sollte es
sein, dass du diese Transformation systematisch betreibst.

¹⁷https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

01 - Die Anforderung-Logik Lücke 36

Von den Anforderungen zur Logik

Angesichts des großen, bewussten und verständlichen Bedarfs an Soft-
wareverhalten, den Auftraggeber haben, ist es kein Wunder, dass sie
großen Druck auf die Logik-Produktion ausüben. Du sollst möglichst
schnell Features mit Logik umsetzen - alles andere ist dem Kunden wenn
schon nicht egal, dann doch meistens nur wenig bewusst. Auf alles andere
achtet er insofern wenig oder kann es sogar nicht einmal beurteilen.

Logik schwer definierbar

Doch leider “ergibt sich” Logik nicht “einfach so”. Sie liegt nicht auf der
Hand. Funktionale und effiziente Logik zu finden, ist für dich auchmit viel
Erfahrung eine komplexe Angelegenheit. Schon eine sehr simple Aufgabe
macht das deutlich:

Iteration 1: Hello, World!

Schreibe ein Programm, dass auf der Console “Hello, World!” ausgibt.

Das Ergebnis soll von der Ausgabe her so aussehen:

Eine Beispielausgabe als Spezifikation

Welche Logik ist dafür nötig?

Diese Frage wirst du für deine Programmiersprache sicher aus dem Stand
beantworten können. In C# sieht sie so aus:¹⁸

¹⁸Für weitere 599 Programmiersprachen kannst du dir hier die Antworten anschauen.
Aber Achtung: Viele enthalten nicht nur Logik, sondern auch sprachnotwendiges “Rauschen”
drumherum.

http://helloworldcollection.de/

01 - Die Anforderung-Logik Lücke 37

1 Console.WriteLine("Hello, World!");

Das Programm selbst ist umfangreicher, weil noch eine Klasse und eine
Funktion “als Verpackung” erforderlich sind, aber die reine Logik ist so
trivial.

Auf zur nächsten Iteration:

Iteration 2: Persönliche Begrüßung

Das Programm aus Iteration 1 soll erweitert werden. Der Auftragge-
ber sagt dir:

“Bitte bauen Sie das Programm so um, dass User dem Programm
ihren Namen mitteilen, um damit persönlich begrüßt zu werden.
Anwenderin Janine wird nicht mehr mit “Hello, World!”, sondern mit
“Hello, Janine!” begrüßt. Kriegen Sie das hin?”

Welche Logik brauchst du dafür?

Auch diese Frage wirst du wahrscheinlich aus dem Stand beantworten
können, wenn auch vielleicht mit ein wenig Unsicherheit, wofür solch ein-
fache Problemstellungen gut sein sollen. Ein Verhalten wie das Folgende
zu erzeugen, ist nun wirklich kein Hexenwerk:

Natürlich ist das keine große Herausforderung an deine Kunst, Logik für
Funktionalität zu finden.

Aber was, wenn dieses Verhalten nicht den Qualitätsanforderungen in
puncto Benutzbarkeit entspricht? Das stellt der Auftraggeber fest, wenn
du ihm deine neue Lösung vorstellst. Eine Anwenderin kann zwar dem
Programm den Namen “mitteilen”, muss dazu aber wissen, dass das auf
der Kommandozeile zu geschehen hat. Das hatte der Auftraggeber nicht
im Sinn mit seiner obigen Spezifikation; wie selbstverständlich hatte er

01 - Die Anforderung-Logik Lücke 38

gedacht, dass eine Anwenderin natürlich nach ihremNamen gefragt wird,
um ihn dann mitzuteilen.¹⁹

“Gedacht” hatte sich der Auftraggeber ein solches Verhalten:

Das passt genauso zur verbalen Spezifikation. Die Logik dafür sieht jedoch
ganz anders aus als für die erste Implementation!

1 // Variante 1
2 Console.WriteLine("Hello, {0}!", args[0]);
3
4 // Variante 2
5 Console.Write("Name: ");
6 var name = Console.ReadLine();
7 Console.WriteLine($"Hello, {name}!");

Und damit ist die Lösung immer noch nicht in trockenen Tüchern! Denn
was geschieht, wenn ein Anwender keinen Namen eingibt und nur ENTER
drückt? Dann passiert dies bei Variante 2:

Ist das ein erwünschtes Verhalten aus Sicht des Auftraggebers? Nein.
Der hatte sich bei der Formulierung “mitteilen … kann” gedacht, dass
ohne Name weiterhin mit “Hello, World!” begrüßt wird. Es gilt aller-
dings: “Gedacht ist nicht gemacht!” Auftraggeber müssen mehr, als sich
Anforderungen denken oder darauf vertrauen, dass du “als Fachmann”
schon weißt, was gemeint sein könnte. Sieh durch den Honig durch,
den dir solche Formulierungen um den Bart schmieren: “Sie haben doch
Erfahrung. Sie wissen doch, wie man das macht und was ich meine.” Nein,

¹⁹Ich habe dich hier ein wenig hereingelegt. In der ersten Iterationwar die Bildschirmaus-
gabe die Spezifikation. In der zweiten eine rein verbale, auf die ich sofort einen Screenshot
habe folgen lassen. Der hat dir vielleicht suggeriert, dass das darin zu sehende Verhalten das
spezifizierte ist. Abermitnichten! Es war schon eine Interpretation der verbalen Spezifikation.
Du siehst, es ist so eine Sache mit den Anforderungen. Welche gelten, wann liegen sie vor,
welche Form sollten sie haben, damit du ihnen vertrauen kannst? Dazu später mehr.

01 - Die Anforderung-Logik Lücke 39

weiß du nicht! Du kannst dir zwar eine Menge denken - nur bedeutet das
nicht, dass es dasselbe ist, wie sich der Auftraggeber denkt oder was ihm
am Ende gefällt, was Wert darstellt. Wenn du hörst “Sie als Fachmann”,
ist Gefahr im Verzug! Dann musst du die Anstrengungen verdoppeln, den
Kunden aus der Unklarheit zu locken - oder ihm ganz klar sagen, dass du
nur Vorläufiges programmieren kannst.

Eine oder drei oder auch fünf Zeilen Logik zu finden, ist in diesem
Szenario nicht das Problem. Doch schon bei dieser Größenordnung fehlt
es eben an Klarheit, was überhaupt Wert für den Auftraggeber darstellt.

Mit iterativem Vorgehen lässt sich der Schaden jedoch begrenzen. Wenn
du dem Auftraggeber nicht vorgaukelst, dass du seine Wünsche direkt
umsetzen kannst, sondern Feedback-Schleifen benötigst, führen Kontraste
zwischenWunsch und Lieferung nicht zu Konflikten, sondern zu Informa-
tionen. Motto: “Gut, dass wir darüber gesprochen haben!”

Nach zwei Iterationen kann die Lösung dann so aussehen:

Und die Logik hat dir natürlich keine Probleme gemacht. Wenn klar ist,
was gewünscht ist, ergibt sie sich quasi von selbst und sieht z.B. so aus:

1 Console.Write("Name: ");
2 var name = Console.ReadLine();
3 if (string.IsNullOrWhiteSpace(name)) name = "World";
4 Console.WriteLine($"Hello, {name}!");

Vielmehr war es der Kunde mit der unklaren Spezifikation, der zu einem
Umweg geführt hat. Garbage in, garbage out : Das gilt auch bei der
Softwareentwicklung.

Iteration 3: Party time!

Das Programm aus Iteration 2 soll nun abermals erweitert werden,
um zur Begrüßung auf Partys eingesetzt zu werden. Der Auftragge-

01 - Die Anforderung-Logik Lücke 40

ber sagt dir:

“Ich bin Veranstalter von 2-3 Partys pro Woche, die von 50-100 Gästen
besucht werden. Solche Partys veranstalte ich in 20-25 Wochen pro
Jahr in den nächsten 1-2 Jahren. Die neue Version des Programms
möchte ich auf meinem Laptop am Eingang der Partys laufen lassen.

Jeder Gast soll darin seinen Namen eingeben und persönlich begrüßt
werden. Wenn z.B. Roger das erste Mal eine dieser Partys besucht,
wird er mit “Hello, Roger!” begrüßt. Kommt er zum zweitenMal, heißt
es aber “Welcome back, Roger!” Ab dem dritten Besuch lautet die
Begrüßung “Hello my good friend, Roger!”. Und ist Roger schließlich
das 25. Mal auf einer Party, ist einmalig der Zusatz auszugeben
“Congrats! You are now a platinum guest!

Ich erwarte, dass ich während der Nutzungsdauer des Programms
immer denselben Laptop verwende. Der wird vor Party-Beginn hoch-
gefahren, das Programm wird einmalig gestartet für den Abend und
am Ende mit CTRL-C beendet. Eine Internetverbindung besteht am
Veranstaltungsort leider nicht verlässlich.

Können Sie das Programm in dieser Weise erweitern?”

Was nun? Sind die Anforderungen wieder unklar? Eher nicht. Es ließen
sich zwar noch ein paar Fragen stellen, wie sich das Programm verhal-
ten soll, wenn verschiedene Gäste denselben Namen haben. Doch diese
Restunklarheit ist bei dieser Iteration nicht das Problem. Vertrau mir.

Bei dieser Iteration liegt vielmehr die Logik selbst bei klaren Anforderun-
gen nicht mehr auf der Hand. Sie mag am Ende 10 oder 20 Zeilen umfassen
- viel wäre das allerdings immer noch nicht. Dennoch wirst du bei dieser
Iteration eine deutlich größere Unsicherheit verspüren. Du siehst keinen
geraden Weg mehr zur Logik; sie springt dir nicht vor dein geistiges Auge.
Deine Gedanken kreisen… du kannst jetzt nicht einfach codieren, sondern
musst zuerst nachdenken.

Die Funktionalität selbst stellt jetzt schon ein Problem dar, obwohl das
Szenario immer noch trivial ist. Und deshalb wird auch die Korrektheit
relevant. Dennwo unklar ist, welche Logik die passende ist, ist sehr schnell
auch unklar, ob die ausgewählte tatsächlich die Anforderungen erfüllt.

01 - Die Anforderung-Logik Lücke 41

Darüber hinaus aber kommst du nicht mehr ohne Ordnung im Code
aus. Deine kreisenden Gedanken suchen nicht nur die Logik für das
Verhalten, sondern auch nach einer ordentlichen Struktur, in der du die
Logik aufhängen kannst, um deine eigene Lösung zu verstehen.²⁰

Diese Struktur wird jedoch nicht durch die Logik gebildet, es geht also
nicht um den Algorithmus. Vielmehr geht es um einen Rahmen um Logik
herum, also um Nicht-Logik Code. Wenn du dabei an Funktionen und
Klassen (oder allgemeiner: Module) denkst, hast du die richtige Intuition.

Die Phasen der Programmierung

Zwischen den Anforderungen des Auftraggebers und der Logik, die
zumindest die spürbaren Verhaltensanforderungen erfüllt, klafft eine ge-
waltige Lücke: die Anforderung-Logik Lücke. Schon in sehr simplen
Szenarien wie dem vorgestellten liegt Logik nicht auf der Hand, sondern
will gewissenhaft erarbeitet werden.

Wie die Iterationen des Beispiels zeigen sollten, geschieht das in drei
Phasen, die strickt aufeinander folgen. Immer. Auch bei dir. Selbst, wenn
du das nicht wahrnimmst oder nicht glaubst. Und auch wenn sie iterativ,
also mehrfach durchlaufen werden, tut das dem Vorhandensein und der
Reihenfolge der Phasen keinen Abbruch.

1. Phase: Analyse

Konfrontiert mit Anforderungen ist die Softwareentwicklung aufgerufen,
zunächst eine für sie relevante Analyse zu machen. Diese Analyse hat als
Ziel, Verständnis zu erzeugen. Nur wenn du wirklich verstanden hast,
solltest du dich auf den Pfad der Code-Entwicklung machen. Ansonsten
ist zu befürchten, dass das Resultat keinen Wert hat und/oder inkorrekt
ist.

²⁰Ich habe das Experiment genügend oft live mit Entwicklergruppen gemacht, um zu
wissen wovon ich rede. Während bei den ersten beiden Iterationen die Logik herausge-
sprudelt wird, hängen Probanden dieses Experiments bei Iteration 3 und “stammeln sich
etwas zusammen”. Sie können die Logik nicht “herunterbeten”, sondern drehen gedankliche
Schleifen auf unterschiedlichen Ebenen. Meistens wollen sie mir etwas auf dem Level von
Pseudocode erzählen oder nennen mir Gliederungspunkte. Konkrete Logik ist das alles aber
nicht. Und das kann auch nicht sein. Dafür ist selbst dieses Beispiel zu groß. Es im Kopf und
geradlinig zu lösen, können nur die allerbesten auf Anhieb - und auch das nicht verlässlich.

01 - Die Anforderung-Logik Lücke 42

Verständnis drückt sich ausschließlich zweifelsfrei in Kön-
nen aus.

Das weiß jeder, der eine Mathematik-Prüfung (aus eigenen Kräften)
bestanden oder auch nicht bestanden hat.

Ein konkreteres Beispiel: Wer versteht, wie Fibonacci-Zahlen berechnet
werden, der kann die Folge 1, 1, 2, 3, 5, 8 beliebig fortsetzen. Der weiß,
welche Zahl auf 8 folgt, der weiß, welche Zahl auf 21 folgt; der weiß auch,
ob 35 eine Fibonacci-Zahl ist oder nicht.

Der unzweideutige formale Ausdruck von Verständnis besteht deshalb in
“Beispielaufgaben” für dich als Entwickler bzw. für die von dir zu entwi-
ckelnde Software. Nur Software, die diese “Beispielaufgaben” fehlerfrei
löst, kann als anforderungskonform und korrekt akzeptiert werden.

Vorgelegt werden die “Beispielaufgaben” natürlich in Form von automa-
tisierten Testfällen. Andernfalls ist nicht zu erwarten, dass sie verlässlich
und nachvollziehbar und personenunabhängig überprüft werden.

Wenn Produktivität nicht durch Inkorrektheit behindert
werden soll, muss Software auf Reife und Stabilität stets
automatisiert mit relevanter Codeabdeckung getestet wer-
den.

Automatisierte Tests sind die erste Bastion im Kampf gegen den
Morast der schleichend wachsenden Unwandelbarkeit, der deine Pro-
duktivität in die Knie zwingt.

Der automatisierte Test hat allerdings eine Voraussetzung: Es muss auch
klar sein, wie ein Test “an Logik angelegt” werden kann. Wie bekommt
der Test Zugang zur zu testenden Logik? Das geschieht vor allem durch
Aufruf von Funktionen.

Das gewünschte Verhalten wird durch mindestens eine
Funktion in seiner Gänze repräsentiert (API-Funktion). Die
Funktion oder andere unterhalb ihr im Aufrufbaum enthal-
ten die Logik, die im Test getriggert wird.

01 - Die Anforderung-Logik Lücke 43

Verständnis als Resultat der Analyse drückt sich aus in einer Reihe
von Tupeln der Form (Testfall, Funktion).

Für das Beispiel der Fibonacci-Zahlen könnte das so aussehen:

• Funktion: int[] Fib(int n)
• Testfälle:

– Input: n=0, erwartetes Resultat: []
– Input: n=1, erwartetes Resultat: [1]
– Input: n=4, erwartetes Resultat: [1,1,2,3,]

Daraus folgt:

Softwareentwicklung, die nachhaltige Produktivität ernst
nimmt als Anforderung, ist grundsätzlich test-first Pro-
grammierung.

Das Ergebnis der Analyse sind Akzeptanztests für die zu entwickelnde
Logik. Ohne Erfüllung ihrer Akzeptanztests ist Logik nicht reif; Akzep-
tanztests sind die Reifetests “an der Außenhaut” von Software. Und ohne
unausgesetzte Erfüllung bisheriger Akzeptanztests ist Logik nicht stabil.
Beides ist inakzeptabel im Sinne dauerhaft hoher Produktivität.

Der zweiten Iteration des obigen Programms fehlte es an formalem,
dokumentiertem Verständnis. Deshalb ist die Entwicklung in die falsche
Richtung gelaufen und hat auch noch den Eindruck der Inkorrektheit
gemacht.

2. Phase: Entwurf

Die dritte Iteration im Beispiel hat natürlich auch noch unter einem
Mangel an dokumentiertem Verständnis gelitten. Darüber hinaus waren
die Anforderungen aber so umfangreich, dass sich auch gutes Verständnis
nicht mehr “einfach so” in Logik hat umsetzen lassen.

Das Nachdenken über Code vor der Codierung in der IDE, das die dritte
Iteration erzwungen hat, ist das, was ich Design oder Entwurf nenne.
Diese Phase ist die zentrale Provokation der Softwareentwicklung, scheint

01 - Die Anforderung-Logik Lücke 44

mir. Ihr müssen sich alle Entwickelnden stellen, hier ist echte Kreativität
gefragt. Und hier gibt es den größten Widerstand seit Anfang der 2000er.
Entwurf scheint überflüssig, hinderlich, verlangsamend. Meine Erkennt-
nis ist allerdings gegenteilig: Ich sehe, dass die Produktivität leidet, weil
Entwicklungsteams einen Entwurf vernachlässigen.

Im Entwurf wird eine Lösung für das Problem gefunden,
das die Anforderungen aufwerfen. Das ist allerdings nur
eine konzeptionelle Lösung, ein Lösungsansatz. Der mani-
festiert sich in Code erst in der nächsten Phase.

Entwurf findet immer statt. Du kannst ihn sehr bewusst oder ganz
unbewusst durchführen. Erfolgt er bewusst, ist er allerdings noch nicht
notwendig auch systematisch. Deshalb lässt die Ordnung der “entworfe-
nen” Strukturen oft zu wünschen übrig.

Entwurf ist per definitionem deklarativ.

Das heißt, im Entwurf steht keine Logik zur Verfügung. Entwurf liefert
keine Algorithmen, sondern plant einModell.

Das Modell als Ergebnis des Entwurfs besteht aus einer Reihe von Funk-
tionen die in Tupeln der Form (Funktion1, Funktion2, Beziehungen) ver-
bunden sind.

Beispielhafte Beziehungen zwischen Funktionen f und g des Modells sind:

• f ruft g auf (Abhängigkeit)
• g folgt auf f (Sequenz)
• f spezialisiert g (Vererbung)
• f und g haben inhaltlich etwas gemeinsam (sie verfolgen den selben
Zweck)

• f und g benutzen gemeinsamen Zustand

01 - Die Anforderung-Logik Lücke 45

Das mag abstrakt klingen und Modelle müssen auch nicht in Form
von 3-spaltigen Excel-Blättern geliefert werden. Ein Klassendiagramm,
ein Datenfluss, eine Zustandsmaschine… das und mehr sind hilfreiche
Ausdrucksformen für Modelle - die sich allerdings alle auf die obige sehr
allgemeine Definition zurückführen lassen.

Zentral beim Entwurf eines Modells ist, dass es ganz bewusst von kon-
kretem Code abstrahiert. Die Feinheiten einer Programmiersprache oder
eines Framework und der Detailreichtum von Logik stehen nicht zur
Verfügung. Der Lösungsansatz ist “mit einfacheren Mitteln” zu finden.

Diese freiwillige Selbstbeschränkung hat mehrere Gründe:

• Weniger Details erlauben eine schnellere Lösungsfindung - auf
hohem Abstraktionsnivau in Form eines Durchstichs.

• Eine deklarative Lösung erlaubt die einfachere visuelle Darstellung
und damit Kommunikation zwischen Teammitgliedern. Mentale
Modelle lassen sich externalisieren.

• Visuelle, abstrakte Lösungsansätze lassen sich in größerer Vielfalt
gegenüberstellen, was der Findung besserer Lösungen dient.

• Einen Lösungsansatz zu finden erfordert andere geistige Aktivität/-
Fähigkeit als die Codierung eines Lösungsansatzes. Die explizite
Modellierung vor einer Codierung dient mithin der Entzerrung des
Entwicklungsprozesses; es wird ermüdendes, verlangsamendes und
fehlerträchtiges Multitasking vermieden.

Ein bewusster und systematischer Entwurf stellt ein Modell her,
das nicht nur die Lösung der Verhaltensanforderungen repräsentiert,
sondern auch noch der Forderung nach Ordnung genügt.

Wo die Analyse eine Bastion gegen Wertarmut und Inkorrektheit ist, da
ist der Entwurf eine Bastion gegen Unordnung.

3. Phase: Codierung

Die Codierung schließlich setzt den Entwurf um in Code. Du übersetzt ein
Modell mit einer Programmiersprache in Funktionen, die dumit konkreter
Logik ausfüllst.

01 - Die Anforderung-Logik Lücke 46

Ist das Modell gut, kann dieser Phase durchaus eine gewisse Langeweile
anhaften. Das Problem ist ja (theoretisch) gelöst. Die Spannung ist raus aus
denAnforderungen. Insofern ist mein Ziel mit Programmingwith Ease, dir
die Codierung etwas zu verleiden. Du sollst sie am Ende als mechanische
Arbeit auffassen, bei der nur noch relativ wenig Kreativität nötig ist. Ok,
vielleicht übertreibe ich ein wenig, aber so ungefähr stelle ich mir das vor,
weil ich es selbst so erfahren habe. Je leichter ich mir die Programmierung
gemacht habe, desto unspannender wurde die Codierung.

Nachlässigkeit darf sich deshalb jedoch nicht einschleichen. Die Codie-
rung hat ihre eigenen Probleme, die noch gelöst werden wollen. Hier
schlägt die Stunde des Handwerkers, der seine Technologien beherrscht.

Das Ergebnis der Codierung ist - wie sollte es anders sein - Code. Aber
nicht irgendein Code, sondern Code, der erstens der Ordnung des Modells
folgt und zweitens in den Detail-Ebenen unterhalb des Modells ebenfalls
Ordnung walten lässt.

Darüber hinaus ist die Codierung die Phase, in der du die automatisierten
Prüfungen der Korrektheit implementierst.

Codierung stellt Produktionscode und Testcode paarweise
test-first her.

Ordnung undKorrektheit dürfen bei der Codierung auf den letztenMetern
nicht kompromittiert werden. Das ist kein kleines Kunststück unter dem
üblicherweise herrschenden Druck von Lieferterminen.

Zusammenfassung

Die Übersetzung von Anforderungen in Code ist eine komplexe Tätigkeit,
die nur systematisch verlässlich alle Qualitäten herstellt: Wert in Form
von Funktionalität + Effizienz, Korrektheit und Ordnung.

Die minimale Systematik, die ich dir mit Programming with Ease insge-
samt vermitteln will, besteht darin, für gegebene Anforderungen eine für
dich als Entwickler relevante Analyse durchzuführen, die nachvollzieh-
bares Verständnis nicht nur dokumentiert, sondern auch automatisiert
überprüfbar macht.

01 - Die Anforderung-Logik Lücke 47

Ausgehend von diesem Verständnis wird dann im nächsten Schritt ein
Lösungsansatz modelliert, der von den Feinheiten der Codierung bewusst
abstrahiert für mehr Überblick, bessere Kommunizierbarkeit und größere
Flexibilität.

Erst nach diesen Vorarbeiten kann alles bereit sein, um das zu tun, was
man gemeinhin als die vordringliche Aufgabe von Softwareentwicklung
sieht: die Codierung.

Eine Brücke über die Anforderung-Logik Lücke

Analyse → Entwurf → Codierung (AEC): Dieser Prozess ist unver-
brüchlich, gar unvermeidbar. Daran glaube ich fest; das zu verstehen, hat
mir die Softwareentwicklung erheblich erleichtert.

Das bedeutet jedoch nicht, dass Softwareentwicklung deshalb “imWasser-
fall” oder nach BDUF (Big Design Up-Front) verlaufen müsste. Die Phasen
AEC können beliebig häufig und beliebig schnell durchlaufen werden. Sie
sollten lediglich dem Umfang und Schwierigkeitsgrad der anliegenden
Anforderungen entsprechen.

Auf diese Weise wird die Lücke zwischen Anforderungen und Code
systematisch und nachvollziehbar und teamfähig überwunden.

01 - Die Anforderung-Logik Lücke 48

Übungsaufgaben

Übung macht den Meister! Deshalb gibt es zu (fast) jedem Kapitel Übungs-
aufgaben, die du in deiner Geschwindigkeit lösen kannst. Kein Druck,
keine Anprüche, die andere dabei an dich haben könnten. Mach es dir
gemütlich damit.

Zu allen Übungsaufgaben findest du im Anhang auch Musterlösungen.
Mit denen möchte ich dir das Selbststudium erleichtern; versuche also
nicht zu luschern, während du die Übungsaufgaben löst. Und bitte ver-
stehe die Musterlösungen auch nicht als Abkürzung, mit denen du dir die
eigene Lösung der Übungsaufgaben (er)sparst.

Wenn du wirklich, wirklich daran interessiert bist, zu lernen, d.h. deine
Gewohnheiten zu verändern, dann brauchst du eigene Praxis. Du musst
nach dem Lesen etwas tun mit dem Gelesenen. Gern kannst du natürlich
die Anwendung in deinem Projektalltag versuchen; früher oder später
musst du diesen Sprung ja ohnehin machen. Aber erstens sind die Pro-
bleme in deinem Projektalltag weniger überschaubar, so dass dir weniger
klar ist, wie und wo mit dem Transfer des Gelesenen du anfangen kannst.
Zweitens wirst du durch Anwendung des Neuen erstmal langsamer,
weil du noch unsicher bist; das kann dir schnell scheele Blicke von den
Kollegen einbringen und du fällst in alte Gewohnheiten zurück. Drittens
kann ich dir keinerlei Feedback geben, noch nicht einmal in Form einer
monologischen Musterlösung. Feedback ist aber extrem wichtig, wenn du
eine neue Fähigkeit erwirbst.

Deshalb empfehle ich dir sehr, die Übungen zu machen als erste Anwen-
dung des Lernstoffs “in einer Sandkiste”. Die Aufgaben sind überschaubar,
keiner redet dir rein und macht druck und mit den Musterlösungen
bekommst du zumindest eine gewisse Form von Feedback bzw. Kontrast
zum Nachdenken.

Um deine Lösungen der Übungsaufgaben zu dokumentieren, lege für dich
ein Git-Repository an, in dem du all deine Arbeitsergebnisse speicherst.
Committe häufig und vergiss am Ende das Push nicht.²¹

²¹Wenn du noch nicht so viel mit Git gearbeitet hast, kannst du einen der bequemen
visuellen Git-Clients benutzen wie z.B. den kostenlosen von GitHub. Eine Übersicht findest
du hier.

https://desktop.github.com/
https://git-scm.com/downloads/guis/

01 - Die Anforderung-Logik Lücke 49

Ein Git-Repository ist das unterste und einfachste Sicherheitsnetz, das du
für deine Programmierung spannen kannst. Never code without it.²²

Reflexionsaufgabe
Bitte formuliere eine Frage oder eine Erkenntnis zum Kapiteltext.

• Wo bist du gedanklich hängengeblieben, was ist dir unklar,
was passt für dich irgendwie nicht zusammen, wozu würdest
du dir noch etwas mehr Erklärung wünschen? Steht irgendet-
was zu deiner bisherigen Praxis imWiderspruch und du fragst
dich, warum du etwas ändern solltest?

• Oder: Wann hast du einen Aha-Moment gehabt, was ist
dir als bemerkenswert, spannend, ausprobierenswert aufgefal-
len? Hat irgendetwas “in dir Klick gemacht”, weil dir nun ein
Zusammenhang aufgegangen ist? Oder verstehst du jetzt aus
deiner bisherigen Praxis irgendetwas besser?

Am besten formulierst du Frage bzw. Erkenntnis schriftlich. Indem
du deine Gedanken aufschreibst, wirst du dir ihrer bewusster. Bei
einer Frage kommst du dadurch vielleicht schon einer Antwort aus
dir selbst heraus näher. Bei einer Erkenntnis fällt dir vielleicht schon
etwas ein, das du ab jetzt anders machen kannst.

Aufgabe 1 - Erklären
Beschreibe mit min. 500 bis max. 1000 Worten den Nutzen eines ex-
plizten Entwurfs bzw. derModellierung für die Softwareentwicklung.
Warum sollte man selbst bei hohem Verständnis der Anforderungen
nicht sofort loslegen mit der Codierung, sondern zuerst nachdenken
und modellieren?

²²Aber nicht nur den Codeanteil deiner Lösungen solltest du in Repository legen. Alle
Artefakte sind es wert, aufbewahrt zu werden. Vielleicht schreibst du Analysen in einem
.txt/.docx Dokument auf oder machst eine Zeichnung in Visio oder hast eine Skizze auf
Papier (die du fotografieren kannst), dann committe all das ebenfalls. So schaffst du dir eine
Dokumentation der kompletten Lösungsentwicklung.

01 - Die Anforderung-Logik Lücke 50

Versuche dich an einer ganz einfachen Erklärung im Stile von ELI5:
Explain it like I’m 5 years old.

https://www.dictionary.com/e/slang/eli5/

Aufgabe 2 - Modellieren
Auf der Basis des bisher Gesagten und deinem Verständnis von dem,
was Entwurf ausmacht, entwickle ein Modell für die Iteration 3 des
Hello-World Problems: Gäste sollen auf Partys begrüßt werden. Wie
kann ein Lösungsansatz aussehen, ohne dass du auch nur eine Zeile
Code schreibst. Halte also auch Abstand vom üblichen Pseudocode!

Erinnere dich, dass ein Modell deklarativ ist. Logik steht dir nicht zur
Verfügung - und trotzdem soll mit einem Modell der Lösungsansatz
beschrieben werden. Einem anderen Entwickler, dem du ein Modell
zeigst, soll die Codierung deutlich leichter fallen, als ohne Modell.

Einerseits soll das Modell die Lösung beschreiben, also schon konkret
sein. Andererseits jedoch soll dasModell nicht zu konkret sein. Es soll
Abstand von Details halten, die erst in der Codierung ausgefleischt
werden. Ein Modell ist mithin eine abstrakte Lösung.

Wie könnte die für das Hello-World Problem aussehen? Was sollte
darin beschrieben sein - und was sollte ausgelassen werden?

Versuche dich einmal daran mit deinen bisherigen Erfahrungen mit
Softwareentwürfen. Oder vielleicht hast du von anderen schonmal
gehört, wie die soetwas angehen.

Keine Angst, dass du diese Aufgabe “falsch” lösen könntest. Es geht
nicht darum, sie in bestimmter Weise zu erfüllen, also auf “das eine
richtige” Modell zu kommen. Diese Aufgabe soll dich schlicht auf
andere Weise als die erste zu einer aktiven Auseinandersetzung mit
dem Entwurfsbegriff anregen.

https://www.dictionary.com/e/slang/eli5/
https://www.dictionary.com/e/slang/eli5/
https://www.dictionary.com/e/slang/eli5/

02 - Entwurf im Überblick
Im Entwurf wird die Umsetzung vorweggenommen. Er stellt die Lösung
des Problems dar, ohne “es zu tun”. Er entwickelt nur eine Vorstellung
davon, wie die geforderte Leistung durch Software erbracht werden
könnte.

Bevor ich dir konkret erkläre, wie ich meine, dass du sehr leichtgewichtig
entwerfen solltest und warum genau so in einer bestimmten Weise,
möchte ich dir ausführlich darstellen, was ich grundsätzlich damit meine
und was das soll.

In Kapitel 01 habe ich schon versucht, den Entwurf als unverbrüchliche
Phase jeder Softwareentwicklung herauszuarbeiten. Du kommst aus mei-
ner Sicht sowieso nicht um ihn herum, auch wenn du der Meinung bist,
ihn nicht zu brauchen. Doch lass uns noch einen genauere Blick darauf
werden, was das ist, der Entwurf.

Den Entwurf abstecken

Mit ein paar Aussagepflöcken stecke ich das Thema Entwurf mal grob ab.
Das ist abstrakt, aber keine Sorge, du wirst später noch genügend konkrete
Entwürfe sehen.

1. Ein Entwurf stellt die Lösung eines Problems dar, d.h. er erfüllt die
Anforderungen des Auftraggebers.

2. Entwurf ist allerdings nicht die eigentliche Sache, die der Auftrag-
geber will. Wie auch immer ein Entwurf aussieht, es ist also kein
Code, er ist nicht ausführbar. Das widerspräche der Definition von
Entwurf.

3. Ein Entwurf ist nur eine Beschreibung der eigentlichen Sache,
insofern ist seine Lösung nur theoretisch/konzeptionell. Nicht jede
Beschreibung der eigentlichen Sache ist jedoch ein Entwurf. Damit
eine Beschreibung ein Entwurf ist, muss sie vor der Herstellung
der Sache angefertigt worden sein. Eine Beschreibung der eigentli-
chen Sache nach der Herstellung ist eine Dokumentation.

02 - Entwurf im Überblick 52

4. Ein Entwurf als Beschreibung dessen, was Code leisten soll, bevor
dieser Code geschrieben wird, hat den Zweck, die Codierung deut-
lich zu erleichtern, wenn nicht gar, sie überhaupt zu ermöglichen.

5. Der Preis für die Erleichterung der Codierung darf allerdings nicht
zu hoch sein. Es ist ein gutes Verhältnis zwischen Entwurfs- und
Codierungsaufwand zu finden, das den Gesamtaufwand der Soft-
wareherstellung reduziert. Indem Entwurf und Codierung zusam-
menkommen, soll Energie frei werden, die vorher gebunden war
in “roundtrips” (aka Debugging, Testsitzungen, Iterationen).

6. Um eine Lösung zu sein, die vor der Codierung entwickelt werden
kann, diese erleichtert und selbst nicht zu aufwändig ist, muss ein
Entwurf auf einer deutlich höheren Abstraktionsebene stattfin-
den, als die Codierung. Er darf nicht durch Details der Codierung
behindert werden; er sollte weniger Komplexität als der spätere
Code aufweisen.

7. Die höhere Abstraktion darf jedoch nicht dazu führen, dass der Ent-
wurf abhebt. Er muss also gleichzeitig konkret und aussagekräftig
sein.

8. Leichtgewichtigkeit ist ein Kennzeichen für hilfreiche Entwurfs-
werkzeuge, denn sonst werden sie nicht benutzt, wenn der Druck,
mit der Codierung zu beginnen, groß ist.

9. Und schließlich muss ein Entwurf durch die Realität der Codierung
informiert sein und sich geradlinig in Code übersetzen lassen. Es
braucht also Bezugspunkte im Entwurf für den Code.

Entwurf und Implementation sollen “nicht überlappen” und die Implemen-
tation soll den Entwurf “spiegeln”.

• Der Entwurf löst das Problem, nur nicht genauso wie der Code.
• Und der Code lässt erkennen, dass er aus dem Entwurf abgeleitet
wurde, d.h. Verbindungen zwischen ihm und den Entwurfsmitteln
sind klar.

Mit dem Entwurf erarbeitest du eine Zielvorstellung für den Code, d.h. die
lauffähige Lösung.

02 - Entwurf im Überblick 53

Hierarchie der Lösungen

Nun gibt es die Sichtweise, dass Code selbst schon ein Entwurf (engl.
design) sei.²³ Denn der Code, den du in C# oder Java oder JavaScript
schreibst, ist ja nicht das, was am Ende ausgeführt wird und tatsächlich
das Problem des Kunden löst.

Dein Hochsprachencode wird übersetzt in Maschinencode. Das kann man
als eine Form von Produktion ansehen. Und Produktion basiert auf einem
Plan, einem Entwurf. Ein Haus wird nach einem Plan hergestellt, einen
IKEA-Schrank baust du nach einem Plan auf.

In der materiellenWelt ist die Produktion so sichtbar und aufwändig, dass
ein vorheriger Entwurf zwingend ist und auffällt. Bei der Softwareent-
wicklung ist die Produktion hingegen so unsichtbar und schnell, dass sie
nicht auffällt - und man die Codierung für die Produktion halten könnte.

Ich mag mich diesem Verständnis jedoch nicht recht anschließen. Oder
wenn ich mich ihm anschließe, dann finde ich die Aussage nicht hilfreich.
Ob Code nun ein Entwurf ist oder nicht, ändert nichts an der Tatsache,
dass er selbst unabhängig von jeder Kategorie sehr schwer zu schreiben
und zu verstehen ist.

Wenn Code eine Form von Design darstellt, dann ist eben dieses Design
sorgfältig zu produzieren. Dann muss ein Entwurf sogar vor diesem
Design stattfinden.

Bei einer gegebenen manifesten Lösung, sei das Maschinencode oder
Hochsprachencode, ist ein Entwurf das, was der Lösung vorhergeht
und sie auf einem höheren Abstraktionsniveau vorwegnimmt. Lösungen
existieren mithin nicht nur in einer Form, sondern in einer Hierarchie.
Lösungen gibt es auf vielen unterschiedlichen Abstraktionsebenen. So
kann des einen manifeste Lösung des anderen theoretische sein, also
“nur” ihr Entwurf. Aus dieser Perspektive betrachtet sehe ich mindestens
folgende Abstraktionsniveaus:

1. Maschinencode ist die manifeste Lösung, das Produkt? Dann ist
Hochsprachencode der Entwurf.

²³vgl. Code as Design: Three Essays by Jack W. Reeves,
https://www.developerdotstar.com/mag/articles/PDF/DevDotStar_Reeves_CodeAsDe-
sign.pdf

02 - Entwurf im Überblick 54

2. Hochsprachencode ist die manifeste Lösung, das Produkt? Dann ist
einModell dessen Entwurf.

3. Ein Modell ist die Lösung, das Produk? Dann ist ein Lösungsansatz
dessen Entwurf.

4. Ein Lösungsansatz ist die Lösung, das Produkt? Dann ist eine
“Produktidee” dessen Entwurf.

Mit Maschinencode bist du wahrscheinlich nicht vertraut. Das macht
nichts, denn ich will ja nicht die Umwandlung von Hochsprachencode
in ihn behandeln. Auch wenn ich es früher immer gern schreiben wollte,
ist dies kein Buch über Compilerbau.

Mit Hochsprachencode bist du vertraut. Den will ich dir deshalb ebenfalls
nicht erklären. Dies ist keine Einführung in die Programmierung. Aber die
Übersetzung von Entwurf - genauer: Modell - in Hochsprachencode, das
ist eine andere Sache, den werde ich dir ausführlich vorstellen.

Entwurf, wie ich ihn hier verstehe, führt zu Hochsprachencode und
erfolgt auf zwei Ebenen: zuerst in Form eines informellen Lösungsansatzes
für eine “Produktidee”, dann in Form einer formalen Modellierung des
Lösungsansatzes.

Die “Produktidee” - also letztlich das, was Anforderungen des Auftragge-
bers beschreiben - lasse ich ebenfalls aus in diesem Band. Wie du zu den
Voraussetzungen für einen Entwurf von Hochsprachencode kommst, ist
Thema des dritten Buches der Reihe Programming with Ease.

Nur soviel an dieser Stelle: Auch die Anforderungen beschreiben die Lö-
sung. Allerdings ist dieser Entwurf so abstrakt, so weit von der Codeebene
entfernt, dass man “das entwerfende Element” darin im Grunde nicht
erkennt. Anforderungen sind mehr ein “Wunschkonzert”. Dennoch, wenn
du genau hinschaust, befinden sich Anforderungen in dem von den neun
obigen Pflöcken abgesteckten Gebiet. Lediglich Punkt 9, die geradlinige
Übersetzbarkeit in Code, erfüllen sie nicht.²⁴

²⁴Ja, sogar den Punkt 8, die Leichtgewichtigkeit, würde ich ihnen zugestehen. Darum hat
sich die Agilität sehr bemüht. Die Möglichkeit der Leichtgewichtigkeit ist ein Resultat des
iterativ-inkrementellen Vorgehens.

02 - Entwurf im Überblick 55

Der Entwurfsprozess - oder sogar diemehreren Entwurfsschritte hinab die
Abstraktionshierarchie - kannst du als Schärfung verstehen. Ein zunächst
grobes Bild, ein Wunschbild, wird schärfer, detailreicher, klarer mit jeder
Phase. Wie dir die 3. Iteration des Hello-World Beispiels in Kapitel 01
gezeigt hat, ist ein Sprung vom Wunsch zum Hochsprachencode nicht
möglich. Du musst dich heranarbeiten. Du musst dir erst ein grobes Bild
machen, das du nach und nach verfeinerst.

Von der Kunst lernen

In der bildenden Kunst werden Skizzen und Kompositionen angefertigt,
bevor der Künstler sich an die Schaffung des eigentlichen Werkes macht.
Hier ein Beispiel dafür aus meiner Zeichenmappe aus Jugendjahren:

02 - Entwurf im Überblick 56

Von der groben Idee zum finalen Werk in vier Entwurfsschritten

• Am Anfang stand nur eine Idee: Ich wollte die Endlichkeit des
menschlichen Lebens darstellen. Eine Sanduhr war mir dazu gleich
vor Augen. “Bild mit Sanduhr und Mensch” war also meine Anfor-
derung.

• Davon ausgehend habe ich zuerst recht pauschale Entwürfe ge-
macht. Die haben die Komposition geklärt, also die Grobstruktur
des Werkes. Anfänglich hatte ich nur die Idee einer Sanduhr in
einer Hand. Erst im zweiten Schritt kam die menschliche Gestalt
dazu. Die war also noch nicht Bestandteil der ursprünglichen
Anforderungen, sondern hat sich ergeben.

• Im dritten Schritt ist die Sanduhr auf die Hand gewandert, die nun
auch schon etwas detaillierter ausgearbeitet ist. Auch dieser Schritt
war nicht vorherzusehen, sondern ein Ergebnis dessen, dass ich
mir die Idee vorher mit den beiden anderen Entwürfen vor Augen
geführt hatte.

• Das vierte Bild ist eine Detailstudie. Der Entwurf konzentriert
sich auf eine genauere Ausarbeitung nur der Sanduhr mit der
menschlichen Figur. Dort habe ich wohl noch Unsicherheit gespürt
und wollte mich vergewissern.

• Im finalen Werk spiegeln sich die Entwürfe deutlich - aber es sind
auch Abweichungen zu erkennen. Die Handhaltung ist nochmal
leicht anders und die Form der Sanduhr hat sich verändert. Wenn
ich mich recht erinnere, hatte ich bei der Ausarbeitung gemerkt,

02 - Entwurf im Überblick 57

dass ich meine linke Hand, die mir Modell stand, besser so mit dem
Stundenglas halten konnte. Außerdem hatte das konkrete Glas, das
ich hielt, diese Eiform.

Die Entwürfe waren schnell gemacht und abstrakt. Dennoch - oder gerade
deshalb - konnte ich mich mit ihnen zügig an die letzte Variante der
Lösung heranarbeiten, das Modell. Die Übersetzung in das endgültige
Werk hat dann deutlich länger gedauert und musste das Modell nochmal
der Realität der Umsetzung anpassen.

Meine Erfahrungen mit der Zeichnenkunst sagen mir: ohne Entwurf geht
es nicht. Ein nicht trivialesWerk entsteht nicht ohne eine erkleckliche Zahl
von Entwürfen, die auf unterschiedlichen Abstraktionsniveaus liegen und
sogar unterschiedliche Ausschnitte behandeln.

Entwerfen ist fachgerecht

Das kreative Werk als manifeste Lösung braucht einen iterativen Prozess.
In dem wird eine Vorstellung als Skizze externalisiert, um dann in der
Betrachtung zurück zu wirken auf die Vorstellung.

Vorstellungen so greifbar wie möglich vor sich zu stellen, um sie von allen
Seiten auf ihre Wirkung (Lösungstauglichkeit) zu überprüfen, ist für mich
genauso natürlich wie zwingend. Weniger geht nicht in einem kreativen
Prozess. Wer versucht, das Kunstwerk lediglich im Kopf kurz anzudenken,
um es dann sogleich in seiner finalen Form zu produzieren, wird viel
Verschwendung betreiben.²⁵ Beim Zeichnen besteht sie aus Zeit und ist
erkennbar am Verbrauch von Papier und Stiften.

Bei der Programmierung besteht die Verschwendung auch aus Zeit, aber
erzeugt leider keinen Materialverbrauch. Das macht es so verführerisch,

²⁵Nicht zu entwerfen und sofort zu produzieren, gibt es allerdings auch. Das ist eine
eigene Kunst. Die nennt man Improvisation, würde ich sagen. Ohne Planung geht’s gleich ins
Tun. Im Theater gibt es dafür z.B. eine eigene Kategorie: das Improvisationstheater (Impro-
Theater). Schauspieler im Impro-Theater zu sein, ist eine ganz andere Herausforderung als
Schauspieler in einem normalen Stück zu sein. Im normalen Stück gibt es ein Theaterstück
als “Entwurf”, das durch die Aufführung “produziert” wird. Beim Impro-Theater gibt es
das nicht. Es wird ohne Entwurfsschritt eine Idee aus dem Publikum sofort in Handlung
umgesetzt. Das ist eine ganz eigene Kunst mit ihrem eigenen Reiz und ihren eigenen Grenzen.
Ein Äquivalent in der Softwareentwicklung könnte vielleicht das Prototyping sein. Das hat
seinen Nutzen und Reiz und auch seine Grenzen.

02 - Entwurf im Überblick 58

glaube ich, den Entwurf zu überspringen. Verschwendung ist von pro-
duktiver Arbeit oberflächlich schwer zu unterscheiden. Erkennbar ist
Verschwendung primär an Inkorrektheit und Unordnung und sekundär
an Verzögerungen und Frustrationsäußerungen.

Nach 40 Jahren Programmierung bin ich der festen Meinung: Wer auf
einen expliziten und auch noch visuellen Entwurf vor der Produk-
tion von Hochsprachencode verzichtet, der handelt fahrlässig und
verschwendet das Geld seiner Auftraggebers. Vor dem Codieren zu
entwerfen, ist für mich ein Grundbaustein fachgerechter Arbeit als
Softwareentwickler. Und ebenso gehört zur fachgerechten Arbeit die
test-first Codierung, wie im ersten Band der Reihe ausgeführt.

Entwerfen ist agil

Dass der explizite Entwurf seit Aufkommen der Agilität zunehmend in
Verruf geraten ist, ist ein Übelstand, den ich nicht genug bedauern kann.
Und wo das im Namen der Agilität geschehen ist, halte ich es für ein
grobes Missverständnis der Agilität.

“Working software over comprehensive documentation” im Agilen Mani-
fest²⁶ ist keine Aufforderung, auf Entwurf zu verzichten. Ausdrücklich ist
ja documentation genannt, nicht design. Wie oben definiert, ist Entwurf
jedoch keine Dokumentation, wenn auch “lediglich” eine Beschreibung
und keine working software.

Und nur, weil es heißt “responding to change over following a plan”, ist das
keine Aufforderung jegliches Planen sein zu lassen. Dann dürfte es ja auch
kein Spring Planning in Scrum geben. Ein Entwurf ist ein Plan im Sinne
einer Gestaltungsidee für einen zukünftigen Zustand der Welt. Er drückt
den Glauben aus, “Ja, so wird es wohl funktionieren!” Doch deshalb ist
ein Entwurf nicht unumstößlich. Meine Skizzen oben im Vergleich zum
finalen Werk beweisen es: Nur, weil das Werk anders ist als die Skizzen,
sind die nicht unnötig gewesen. Die Abweichung vom Plan, den Skizzen
darstellen, ist selbstverständlich erlaubt, wenn bei der Ausführung neue

²⁶https://agilemanifesto.org/

https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/

02 - Entwurf im Überblick 59

Erkenntnis auftauchen.²⁷

Ein Entwurf steht einem “deliver working software frequently” aus den
12 Prinzipien des Agilen Manifests²⁸ ebenfalls nicht im Wege. Im Gegen-
teil! Durch Entwurf wird der Code korrekter und ordentlicher und also
wandelbarer.

Und ein visueller Entwurf, wie ich ihn dir nahelegen werde, ich ein Beför-
derer des Prinzips “the most efficient and effective method of conveying
information to and within a development team is face-to-face conversa-
tion.” Wenn du eine Lösungsidee hast und kannst die nicht anders als
in Code ausdrücken, dann lässt sie sich nur sehr schwer kommunizieren
und diskutieren. Ohne Entwurf reduzierst du die Chance auf face-to-face
conversation.

Schließlich: Wie willst du als agiler Programmierer dem Prinzip “Simpli-
city - the art of maximizing the amount of work not done - is essential”
dienen, ohne einen Entwurf? Nur mit einem Entwurf kannst du nämlich
überhaupt über Arbeit sprechen, bevor du sie tust. Sobald du an der IDE
sitzt und Code tippst, steigerst du den amount of work. Besser, du klärst
vorher ein paar Alternativen ab und diskutierst mit deinen Kollegen.

Dafür brauchst du allerdings eine klare und anfassbare Vorstellung von
deiner Lösung vor deren Implementation. Zu der kommst du in zwei
Schritten:

²⁷Der Zweck von Planung ist, Überblick zu gewinnen und zu entzerren. Eine Form
von Multitasking soll vermieden werden. Wenn ich eine Aufgabenliste abarbeite, die ich
mir gestern für heute zusammengestellt habe, profitiert meine Konzentration davon, dass
ich mich nicht mehr frage, “Was soll ich als nächstes tun?” Die Frage habe ich gestern
beantwortet, als ich dafür in einem “speziellen Bewusstseinszustand” war. Gestern war ich
kreativ, gestern hatte ich Überblick. Heute will ich nicht mehr kreativ sein, sondern Dinge
nur erledigen. Dazu brauche ich einen anderen “Bewusstseinszustand”. Falls ich jedoch auf
ein Hindernis stoße, kann ich auch vom Plan abweichen. Neue Informationen dürfen, sollen,
müssen den Plan verändern können. Hätte ich die Informationen gestern gehabt, hätte ich
den Plan von vornherein anders gestaltet. Das Hindernis reißt mich heute zwar aus meinem
“Bewusstseinszustand” der Abarbeitung - aber was soll’s? Lässt sich nicht ändern. Ich mache
das beste daraus, indem ich kurz wieder in den Planungsmodus gehe.

²⁸https://agilemanifesto.org/principles.html

https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html

02 - Entwurf im Überblick 60

1. Der Lösungsansatz

In den Entwurf gehst du, wenn du die Anforderungen verstanden hast.
Vorher hast du einfach nicht genügend Grundlage, auf der du eine Lösung
aufbauen könntest.

Hier ein Beispiel für Anforderungen die das Kriterium auf Kapitel 01
erfüllen: Es liegen Beispiele vor und eine Funktionssignatur ist gegeben.

Eine Liste von ganzen Zahlen soll in eine Ordnung gebracht werden,
bei der für jede Zahl am Listenplatz mit Index i (kurz: z[i]) gilt:
z[i-1] <= z[i] <= z[i+1].

Funktion:

• int[] Ordnen(int[] zahlen)

Beispiele:

• [1,5,2,9,8,4]-> [1,2,4,5,8,9]
• []-> []

Du erkennst natürlich sofort, das mit “ordnen” hier gemeint ist “sortieren”:
Die Zahlen sollen aufsteigend sortiert werden.

Schon diese Klassifikation der Anforderungen ist ein erster Schritt in
Richtung Lösung. Jetzt kannst du nämlich in der Literatur nachschlagen,
wie man das macht. Andere haben das Problem schon vor dir gelöst.
Du müsstest nicht einmal selbst entwerfen, sondern womöglich nur eine
Lösung abschreiben. Oder noch besser: deine Programmiersprache oder
Standardbibliothek der Programmiersprache bieten bereits eine fertige
Sortierfunktion.

“Ah, das Problem lässt sich durch Sortieriung lösen!” würde ich als erste
Erkenntnis im Sinne eines Lösungsansatzes in diesem Fall zählen.

Aber der Übung halber will ich davon absehen, dass es schon Lösungen für

02 - Entwurf im Überblick 61

das Sortieren gibt. Das Problem ist nämlich gut geeignet, um zu erklären,
was ein Lösungsansatz ist.

Du könntest natürlich jetzt jedes weitere Nachdenken in den Wind schla-
gen und mit classical TDD in die Tasten greifen. Inkrementell könntest du
versuchen, direkt eine Lösung zu codieren. Das ist bestimmt möglich. Die
Testfälle könnten z.B. wie folgt schrittweise schwieriger werden:

1. []-> [] // Akzeptanztest und natürlicher Startpunkt
2. [3]-> [3]
3. [1,3]-> [1,3]
4. [3,1]-> [1,3]
5. [3,1,4]-> [1,3,4]
6. [3,4,1]-> [1,3,4]
7. [1,5,2,9,8,4]-> [1,2,4,5,8,9] // finaler Akzeptanztest

Die Zunahme des Schwierigkeitsgrades der Tests sieht plausibel aus. Ohne
weitere Lösungsidee kannst du dir da jedoch nicht sicher sein. Das ist ein
Grund, warum ich zwar sehr für test-first Codierung bin, doch nur mit
einem vorherigen Entwurf.

Wenn du einmal versuchst zu vergessen, was du alles schon über Sortieral-
gorithmen weißt, was würdest du nach Studium der Anforderungen tun?
Nein, nicht codieren, sondern im Kopf oder auf einem Stück Papier.

Jetzt ist womöglich die größte Kreativität in der Softwareentwicklung
gefragt. Ich halte diese Phase jedenfalls für ihren Kern. Dafür sind
Millonen Menschen Softwareentwickelnde geworden! Das ist der Teil, wo
du an einem Problem knobeln kannst. Wer knifflige Probleme liebt, der ist
im Entwurf bei der (Er)Findung eines Lösungsansatzes genau richtig.

Ich glaube, selbst dieses Problem löst du nicht im Kopf. Du musst deine
Vorstellungen vor dir manifestieren. Blatt und Stift reichen dafür aus.
Beim Lösungsansatz gelten keine Regeln. Alles ist erlaubt, was dich dem
Ergebnis näher bringt. Das ist echte Freistil-Softwareentwicklung. In allen
weiteren Phasen musst du irgendwelchen Regeln und Formalismen folgen.
Genieße also die Freiheit in diesem Moment!

Wie kannst du das Problem auf einem Blatt Papier angehen? Hier ist mal
ein Vorschlag:

02 - Entwurf im Überblick 62

Lösungsskizze für die Sortierung

Ist das formal? Nein. Verstehst du, was ich damit meine? Wahrscheinlich
nicht. Kenne ich jetzt die Lösung? Ja! Und nur das zählt.

Ich habe mit einer Notation mit graphischen Elementen und Konventio-
nen, die ich mir spontan ausgedacht habe, eine Darstellung geschaffen,
die es mir erlaubte, meine ganz grobe Lösungsidee aus meinem Kopf aufs
Blatt zu bekommen. Du siehst eine Lösung als Skizze.

Es hätte aber auch anders aussehen können. Über die folgende Darstel-
lungsart bin ich im Internet gestolpert, als ich für das Buch recherchiert
habe:

Hier wird die zu sortierende Liste als Matrix dargestellt, bei der in der ver-
tikalen die Werte an der jeweiligen Position aufgetragen sind. Dadurch ist
die schrittweise Herstellung der gewünschten Ordnung visuell sehr schön
nachvollziehbar. Der gelbe Wert in einem Bild i ist im Bild i+1 einfach
mit dem bis dahin letzten im blau markierten Listenabschnitt vertauscht

02 - Entwurf im Überblick 63

worden (rot). So formen die Punkte von Bild zu Bild zunehmend eine
aufsteigende Linie.²⁹

Beim Lösungsansatz geht es nur um das Verfahren. Solange das plausibel
wird, konkret und erklärbar(er) ist, ist das Ziel dieser Entwurfsphase
erreicht.

Wenn du mit einem Problem konfrontiert bist, kann es sein, dass du es
sofort lösen kannst. Das ist der Fall bei der vorliegenden Aufgabe. Du
kannst natürlich eine Liste von Zahlen sortieren.

Nur, weil du das kannst, kannst du es aber noch lange nicht auch noch
erklären. Wie geht das mit dem Sortieren? Wie gehst du vor? Was ist
dein Verfahren, deine Herangehensweise, deine Methode, dein Ansatz?
In der ersten Phase des Entwurfs findest du nicht nur heraus, ob du “es”
kannst oder “irgendwie weißt wie es geht”. Nein, du musst dein Können
und Wissen vermitteln können. Erste Herausforderung: Kannst du es dir
selbst erklären? Zweite Herausforderung: Kannst du es anderen erklären?

In dieser Phase bist du im Grunde Erfinder. Du brauchst dafür kein
wirres Haar, keine Brille und auch kein chaotisches Arbeitszimmer. Du
bist Erfinder qua Aufgabe, die lautet: Finde eine Lösung, die du erklären
kannst.

Deine Erfindung bezieht sich auf die anliegende funktionale oder nicht-
funktionale Aufgabe. Im Beispiel ist es zunächst nur die funktionale, eine
Liste überhaupt zu sortieren. Sie besonders effizient zu sortieren, war nicht
gefragt.³⁰

²⁹Der Lösungsansatz “erfindet” übrigens den Sortieralgorithmus Selection Sort. Den habe
ich hier gewählt, weil er so naheliegend ist. Ohne mich an Selection Sort konkret erinnert
zu haben, fiel mir dieser Ansatz einfach ein. Wenn dir ein anderer eingefallen ist, ist das
natürlich ebenso gut. Nur, wie hättest du deinen Lösungsansatz dargestellt?

³⁰Um auch noch eine besonders effiziente (hier: performante) Lösung zu finden, musst
du wahrscheinlich mehrere Lösungsansätze entwickeln und vergleichen. Nimm dir also zu
Anfang nicht zu viel vor: Finde zunächst einen funktionalen Lösungsansatz. Erst wenn du
den hast, suche nach weiteren mit besseren Effizienzcharakteristika. Das zu trennen, fällt
vielen Entwicklern schwer. Sie wollen gleich die optimale Lösung. Doch damit stehen sie
sich selbst im Wege. Das halte ich für ein Rezept für Frust und Verzögerung. Außerdem
verschenkt soviel Vorsatz die Chance auf kleinere Iterationen. Wenn der Auftraggeber eine
funktionale und effiziente Lösung will, dann biete ihm an, zunächst nur eine funktionale
zu liefern. Dann kann er schonmal überprüfen, ob das seinen Wünschen entspricht. Falls
nämlich nicht, hast du keinen Optimierungsaufwand verschwendet. Und sollte alles ok sein,
fängst du dann mit der Optimierung an - oder der Auftraggeber entscheidet, dass mehr
Effizienz doch nicht nötig ist, da er nun gesehen hat, was eine “nur” funktionale Lösung
schon bietet. Auch dann hast du keinen Optimierungsaufwand verschwendet.

https://en.wikipedia.org/wiki/Selection_sort

02 - Entwurf im Überblick 64

Ich kann mir vorstellen, dass diese “Lösungsansatzdenke” für dich noch
ein bisschen abstrakt ist. Deshalb ein weiteres Beispiel, bevor es an die
nächste Entwurfsphase geht:

Party time again!

“Ich bin Veranstalter von 2-3 Partys pro Woche, die von 50-100 Gästen
besucht werden. Solche Partys veranstalte ich in 20-25 Wochen pro
Jahr in den nächsten 1-2 Jahren. Die neue Version des Programms
möchte ich auf meinem Laptop am Eingang der Partys laufen lassen.

Jeder Gast soll darin seinen Namen eingeben und persönlich begrüßt
werden. Wenn z.B. Roger das erste Mal eine dieser Partys besucht,
wird er mit “Hello, Roger!” begrüßt. Kommt er zum zweitenMal, heißt
es aber “Welcome back, Roger!” Ab dem dritten Besuch lautet die
Begrüßung “Hello my good friend, Roger!”. Und ist Roger schließlich
das 25. Mal auf einer Party, ist einmalig der Zusatz auszugeben
“Congrats! You are now a platinum guest!

Ich erwarte, dass ich während der Nutzungsdauer des Programms
immer denselben Laptop verwende. Der wird vor Party-Beginn hoch-
gefahren, das Programm wird einmalig gestartet für den Abend und
am Ende mit CTRL-C beendet. Eine Internetverbindung besteht am
Veranstaltungsort leider nicht verlässlich.

Können Sie das Programm in dieser Weise erweitern?”

Das ist wieder die 3. Iteration des Hello-World Programms. Schon diese
Anforderungen umzusetzen war ja schwierig, solange ein Entwurf fehlt,
wie ich versucht habe, in Kapitel 01 zu vermitteln. Wie könnte der jetzt
also aussehen, um die Umsetzung zu vereinfachen? Oder genauer: Wie
könnte sogar zunächst nur ein Lösungsansatz aussehen?

Für mich beginnt der Lösungansatz oft mit einer Sammlung dessen, was
gebraucht wird. Welche “Komponenten” sind nötig? Was für Funkti-
onseinheiten sind klar ersichtlich? Welche Subprobleme müssen gelöst
werden? Im konkreten Fall gehört für mich dann auch dazu, welchem
Ansatz die Persistenz folgen soll.

02 - Entwurf im Überblick 65

Auf der linken Seite siehst du ein Gedächtnisstütze. Ich habe die Benut-
zerschnittstelle skizziert, um mir währenddessen das Problem nochmal
zu vergegenwärtigen. Natürlich ist die Benutzerschnittstelle schon Teil
der Anforderungsdefinition, die du mit dem Auftraggeber zusammen
erarbeitest. Doch zur Fokussierung auf den Entwurf ist es nicht schlecht,
die Oberfläche dessen, was nun zu entwerfen ist, zu wiederholen und ggf.
in ein anderes Format zu bringen, das dir als Entwickler taugt.

Rechts oben eine Liste der Funktionsbereiche. Aus den Anforderungen
und der Vorstellung, wie die Bedienung des Programms sich anfühlen
könnte, habe ich abgeleitet, was mindestens getan werden muss innerhalb
des Programms. Dafür reicht erstmal eine Spiegelstrichliste ohne weitere
Ordnung. Die ist sozusagen ein brain dump dessen, was dir so einfällt.
Achte nicht auf Abstraktionsniveaus oder Beziehungen zwischen diesen
Funktionsbereichen. Mir ist eingefallen:

• Irgendwiemuss der Name erfragt werden. Das ist eine “Kompetenz”,
die im Programm ausgebildet werden muss. Die kann z.B. leere
Namen abweisen und erneut auffordern, wenn das gewollt sein
sollte.

• Irgendwie muss dann auch die Liste der Gäste geführt werden, in
der gezählt wird bzw. aus der abgelesen werden kann, wie oft ein
Gast (identifiziert über seinen Namen) schon da war.

02 - Entwurf im Überblick 66

• Und irgendwie muss der Name inkl. seiner Besuchszahl in eine
konkrete Begrüßung überführt werden, die dann angezeigt wird.
Jenachdem, wie oft der Gast schon da war, wird hier entschieden,
mit welcher Formel er begrüßt wird.

Weniger geht nicht, finde ich. Diese Funktionsbereiche stechen für mich
als eigenständig heraus.

Zum Abschluss dann noch eine Idee, wie die Gästeliste über die Laufzeit
des Programms hinaus persistent gemacht werden könnte. Mir scheint,
dass dafür eine simple Textdatei im CSV-Format ausreicht. Zu jedem
Namen wird darin vermerkt, wie oft der Gast schon da war. Kommt der
Gast wieder, wird sein Besuchszähler erhöht.

Vielleicht hast du eine ähnliche Idee gehabt für einen Lösungsansatz,
vielleicht auch nicht. Wichtig ist nicht, dass er genau so aussieht wie mei-
ner, sonder dass es überhaupt einen gibt. Jeder Lösungsansatz auf einem
Blatt Papier (oder in einer iPad-App wie Notability oder GoodNotes) ist
besser als keiner. Denn mit jedem aufgezeichneten, d.h. externalisierten,
explizierten und visualisierten Lösungsansatz bist erstens du dir selbst
klarer über die Lösung geworden und zweitens kannst du jetzt anfangen,
den Lösungsansatz mit anderen zu diskutieren. Wenn du mit Kollegen das
Problem angehst, dann hast du die Lösung auf einemMedium, das ihr teilt.
Darauf könnt ihr beide schauen, daran könnt ihr beide arbeiten.

Aber auch wenn ich sage, dass es für den Lösungsansatz keine spezielle
Form gibt, weil du möglichst frei sein sollst, deiner Kreativität Raum zu
geben, gibt es Grenzen der Nützlichkeit. Hier ein Bild aus einem Clean
Code Workshop. Diesen Lösungsansatz hatte ein Team am Whiteboard
zurückgelassen, als es sich an die Codierung gemacht hat. Bei aller
Offenheit für persönlichen Stil und individuelle Darstellungen ist mir das
dann doch zu wenig.

02 - Entwurf im Überblick 67

Also: Beim Lösungsansatz geht eine Menge. Mach dir keinen Kopf, “es
richtig zu tun”. Wichtiger ist, dass du es überhaupt versuchst und einen
Ausgangspunkt für den nächsten Entwurfsschritt schaffst. Doch achte
darauf, dass ein substanzieller Bezug zum Problem zu sehen ist. Nur dann
kann sich ein gemeinsames Modell entwickeln, weil alle von demselben
Bild ausgehen. Ansonsten hängen nur Worte in der Luft, unsichtbar und
flüchtig. Auf die kannst du ungleich schwerer Bezug nehmen. Deren
Interpretation geht schnell auseinander.

Ein zu Papier gebrachter, expliziter Lösungsansatz hilft dir auch zu
iterieren. Sei nicht mit der ersten Idee zufrieden.Wenn du sie vor dir siehst
(oder auch nur versuchst, sie vor dich hinzustellen), kann es sein, dass du
erstmalig merkst, dass die Idee doch noch nicht so gut ist. Schwierigkeiten
in der Visualisierung im Speziellen oder Erklärung mit Worten im Allge-
meinen sind ein gutes Signal für dich, weiter darüber nachzudenken. Und
so kann es sein, dass du auf einen neuen Lösungsansatz kommst - den du
selbstverständlich ebenfalls zu Papier bringst. Hier ein Beispiel für eine
Revision der Persistenzidee für das Hello-World Beispiel:

02 - Entwurf im Überblick 68

Die Funktionsbereiche haben sich nicht verändert. Doch das Persistenzfor-
mat gefällt mir nicht mehr.Warum die Namen zusammenmit Besuchszäh-
lern speichern? Dannmuss die Gästeliste immer komplett neu geschrieben
werden, wenn es eine Textdatei ist, obwohl sich nur einWert verändert hat.
Oder ich müsste zu einer echten Datenbank greifen, die einen gezielten
Zugriff auf nur einen Datensatz bietet. Oder ich müsste die Namen statt
in einer Datei auf viele verteilen, die ich getrennt aktualisieren kann.

Viel einfacher scheint mir jedoch, bei einer Datei zu bleiben, an die Namen
allerdigs nur angehängt werden. Jeder Name taucht darin dann so häufig
auf, wie der Gast auf einer Party war. Das kann jederzeit gezählt werden.

Diesen Ansatz nenne ich Event Store, weil jeder Besuch ein Ereignis ist,
das minimal mit dem Besuchernamen dokumentiert wird. Das ist ein total
flexibler Ansatz, der ohne Schema auskommt.³¹

Wie auch immer der Ansatz aussieht, das Wesentliche ist, überhaupt
Klarheit über deine Lösungsidee zu bekommen. Versuche Anforderungen

³¹Dass der Ansatz nicht genügend skaliert, auch wenn es tausende, gar zehntausende
Besucher gibt, ist nicht zu fürchten. Festplatten und Prozessoren sind schnell genug, um
selbst für jeden Besucher eine solche Datei komplett zu laden (was nicht einmal sein müsste).
Aber falls du das bezweifeln solltest, probiere es schnell aus. In wenigen Zeilen kannst du
deine Hypothese mit einer spike solution überprüfen. Schließe einen Lösungsansatz, der
Vorteile hat (hier: Flexibilität), nicht aufgrund nur eines Gefühls aus, dass die Nachteile
überwiegen könnten. Mache lieber ein Experiment.

http://www.extremeprogramming.org/rules/spike.html

02 - Entwurf im Überblick 69

nicht sofort in Code umzusetzen. Versuche nicht einmal, eine Lösung
für die Anforderungen sofort mit einem formalen Modell zu beschreiben.
Nein, nimm dir die Zeit, die Lösung “im Freistil” zu erarbeiten. Deiner
Kreativität sollen dabei keine Grenzen gesetzt werden. Dadurch wird der
Lösungsansatz sehr wahrscheinlich auch schon ganz natürlich deklarativ.
Betrachte in ihm Verhalten und/oder Daten, wie du magst. Wie es dir
taugt, um Klarheit zu bekommen. “Ah, ja, so kann es gehen!” sollst du am
Ende ausrufen. Dann bist du bereit für den nächsten Schritt.

Lediglich auf Papier musst³² du deinen Lösungsansatz früher oder später
bringen. Das ist ein erster Test, ob er etwas taugt. Denn wenn du ihn nicht
mal “im Freistil” auf Papier beschreiben kannst, wie willst du das später
im Korsett des Codes schaffen?

2. Das Modell

Der Lösungsansatz ist notwendig, aber nicht hinreichend als Entwurf.
Mit ihm hast du zwar eine Lösung erarbeitet, die kannst du nur nicht
geradlinig in Code übersetzen. Damit kommen wir zum Modell: Das
Modell ist die Lösung in solchermaßen formalisierter Form, dass dir
danach die Codierung der Lösung leicht(er) von der Hand geht.

Jede Phase im Softwareentwicklungsprozess, den ich dir im Rahmen von
Programming with Ease empfehle, hat einen sehr konkreten, engen Zweck:

1. Die Anforderungsanalyse baut bei dir Verständnis für ihr Problem
in einer Form auf, die konkret und testbar ist. Das Ergebnis sind
Funktionen mit zugehörigen Testfällen.

2. Der Entwurf findet eine Lösung für das Problem, das du nach der
Analyse verstanden hast. Das Ergebnis ist ein Modell.

1. Zunächst erarbeitest du die Lösung in Form eines Lösungsan-
satzes. Das ist informell, sehr abstrakt, möglichst visuell und
“auf Papier”.

³²Naja, du “musst” nicht. Aber ich lege es dir sehr, sehr ans Herz. Die Vorteile eines
solchen Ausdrucks sind zu vielfältig, als das du sie in denWind schlagen solltest. AmAnfang
mag es dir schwerfallen. Mit der Übung wird es dann leichter. Am Ende kannst du dir eine
Programmierung ohne “verbildlichte” Lösungsansätze nicht mehr vorstellen.

02 - Entwurf im Überblick 70

2. Anschließend konkretisierst und formalisierst du den Lö-
sungsansatz. Das Abstraktionsniveau sinkt etwas, die Lösung
wird feiner ausgearbeitet, dennoch ist das resultierende Mo-
dell deklarativ und “codefrei”.

3. Die Codierung übersetzt die entworfene Lösung in Hochsprachen-
code. Das Ergebnis sind Produktions- und Testcode.

1. In der Codierung schreibst du zuerst einen Test, um dir eine
Latte aufzulegen, über die du springen willst. Mit test-first
vergisst du nicht, Tests zu schreiben, und du weißt sofort,
wann du fertig bist mit dem Produktionscode.

2. Der Produktionscode ist die Übersetzung des Modells in eine
Form, die dem Kunden am Ende nutzt. Die Funktionen und
Beziehungen aus dem Modell übersetzt du in Code. Anschlie-
ßend füllst du die Funktionen mit Logik an, so dass tatsächlich
Verhalten hergestellt wird. Das ist nun die imperative Lösung
des Problems, das die Anforderungen aufgeworfen haben.

3. Immer wieder refaktorisierst du Produktions- und durchaus
auch Testcode, um das, was trotz eines guten Modells und ge-
radliniger Übersetzung unsauber geworden ist, wieder in eine
zukunftsfähige Ordnung zu bringen. Das passiert immer mal
wieder und ist nicht schlimm. Gelegentlich weichst du auch
vom Modell ab, weil du in der Codierung neue Erkenntnisse
gewinnst.

Für gegebene Anforderungen ist das mehr oder weniger ein Wasserfall.
Du durchschreitest diese Phasen von 1. bis 3.3. in dieser Reihenfolge.
Theoretisch jedenfalls, denn praktisch gibt es darin Schleifen bzw. Rück-
wärtsschritte: Du gehst von der Modellierung zurück zum Lösungsansatz,
weil du bei der Konkretisierung bemerkst, dass irgendetwas noch fehlt.
Du gehst womöglich vom Lösungsansatz zurück zur Anforderungsana-
lyse und sprichst mit dem Auftraggeber, weil du bemerkst, dass dir
irgendetwas noch unklar ist. Du “drehst dich im Kreis” innerhalb der
Codierungwährend der Übersetzung einesModells; das gehst du Funktion
für Funktion mit 3.1, 3.2 und 3.3 an.

Der Wasserfall ist also entschärft. Keine Sorge, du musst keinen “Agili-
tätseid” brechen. Außerdem gilt der Wasserfall nur für die anliegenden
Anforderungen. Es gibt keine Not, alle Anforderungen erst komplett zu
analysieren. Du kannst einen beliebig kleinen Ausschnitt wählen. Manch-
mal rauschst du den Wasserfall in vier Stunden herunter, manchmal in

02 - Entwurf im Überblick 71

einem Tag, manchmal in zwei Tagen. Länger sollte es zumindest für
Entwurf + Codierung nicht dauern. Ich glaube fest daran, dass Inkremente
nicht mehr als 16 Stunden für die Umsetzung brauchen sollten, d.h. z.B.
von heute 9:00 Uhr bis morgen 17:00 Uhr.³³

Modellarten

Das Modell formalisiert den Lösungsansatz. Es konkretisiert, was der Lö-
sungsansatz mehr oder weniger grob angedacht hat. Was bisher vielleicht
nur verschwommen zu sehen war, muss nun geklärt werden. Das betrifft
beide Seiten jeder Lösung: das Verhalten und die Daten. Es gibt daher zwei
Arten von Modellen:

• Das Verhaltensmodell beschreibt, was getan werden muss, um das
Problem zur Laufzeit zu lösen.

• Das Datenmodell beschreibt, mit welchen Daten etwas getan wer-
den muss.

Software weißt insofern eine grundsätzliche Dualität auf. Verhalten und
Daten sind deren gegenüberstehende Seiten und ergeben zusammen das
Ganze. Ohne Daten kein Verhalten, ohne Verhalten keine Daten.

Allerdings hat einer dieser Aspekte für mich Priorität: das Verhalten.
Dafür wird Software gemacht! Eine Problemlösung besteht immer in

³³Eine solche Arbeitsweise nennen ich spinning und habe den gleichnamigen Workout
im Fitness-Studio im Sinn. Dass in 16 Stunden nicht unbedingt Wert für den Auftraggeber
hergestellt werden kann, ist mir klar. Doch das ist auch nicht der Zweck, so kleiner Inkre-
mente. Nach 16 Stunden soll vielmehr eine Umsetzung vorliegen, zu der der Auftraggeber
“nur” Feedback geben kann. Du willst als Programmierer einfach nicht länger als zwei Tage
im Ungewissen sein, ob das, woran du arbeitest in die richtige Richtung geht. Und auch
der Auftraggeber sollte nicht länger im Unklaren sein, ob du ihn verstanden hast bzw. ob
er überhaupt in Auftrag gegeben hat, was er wirklich braucht. Aus mehreren Feedback-
Inkrementen setzt sich dann ein Wert-Inkrement zusammen. Wann Wert für den Kunden
entsteht, ist nicht dein Job zu beurteilen. Mit jeder Umsetzung produzierst du lediglich
Qualitätscode in jeder Hinsicht in Bezug auf die dir vorliegenden Anforderungen. Das ist
wirklich alles. Doch das ist schwierig genug. Belaste dich also nicht noch mit der Wertfrage.

02 - Entwurf im Überblick 72

Verhalten, das Daten transformiert.³⁴

Datenmodelle

Die mainstream Objektorientierung wie auch lange Jahrzehnte sehr be-
grenzter Hauptspeicher und daraus folgend eine Wichtigkeit von Daten-
banksystemen haben aus meiner Sicht viele Softwareteams dazu verleitet,
zuerst und vor allem über Datenmodelle nachzudenken. Für diesen Aspekt
hat Entwurf eine gewisse Akzeptanz und Sichtbarkeit behalten. Ich nehme
an, dass auch du schon z.B. von Entity-Relationship (ER)-Modellen³⁵
gehört hast:

³⁴Oder sogar noch genauer: Software wird für größere Effizienz entwickelt. Mit genü-
gend Ressourcen wie Zeit oder Menschen können die Probleme, die Software löst, auch
ohne Software gelöst werden. Es geht also nicht primär um Funktionalität. Auftraggeber
versprechen sich von Software vielmehr, dass sie effizienter ist als softwarelose Alternativen.
Der Effizienzgewinn kann in performanterer Funktionalität liegen oder in benutzerfreund-
licherer oder sicherer usw. Es geht um den Komparativ erkenntlich am “-er” der Effizienz-
Adjektive. Manchmal scheint es zwar auszureichen, nur eine Funktionalität in Software zu
gießen, um sie schlicht jederzeit für Anwender verfügbar zu haben. Aber auch damit ist eine
Effizienz gemeint.

³⁵https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

02 - Entwurf im Überblick 73

Beispiel für ein Entity-Relationship Datenmodell aus Wikipedia

Diese Darstellung ist “nur” ein Modell, weil sie kein Code ist. Weder siehst
du programmiersprachliche Anweisungen, um eine solche Datenstruktur
in einer Datenbank herzustellen, noch siehst du Klassen, die sie in-
memory darstellen könnten, noch ist überhaupt klar, wie die einzelnen
Elemente des Modells implementiert werden.³⁶

Oder hier ein anderes Datenmodell von einer Seite³⁷, die UML (Unified
Modelling Language)³⁸ Klassendiagramme vorstellt:

³⁶Die Implementierung des ER-Modells könnte mittels eines RDBMS oder auch einer
Dokumentendatenbank geschehen. Dass und welche Relationen existieren, erzwingt kein
RDBMS, auch wenn das lange die erste Wahl gewesen sein mag.

³⁷https://datamodelprototype.wordpress.com/2014/01/30/uml-modeling-class-
diagrams/

³⁸https://en.wikipedia.org/wiki/Unified_Modeling_Language

https://datamodelprototype.wordpress.com/2014/01/30/uml-modeling-class-diagrams/
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://datamodelprototype.wordpress.com/2014/01/30/uml-modeling-class-diagrams/
https://datamodelprototype.wordpress.com/2014/01/30/uml-modeling-class-diagrams/
https://en.wikipedia.org/wiki/Unified_Modeling_Language

02 - Entwurf im Überblick 74

Ein Klassendiagramm als Datenmodell

Bei Datenmodellen geht es darum, Datenelemente zu benennen, Daten
zusammenzufassen und Zusammenfassungen in Beziehung zu stellen.
Diese Daten tun nichts, vielmehr wird mit ihnen etwas getan. Das ist die
Aufgabe von Verhalten.

Im weiteren werde ich nicht viel zu konkreten Datenmodellierungsansät-
zen sagen. Ich entwerfe und benutze Datenmodelle einfach in der einen
oder anderen Form. Datenmodellnotationen sind bei aller Unterschied-
lichkeit der Darstellungen doch so einfach und naheliegend und weit
verbreitet, dass ich mir weitere Ausführungen erspare. Ich bin gewiss, dass
du mit der Datenmodellierung keine Schwierigkeiten haben wirst, wenn
du erstmal weißt, um welche Daten es bei einer Lösung geht.

Das allerdings ist wiederum innerhalb der Lösungsfindung ein Problem,
mit dem wir uns befassen wollen. Zu oft wird nämlich für meinen
Geschmack eine vorzeitige Optimierung im Hinblick auf das Datenmo-
dell vorgenommen. Das Datenmodell wird gesetzt und daran muss sich
dann das Verhalten anlagern. Für mich steht auf diese Weise jedoch die
Entwurfswelt auf dem Kopf!

Verhaltensmodelle

Wie gesagt, Priorität hat für mich das Verhaltensmodell. Im Verhaltensmo-
dell wird beschrieben, was passieren soll. Man könnte sagen: Verhaltens-
modelle drehen sich umVerben, Datenmodelle um Substantive. Funktions-
einheitenwerden benannt, zusammengefasst und Zusammenfassungen in
Beziehung gesetzt. Diese Funktionseinheiten tun etwas mit Daten.

02 - Entwurf im Überblick 75

Vielleicht fällt dir sogar eine Art Verhaltensmodell ein: lange Zeit war das
Flowchart³⁹ sehr beliebt.

Ein Flowchart nach Wikipedia als Verhaltensmodell

Das sieht konkreter aus als die bisherigen Lösungsansätze, oder? Das
kannst du “runterprogrammieren”, oder?

Ich halte das aber für kein nützliches Modell. Es abstrahiert für meinen
Geschmack zu wenig von den Mitteln einer Hochsprache. Ein Flowchart
stellt einen Kontrollfluss dar wie Hochsprachencode. Es enthält Fallunter-
scheidungen und vor allem auch Schleifen wie Hochsprachencode. Diese
Art der Darstellung von Verhalten bietet schlicht keine Skalierbarkeit.
Du kannst damit keine größeren Lösungen beschreiben: das resultierende
Diagramm ist dann genauso wenig verständlich wie Hochsprachencode.

Flowcharst stammen aus einer Zeit vor der Strukturierten Programmie-
rung⁴⁰. In ihnen sind beliebige Verzweigungen (lies: Sprünge) erlaubt. Es
gibt keine wirklich beschränkende Syntax. Sie sind mithin wenig hilfreich
in der Praxis - auchwenn sie hier und da bei sehr begrenzter Funktionalität

³⁹https://en.wikipedia.org/wiki/Flowchart
⁴⁰https://de.wikipedia.org/wiki/Strukturierte_Programmierung

https://en.wikipedia.org/wiki/Flowchart
https://de.wikipedia.org/wiki/Strukturierte_Programmierung
https://de.wikipedia.org/wiki/Strukturierte_Programmierung
https://en.wikipedia.org/wiki/Flowchart
https://de.wikipedia.org/wiki/Strukturierte_Programmierung

02 - Entwurf im Überblick 76

mal zum Einsatz kommen können.

Für mich gibt es zwei Kategorien von Lösungen: algorithmische und
prozessurale. Algorithmische Lösungen bewegen sich sehr nah an den
Mitteln der Strukturierten Programmierung von Programmiersprachen.
Du bist versucht, sie mit Pseudocode oder Flowcharts zu modellieren. Der
Lösungsansatz für das Sortierproblem fällt in diese Kategorie.

Als Beispiel für Pseudocode die obige Lösung für die Behandlung einer
nicht funktionierenden Lampe:

1 If lamp is plugged in then
2 if bulb is burned out then
3 replace bulb
4 else
5 repair lamp
6 end if
7 else
8 plug in lamp
9 end if

Den Code verstehst du, auch wenn er zu keiner speziellen Program-
miersprache gehört. Er ist eine Verallgemeinerung dessen, was in vielen
Sprache an Mitteln vorhanden ist. Deshalb lässt er sich schnell hinschrei-
ben; du musst auf keine syntaktischen/semantischen Feinheiten achten.
Hauptsache er liest sich flüssig.⁴¹

Algorithmische Lösungen sind am Ende aber die unkritischen. Sie müssen
gefunden werden, klar. Doch ihr Umfang ist gewöhnlich vergleichsweise
klein. Ich sage mal etwas flapsig: Der Code rein algorithmischer Lösungen
passt handschriftlich auf eine DIN A4 Seite. Das ist kein Umfang, der
für langfristig hohe Produktivität eine große Hürde darstellt. Solange
die Logik für eine algorithmische Lösung fokussiert in einer Funktion
steht und keine funktionalen Abhängigkeiten bestehen, wirst du dir ein
Verständnis erarbeiten können. Debugging hilft im Zweifelsfall.

Natürlich ist das eine Vereinfachung. Mir gehts hier aber um das big
picture. Wenn du auf einen “algorithmischen Kern” in einem Problem
gestoßen bist, dann modelliere mit einem Flowchart. Nur vermute ich,
dass du zu früh gewiss bist, dass ein Problem schon algorithmisch ist.

⁴¹Allerdings: Schau genau hin! Hättest du es lieber gehabt, die Lösung zuerst als Pseudo-
code oder zuerst als Flowchart präsentiert zu bekommen? Ich finde eine visuelle Lösung in
denmeisten Fällen besser zu überblicken. Sie ist zweidimensional, was Fallunterscheidungen
und Schleifen zugute kommt. Im textuellen Pseudocode muss alles linearisiert werden.

02 - Entwurf im Überblick 77

Du machst es dir damit zu schwer, ein Modell (oder später den Code) zu
finden.

Ich glaube, dass die meisten Probleme zuerst und vor allem prozessuale
Lösungen brauchen. In denen findest du dann keine Fallunterscheidun-
gen oder Schleifen, sondern lediglich Funktionsaufrufe. Die stehen für
Schritte in einem Prozess, der das gewünschte Verhalten erzeugt durch die
Transformation von Eingabedaten in Ausgabedaten unter Verwendung
von Zustand und Ressourcen.

Auch ein Verhaltensmodell: ein Datenflussmodell für die allgemeine Funktionsweise von
Software-Funktionseinheiten

AlgorithmischeModelle sind schon sehr nah amWie. ProzessualeModelle
hingegen zeigen vor allem das Was. Hier als Beispiel ein UML Sequenz-
diagramm aus Wikipedia⁴²:

⁴²https://en.wikipedia.org/wiki/Sequence_diagram

https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/Sequence_diagram

02 - Entwurf im Überblick 78

Ein Sequenzdiagramm als Verhaltensmodell

Die durchgezogenen Pfeile stellen “Funktionsaufrufe” dar. Im Bild ruft
also der Computer den Server mehrfach auf im Rahmen der Lösung
des Problems “check mail”.⁴³

Das ist ein deutlich abstrakteres Verhaltensmodell als ein Flowchart. Hier
geht es nicht um einzelne Anweisungen, sondern lediglich um die zu
erledigenden Schritte. Wie genau ein Schritt wie sendUnsentEmail sein

⁴³Ich sage hier so kühn, dass es sich um Funktionsaufrufe handelt. Vielleicht liest du
jedoch lediglich Datenflüsse heraus: da fließen einfach Nachrichten zwischen Computer
und Server. Diese Interpretation ist für mich auch ok. Nur frage ich dich: Wie werden
denn diese Nachrichten verarbeitet? Von Logik! Und wo findest du diese Logik? Eingefasst
in Funktionen. Das ist die Coderealität: Am Ende erzeugt Logik das Verhalten - hier z.B.
Transformation einer newEmail-Nachricht in eine response-Nachricht - und diese Logik
steckt besser für sich in bzw. hinter genau einer Funktion, um klar idenfizierbar zu sein mit
ihrer Verantwortlichkeit.

02 - Entwurf im Überblick 79

Teilverhalten erzeugt, ist unterhalb des Radars dieses Modells. Die Logik
dafür würdest du in einer test-first Codierung finden. Sie ist ganz bewusst
kein Bestandteil des Entwurfs.

Allerdings: Solange du in der Modellierung noch das Gefühl hast, dass so
eine Funktionseinheit wie der Block für sendUnsentEmail zu groß ist,
um in der Codierung zügig mit Logik gefüllt zu werden, solange solltest
du mit dem Modell noch nicht zufrieden sein. Aber dazu später mehr.

Im Verhaltensmodell liegt der Fokus auf dem Was. Deshalb werde ich
dir im Weiteren keine Flowcharts oder Pseudocode nahelegen. In beiden
steckt für mich zuviel Wie. Aber auch das Sequenzdiagramm werde ich
nicht weiter verwenden. Es skaliert ebenfalls nicht, wenn die Prozess-
schritte zu vielen “Akteuren” angehören (im Beispiel z.B. Computer).

Dennoch geben Sequenzdiagramme einen ersten Eindruck davon, wie ein
Verhaltensmodell grundsätzlich aussieht.

Abstraktion

Verhaltensmodelle und Datenmodelle beschreiben die zwei Seiten von
Software: Verarbeitung und Material. Das kann in ganz vielfältiger Weise
geschehen. Die obigen Modelle sind sollen dafür nur Beispiele sein, um
dir das Thema Modellierung etwas fasslicher zu machen.

Wenn du dir einen Eindruck von der Bandbreite an Modellierungsansätze
verschaffen willst, dann schau dir z.B. Bücher wie UML Distilled von
Martin Fowler⁴⁴ oder Modellierung: Grundlagen und formale Methoden
von Uwe Kastens⁴⁵ an. Du wirst erstaunt sein, wie vielfältig du Lösungen
ohne Code beschreiben kannst; oder manchmal auch nur Lösungsansätze,
denn einige Modellierungsmethoden ordne ich eher der vorgelagerten
Phase zu.

Egal aber, welchen Ansatz du insbesondere für die im Weiteren fokus-
sierte Verhaltensmodellierung wählen solltest, solltest du eines nicht aus
den Augen verlieren: die Umsetzung in Code. Beim Blick auf einen
Modellierungs- oder allgemeiner Entwurfsansatz frage ich mich immer:

⁴⁴UML Distilled: A Brief Guide to the Standard Object Modeling Language, Martin
Fowler, Addison-Wesley, ISBN 978-0321193681

⁴⁵Modellierung: Grundlagen und formale Methoden, Uwe Kastens, Carl Hanser Verlag,
ISBN 978-3446454644

https://www.amazon.de/Martin-Fowler/dp/0321193687
https://www.amazon.de/Modellierung-Grundlagen-Methoden-Uwe-Kastens/dp/3446454640

02 - Entwurf im Überblick 80

“Und wo sind die Funktionen?” Denn die Funktionen sind die Container
für die Logik. Und die Logik ist das, was das Verhalten erzeugt und so
schwierig korrekt hinzubekommen ist. Und um sie korrekt zu erschaffen
und auch zu erhalten, ist ein test-first Vorgehen bei der Codiernung nötig.
Und dafür wiederum sind Funktionen als Ansatzpunkte zwingend.⁴⁶

Was du als und wie du in der Entwurfsphase die Lösung findest, am Ende
musst du sie in einemModell formalisiert formulieren, das glasklar macht,
welche Funktionenmit welchen Verantwortlichkeiten der Code aufweisen
muss.

Diese funktionalen Atome, die alle ihren Beitrag leisten zum Gesamt-
verhalten, dürfen aber natürlich nicht “einfach herumliegen”. Vielmehr
müssen sie in Beziehung gesetzt werden, um ein Zusammenspiel zu
erreichen. Im Sequenzdiagramm oben ist das der Fall:

• Funktionen wie sendUnsentEmail oder deleteOldEmail sind
Verhaltensatome.

• Pfeile zwischen den “Akteuren” Computer und Server setzen
Funktionen in Beziehung, hier: checkEmailmit z.B. sendUnsen-
tEmail; erstere ruft letztere auf.

Und die “Akteure” selbst setzen Funktionen ebenfalls in Beziehung. Sie
fassen sie zusammen, hier: in Server sind sendUnsentEmail und
deleteOldEmail vereint.

Modelle als konkrete, formalisierte Lösungen und Ausgangspunkte für
deinen Code müssen damit mindestens Folgendes leisten:

• Atomisieren: Die noch zu findende Logik mit Funktionen, d.h.
Verhaltensatomen repräsentieren.

• Komponieren: Funktionen mit ihren Teilverhalten zu größerem
Verhalten zusammenfassen. Aus Verschiedenem wird etwas Neues.

• Aggregieren: Funktionen thematisch zusammenfassen. Aus Ähnli-
chem wird etwas Größeres.

⁴⁶Siehe dazu den ersten Band dieser Reihe: Test-first Codierung

02 - Entwurf im Überblick 81

Dass Modelle außerdem auch noch die Daten, die die Funktionen verar-
beiten, beschreiben müssen, ist selbstverständlich. Wie gesagt, das halte
ich jedoch für ein vergleichsweise kleines Problem und sekundär. Wenn
du von der mainstream Objektorientierung geprägt sein solltest, mag dir
das merkwürdig erscheinen, doch versuche einmal deine Skepsis für die
folgenden Seiten auf Urlaub zu schicken.

Atomisieren, komponieren und aggregieren sind für mich Abstraktions-
leistungen. Für Details, Einzelteile, Feinheiten werden Begriffe gefunden,
mit denen es sich leichter umgehen lässt. Und das kann dann sogar auf
beliebig vielen Ebenen stattfinden.

Das Ergebnis ist ein Abstraktionsbaummit beliebiger Tiefe für Komposite
und Aggregate.

Ohne einen solchen Baum in zwei Dimensionen - Komposition und
Aggregation - bekommen wir wachsende Lösungen einfach nicht in den
Griff, glaube ich. Er existiert am Ende de facto im Code – fragt sich nur,

02 - Entwurf im Überblick 82

wie es zu ihm gekommen ist. War das “Zufall”, “hat es sich ergeben”? Oder
hast du ihn bewusst entworfen? Ich plädiere für Letzteres.

Plane deine Abstraktionen. Plane sie vor allem nicht allein, sondern ge-
meinsam mit deinen Entwicklerkollegen. Strebe nicht nur nach collective
code ownership⁴⁷, wie es einmal im eXtreme Programming heißt. Ich
meine, es muss auch ein collective design ownership geben. Ihr müsst alle
zusammen hinter denAbstraktionen stehen, die die Lösung repräsentieren
und formen.

Die soziale Dimension eines Entwurfs ist nicht zu verachten. Er ist ein
Werkzeug für’s Denken wie für’s Kommunizieren. Deshalb ist es auch
nicht so wichtig, dass ein Entwurf “für sich selbst stehen kann”. Lege
deinen Lösungsansatz oder auch dein Modell nicht einfach jemandem zur
Weiterverarbeitung stumm vor. Beide sind bei allem Detailreichtum “nur”
Gesprächsanlässe. Entwürfe müssen für dieWeiterverarbeitung mit Erklä-
rungen übergeben werden. Am besten geschieht das im Dialog, zur Not
schriftlich oder per Video. Je mehr Interaktionsmöglichkeit zwischen dem
Empfänger deines Entwurfs und dir, desto besser. Denn der Empfänger
wird Fragen haben. Er muss Fragen haben, weil du nie alles, was dir zu
einer Lösung im Kopf herumgeht, vollständig in einem Entwurf festhalten
kannst.

Zusammenfassung

Im Entwurf findest du zuerst eine Lösung und formalisierst sie dann
abstrakt. Für mich gilt dabei: Behavior first, data second.Was das bedeutet,
wirst du in den folgenden Kapiteln sehen.

Während du in der Lösungsfindung noch sehr frei bist, was den visuellen
Ausdruck angeht - und visuell sollte er sein! -, engt die das Modell jedoch
ganz bewusst sein. Seine Abstraktionen sollten so gestaltet sein, dass du
sie leicht in Codestrukturen übersetzten kannst.

Es gibt eine Vielzahl anModellierungswerkzeugen. Manche machen es dir
schwerer, andere leichter, diese Forderungen zu erfüllen. In den folgenden
Kapiteln stelle ich dir den Ansatz vor, von dem ich meine, dass er für dich

⁴⁷https://explainagile.com/agile/xp-extreme-programming/practices/collective-code-
ownership/

https://explainagile.com/agile/xp-extreme-programming/practices/collective-code-ownership/
https://explainagile.com/agile/xp-extreme-programming/practices/collective-code-ownership/
https://explainagile.com/agile/xp-extreme-programming/practices/collective-code-ownership/
https://explainagile.com/agile/xp-extreme-programming/practices/collective-code-ownership/

02 - Entwurf im Überblick 83

der erste sein sollte, durch dessen Brille du auf eine Lösung schaust, um sie
zu formalisieren. Nicht der einzige, aber der erste, dein Default. Er ist breit
einsetzbar und leichtgewichtig, wie ich dir hoffentlich vermitteln kann.
Andere Ansätze hab gerne auch in deinem Entwurfsköcher – doch gerade
um deine Lösungen in groben Strichen zu skizzieren für “das Ausmalen”
in der Codierung, halte ich das Flow-Design, wie ich es nenne, für ideal.

02 - Entwurf im Überblick 84

Übungsaufgaben

Reflexionsaufgabe
Bitte formuliere eine Frage oder eine Erkenntnis zum Kapiteltext.

• Wo bist du gedanklich hängengeblieben, was ist dir unklar,
was passt für dich irgendwie nicht zusammen, wozu würdest
du dir noch etwas mehr Erklärung wünschen? Steht irgendet-
was zu deiner bisherigen Praxis imWiderspruch und du fragst
dich, warum du etwas ändern solltest?

• Oder: Wann hast du einen Aha-Moment gehabt, was ist
dir als bemerkenswert, spannend, ausprobierenswert aufgefal-
len? Hat irgendetwas “in dir Klick gemacht”, weil dir nun ein
Zusammenhang aufgegangen ist? Oder verstehst du jetzt aus
deiner bisherigen Praxis irgendetwas besser?

Am besten formulierst du Frage bzw. Erkenntnis schriftlich. Indem
du deine Gedanken aufschreibst, wirst du dir ihrer bewusster. Bei
einer Frage kommst du dadurch vielleicht schon einer Antwort aus
dir selbst heraus näher. Bei einer Erkenntnis fällt dir vielleicht schon
etwas ein, das du ab jetzt anders machen kannst.

Aufgabe - Lösungsansatz finden

Die SARS-CoV-2 Pandemie 2020 hat vielleicht das Interesse für Statis-
tik in der Bevölkerung nicht erhöht, doch zumindest haben jetzt mehr
Menschen von Begriffen wie Sensitivität und Spezifizität gehört und dass
ein positives Testergebnis auf SARS-CoV-2 Infektion weder notwendig
eine Erkrankung bedeutet, noch zwingend korrekt ist. Aus diesem An-
lass folgende Aufgabe, der so genannte Bedingte Wahrscheinlichkeiten
zugrundeliegen. Das ist Mathematik, die nicht jedem jenseits der 4. Klas-
se Spaß gemacht hat, doch es ist keine höhere Mathematik und lässt
sich mit ein bisschen googlen zu dem Begriff gut erkunden; mehr als
Grundrechenarten sind nicht nötig. Dass du dich mal mit Bedingten

02 - Entwurf im Überblick 85

Wahrscheinlichkeiten auseinandersetzt, ist ein Gewinn fürs Leben. Da bin
ich gewiss.

Entwickle bitte nur einen Lösungsansatz für folgende Anforderungen.

Der Auftraggeber wünscht ein Programm, mit dem Anwender be-
stimmen können, wie hoch dieWahrscheinlichkeit einer Erkrankung
bei einem positiven Testergebnis ist.

Ein Beispiel aus der Literatur:

Ein Prozent der Frauen, die sich regelmäßig einerMam-
mogrphie unterziehen, haben Brustkrebs. In 80% der
Fälle ergibt sich für Frauen mit Tumoren in der Brust
ein positiver Befund. In 9,6 % der Fälle zeigt sich jedoch
auch bei gesunden Frauen ein positiver Befund.

Wie wahrscheinlich ist es nun, dass eine Frau mit positivem Test-
ergebnis auch tatsächlich Brustkrebs hat?

Nur etwas 15% der Ärzte, denen diese Frage mit den Angaben
vorgelegt wurde, konnten sie korrekt beantworten. Das legt einerseits
weitere Ausbildung nahe, aber auch Unterstützung durch Software
kann helfen.

Das Programm soll auf einer Datenbank basieren, die Prävalenzen
für Diagnosen enthält, aber auch Sensitivität und Spezifizität zu-
gehöriger Tests. Beispiel für einen Eintrag in Bezug auf das obige
Mammographie-Szenario:

1 Test: Mammographie
2 Diagnose: Brustkrebs
3 Prävalenz: 0,01
4 Sensitivität: 0,8
5 Spezifizität: 0,904

Der Anwender sucht nach Test oder Diagnose und gibt an, ob
der Test positiv oder negativ ist. Das Programm gibt daraufhin die
Wahrscheinlichkeit aus, dass das Testergebnis tatsächlich korrekt ist.

Beispiel für das obige Szenario:

02 - Entwurf im Überblick 86

1 $ ergebnischeck.exe mammographie positiv
2 Die Wahrscheinlichkeit für eine korrekte positive Diagnose von 'Brustkrebs' ist: 0,078.
3 Nur bei ca. 8 von 100 getesteten Personen ist die Aussage des Tests korrekt.
4 $

Ward Casscells, B.S., et al.; Interpretation by
Physicians of Clinical Laboratory Results, 1978,
https://www.nejm.org/doi/full/10.1056/NEJM197811022991808

Weder Modell, noch Codierung sind nötig. Mach dir also nicht zu viel
Arbeit. Überlege, was hier wirklich “entwurfswürdig” nur in Bezug auf
einen Lösungsansatz ist. Konzentriere deinen Lösungsansatz darauf. Sei
so visuell wie möglich. Anhand deines Lösungsansatzes solltest du die
Lösung jemand anderem leicht erklären können.

03 - Radikale
Objektorientierung
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die Welt bestehend aus Objekten?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Ursprung der Objektorientierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Wer hat’s erfunden?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die zentrale Analogie der radikalen
Objektorientierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

03 - Radikale Objektorientierung 88

Principle of Mutual Oblivion (PoMO)

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Unabhängigkeit

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Geschlossenheit

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Unidirektionalität

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Ein Prinzip als Destillat

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Implementationsidee

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

03 - Radikale Objektorientierung 89

Integration Operation Segregation
Principle (IOSP)

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Objekte verbinden als Verantwortlichkeit

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Ein Prinzip als Destillat

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Implementationsidee

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Philosophischer Exkurs

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Übungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

03 - Radikale Objektorientierung 90

Aufgabe - Mit PoMO/IOSP implementieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

04 - Flow-Design mit
1-dimensionalen
Datenflüssen
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

0-dimensionale Datenflüsse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Notation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Funktionseinheiten mit Seiteneffekten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

04 - Flow-Design mit 1-dimensionalen Datenflüssen 92

1-dimensionale Datenflüsse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Datenfluss als Scope

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Fließende Mengen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Übungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

05 - Flow-Design mit
2-dimensionalen
Datenflüssen
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Abstraktion durch Komposition

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Stratified Design

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

2-dimensionale Datenflüsse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aus Operationen werden Integrationen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

05 - Flow-Design mit 2-dimensionalen Datenflüssen 94

Notation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Datenflüsse als aufgemotzte
Abhängigkeitsdiagramme

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Konsistenz

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Strukturierte Daten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

n:1 Übersetzungen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Rekursion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

05 - Flow-Design mit 2-dimensionalen Datenflüssen 95

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Übungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit
modularisierten
Datenflüssen
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Abstraktion durch Aggregation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Physisch kategorisieren mit dem Dateisystem

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Module

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Abhängigkeiten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit modularisierten Datenflüssen 97

Services stabilisieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Clients immunisieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Orthogonale Containerdimension

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die Modul-Hierarchie

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Klasse - Abhängigkeiten mit Kontrakten zähmen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Hierarchische Modularisierung mit Klassen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit modularisierten Datenflüssen 98

Kriterien für die Aggregation mit Klassen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Klassen als Datenstrukturen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Abstrakte Datentypen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Kriterien für instanziierbare Klassen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Explizite Interfaces für Klassen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Namensraum - Kontraktkollisionen vermeiden

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit modularisierten Datenflüssen 99

Bibliothek - Wiederverwendbarkeit ermöglichen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Paket - Abhängigkeiten stabilisieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Paket-Funktionen als Logik

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Komponente - Die Arbeitsteilung befördern

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Service - Module plattformneutral machen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Wave - Softwareevolution zur Laufzeit

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit modularisierten Datenflüssen 100

Die Modul-Hierarchie im Überblick

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Datenflüsse modularisieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Notation & Implementation I - Funktionen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modularisierungsrichtung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modularisierungskriterien

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Notation & Implementation II - Daten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit modularisierten Datenflüssen 101

Wider die Primitive Obsession

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modularisierungsbeispiel

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Übungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

07 - Flow-Design mit
3-dimensionalen
Datenflüssen
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die wahren Übersetzungsverhältnisse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Streams

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Einsatzgebiete für Streams

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Parallelverarbeitung mit Streams

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

07 - Flow-Design mit 3-dimensionalen Datenflüssen 103

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Continuation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Event-Based Components

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Iterator

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Fallunterscheidung in der Integration

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Discriminated Unions

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

07 - Flow-Design mit 3-dimensionalen Datenflüssen 104

Polymorphie

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Warteschlange

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Übungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

08 - Die IODA Architektur
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die Softwarezelle

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

System vs. Umwelt

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

“Kleiderbügelarchitektur”

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die Membran

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

08 - Die IODA Architektur 106

Ventrale Interaktion: Portale

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Dorsale Interaktion: Provider

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Adapteraufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

“Griechische Architekturen”

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Kern

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Domänenlogik

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

08 - Die IODA Architektur 107

Domänendaten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

“Vitruvianische Architektur”

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

The Missing Concern: Integration

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

IOSP in der Architektur

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Interactors

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Application

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

08 - Die IODA Architektur 108

Controller

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Interactor als injection point

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Processors

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

IODA: All together now!

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Übungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

09 - Finale im
Softwareuniversum
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Explizite Entwurf ist nötig

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Entwurf ist deklarativ

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Das Modell beschreibt Funktionen in
Beziehungen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

09 - Finale im Softwareuniversum 110

Flow-Design im 4-dimensionalen Raum

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Orientierungshilfe für die Softwareentwicklung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Anhang -
Musterlösungen

Wenn du nachhaltig Software entwickeln willst, wie ich es mir vorstelle,
dann musst du dir nicht nur ein paar Tipps&Tricks merken. Es wäre
schön, wenn es so einfach wäre - doch das reicht leider nicht. Du braucht
vielmehr Übung und Experimente und Reflexion. Immerhin gilt es, einige
Gewohnheiten abzustreifen und Glaubenssätze zu verändern. Jedenfalls
ist es mir so ergangen auf meinem Weg zu Programming with Ease.

Um dich zu einer solch aktiven Auseinandersetzung mit der Methode zu
animieren, gehören zu den Kapiteln Übungsaufgaben. Vielleicht hast du
dich an der einen oder anderen schon versucht. Das wäre super, denn
dann hast du den ersten Schritt zur erfolgreichen Veränderung und zum
Kompetenzaufbau schon getan.

Der zweite Schritt besteht anschließend in der Reflexion deiner Lösungen.
Die kannst du allein vornehmen, indemdu dich amEnde zurücklehnst und
überlegst, was gut und was schlecht gelaufen ist usw. Damit bewegst du
dich jedoch nur innerhalb deiner eigenen Komfortzone. Tiefer geht deine
Reflexion, wenn du sie von einem Kontrast ausgehen lässt. Den möchte
ich dir mit den Musterlösungen in diesem Band bieten.

Meine Vorstellung davon, wie die Übungsaufgaben gelöst werden könn-
ten, weicht sehr wahrscheinlich von deiner ab. “Könnten” schreibe ich
hier bewusst statt “sollten”, weil ich nicht glaube, dass es nur eine Lösung
für die Übungsaufgaben gibt. Vielmehr gibt es eine Lösungsbandbreite,
die z.B. davon bestimmt ist, wie Schwerpunkte bei der Anwendung von
Prinzipien und Praktiken gesetzt werden. Hier und da würde ich zwar
sagen, dass es “keine zwei Meinungen geben sollte”, doch allermeistens ist
das nicht so.

112

Die folgenden Musterlösungen sind daher nicht die Lösungen. Sie sind
nicht “richtig” und deine “falsch”, wenn sie anders aussehen. Der Wert
meiner Musterlösungen liegt nicht in einer “Wahrheit”, die sie verkörpern,
sondern vor allem in ihrer Andersheit.

DieDifferenz zwischen deinen Lösungen undmeinenMusterlösungen soll
dich noch weiter anregen, darüber nachzudenken, warum du zu deinen
gekommen bist. Hattest du etwas missverstanden oder übersehen oder
sogar in gutem Willen ergänzt? Hast du einen anderen Schwerpunkt
gesetzt?

Warum meine Musterlösungen sind, wie sie sind, erkläre ich natürlich.
Meine Entscheidungen sind (hoffentlich) alle begründet und plausibel für
dich - was jedoch nicht heißt, dass man darüber nicht diskutieren könnte.
Hätte ich mich anders entschieden, wo Entscheidungsfreiheit bestand,
wäre ich zu anderen Lösungen gekommen - die vielleicht näher an deinen
liegen würden. Der Kürze wegen biete ich dir allerdings nur jeweils eine
Musterlösung pro Übungsaufgabe - und das auch nur in einem Monolog,
wie ihn ein Buch ermöglicht.

Doch eine Musterlösung ist besser als keine, würde ich sagen. Damit
kannst du deine Reflexion schonmal anregen und tiefer in den Lernstoff
eintauchen.

Für persönlicheres, konkreteres und dialogisches Feedback stehe ich dar-
über hinaus natürlich gern zur Verfügung. Melde dich jederzeit per Email
oder schaue dir auf meiner Homepage⁴⁸ an, was ich dir ergänzend an
Trainings und Coaching bieten kann.

Viel Erfolg und Freude bei der Lösung der Übungsaufgaben und der
anschließenden Reflexion!

⁴⁸https://ralfw.de/

https://ralfw.de/
https://ralfw.de/

Musterlösung: 01 - Die
Anforderung-Logik Lücke

Aufgabe 1 - Erklären

Wie ist es dir ergangen mit der Aufgabe? Ich könnte es verstehen, wenn
du dich damit schwer getan hast. Erstens überhaupt “ein Essay schreiben”,
zweitens die Darstellung auch noch besonders einfach in der Sprache
halten. Das waren schon zwei ordentliche Herausforderungen und ich
würde mich wunder, wenn du weniger als 60 Minuten dafür gebrauchst
hast.

Ich selbst habe für die folgendeMusterlösung auch einige Anläufe nehmen
müssen. Mit 60 Minuten war es dabei nicht getan. (Aber eine größere
erwartete Bearbeitungsdauer wollte ich auch nicht in der Aufgabe nennen,
um dich nicht gleich abzuschrecken.)

Wie so oft, ist das Ergebnis gerade wegen der begrenzten Zeit dann
etwas länger geworden. Mit mehr Zeit wäre ja Gelegenheit, Redundanzen
herauszukürzen oder knappere, elegantere Formulierungen zu finden.

Andererseits ist eine Erklärung, die sich an Laien richtet, quasi notwendig
länglicher, weil weniger an Begriffe und Konzepten vorausgesetzt werden
kann. Man muss dann mehr mit Beispielen/Analogien arbeiten, um das
Abstrakte für sie zumindest halbwegs greifbar zu machen.

Wie dein Ergebnis am Ende aussieht, ist für den Zweck der Aufgabe
jedoch zweitrangig. Schön, wenn es gut lesbarer Text herausgekommen
ist. Wichtiger jedoch ist aus meiner Sicht das, was vor und während dem
Schreiben passiert ist.

Für eine Erklärung musstest du erstmal selbst dein Verständnis der Begrif-
fe “Entwurf” und “Modell” aufbauen und schärfen.

Musterlösung: 01 - Die Anforderung-Logik Lücke 114

Und dann musstest du für die Anforderung ELI5 dein Verständnis noch-
mal transformieren in eine laienverständliche Form. Du musstest auswäh-
len und ordnen und auch noch in Worte fassen, was dir “intuitiv klar ist”.

Um diesen Prozess ging es mir bei dieser Aufgabe. Ein Prozess, der beim
Lernen im Allgemeinen und bei der Vermittlung von Programmierkennt-
nissen im Besonderen viel zu selten durchlaufen wird, finde ich. Denn auf
dieseWeise findet Lernen viel intensiver statt. Auf dieseWeise erst eignest
du dir den Stoff nämlich wirklich an. (Zumindest gilt das für Stoff, dessen
Verständnis du nicht unmittelbar durch Tun überprüfen kannst.)

Nach dieser Vorrede hier nun erstmal mein Versuch:

Vom Nutzen der Modellierung für die
Programmierung (ELI5)

Spielst du manchmal mit einer Puppe oder mit einem Spielzeugauto oder
mit einer Dinosaurierfigur? Oder hast du womöglich sogar ein Puppen-
haus oder einen Kaufladen oder Bauernhof, die du in deinem Zimmer
aufbauen kannst zum Spielen?

Super, denn dann weißt du auch, was ein Modell ist. Eine Puppe ist ein
Modell eines Menschen, ein Kaufladen ist ein Modell eines Supermarktes,
weil Puppe und Kaufladen in vielen Dingen einem Menschen bzw. einem
Supermarkt sehr ähnlich sind - aber sie sind eben viel kleiner und es fehlt
ihnen auch in anderer Hinsicht so einiges.

Dennoch macht es Spaß, mit einer Puppe oder einem Kaufladen zu spielen,
oder? Die haben ja auch Vorteile, z.B. dass sie dir zur Verfügung stehen,
wenn du es willst. Oder ein Spielzeugauto ist viel billiger als ein echtes.
Oder eine Dinosaurierfigur gibt es überhaupt, während echte Dinosaurier
gar nicht mehr leben. Du könntest einen echten Dinosaurer nicht mal im
Zoo besuchen, während du auf einem echten Bauernhof allerdings Urlaub
mit deinen Eltern machen könntest.

Modelle gleichen dem, was sie darstellen, einerseits also sehr; wenn du
damit spielst, ist es fast so, als würdest du z.B. wirklich ein Auto haben
oder einen Bauernhof. Andererseits sindModelle handlicher und günstiger.
Dein Eltern können dir z.B. ein Spielzeugauto kaufen, aber für ein echtes
müssten sie ganz lange sparen und du müsstest auch erstmal erwachsen
werden, um es fahren zu dürfen.

Musterlösung: 01 - Die Anforderung-Logik Lücke 115

Ein Modell ist also eine tolle Sache. Du kannst mit etwas spielen, was dir
sonst nicht zugänglich wäre. Du kannst dir damit vorstellen, wie es wäre,
z.B. einen echten Bauernhof zu haben, ohne deshalb gleich umzuziehen.
Mit einer Puppe kannst du dir vorstellen, wie es wäre, ein Baby zu haben,
ohne deshalb gleich wirklich ein eigenes Kind oder auch nur ein kleines
Geschwister bekommen zu müssen. Modelle sind also total bequem und
billig.

Wenn man nun programmiert, dann baut man im Grunde eine Art
Maschine. Die besteht zu einem Teil aus einem Computer, zum anderen
Teil besteht sie aus einem Rezept, das der Computer abarbeitet, um
irgendetwas zu tun, z.B. als Roboter euren Rasen zu mähen oder beim
Spiel auf deinem Smartphone eine Figur zu bewegen. Dieses Rezept heißt
Programm oder Software.

Ein Auto ist auch eine Maschine. Für die hast du ein Modell, mit dem du
dir vorstellen kannst, wie es wäre, ein richtiges Auto zu haben.

Genauso kann man als Programmierer für eine Software-Machine, die
man bauen will, zunächst auch erstmal nur einModell herstellen; damit ist
jedoch weniger der Computer gemeint, sondern vor allem das Programm,
das er abarbeiten soll. Dieses Modell kann dann natürlich nicht das, was
die echte Software-Maschine einmal tun soll - aber es sieht ihr eben doch
ähnlich und ist viel billiger.

Mit so einem Programm-Modell hat es ein Programmierer einfacher, sich
vorzustellen, wie es wäre, wenn er die spätere Software-Maschine wirklich
hätte. Das ist total nützlich, weil es sehr, sehr schwierig und teuer ist,
richtige Software-Maschinen zu bauen.

Einen Unterschied gibt es aber zwischen einem Spielzeugauto als Modell
und einem Modell für eine Software. Das Spielzeugauto-Modell wird dem
echten Auto nachempfunden; es gibt zuerst das echte Auto und dann das
Modell. Beim Programmieren macht man es anders herum: Da baut man
zuerst einModell oder auch zwei oder drei, um danach das echte Programm
dem Modell nachzuempfinden.

Auf diese Weise kann sich ein Programmierer sparen, erst eine total
komplizierte Software-Maschine zu bauen, um dann zu merken, dass sie
doch nicht so geworden ist, wie er es gerne gehabt hätte. Besser ist es, er
stellt erstmal nur ein Modell her und beschäftigt sich damit, um ein Gefühl
dafür zu bekommen, wie es wäre, die echte Maschine zu haben. Wenn ihm

Musterlösung: 01 - Die Anforderung-Logik Lücke 116

das nicht gefällt, macht er einfach ein neues Modell. An so einem Modell
kann er sich halt eine Menge Dinge überlegen, ohne viel Arbeit zu haben:
Wie soll die Maschine aussehen? Wie soll sie bedient werden? Aus welchen
Teilen soll die Maschine bestehen? Wie sollen die Teile zusammengesteckt
werden, damit die Maschine leicht zu bauen ist?

Natürlich möchte ein Programmierer auch mega gern mit der echten
Software-Maschine arbeiten, so wie du am liebsten in einem echten Kauf-
laden etwas kaufen oder verkaufen würdest. Wenn der Programmierer
allerdings zu früh anfängt, seine Software-Maschine zu bauen, dann hat
er sich vielleicht noch gar nicht alles ausgedacht, was dazu nötig ist. Dann
wäre es später voll schwierig, die echte Maschine umzubauen, wenn ihm
etwas Neues einfällt, was sie können soll oder wie sie etwas anstellt. Auch
deshalb ist es hilfreich, dass der Programmierer sich erstmal nur mit einem
Modell beschäftigt. Das könnte ja aus soetwas wie Knete oder Lego oder
auch nur Papier sein, damit er ganz schnell neue Ideen ausprobieren kann.

Vielleicht hast du das ja auch schon gemacht: Statt ein Spielzeugauto zu
kaufen, hast du eines aus Lego selbst gebaut. Und als es dir nicht mehr
gefallen hat, hast du es umgemodelt oder eine Rakete aus den Legosteinen
gebaut.

Genau das sollten Programmierer auch tun, wenn sie eine Software-
Maschine bauen müssen. Sobald sie dann ein schönes Modell haben,
können sie es ja “in echt” bauen. Auf diese Weise wird es auch viel leichter,
die echte Maschine zu bauen. Die Programmierer müssen sich weniger
ärgern, weil sie sich vor allemwährend desModellbaus vertan haben, wenn
es leicht ist, etwas zu korrigieren.

Modelle machen also das Programmieren leichter und günstiger.

Reflexion

Ich fand es schwierig, eine griffige Analogie für ELI5 zu finden. Mit dem
Spielzeug bin ich dann zufrieden gewesen. Vorher hatte ich es u.a. mit
Rezepten und einem Bauplan fürs Haus probiert. Das fühlte sich für das
Sprachniveau dann letztlich aber nicht so passend an.

Natürlich ist auch dieser Text nicht wirklich für 5jährige geeignet. Wich-
tiger ist, dass er möglichst wenig Jargon enthält und versucht, den Begriff
Modell und die Vorteile des Modellierens anschaulich zu machen. Was ist

Musterlösung: 01 - Die Anforderung-Logik Lücke 117

die Absicht dahinter, wenn man sich nicht negativen Konotationen und
UML-Feuerwerk beirren lässt?

Diese Absicht kommt im Text hoffentlich gut rüber: Modelle erlauben es,
dass man sich etwas vorstellen kann, ohne es real in den Händen zu halten.
Man soll ohne großen Aufwand ein Gefühl für etwas bekommen.

Was an Echtheit fehlt, ersetzt die Imagination. Das ist Sinn und Zweck
von Modellen, weil sie dadurch eben viel, viel einfacher herzustellen sind
als “the real thing”. Und weil das viel, viel einfacher ist, kann man sich
mehr Modelle leisten als “real things” - bzw. es sind Veränderungen an
Modellen einfacher, schneller, günstiger als an “real things”.

Dass Modellen viele Eigenschaften des Echten fehlen, kann mithin keine
Kritik sein. Es ist vielmehr ihr Vorteil und Hauptzweck. Es geht um Abs-
traktion. Statt Echtheit und “high fidelity” bekommt man etwas anderes.
Das sind Handlichkeit, Vereinfachung, Flexibilität und Fokus. Die sind
allesamt sehr nützlich, wenn man Anforderungen in Code umsetzen soll.

Code ist so komplex, dass man sich nicht einfach auf ihn stürzen kann,
sobald man meint, die Anforderungen verstanden zu haben. Besser, du
machst dich als Programmierer mit dem, was der Code tun soll und wie
er strukturiert sein könnte, erstmal anhand von Modellen vertraut. Du
kannst dir damit einige Tränen sparen!

Aufgabe 2 - Modellieren

Beim Modellieren ist alles erlaubt - nur kein Code. Das Modell soll
einerseits halbwegs “lebensecht” sein, andererseits soll ihm Wesentliches
fehlen, um den Aufwand klein zu halten und sich nicht Details zu
verlieren. Skizze statt Gemälde, so könnte man vielleicht sagen.

Musterlösung: 01 - Die Anforderung-Logik Lücke 118

Vom Modell zum Produkt in fünf Schritten

Lösungsansatz

Ich weiß schon, dass das Programm über die Console bedient werden soll.

Außerdem ist klar, dass das Programm irgendwie die Besucherdaten
über seine Laufzeit hinweg speichern muss. Der Auftraggeber will den
Laptop zwischen den Parties ausschalten; ausschließlich imHauptspeicher
können die Gästedaten also nicht gehalten werden.

Auf der Festplatte könnten die Daten in einer Datenbank (z.B. RDBMS
mit SQLite) gehalten werden oder sogar noch einfacher in einer Textdatei.
Eine überschlägige Rechnung ergibt, dass ca. 15.000 Besucher über all
die Jahre mit dem Programm begrüßt werden sollen. Das ist nicht zu
viel, um sehr pauschal in einer Textdatei gespeichert zu werden. Eine
1,5MB Textdatei könnte bei Programmstart in den Hauptspeicher geladen
werden. Sie könnte auch während der Programmlaufzeit ständig erweitert
werden, damit keine Daten bei einem Programmabsturz verlorengehen.
Wahrscheinlich könnte die Datei sogar für jeden Gast geladen werden,
ohne dass eine Performanceeinbuße zu befürchten wäre. (Das kann ich
mir als ein “Forschungsthema” für eine spike solution⁴⁹ merken, falls
später beim Modellieren eine Entscheidung davon abhängt.)

⁴⁹http://www.extremeprogramming.org/rules/spike.html

http://www.extremeprogramming.org/rules/spike.html
http://www.extremeprogramming.org/rules/spike.html

Musterlösung: 01 - Die Anforderung-Logik Lücke 119

Das Speicherformat innerhalb einer Textdatei könnte für jeden Besucher
dessen Namen und seine Besuchsanzahl festhalten.

Modell

Software hat viele Stakeholder. Deren Ansprüche an ein Modell können
sehr unterschiedlich sein. Auftraggeber bzw. Anwender möchten mit
einem Modell ein Gefühl dafür bekommen, wie sich der Umgang mit der
Software später anfühlen wird. Für Entwickler hingegen ist es vor allem
interessant, ein Gefühl dafür zu bekommen, wie die Software aufgebaut
ist und ihr Verhalten erzeugt.

Es scheint mir deshalb angemessen, nicht nur ein Modell, sondern min-
destens zwei zu bauen.

Oberfläche

Das Oberflächenmodell könnte im einfachsten Fall aus einem Text wie
dem folgenden bestehen. Der ist zwar nicht interaktiv, aber er demons-
triert das Verhalten:

1 $ helloworld.exe
2 Name: Janine
3 Hello, Janine!
4 Name: Peter
5 Welcome back, Peter!
6 Name:
7 Name: Mike
8 Hello my good friend, Mike!
9 CTRL-C

10 $

• Es ist zu sehen, dass es verschiedene Begrüßungen gibt.
• Das Layout von Abfragen, Eingaben und Ausgaben ist zu sehen.
• Ein Betrachter sieht, was passiert, wenn jemand keinen Namen
eingibt.

• Es ist klar, wie das Programm zu beenden ist.

Das vermittelt ohne jeglichen Programmieraufwand schon einen guten
Eindruck dafür, wie sich das Programm zur Laufzeit anfühlt.

In anderen Szenarien könnte die Codierung eines Prototyps für die Be-
nutzerschnittstelle angezeigt sein. Das lohnt allerdings nur, wenn dessen

Musterlösung: 01 - Die Anforderung-Logik Lücke 120

Code um Größenordnungen weniger umfangreich ist, als der später
wirklich benötigte. UI MockupWerkzeuge aller Art haben hier auch ihren
Zweck.

Ginge es um eine graphische Benutzeroberfläche, könnte ich z.B. mit
Balsamiq Mockups ein visuelles Modell so herstellen:

Dazu hätte ein Auftraggeber sicherlich eine Meinung, könnte Feedback
geben - und all das, ohne auch nur eine Zeile Code zu schreiben.

Aber um diese Art Modelle geht es mir ja in diesem Buch nicht. Die liegen
auf der Hand.

Interna

Das Problem bei dieser Hausaufgabe ich das Modell für dich als Ent-
wickler, d.h. ein Modell für die Interna des Programms. Wie kann Code
modelliert werden, der am Ende ja nur aus Text in Dateien besteht?

Ich könnte mit Dateien beginnen. Warum nicht aufschreiben, auf welche
Dateien der Code am Ende aufgeteilt werden sollte? Technisch reicht
eine einzige, z.B. program.cs. Aber dann ist mit einem Modell nichts
gewonnen.

Musterlösung: 01 - Die Anforderung-Logik Lücke 121

Aber es gibt vielleicht “Themen”, deren Code in unterschiedlichen Dateien
liegen könnte, z.B.

• benutzerschnittstelle.cs
• datenspeicherung.cs
• program.cs

Die Ausgabe auf der Console ist etwas ganz anderes, als die Datenspei-
cherung. Die Logik dafür zu trennen, macht bestimmt Sinn. Und der Rest
passiert dann in program.cs, der Datei, die es in C# sowieso gibt, um
die Funktion Main() zu beherbergen.

Die Liste der Dateien ist ein Modell. Jemand, der die Logik schreibt, wird
dadurch schon etwas angeleitet. Etwas Entscheidendes fehlt allerdings
noch: die Verbindungen zwischen diesen Codebausteinen. Die Logik, die
auf die Dateien verteilt wird, muss ja irgendwie zur Laufzeit zusammen-
arbeiten.

Eine simple Beziehung könnte schon die Reihenfolge der Dateien in einer
Liste ausdrücken. Dann könnte Ausführung laut obiger Liste z.B.mit Logik
in benutzerschnittstelle.cs beginnen, danach geht es weiter bei
datenspeicherung.cs und schließlich in program.cs. Aber das hört
sich nicht plausibel an, oder? Näher läge es, bei program.cs zu beginnen.

Außerdem soll wahrscheinlich Logik nicht nur einmal in benutzer-
schnittstelle.cs ausgeführt werden, nachdem z.B. etwas in pro-
gram.cs passiert ist. Deshalb ist eine Reihenfolgenbeziehung zu wenig.
Die Verbindungen zwischen der Logik in den Dateien müssen flexibler
sein.

Mit Text lassen sich Verbindungen zwischen Elementen allerdings schwer
flexibel und verständlich beschreiben. Besser ist es, das Medium zu
wechseln und visuell zu werden.

Musterlösung: 01 - Die Anforderung-Logik Lücke 122

Die Linien drücken erstmal nur aus, dass es überhaupt Beziehungen
zwischen den Dateien gibt. Allerdings kann jetzt mehrfach Logik aus
derselben Datei im Spiel sein.

Aber worin bestehen diese Beziehungen? Wenn die Abarbeitung von
Logik nicht einfach von einer Datei in die nächste fließt, sondern hin
und her, dann geht das nur über Funktionsaufrufe. Die Verbindungslinien
stehen also ganz pauschal dafür, dass Logik aus der einen Datei Logik in
einer anderen mittels einer Funktion aufruft, die ihr von dort bekannt ist.

Wenn das Modell hilfreich sein soll, dann braucht es also noch etwas mehr
Detail in Form von Funktionsaufrufen: Welche Datei ruft wann welche
Funktion in welcher anderen auf? Das kann z.B. so aussehen:

Musterlösung: 01 - Die Anforderung-Logik Lücke 123

Von einer Funktion ist klar, in welcher Datei sie sich befindet: Main()
steckt konventionshalber als Eintrittspunkt für das Programm in pro-
gram.cs. Welche anderen Funktionen es gibt und wie sie auf die Dateien
verteilt sind, ist dann meine Sache. Das festzulegen, ist ein Teil der
kreativen Leistung während des Entwurfs. Die Dateinamen geben ja aber
schon einen Hinweis darauf, wie ich meine, dass die Verteilung aussehen
könnte.

Was du in dem “Sequenzdiagramm” siehst, ist eine Möglichkeit der
Verteilung. Ich behaupte nicht, dass es die beste ist. Um die Güte geht
es hier nicht, sondern darum, wie ein Modell überhaupt aussehen könnte.
Nur darüber solltest du dir erstmal Gedanken machen.

Reflexion

Erfüllt das, was ich produziert habe, die Anforderungen an ein Modell?

• Ein Modell soll deklarativ sein. Das bedeutet, es beschreibt nicht
das Wie, sondern das Was. Vor allem enthält es keine Logik. Das
ist der Fall. Ich habe nicht enthüllt, wie genau die Daten dargestellt,
geladen, transformiert werden. Dass Daten geladen werden, ist zu
sehen. Wie Daten geladen werden, welche Logik dafür nötig wäre
oder sogar welches Datenformat benutzt würde, ist nicht zu sehen.

• Ein Modell soll eine Liste von Funktionen liefern, die in der
Codierung mit Logik gefüllt werden. Das ist auch der Fall. Mindes-
tens fünf Funktionen sollte der Code zu diesem Modell am Ende
aufweisen. Sogar deren Signaturen sind definiert.

• EinModell soll dieBeziehungen zwischen den Funktionen deutlich
machen. Das ist auch der Fall. Da ist die Aggregationsbeziehung,
die beschreibt, welche Funktionen in einer Datei zusammengefasst
werden sollen.⁵⁰ Da ist die Abhängigkeits- oder Nutzungsbeziehung
zwischen den Funktionen: Welche Funktion ruft welche andere
auf? Da ist die Teilenbeziehung: Welche Funktionen teilen sich
Daten?⁵¹ Das ist die Sequenzbeziehung: Welche Funktion folgt
welcher anderen in der Nutzung?

⁵⁰Der Allgemeingültigkeit über Sprachen hinweg habe ich mich auf Dateien als Aggre-
gate von Funktionen konzentriert. Das funktioniert in Python oder Ruby oder JavaScript aus
dem Stand. In C# oder Java braucht es darüber hinaus allerdings noch eine Klasse. Doch
wenn die genauso wie die Datei benannt ist, dann macht sie das Modell nicht komplizierter.

⁵¹Das sind z.B. loadAllGuests() und getGreeting(), die beide mit der Gästeliste
List<(string,int)> arbeiten.

Musterlösung: 01 - Die Anforderung-Logik Lücke 124

Ob die Mittel der Darstellung für das Modell die besten sind, ob das
Modell ein Gutes ist, sei dahingestellt. Formal erfüllt das Obige jedoch die
Kriterien für ein Modell. Und ich würde sogar sagen: Selbst dieses Modell
ist besser als keines.

Die Qualität desModells besteht darin, dass esmich zwingt, mir Gedanken
zumachen. Ichmussmir die Software vorstellen, wenn auch nur sehr grob.
Unter Kenntnis dessen, wie ein Computer funktioniert und welche Logik
mir zur Verfügung steht, kann ich im Kopf simulieren, was passieren wür-
de. Das kann ich vergleichen mit dem, was ich an Verständnis während
der Anforderungsanalyse erarbeitet habe.

Wenn dir das schwer gefallen ist, verstehe ich das gut. Auch mir ist dieses
Modell schwer gefallen. Allerdings lag das daran, dass ich versucht habe,
alles zu vergessen, was ich dir eigentlich sagen möchte über Modellierung.
Ich habemich zurückgenommen, um näher an deiner Situation zu sein. Du
liest das Buch ja wahrscheinlich, weil du noch keine größere Erfahrung
mit dem Softwareentwurf hast. Aufwelche Ideen kommst du da? Das habe
ich mir versucht vorzustellen.

Deshalb auch nochmal: Es kommt hier vor allem darauf an, dass du dir
ernsthaft Mühe gegeben hast. Hast du versucht, die Definition für ein
Modell umzusetzen? Mehr ist nicht wichtig gewesen bei dieser Übung.

Denn wenn dein Modell der Definition folgt, dann bist du weiter, als ohne.
Dann hast du mehr als einen Container für Logik - aka Funktion -, was es
dir schon viel leichter macht, die Logik zu finden. Logik in kleine Happen
teilen, damit sie verständlicher und testbarer wird, ist das Ziel.

Dass ein Modell vieles ungesagt lässt, dass es die Lösung unterspezifi-
ziert, ist selbstverständlich. Das gehört zu seinem Zweck und ist kein
Kritikpunkt. Dass du modellierst, ist mithin auch nicht im Widerspruch
zu jedem Anspruch der Agilität. Nur, weil du gerade nicht in die Tasten
haust, bedeutet das nicht, dass du nicht dabei bist, Wert für den Kunden
herzustellen. Es kommt halt aufs richtige Maß an.

Musterlösung: 02 - Entwurf
im Überblick
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe - Lösungsansatz finden

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Lösungsansatz für die Domänenlogik

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 03 - Radikale
Objektorientierung
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe - Mit PoMO/IOSP
implementieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modellskizze

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Codierung der Integration

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Codierung der Operationen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 03 - Radikale Objektorientierung 127

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 04 -
Flow-Design mit
1-dimensionalen
Datenflüssen
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 1 - Modellieren und
implementieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Lösungsansatz verfeinern: Prä-Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 04 - Flow-Design mit 1-dimensionalen Datenflüssen 129

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 2 - Reverse modeling

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 3 - Lösen, modellieren,
implementieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Lösungsansatz

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Codierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 04 - Flow-Design mit 1-dimensionalen Datenflüssen 130

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 05 -
Flow-Design mit
2-dimensionalen
Datenflüssen
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 1 - Implementation eines
Modells

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 2 - Die Dimensionalität eines
Modells erhöhen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 05 - Flow-Design mit 2-dimensionalen Datenflüssen 132

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 3 - Anforderungen umsetzen
mit 2-dimensionalem Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Verstehen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Lösen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modellieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Zerlegen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 05 - Flow-Design mit 2-dimensionalen Datenflüssen 133

Verdrahten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Codieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 06 -
Flow-Design mit
modularisierten
Datenflüssen
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 1 - Datenfluss modularisieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Schrittweise Modularisierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Klassendiagramm

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 06 - Flow-Design mit modularisierten Datenflüssen 135

Bibibliotheken

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 2 - Game of Life

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Lösungsansatz

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modellierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Zerlegungsbaum

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Datenfluss

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 06 - Flow-Design mit modularisierten Datenflüssen 136

Modularisierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Klassendiagramm

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Bibliotheksdiagramm

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 07 -
Flow-Design mit
3-dimensionalen
Datenflüssen
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 1 - Tic-Tac-Toe

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Lösungsansatz

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Spielerwechsel

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Spielende

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 07 - Flow-Design mit 3-dimensionalen Datenflüssen 138

Das Domänenmodell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Das Domänendatenmodell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

High-level Datenfluss

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Port-Datenflüsse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Datenfluss-Wurzeln innerhalb von EBCs

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 07 - Flow-Design mit 3-dimensionalen Datenflüssen 139

Intergrationen verfeinern

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Inkrementelle Implementierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Schlaglichter auf den Code

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 08 - Die IODA
Architektur
This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 1 - Umbau nach IODA

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Abhängigkeiten zeigen den
Abstraktionsgradienten hinab

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 2 - Enturf nach IODA inkl.
Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Anforderungsanalyse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 08 - Die IODA Architektur 141

Nachrichten an den Processor

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Lösungsansatz

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Spiel starten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Rateversuch beurteilen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Application

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlösung: 08 - Die IODA Architektur 142

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Schlaglichter auf den Code

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

	Inhaltsverzeichnis
	Zum Geleit
	Motivation
	Programming with Ease
	Das Softwareuniversum

	Einleitung
	Anforderungskategorien
	It's the productivity, stupid!
	Produktivitätskiller
	Fehlende Korrekheit
	Fehlender Wert
	Fehlende Ordnung

	Zusammenfassung

	Die Methode
	01 - Die Anforderung-Logik Lücke
	Logik - Der Stoff aus dem Verhalten entsteht
	Funktionalität
	Effizienz I - Effizienz durch Algorithmen und Datenstrukturen
	Effizienz II - Effizienz durch Verteilung
	Zusammenfassung

	Von den Anforderungen zur Logik
	Logik schwer definierbar
	Die Phasen der Programmierung
	Zusammenfassung

	Übungsaufgaben

	02 - Entwurf im Überblick
	Den Entwurf abstecken
	Hierarchie der Lösungen
	Von der Kunst lernen
	Entwerfen ist fachgerecht
	Entwerfen ist agil

	1. Der Lösungsansatz
	2. Das Modell
	Modellarten
	Abstraktion

	Zusammenfassung
	Übungsaufgaben
	Aufgabe - Lösungsansatz finden

	03 - Radikale Objektorientierung
	Die Welt bestehend aus Objekten?
	Der Ursprung der Objektorientierung
	Wer hat's erfunden?
	Die zentrale Analogie der radikalen Objektorientierung

	Principle of Mutual Oblivion (PoMO)
	Unabhängigkeit
	Geschlossenheit
	Unidirektionalität
	Ein Prinzip als Destillat
	Implementationsidee

	Integration Operation Segregation Principle (IOSP)
	Objekte verbinden als Verantwortlichkeit
	Ein Prinzip als Destillat
	Implementationsidee

	Philosophischer Exkurs
	Übungsaufgaben
	Aufgabe - Mit PoMO/IOSP implementieren

	04 - Flow-Design mit 1-dimensionalen Datenflüssen
	0-dimensionale Datenflüsse
	Notation
	Implementation

	1-dimensionale Datenflüsse
	Der Datenfluss als Scope
	Fließende Mengen
	Implementation

	Übungsaufgaben

	05 - Flow-Design mit 2-dimensionalen Datenflüssen
	Abstraktion durch Komposition
	Stratified Design
	2-dimensionale Datenflüsse

	Notation
	Datenflüsse als aufgemotzte Abhängigkeitsdiagramme
	n:1 Übersetzungen
	Rekursion

	Reflexion
	Übungsaufgaben

	06 - Flow-Design mit modularisierten Datenflüssen
	Abstraktion durch Aggregation
	Physisch kategorisieren mit dem Dateisystem

	Module
	Abhängigkeiten
	Orthogonale Containerdimension

	Die Modul-Hierarchie
	Klasse - Abhängigkeiten mit Kontrakten zähmen
	Namensraum - Kontraktkollisionen vermeiden
	Bibliothek - Wiederverwendbarkeit ermöglichen
	Paket - Abhängigkeiten stabilisieren
	Komponente - Die Arbeitsteilung befördern
	Service - Module plattformneutral machen
	Wave - Softwareevolution zur Laufzeit
	Die Modul-Hierarchie im Überblick

	Datenflüsse modularisieren
	Notation & Implementation I - Funktionen
	Notation & Implementation II - Daten
	Modularisierungsbeispiel

	Reflexion
	Übungsaufgaben

	07 - Flow-Design mit 3-dimensionalen Datenflüssen
	Die wahren Übersetzungsverhältnisse
	Streams
	Einsatzgebiete für Streams

	Implementation
	Continuation
	Iterator
	Fallunterscheidung in der Integration
	Polymorphie
	Warteschlange

	Reflexion
	Übungsaufgaben

	08 - Die IODA Architektur
	Die Softwarezelle
	System vs. Umwelt
	``Kleiderbügelarchitektur''
	Die Membran
	``Griechische Architekturen''
	Der Kern
	``Vitruvianische Architektur''

	The Missing Concern: Integration
	IOSP in der Architektur
	Interactors
	Processors
	IODA: All together now!

	Übungsaufgaben

	09 - Finale im Softwareuniversum
	Der Explizite Entwurf ist nötig
	Der Entwurf ist deklarativ
	Das Modell beschreibt Funktionen in Beziehungen
	Flow-Design im 4-dimensionalen Raum
	Orientierungshilfe für die Softwareentwicklung

	Anhang - Musterlösungen
	Musterlösung: 01 - Die Anforderung-Logik Lücke
	Aufgabe 1 - Erklären
	Vom Nutzen der Modellierung für die Programmierung (ELI5)
	Reflexion

	Aufgabe 2 - Modellieren
	Lösungsansatz
	Modell
	Reflexion

	Musterlösung: 02 - Entwurf im Überblick
	Aufgabe - Lösungsansatz finden
	Lösungsansatz für die Domänenlogik
	Reflexion

	Musterlösung: 03 - Radikale Objektorientierung
	Aufgabe - Mit PoMO/IOSP implementieren
	Modellskizze
	Codierung der Integration
	Codierung der Operationen

	Reflexion

	Musterlösung: 04 - Flow-Design mit 1-dimensionalen Datenflüssen
	Aufgabe 1 - Modellieren und implementieren
	Lösungsansatz verfeinern: Prä-Modell
	Modell
	Implementation

	Aufgabe 2 - Reverse modeling
	Aufgabe 3 - Lösen, modellieren, implementieren
	Lösungsansatz
	Modell
	Codierung
	Reflexion

	Musterlösung: 05 - Flow-Design mit 2-dimensionalen Datenflüssen
	Aufgabe 1 - Implementation eines Modells
	Reflexion

	Aufgabe 2 - Die Dimensionalität eines Modells erhöhen
	Reflexion

	Aufgabe 3 - Anforderungen umsetzen mit 2-dimensionalem Modell
	Verstehen
	Lösen
	Modellieren
	Codieren
	Reflexion

	Musterlösung: 06 - Flow-Design mit modularisierten Datenflüssen
	Aufgabe 1 - Datenfluss modularisieren
	Schrittweise Modularisierung
	Klassendiagramm
	Bibibliotheken

	Aufgabe 2 - Game of Life
	Lösungsansatz
	Modellierung
	Reflexion

	Musterlösung: 07 - Flow-Design mit 3-dimensionalen Datenflüssen
	Aufgabe 1 - Tic-Tac-Toe
	Lösungsansatz
	Modell
	Implementation
	Reflexion

	Musterlösung: 08 - Die IODA Architektur
	Aufgabe 1 - Umbau nach IODA
	Abhängigkeiten zeigen den Abstraktionsgradienten hinab

	Aufgabe 2 - Enturf nach IODA inkl. Implementation
	Anforderungsanalyse
	Lösungsansatz
	Modell
	Implementation
	Reflexion

