ralf westphal

PROGRAMMING WITH EASE
TEIL2

ein buch aus dem software universum

Softwareentwurf mit Flow-Design

Programming with Ease - Teil 2

Ralf Westphal

Dieses Buch wird verkauft unter
http://leanpub.com/softwareentwurf-mit-flow-design

Diese Version wurde verdffentlicht am 2021-04-16

)

Leanpub

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit
Hilfe von Lean-Publishing, neue Moglichkeiten des Publizierens. Lean
Publishing bedeutet die wiederholte Veréffentlichung neuer
Beta-Versionen eines eBooks unter der Zuhilfenahme schlanker
Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei der
Finalisierung und der anschliefenden Vermarktung des Buches. Lean
Publishing unterstiitzt den Autor darin ein Buch zu schreiben, das auch
gelesen wird.

© 2020 - 2021 Ralf Westphal

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Ebenfalls von Ralf Westphal

Test-first Codierung
Software Anforderungsanalyse mit Slicing

Die IODA Architektur im Vergleich

http://leanpub.com/u/ralfw
http://leanpub.com/test-first-codierung
http://leanpub.com/software-anforderungsanalyse-mit-slicing
http://leanpub.com/ioda-architektur-im-vergleich-dnp

Inhaltsverzeichnis

ZumGeleit 1
Motivation Lo o 2
Programming withEase 3
Das Softwareuniversum 7
Einleitung 10
Anforderungskategorien L Lo L. 10
It’s the productivity, stupid! 12
Produktivitatskiller 14
Fehlende Korrekheit 16
Fehlender Wert 18
Fehlende Ordnung 20
Zusammenfassung Lo 23

Die Methode 27

01 - Die Anforderung-Logik Liicke 28
Logik - Der Stoff aus dem Verhalten entsteht 28
Funktionalitat 31
Effizienz I - Effizienz durch Algorithmen und Datenstrukturen 32
Effizienz II - Effizienz durch Verteilung 33
Zusammenfassung 35

Von den Anforderungen zur Logik 36
Logik schwer definierbar 36

Die Phasen der Programmierung 41
Zusammenfassungo 46

Ubungsaufgaben 48

INHALTSVERZEICHNIS

02 - Entwurfim Uberblick
Den Entwurfabstecken
Hierarchie der Losungen
Vonder Kunstlernen.
Entwerfen ist fachgerecht
Entwerfenistagil
1.Der Losungsansatz
2.DasModell
Modellarten
Abstraktion Lo
Zusammenfassung
Ubungsaufgaben
Aufgabe - Losungsansatz finden

Der Ursprung der Objektorientierung
Wer hat’serfunden?
Die zentrale Analogie der radikalen Objektorientierung . . .

Principle of Mutual Oblivion (PoMO)
Unabhéngigkeit L.
Geschlossenheit
Unidirektionalitdt
Ein Prinzip als Destillat
Implementationsidee

Integration Operation Segregation Principle (IOSP)
Objekte verbinden als Verantwortlichkeit
Ein Prinzip als Destillat
Implementationsidee L.

Philosophischer Exkurs

Ubungsaufgaben
Aufgabe - Mit POMO/IOSP implementieren

04 - Flow-Design mit 1-dimensionalen Datenfliissen
0-dimensionale Datenflasse
Notation
Implementation
1-dimensionale Datenflisse
Der Datenflussals Scope
FlieBende Mengen

INHALTSVERZEICHNIS

Implementation 92
Ubungsaufgaben 92
05 - Flow-Design mit 2-dimensionalen Datenfliisssen 93
Abstraktion durch Komposition 93
Stratified Design 93
2-dimensionale Datenflisse 93
Notation. 94
Datenfliisse als aufgemotzte Abhéangigkeitsdiagramme . . . 94

n:1 Ubersetzungen 94
Rekursion L 94
Reflexion 95
Ubungsaufgaben 95
06 - Flow-Design mit modularisierten Datenfliissen 96
Abstraktion durch Aggregation 96
Physisch kategorisieren mit dem Dateisystem 96
Module 96
Abhéngigkeiten Lo L L Lo 96
Orthogonale Containerdimension 97
Die Modul-Hierarchie 97
Klasse - Abhangigkeiten mit Kontrakten zdhmen 97
Namensraum - Kontraktkollisionen vermeiden 98
Bibliothek - Wiederverwendbarkeit ermoglichen 99
Paket - Abhangigkeiten stabilisieren 99
Komponente - Die Arbeitsteilung beférdern 99
Service - Module plattformneutral machen 99
Wave - Softwareevolution zur Laufzeit 99
Die Modul-Hierarchie im Uberblick 100
Datenflisse modularisieren 100
Notation & Implementation I - Funktionen 100
Notation & Implementation Il -Daten 100
Modularisierungsbeispiel 101
Reflexion 101
Ubungsaufgaben 101
07 - Flow-Design mit 3-dimensionalen Datenfliisssen 102
Die wahren Ubersetzungsverhiltnisse 102
Streams 102

Einsatzgebiete fir Streams 102

INHALTSVERZEICHNIS

Implementation 103
Continuation 103
Tterator o oo 103
Fallunterscheidung in der Integration 103
Polymorphie 104
Warteschlange 104

Reflexion 104

Ubungsaufgaben 104

08 - Die IODA Architektur 105

Die Softwarezelle 105
Systemvs. Umwelt 105
“Kleiderbugelarchitektur” 105
DieMembran L L 105
“Griechische Architekturen” L. 106
DerKern 106
“Vitruvianische Architektur” 107

The Missing Concern: Integration 107
IOSP in der Architektur 107
Interactors oo oo oo 107
Processors. oo L 108
IODA: All togethernow! 108

Ubungsaufgaben 108

09 - Finale im Softwareuniversum 109

Der Explizite Entwurfistnétig 109

Der Entwurf ist deklarativ 109

Das Modell beschreibt Funktionen in Beziehungen 109

Flow-Design im 4-dimensionalen Raum 110
Orientierungshilfe fiir die Softwareentwicklung 110

Anhang - Musterléosungen 111
Musterlosung: 01 - Die Anforderung-Logik Liicke 113

Aufgabe 1-Erkldren oL L. 113
Vom Nutzen der Modellierung fiir die Programmierung (ELI5) 114
Reflexion 116

Aufgabe 2 - Modellieren 117

Losungsansatz 118

INHALTSVERZEICHNIS

Modell 119
Reflexion 123
Musterlésung: 02 - Entwurf im Uberblick 125
Aufgabe - Losungsansatzfinden 125
Losungsansatz fir die Doménenlogik 125
Reflexion 125
Musterlosung: 03 - Radikale Objektorientierung 126
Aufgabe - Mit POMO/IOSP implementieren 126
Modellskizze L L 126
Codierung der Integration 126
Codierung der Operationen 126
Reflexion 127

Musterlosung: 04 - Flow-Design mit 1-dimensionalen Daten-

flissen 128
Aufgabe 1 - Modellieren und implementieren. 128
Losungsansatz verfeinern: Pra-Modell 128
Modell 128
Implementation 129
Aufgabe 2 - Reverse modeling 129
Aufgabe 3 - Losen, modellieren, implementieren 129
Losungsansatz 129
Modell 129
Codierung 129
Reflexion 130

Musterlosung: 05 - Flow-Design mit 2-dimensionalen Daten-

flissen 131
Aufgabe 1 - Implementation eines Modells 131
Reflexion 131
Aufgabe 2 - Die Dimensionalitét eines Modells erhdhen 131
Reflexion 132
Aufgabe 3 - Anforderungen umsetzen mit 2-dimensionalem
Modell 132
Verstehen L L 132
Losen o 132
Modellieren L 132

Codieren 133

INHALTSVERZEICHNIS

Reflexion 133

Musterlosung: 06 - Flow-Design mit modularisierten Datenfliis-

SEIL e 134
Aufgabe 1 - Datenfluss modularisieren 134
Schrittweise Modularisierung 134
Klassendiagramm 134
Bibibliotheken L. 135
Aufgabe 2 - Game of Life 135
Losungsansatz 135
Modellierung L 135
Reflexion 136

Musterlosung: 07 - Flow-Design mit 3-dimensionalen Daten-

flissen 137
Aufgabe 1-Tic-Tac-Toe 137
Losungsansatz 137
Modell 138
Implementation 139
Reflexion 139
Musterlosung: 08 - Die IODA Architektur 140
Aufgabe 1 - UmbaunachIODA 140
Abhangigkeiten zeigen den Abstraktionsgradienten hinab . . 140
Aufgabe 2 - Enturf nach IODA inkl. Implementation 140
Anforderungsanalyse, 140
Losungsansatz 141
Modell 141
Implementation 142

Reflexion 142

Zum Geleit

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Motivation

Der Softwareentwicklung fehlt etwas. Was fehlt, ist eine Form von Klar-
heit und vor allem Gelassenheit. So ist zumindest mein Gefiihl, wenn ich
Softwareentwickler in meinen Clean Code Trainings oder auch an ihrem
Arbeitsplatz beobachte.

Wo Klarheit und Gelassenheit sind, da ist der Tritt sicher, da ist die
Zuverlassigkeit hoch, da stimmt die Qualitat von vornherein umfassend
und die Stimmung ist entspannt. Leider scheint mir das aber nicht die
Atmosphire in den meisten Softwareentwicklungsteams zu sein. Oder wie
empfindest du es in deinem Team?

Stattdessen herrscht oft Verwirrung angesichts dessen, was der Kunde
will, es sind die Backlogs voll mit Bugs und das sprichwértliche “What
the fuck?!” ist standig hinter den Monitor-Triptychons im Team Room zu
horen (oder zumindest auf den Gesichtern der Entwickelnden zu lesen).

Was mogen die Griinde dafiir sein? Es gibt sicher viele. Ein ganz grund-
legender scheint mir jedoch dieser: Die Softwareentwicklung ist ins
Ungleichgewicht gekommen. Sie erfiillt nicht in gleicher Weise sys-
tematisch und kompetent alle Anforderungen des Auftraggebers. Sie
starrt auf die einen und lisst dabei einen blinden Fleck fiir die anderen
entstehen. Das fiihrt frither oder spéter zu einem fiir den Auftraggeber
sehr spiirbaren Qualitétsdefizit, dessen Ausgleich schwerer und schwerer
wird. Das Kind ist tief im Brunnen. Es fehlt einfach an Nachhaltigkeit.

Gelassenheit ist in solcher Situation nicht mehr moglich, wenn Klarheit
iiber so lange Zeit so eklatant gefehlt hat. Programmierung mit Leichtig-
keit sieht anders aus.

Mehr Technologie, mehr Infrastruktur ist darauf keine Antwort. Vielmehr
ist - horribile dictu! - ein Kulturwandel notig. Ohne grundsitzliches
Umdenken geht es nicht. Die Grundhaltung ist zu verdndern: Es braucht
ein Bewusstsein dafiir, dass auch soetwas immaterielles wie Software,
Nachhaltigkeit braucht.

Motivation 3

Wenn in deinem Team schon agil gearbeitet wird, hast du eine Ahnung,
was Kultur und Kulturwandel bedeutet. Doch leider ist Agilitat nicht
genug fiir nachhaltige Softwareentwicklung. Sie ist zwar notwendig fiir
die Nachhaltigkeit, die ich meine, aber nicht hinreichend.

Wie wichtig Nachhaltigkeit ist, weifs zwar schon lange jeder Koch und
jeder Chirurg - doch die Softwareentwicklung hinkt leider noch hinterher.
Die oberste Prioritat haben bei Ersteren Sauberkeit und Hygiene; ohne
sie sind Erfolge nur von kurzer Dauer. Wer eine Kiiche am Ende des
Tages mit dreckigem Geschirr und voller Abfall zuriicklasst, beschadigt
die Grundlage fiir die Arbeit morgen. Wer heute Operationsbesteck nicht
sterilisiert und am Ende einer Operation nicht zahlt, riskiert Komplikatio-
nen morgen. Sauberkeit und Hygiene sind der Rahmen, in dem das Kochen
und chirurgische Eingriffe stattfinden.

Ich bin iberzeugt, dass fiir die Softwareentwicklung ein Nachhaltigkeits-
rahmen erst noch solide aufgespannt werden muss. Korrektheit und
Ordnung sind noch nicht in gleicher Weise als Grundanforderungen
in der Softwareentwicklung anerkannt wie Sauberkeit und Hygiene
in anderen Branchen. Das ist die fehlende Klarheit, die die Entwicklung
von Gelassenheit verhindert.

Diese Situation verbessern zu helfen, ist mein Anliegen. Ich mochte dir
helfen, klarer und gelassener zu programmieren. Weniger Stress durch
mehr Nachhaltigkeit fiir deine Softwareentwicklung ist mein Ziel. Wie das
erreicht werden kann, damit habe ich mich in den vergangenen 15 Jahren
intensiv auseinandergesetzt. Ich hoffe, du empfindest das, was ich hier
nun “an einem Ort” zusammentrage, als Hilfe in deinem Entwickleralltag.

-Ralf Westphal, 2020, Bansko (BG) / Hamburg (DE)

Programming with Ease

Nachhaltigere Softwareentwicklung in Klarheit und Gelassenheit umfasst
fir mich mehr, als ich dir in diesem Buch vorstellen kann. Mit ein paar
Tipps&Tricks ist es nicht getan. Es geht durchaus ans Eingemachte: an
deine Glaubenssitze und Gewohnheiten.

Die vielfach fehlende Nachhaltigkeit in der Softwareentwicklung ist ein so
tiefliegendes Problem, dass einige Anstrengungen nétig sind, die Situation

Motivation 4

zu dndern. Du wirst Zeit brauchen, anders wahrzunehmen, zu denken
und dann zu handeln. Dein Team wird Zeit brauchen, denn in der
Zusammenarbeit muss sich einiges dndern. Und schlieflich wird sich
sogar dein Management und dein Auftraggeber ebenfalls &ndern miissen
in den Erwartungen an dich und dein Team.

Das klingt nach einigem Aufwand, oder? Ja, stimmt. Leider kann ich dir
den nicht ersparen. Das Wurzelproblem von “schwer wartbarer Software”
liegt zu tief, als dass es dafir eine schnelle Losung gabe. Wenn du aber
dran bleibst, dann bin ich gewiss, dass sich die Mithe lohnt.

Vermitteln mochte ich dir - und deinem Team - Programming with Ease
als umfassende Herangehensweise an die Softwareentwicklung, die dich
abholt bei der Konfrontation mit Anforderungen und begleitet bis zur
Ablieferung von hochqualitativem Code.

Um moderne Technologien und technische Feinheiten geht es nicht. React,
NoSql, GraphQL, Docker, Kubernetes, Kafka... all das ist darin kein Thema.
Oder wenn, dann nur indirekt in Form von Prinzipien und Konzepten, die
dir helfen sollen, solche Technologien einzuordnen.

Stattdessen geht es um Prinzipien und Praktiken der Softwareentwicklung.
Das hort sich zwar nach “theoretischem Kram” an, doch sei gewiss,
mir ist es sehr, sehr wichtig, dass die Theorie in der Praxis gegriindet
ist. Theoretische Uberlegungen miissen zu praktisch hilfreichen Effekten
fithren. Deshalb kann ich es dir nicht frith genug mit auf den Weg geben:

Welche Empfehlungen du auch immer hier lesen magst, egal wie sehr
ich sie begriinde, sie stehen nie hoher als der Zweck. Wenn du in einer
bestimmten Situation also meinst, einem Zweck nachhaltig besser dienen
zu konnen, als durch Befolgung einer Empfehlung... dann - by all means -
weiche von der Empfehlung ab. Allerdings: Du solltest schon wissen, was
du da tust. Habe also eine belastbare Begriindung parat - wenn schon nicht
mir gegeniiber, dann aber fiir deine Teamkollegen.

Das Gesamtthema Programming with Ease ist also umfangreich. Wie ich
es dir nahebringe, habe ich lange tiberlegt. Am Ende habe ich mich dann
fir 3 Buiicher entschieden, die 1+3 Themenblocke behandeln.

Test-first Codierung ist der erste Themenblock, auch wenn Codierung
die letzte Hiirde ist, die du in der Programmierung nehmen musst. Den-
noch macht dieses Buch den Anfang in der Trilogie, weil es thema-
tisch dir als Entwickler wahrscheinlich am néchsten liegt. Codierung ist

Motivation 5

praktisch, Codierung wahrlich unausweichlich, Codierung hat technisch-
technologischen Reiz. Ich hoffe, dort kann ich dich am besten abholen,
wenn es schon so ans Eingemachte geht.

Im ersten Band geht es darum, dass Codierung aus meiner Sicht eben
ausschlieflich test-first stattfinden sollte. Das zu akzeptieren und dann
auch zu leben, ist die erste Herausforderung auf dem Weg zu nachhaltiger
Programmierung. Ich hoffe, dass ich dir die Griinde dafiir im ersten
Band ausfiihrlich genug darlegen und dir diese Praxis mit verschiedenen
Problemlésungsansétzen auch schmackhaft machen kann.

Softwareentwurf mit Flow-Design ist der zweite Themenblock, auch
wenn Entwurf als Planung von Code der Codierung vorausgehen sollte.
Weil “Planung” sich fiir dich aber vielleicht nicht so attraktiv anhort,
wollte ich das Thema nicht im ersten Band der Reihe behandeln, auch
wenn ich es fir das wichtigste der drei Themen halte.

Ja, tatsichlich, ich hinge dem Glauben an, dass wir in der Program-
mierung mehr denken sollten. Mehr denken vor dem Codieren, ist der
Nachhaltigkeit absolut zutréglich. Nicht, dass nicht gedacht wiirde - doch
mein Eindruck ist, dass gewisse Themen dabei unberiicksichtigt bleiben.
Es wird z.B. viel tiber den rechten Einsatz von Technologien und Infra-
struktur nachgedacht. Es wird auch viel tiber Agilitit nachgedacht oder
iiber DevOps. Und das ist alles gut und richtig. Doch es bleibt ein blinder
Fleck. Um den dreht es sich bei Programming with Ease im Allgemeinen
und bei Flow-Design im Speziellen: das ist die visuelle Modellierung von
Softwareldsungen.

Der letzte Themenblock unter dem Bogen, den Programming with Ease
spannt, ist dann die Software Anforderungsanalyse mit Slicing. Damit
gehe ich noch einen Schritt vor den Entwurf und méchte dir empfehlen,
Anforderungen durch eine spezielle Entwicklerbrille zu betrachten. Durch
die Brille der Agilitat siehst du Anforderungen als User Stories, Story-
boards, Epics oder gar Event Storms. Auch das ist alles wunderbar. Du
sollst davon nichts aufgeben. Doch in meiner Erfahrung ist auch durch
diese Brille etwas nicht sichtbar, das dir das Programmiererleben aber
leichter machen wiirde.

Der agilen Herangehensweise fehlt eine gewisse technische Sicht. Das
finde ich ganz verstandlich, allemal da sich inzwischen Scrum und Kanban
als Vorgehensmodelle etabliert haben und von XP nur noch wenig zu

Motivation 6

héren ist." Damit haben die “Softwarelaien” gewonnen, so dass Anfor-
derungen von ihnen definiert werden, wie es fiir sie nachvollziehbar ist.
Das soll natiirlich auch so sein - nur darf eine Sichtweise, die dir als
Programmierer dient, deshalb nicht vernachléssigt werden. Das scheint
mir jedoch der Fall, so dass nachfolgende Phasen in der Programmierung
dir schwerer fallen als nétig.

Insgesamt wird durch die Dominanz der “Softwarelaien” sogar man-
gelnder Qualitdt und Unzuverlissigkeit Vorschub geleistet. Ja, du liest
richtig: Real existierende Agilitat fithrt durchaus noch zu suboptimalen
Ergebnissen. Das wird auch nicht besser, wenn du die Zéhne noch tiefer in
das agile Manifest schlagst. Es braucht einfach verschiedene Perspektiven.
Agilitat ist die eine. Das, was ich dir in Programming with Ease vermitteln
will, ist eine zweite.

Codierung, Entwurf, Anforderungsanalyse sind die drei grolen Themen-
blocke in Programming with Ease. Damit verrate ich dir noch nicht zuviel
an dieser Stelle. Ausfiithrlicher begriindet wird das in einem kleineren,
iibergreifenden Themenblock. Den umfasst die Einleitung und das erste
Kapitel. Beides inklusive dieser Motivation wiederhole ich in allen Bii-
chern, um dir zu ermdglichen, sie doch in einer anderen Reihenfolge zu
lesen, als der hier vorgestellten. Zwar habe ich mir bei der Ordnung etwas
gedacht - doch auch dafiir gilt: zu eng solltest du das nicht sehen.

Einleitung und erstes Kapitel liefern den Hintergrund, vor dem ich die
anderen Themen entfalte. Sie werden zuerst ganz grob in einem Zusam-
menhang entwickelt, damit du weifit, wie sie miteinander verbunden sind.
Danach kommt die blockweise Vertiefung, bei der du diesen Hintergrund
im Hinterkopf haben solltest.

Insgesamt ergibt sich hoffentlich fiir dich ein Gesamtrahmen, in dem du
dich gut aufgehoben fiihlst. Einfach(er) soll dir die Programmierung ja
werden.

"Vielleicht kann man Software Craftsmanship als einen Arm der Entwicklung von
XP verstehen. Der andere ist dann z.B. Scrum. Damit wéren zwei Belange getrennt, die
XP urspriinglich in XP vereint waren. Software Craftsmanship wiirde in dem Fall fir die
technische Seite von XP stehen. Ein blinder Fleck bliebe jedoch aus meiner Sicht. In XP wie
in Software Craftsmanship findet sich schlicht zu wenig Methode. Beide sind Sammlungen
von Bausteinen, zwischen denen kein roter Faden gespannt ist, an dem du dich konkret
voranarbeiten konntest. Um genau den geht es mir aber.

Motivation 7

Das Softwareuniversum

Wenn Programming with Ease ein Bogen ist, den ich tiber deinen Software-
entwicklungsprozess spannen moéchte, also ein Bogen in der Zeit, dann ist
das Softwareuniversum der dazugehorige Raum fir Softwarestrukturen

In diesem Raum spielt sich fiir mich alle Softwareentwicklung ab. Darin
bewegst du dich mal langsamer mal schneller, mal in die eine Richtung,
mal in die andere.

Allerdings ist der Raum des Softwareuniversums kein dreidimensionaler,
sondern ein vierdimensionaler. Er besteht aus vier Dimensionen, die
jede Logik auf eine andere Weise in Container fassen und zu Strukturen
verbinden.

Was Logik ist, verrate ich dir in der Einleitung. An dieser Stelle nur soviel:
sie ist die Essenz von Software. Dass du Logik in hoher Qualitét schreibst,
ist fir den Kunden von hochster Wichtigkeit, denn sie bestimmt das
Softwareverhalten. Du kannst sie also nicht einfach “hinklieren”, sondern
musst sie sorgfiltig schneiden und verpacken.

1. Zunichst musst du das, was die Logik leisten soll, in moglichst feine
Anforderungsscheiben schneiden beim Slicing. Darum geht es im
dritten Band von Programming with Ease.

2. Dann musst du dir tiberlegen, wie du vor allem funktionale Anforde-
rungen mit Logik so erfiillst, dass du sicher sein kannst, dass deine
Losung korrekt ist. Du musst dabei aus unzahligen fremden und
eigenen Bausteinen Kompositionen herstellen, die du testen kannst.
Das geschieht mit Funktionen und ist Thema des ersten Bandes und
auch des zweiten Bandes.

3. Um nicht den Uberblick iiber deine Komposite zu verlieren, teilst
du sie in zweckvolle Gruppen auf mehreren Ebenen ein, die Zusam-
mengehoriges aggregieren und von anderem entkoppeln; das sind
die Module deiner Software. Darum geht es vor allem im zweiten
Band, aber auch schon im ersten.

4. Und schlief3lich musst du dich leider noch einigen nicht-funktionalen
Anforderungen widmen, die du auch mit sorgfaltiger Komposition
von Logik nicht 16sen kannst. Es bleibt dir nichts anderes iibrig, als
Logik auf verschiedene Hosts zu verteilen. Darum geht es vor allem
im zweiten Band, aber auch im dritten.

Motivation 8

Zweck des Softwareuniversums ist es, die Strukturelemente, die du im
Grunde schon aus deiner Programmierpraxis kennst - Beispielsweise
Klasse, Thread, Service, Message, Funktion -, in einen Zusammenhang
zu stellen. Sie bekommen alle einen klaren Zweck im Hinblick auf die
umfassenden Anforderungen des Auftraggebers. Vor allem mdchte ich dir
jedoch zeigen, welche Rolle sie spielen in Bezug auf die Nachhaltigkeit.

Die vier Dimensionen des Softwareuniversums sind fiir mich:

« Delivery: Logik in Scheiben (slices) unterschiedlicher Dicke ge-
schnitten fiir die iterativ-inkrementelle Lieferung an den Kunden.

« Composition: Logik zu Funktionen zusammengestellt, um funktio-
nale wie nicht-funktionale Anforderungen zu erfiillen.

+ Decoupling: Funktionen zu Modulen (z.B. Klassen) aggregiert, um
Ordnung in die Vielfalt zu bringen. Testbarkeit und Wandelbarbeit
sind der Gewinn.

« Distribution: Funktionen verteilt auf Hosts (z.B. Threads) und
entkoppelt tiber asynchrone Kommunikation um weitere nicht-
funktionale Anforderungen zu erfiillen.

@hd\diuj\'b Lo
" (Koeke)

Grobe Skizze des Softwareuniversums

Motivation 9

Jede Zeile Logik, jeder Tropfen Essenz deiner Software, lasst sich im
Softwareuniversum als Punkt im vierdimensionalen Raum verorten, da
Logik immer gleichzeitig Teil einer Funktion in einem Modul in einem
Host in einem Slice ist.

Das muss dir im Moment abstrakt vorkommen. Es fehlen ja auch noch
viele Definitionen von Begriffen. Dennoch wollte ich dir das Softwareuni-
versum als Ausblick nicht vorenthalten. Als ich es das erste Mal erblickt
habe, war es fiir mich ein wenig wie beim Overview Effect®: Ich konnte
nun von auflen iiberblicken, wovon ich vorher immer nur Teile gesehen
hatte. Das hat mein Verstandnis von Softwareentwicklung grundlegend
verandert.

Deshalb gehoren die Bande von Programming with Ease zu einer umfas-
senderen Reihe, die alle “im Softwareuniversum spielen”.

*https://en.wikipedia.org/wiki/Overview_effect

https://en.wikipedia.org/wiki/Overview_effect
https://en.wikipedia.org/wiki/Overview_effect

Einleitung

Bevor ich dir konkrete “Tipps&Tricks” fiir die nachhaltige Softwareent-
wicklung gebe, mochte ich dir ein big picture skizzieren. Zu oft habe ich
gehort und gelesen, dass einzelne Prinzipien und Praktiken empfohlen
werden, ohne einen Kontext, ohne eine “Herleitung”. Bei aller Richtigkeit
dieser Empfehlungen werden sie dann aber leicht missverstanden oder
eben eingesetzt, wenn der Kontext nicht passt. Das fithrt zu Frustration.
Die mochte ich dir ersparen, so weit es mir moglich ist.

Es ist schwer genug, all das in Worte, auch noch lineare zu fassen, was ich
dir vermitteln will fiir nachhaltige Softwareentwicklung. Es wird mir auch
nur bruckstiickhaft gelingen. Dass du mich missverstehst, ist fiir mich
vorhersehbar und unvermeidbar. Doch ich will mich bemiihen, das zu
minimieren. Und eine auf der Hand liegende Mafinahme dafiir ist, dass
ich etwas aushole, um einen Rahmen aufzuspannen, in dem das konkrete
Thema dieses Buches und der anderen der Reihe eingehidngt werden kann.

Deshalb: Halte einen Moment durch, bis es an das eigentlichen Thema
dieses Bandes. Keine Sorge, du wirst davon genug zu sehen bekommen.

Und nun gehts los. Wo sonst als am Anfang jedes Softwareprojektes, bei
den Anforderungen:

Anforderungskategorien

Softwareentwicklung hat Anforderungen in drei Kategorien zu erfiillen,
um ihr Geld wert zu sein:

« Zunichst muss Softwareentwicklung funktionierende Software lie-
fern. Auftraggeber haben funktionale Anforderungen an Soft-
ware, die sie erfullt sehen wollen. Nur dann hat die Funktionalitat
von Software hohe Qualitat. Das ist so natiirlich, dass es kaum der
Rede wert ist - dennoch miissen wir da noch genauer hinschauen,
auch wenn ich denke, mit diesen Anforderungen bist du bestens
vertraut. Sie treiben dir genug Schweif3 auf die Stirn.

Einleitung 11

« Funktionalitat allein ist allerdings nicht genug - auch das ist dir
klar - und noch nicht einmal der Grund fiir die Beauftragung von
Softwareentwicklung. Software soll vor allem nicht-funktionale
Anforderungen erfiillen! Sie soll Funktionalitit besser (Kompa-
rativ!) anbieten als die Alternative (z.B. bisherige Software oder
Handarbeit). Software soll z.B. schneller oder einfacher oder ska-
lierbarer oder sicherer funktionieren als die Alternative. Dann hat
die Effizienz® von Software hohe Qualitét. Das ist ebenso natiirlich,
dass es kaum der Rede wert ist - aber diese Anforderungen bereiten
dir woméglich noch mehr Kopfschmerzen als die funktionalen.

Funktionale und nicht-funktionale Anforderungen zusammen sind Ver-
haltensanforderungen an Software. Der Auftraggeber kann durch Aus-
fihrung der Software tiberpriifen, ob die geforderte Qualitat hergestellt
wurde. Dieser Oberbegriff ist wichtig, wie du im Weiteren sehen wirst.

Vielleicht tiberraschend fur dich, sehe ich Korrektheit darin noch nicht
subsummiert. Korrektheit ist keine explizite weitere Anforderung an
Software, sondern ist impliziet in der Erwartung, dass spezifizierte Anfor-
derungen tatsachlich durch gelieferte Software erfiillt werden. Software
ist also in dem Maf3e korrekt, in dem sie die Spezifikation erfiillt.

Mach dir an dieser Stelle keinen Kopf tiber den Begriff Spezifikation.
Ich will damit keine Norm heraufbeschworen, sondern verstehe darunter
lediglich eine irgendwie gearbeitet Liste von gewiinschten Eigenschaften.
Ob die auf einer Serviette stehen oder in einem 500seitigen Buch gebunden
sind, ist einerlei. Der Kunde kann zur Laufzeit diese Liste abhaken und den
Erfiillungsgrad seiner Wiinsche messen. Korrektheit liegt vor, wenn der
Erfiillungsgrad 100% ist. Fehlt allerdings ein Wunsch in der Spezifikation
und ist deshalb nicht implementiert, ist das Verhalten der Software nicht
inkorrekt, selbst wenn der Kunde bei der Uberpriifung das Verhalten
vermisst.

*Effizienz habe ich als Begriff fiir die nicht-funktionalen Anforderungen wie Perfor-
mance, Skalierbarkeit, Benutzerfreundlichkeit, Sicherheit usw. gewahlt, um sie kurz und
knapp unter einer Kategorie zusammenzufassen. Die Benennung ist nicht perfekt, aber ich
finde sie erstmal gut genug. Dem Kunden geht es um Funktionalitat und Effizienz bei der
Software. Klingt doch sinnig, oder?

Einleitung 12
It's the productivity, stupid!

Uber die Verhaltensanforderungen hinaus hat der Auftraggeber noch eine
weitere Anforderung, die jedoch selten ausdriicklich formuliert oder gar
vertraglich festgehalten wird. Das ist nun ein ganz wesentlicher Punkt;
pass auf, denn es geht um dich und dein Team! Hier kommt die Motivation
fur Agilitat und Clean Code Development:

« Die Softwareentwicklung soll stets ziigig funktionale wie nicht-
funktionale Anforderungen erfiillen. Auftraggeber haben also auch
noch einen Anspruch an die Produktivitat der Softwareentwick-
lung.

Verhaltensanforderungen werden unmittelbar durch Code erfillt. Die
Produktivititsanforderung hingegen ist eine an die herstellende Or-
ganisation.

Wie Funktionalitidt mittels Code hergestellt wird, ist eine Sache von
Programmiersprachen, Bibliotheken und Frameworks. Diese Fahigkeit
ist die primére, die du als Softwareentwickelnde(r) erwirbst und stetig
verfeinerst.

Wie Effizienzen mittels Code hergestellt werden, ist ebenfalls zun4chst
eine Sache von Programmiersprachen, Bibliotheken und Frameworks.
Diese Fahigkeit wird gewo6hnlich spater erworben, ist letztlich jedoch die,
auf die sich viele Entwickelnde konzentrieren. Biicher wie “Algorithmen
und Datenstrukturen” beschéftigen sich mit diesem Thema.

Nicht immer jedoch l4sst sich damit das geforderte Qualitatsniveau schon
erreichen. Performance oder Skalierbarkeit brauchen oft Unterstiitzung
durch Verteilung von Code zur Laufzeit auf verschiedene Threads im
selben Betriebssystemprozess oder in verschiedenen oder gar auf mehre-
ren Rechnern oder in unterschiedlichen Netzwerken. Damit beschaftigt
sich traditionell die Softwarearchitektur. Hier warten grofie Herausfor-
derungen! Hier kannst du der Held so mancher Infrastrukturtechnologie
werden.

Doch selbst wenn du gut dabei bist in der Herstellung von Funktionalitat
und Effizienz, kann es leicht sein, dass der Auftraggeber nicht mit dir
zufrieden ist. Wie kann das sein? Du bist vielleicht einfach zu langsam.

Einleitung 13

Perfekte Verhaltensqualititen lieferst du, nur leider zu spét. Potenziert
wird das, wenn du auch noch unzuverlissig bist, d.h. die Lieferung bis
zu einer Frist versprichst und dann doch nicht lieferst.

Fiir den Auftraggeber gibt es also zwei “Laufzeiten”: die Software-Laufzeit
und die Team-Laufzeit. An beide hat er Anforderungen. Die Software
soll performen, das Team aber auch. Letzteres setzt der Auftraggeber
allerdings mehr oder weniger voraus. Dafiir schreibt er keine Spezifikation.
Er glaubt einfach, dass du professionell arbeitest. Dazu gehort fiir ihn,
dass du stets “flott dabei bist” und dir kein Bein stellst. Leider ist das oft
nicht der Fall. Softwareentwicklung fallt immer wieder tiber die eigenen
Fifle; sie merkt sozusagen nicht, dass sie mit zusammengebundenen
Schniirsenkeln 14uft.

Aber wie kann das sein? Ich denke, dafiir gibt es viele Griinde. Neben
historischen, sozusagen systemimmanenten gibt es jedoch einen immer
wieder ganz akuten: Druck. Die Softwareentwicklung wird vom Auf-
traggeber oft sehr mit Deadlines unter Druck gesetzt (und ldsst sich
auch unter Druck setzen), so dass sie meint, nie Zeit zu haben, die
Schniirsenkel ordentlich zu binden. Lieber stolpert sie dahin, stets willig,
dem Kunden Verhaltensanforderungen grob zu erfiillen, als dass sie sich
“sauber aufstellt” und “fit halt”.

Einleitung 14

Ug,rL\ al husm.{’n,(,,a e,

T
ec.n,aavc,,/emg,

Was der Auftraggeber will: Die Kategorien der Anforderungen

Produktivitatskiller

Der Auftraggeber der Softwareentwicklung schaut gewohnlich vor allem
auf die Erfillung von Verhaltensanforderungen. Das ist fiir ihn am ein-
fachsten. Das merkst du jedes Mal, wenn Abnahme ist. Darum drehen
sich dann die Diskussionen. Uber den Herstellungsprozess, wie es zum
prasentierten Verhalten gekommen ist, wird nicht diskutiert. Jedenfalls
nicht direkt. Dafiir fehlt ja eine Spezifikation. Was aber eben nicht heifit,
dass der Kunde zur Team-Performance keine Meinung hétte.

Hohe Produktivitdt von dir und deinem Team wird einfach vorausgesetzt.
Wie die Erfahrung jedoch zeigt, ist es eine naive Erwartung, dass hohe
Produktivitdt nach einem vielleicht anfanglich guten Start “einfach so”
erhalten bliebe. Die Produktivitatskurve sink vielmehr relativ schnell auf
einen bedauerlich niedrigen Wert. Hier eine typische Darstellung der
Entwicklung (Quelle*):

“https://blogs.sap.com/2018/05/02/introducing-agile-software-engineering-in-
development/

https://blogs.sap.com/2018/05/02/introducing-agile-software-engineering-in-development/
https://blogs.sap.com/2018/05/02/introducing-agile-software-engineering-in-development/
https://blogs.sap.com/2018/05/02/introducing-agile-software-engineering-in-development/

Einleitung 15

dev productivity
A

bug fix efforts
(visible)

«+— slowdown in
development (hidden)

> time

worst case:
total loss = rewrite!

Produktiv sind Entwickelnde nicht einfach, weil sie gerade codieren. Nur
weil du dich gestresst fiihlst beim Programmieren, performst du nicht
automatisch im Sinne des Auftraggebers. Das mag enttiuschend klingen,
ist aber die Realitdt. Solange es da ein Missverstandnis zwischen dir und
dem Auftraggeber gibt, sind Konflikte unvermeidlich.

Nicht jede geschriebene/verinderte Codezeile tragt zur Produktivitit bei,
wie der Auftraggeber sie sich wiinscht. Produktiv ist die Softwareent-
wicklung nur, wenn sie neue Anforderungen erfiillt, d.h. an Features
arbeitet. Das kann durch Codierung geschehen oder durch andere, vorge-
lagerte Tatigkeiten.

Je ofter du Features lieferst, d.h. Erweiterungen, Verbesserungen - keine
Bug Fixes (!) - und die auch noch korrekt lieferst, desto produktiver bist
du aus Sicht des Auftraggebers.

Wenn du also auch die (unausgesprochenen) Anforderungen des Auf-
traggebers an deine Produktivitét erfiillen willst, tust du gut daran, alles
was dabei hinderlich sein konnte, zu vermeiden. Wenn du wihrend des
Kochens eines Abendessens merkst, dass dir eine Zutat fehlt und du
losrennst, um sie zu kaufen, bricht deine Produktivitét ja auch ein. Dito,
wenn du mit dem Kochen beginnen willst und findest die Spiile voll mit
dreckigen Topfen. Dito, wenn du dich zum Date fertigmachen willst und
feststellen musst, dass deine beste Hose noch in der Wasche ist. Wann
immer also etwas fehlt, das du brauchst, um zu tun, was du eigentlich tun
willst, stehst du einem Produktivititskiller gegeniiber.

Vorausgesetzt, dass du technisch und fachlich kompetent bist - auch daran

Einleitung 16

hat ein Auftraggeber Interesse -, sehe ich vor allem drei Produktivitétskil-
ler, die du ausschalten musst:

Fehlende Korrekheit

Die Softwareentwicklung kann sehr geschéftig codieren, ohne produktiv
zu sein. Das ist immer der Fall, wenn sie Bug Fixing betreibt.

Bugs sind Inkorrektheiten, d.h. Qualitatsmangel durch
Nichterfiillung der Spezifikation.

Bugs zu fixen ist Nacharbeit (re-work). Nacharbeit oder Ausbesserung von
Defekten ist eine der Verschwendungsarten in der Lean “Philosophie™.
Aus Sicht des Kunden vertust du deine Zeit mit Dingen, die schon lange
hétten erledigt sein sollen. Statt Bugs zu fixen, wire es dem Auftraggeber
lieber, dass du schon wieder an neuem Verhalten arbeitest.

Jede Stunde, die du mit Bug Fixing verbringst, fehlt dir fiir die Feature-
Produktion. Das Bug Fixing zu begrenzen, selbst wenn noch Bugs bekannt
sind, ist daher eine notwendige Mafinahme, um produktiv zu bleiben®.
Besser jedoch, wenn die Softwareentwicklung gar nicht erst in diese Ver-
legenheit kommt. Warum nicht Bugs von vornherein einfach vermeiden?

o Fehlende Korrektheit ist der Produktivitatskiller #1.

Um die Produktivitatsanforderung des Kunden zu erfiillen, muss Korrekt-
heit die oberste Prioritat haben.["klarheitspramisse]

["klarheitspramisse]: Pramisse hierbei ist, dass klar ist, welches Verhalten
die Software iiberhaupt haben soll. Korrektheit meine ich nur auf das,
was klar spezifiziert ist. Wo Klarheit fehlt - allemal unwissentlich -,

*http://www.lean-production-expert.de/lean-production/7-verschwendungsarten.
html
¢Siehe dazu z.B. Zero-Bug Software Development

http://www.lean-production-expert.de/lean-production/7-verschwendungsarten.html
http://www.lean-production-expert.de/lean-production/7-verschwendungsarten.html
http://www.lean-production-expert.de/lean-production/7-verschwendungsarten.html
https://medium.com/qualityfaster/the-zero-bug-policy-b0bd987be684

Einleitung 17

sind iiberraschende Qualitidtsmangel unvermeidbar. Das sind dann jedoch
keine Inkorrektheiten.

Korrektheit ergibt sich allerdings nicht einfach, sondern muss systema-
tisch hergestellt und erhalten werden.

+ Zunéchst ist bei der Feature-Produktion (und auch beim Bug Fixing)
Korrektheit in Form von Reife zu erreichen. Zu jedem Zeitpunkt
bzw. spatestens vor Prasentation/Auslieferung eines Softwarestan-
des musst du priifen, ob deine Software schon korrekt ist gem.
der Spezifikation. Haben deine Anstrengungen zur Herstellung
gewiinschter Qualitdten schon ausreichenden Erfolg gehabt? Wenn
du keine Differenz mehr siehst zwischen spezifiziertem und realem
Verhalten, dann ist dein Code reif fiir die Prasentation beim Auf-
traggeber.

« Dariiber hinaus ist allerdings stets sicherzustellen, dass bei der
Feature-Produktion vorher erreichte Korrektheit nicht zerstort wird.
Es darf keine Regression stattfinden, d.h. kein Rickfall auf ein
fritheres, niedrigeres Korrektheitsniveau. Der Auftraggeber erwar-
tet Stabilitiat der Software in Bezug auf die Korrektheit. Wahrend
der Verdnderung von Code bzw. spétestens vor Prasentation/Aus-
lieferung eines Softwarestandes musst du deshalb immer wieder
tiberpriifen, ob deine Software noch korrekt ist gem. der Spezifikati-
on. “Verschlimmbesserung” ist eines der grofiten Risiken in der
Softwareentwicklung.

Mafinahmen fir die Korrektheit umfassen z.B. den Abnahmetest, eine
Beta-Test-Phase, die Beschaftigung von Testern, die Definition eines Done-
Zustands inkl. Akzeptanzkriterien, automatisierte Tests, eine Continuous
Build/Integration Pipeline oder die Codierung nach Test-Driven Develop-
ment (TDD).

Produktivitdt braucht Sorgfalt. Es sind “die Dinge richtig zu tun”. So wird
landlaufig auch Effizienz beschrieben. Man weif3, was zu tun ist - und tut
es dann auch so, wie es getan werden sollte. Die Verhaltensanforderungen
sind klar, die Softwareentwickelnden sind kompetent, das Ergebnis ist
korrekte Software. So sollte es zumindest sein. Das ist die Erwartung des
Auftraggebers. Doch so einfach ist es nicht...

Einleitung 18

Uberlege selbst, welche der obigen (oder auch weiteren) Mafinahmen in
deinem Team verlasslich getroffen werden, um hohe Korrektheit zu liefern
und zu erhalten.

Fehlender Wert

Aber was, wenn die Softwareentwicklung nicht weif3, was zu tun ist? Was,
wenn Unklarheit herrscht? Die Voraussetzung dafiir, “die Dinge richtig zu
tun” ist, dass man tiberhaupt “die richtigen Dinge tut”. So wird landléufig
Effektivitdt beschrieben. Effektivitat kann es nur geben, wenn Klarheit
herrscht.

Solange die Softwareentwicklung aber im Unklaren dariiber ist, was genau
die Verhaltensanforderung ist oder solange der Auftraggeber selbst sich
noch nicht ganz klar dariber ist, wie fiir ihn hohe Verhaltensqualitét
aussieht, kann Codeproduktion nicht effektiv sein. Und ohne Effektivitat
keine Produktivitat.

Leider ist das der natiirliche Zustand von Softwareprojekten:

« Der Auftraggeber hat eine nur unvollstindige Vorstellung davon,
was er braucht.

+ Der Auftraggeber kann seine Vorstellungen nur unvollstandig for-
mulieren.

« Die Softwareentwicklung versteht die formulierten Anforderungen
nur unvollstiandig.

« Die Softwareentwicklung setzt ihr Verstandnis der Anforderungen
nur unvollstindig um.

+ Der Auftraggeber hat in der Zeit von der Spezifikation bis zur
Abnahme ihrer Umsetzung’ seine Meinung geandert; seine Anfor-
derungen sehen nun anders aus. Selbst eine korrekte Umsetzung

"Der Begriff Spezifikation mag sich fir dich hier schwergewichtig anhéren. Wo bleibt
da die Agilitat? Aber ich meine ihn ganz neutral. Er soll einfach nur ausdriicken, dass
ein Auftraggeber in unmissverstandlicher Weise irgendwie beschrieben hat, welche Ver-
haltensanforderungen der Code, den du entwickelst, erfiillen soll. “Irgendwie” bedeutet,
dass ich nicht suggerieren will, in welcher Sprache, mit welchem Medium, in welchem
Umfang eine Spezifikation vorliegt. Ebensowenig will ich mitschwingen lassen, wie haufig
der Auftraggeber eine Spezifikation vorlegt oder ihre Umsetzung priifen will; das kann alle
paar Wochen sein oder jeden Tag. Iterativ-inkrementelles Vorgehen ist fiir mich mit dem
Begriff also absolut vereinbar.

Einleitung 19

der urspriinglichen Spezifikation passt daher nur unvollstidndig zum
neuen Stand der Bediirfnisse des Auftraggebers.

Das ist die Erkenntnis der Agilitat in der 1990ern gewesen, die zur Min-
destforderung eines iterativ-inkrementellen Softwareentwicklungspro-
zesses gefithrt hat.

Als Produktivitatskiller hatte sich herausgestellt, dass immer wieder iiber-
raschend bei der Abnahme von Software nicht der erwartete Wert ge-
liefert wurde. Selbst spezifikationsgeméafie Lieferung hatte nicht die im
praktischen Einsatz erforderlichen Nutzen.®

Das Missverstandnis von Auftraggebern und Softwareentwicklung bis in
die 1990er war (und ist leider auch heute noch in einigen Projekten), dass
Verhaltensanforderungen sich in einem mehr oder weniger ldnglichen
Prozess einmalig vor Beginn der Umsetzung festzurren lassen konnten
(Stichwort “Wasserfall”).

Diese Vorstellung hat zu Spezifikationen gefiihrt, die grofie, unvermutete
Missweisungen enthielten, die in Software gegossen grofie negative Uber-
raschungen ausgel6st haben. Umfangreiche Nacharbeiten waren nétig,
nicht wegen Inkorrektheit, sondern wegen Wertlosigkeit. Auch korrekt
implementierte Spezifikationen haben zum Lieferzeitpunkt nichts oder zu
wenig genutzt.

Dem hat die Agilitét eine Desillusionierung entgegen gesetzt. Nicht noch
bessere, umfangreichere, ldngere Anforderungsanalyse soll die Produk-
tivitat steigern, sondern das Gegenteil: eine radikale Verkiirzung bei
gleichzeitiger Vervielfachung von Analyse, Spezifikation und Umsetzung.

In der Agilitit gibt es weiterhin eine Spezifikation und insofern eine
Erwartung an hohe Korrektheit (Stichwort “Definition of Done”). Doch
es wird nicht mehr angenommen, dass diese Spezifikation schon “die
letzte Wahrheit” sei. Stattdessen soll die Softwareentwicklung bestrebt
sein, nur schmale Ausschnitte eines Gesamtverhaltens zu spezifizieren
(auch Inkremente genannt), die ziigig umgesetzt werden kénnen, um

*Wert ist also nicht einfach gleich hochqualitative Software. Zum Wert gehort natiirlich,
dass Software hohe Qualitét hat, d.h. der Spezifikation méglichst genau entspricht. Dariiber
hinaus muss diese hohe Qualitit allerdings auch noch niitzlich sein in dem Moment, wo
sie geliefert wird. Daraus ergibt sich, dass Qualitatsproduktion und Wertproduktion zwei zu
unterscheidende Prozesse braucht. Fiir Ersteren bist du als Softwareentwickler zustandig, fir
Letzeren z.B. in Scrum aber der Product Owner!

Einleitung 20

vom Auftraggeber Feedback zu bekommen. Wert kann man sich nur
schrittweise annéhern, nicht, weil Auftraggeber oder Softwareentwick-
lung inkompetent sind, sondern weil es in der Natur der Sache komplexer
Anforderungen liegt; da ist kein geradliniger Weg zu hohem Wert sichtbar.

Man bekampft beim iterativ-inkrementellen Vorgehen die Ineffektivi-
tiat dadurch, dass man ihr den Zahn der Uberraschung zieht. Denn nur
die Uberraschung macht aus mangelndem Wert frustrierende Nacharbeit.
Ist mangelnder Wert jedoch zu erwarten, ja, geradezu die Norm, dann
ist die nachste Iteration keine Nacharbeit, keine Verschwendung, sondern
ein erwartetes Inkrement und insofern produktiv - auch wenn man gern
schneller vorangehen wiirde.

Softwareentwicklung wie Auftraggeber hegen beim agilem Vorgehen
nicht mehr den Glauben, dass wertvolle Software “in einem Rutsch”
entstehen kann. Vielmehr muss man sich hohem Wert experimentierend
mit hochqualitativen Inkrementen annihern. Das ist keine Last, das ist
eine Tugend, weil unvermeidbar.

Wie steht es mit diesem Verstindnis in deinem Team? Geht ihr iterativ-
inkrementell vor? Versteht der Auftraggeber die Vorlaufigkeit seiner An-
forderungen und eurer Losungen?

Fehlende Ordnung

Auch wenn fehlende Korrektheit der naheliegende und greifbare Produk-
tivitatskiller ist, ging ihm geschichtlich fehlender Wert in der Bewusstwer-
dung der Softwareentwicklung voraus, denke ich.

Nicht genau zu wissen, was der Auftraggeber wirklich will, was fiir ihn
Wert darstellt, fiir das Geld, das er auszugeben bereit ist, war zunichst
ein grofieres Problem. Erst als eine Verbesserung des Vorgehensmodells in
den 1990ern hier mehr Klarheit gebracht hatte und dadurch die Zahl der
Softwarelieferungen zur Feedback-Generierung, die potenziell inkorrekt
sein konnten, gestiegen war, trat der Produktivitétskiller Inkorrektheit
deutlich(er) zutage. Beleg ist aus meiner Sicht dafiir die spéte Erfindung
automatisierter Tests. Erst Ende der 1990er bekam das Thema breite
Sichtbarkeit.

Wenn man weif3, was das Richtige ist (Wert), lohnt es, das auch richtig zu
tun (Korrektheit). Wenn man es kann.

Einleitung 21

Und da steckt schliellich der dritte Produktivitatskiller, den ich dir vorstel-
len mochte: die Unordnung. Solange du nicht bewusst darauf achtest,
Ordnung im Code herzustellen, hast du es immer schwer, das Richtige
auch richtig zu tun.

dentlich richtig getan werden.

o Fir langfristig hohe Produktivitdt muss das Richtige or-

Code, der sich mit jedem neuen Feature, mit jedem Bug Fix weniger leicht
verandern lasst, wird zum Morast, in dem deine Softwareentwicklung
alsbald steckenbleibt. Oder wenn nicht steckenbleibt, dann zumindest
nur noch schwerfallig vorankommt. Das ist nicht, was Auftraggeber sich
wiinschen.

Code ist eine Ressource, mit und an der Softwareentwicklung arbeitet.
Wie andere Ressourcen kann sie pfleglich behandelt werden - oder
man treibt an ihr Raubbau. Ohne weitere Mafinahmen geschieht Letzte-
res.

Fir den Auftraggeber sind Inkorrektheit und Wertarmut von Code noch
vergleichsweise leicht zu spiren. Beide zeigen sich als mangelnde Quali-
taten im Verhalten.

Unordnung jedoch entzieht sich der direkten und zeitnahen Wahrneh-
mung des Auftraggebers. Deshalb hat sie Gelegenheit, sich hinter der
Fassade des Verhaltens aufzubauen. Wenn sie dann indirekt tiber deutlich
sinkende Produktivitat auch fir den Auftraggeber spiirbar wird, ist es
jedoch eigentlich schon zu spat. Deshalb musst du stdndig ein Auge auf
die Ordnung haben!

Wenn du die Ordnung zu lange hast schleifen lassen, sind die néti-
gen “Aufraumarbeiten” meist zu umfangreich, als dass sie sich rechnen
wiirden. Und sie lieflen sich auch kaum dem Kunden gegeniiber ver-
heimlichen. Also schleppt sich die Softwareentwicklung weiter durch
den selbst verschuldeten Sumpf. Denn selbst verschuldet ist er, da der
Kunde sich Unordnung nicht gewiinscht hat. Sie ist mangels Bewusstsein
und/oder mangels Fihigkeit und/oder wider besseren Wissens “auf Befehl”
(Ignoranz) und/oder in naivem Glauben an baldige Korrektur (so genannte
Technische Schuld) entstanden.

Einleitung 22

Nicht, dass fehlende Ordnung eine neue Ursache firr Produktivitdsabnah-
me wire. Sie wurde schon in den 1960ern oder gar frither identifiziert.
Auch die Strukturierte Programmierung (structured programming®) ist
aus dieser Erkenntnis entstanden. Man konnte wohl auch sagen, dass
Objektorientierung von ihr urspriinglich inspiriert war. Ebenso das struc-
tured design'® und der Begriff des Moduls.

Wer mit Code zu tun hat, erwartet, ordentlichen Code vorzufinden,
d.h. Code, der nicht unnétig behindert, ihn zu verstehen (“easy to
reason about”), und der nicht unnétig behindert, ihn zu verindern.
Denn darum geht es letztlich ja immer: Code wird nur betrachtet, um ihn
neuen Anforderungen anzupassen oder zu korrigieren. Dass du Code aus
Spaf} am prasselnden Kaminfeuer studierst, passiert wahrscheinlich selten,
oder?

Nach Jahrzehnten des mehr oder weniger latenten Bewusstseins der
Branche, dass Ordnung eine Qualitét ist, auf die es ebenfalls zu achten
gilt bei der Softwareentwicklung, hat dann im Jahr 2008 der Begriff Clean
Code dem Thema neue Sichtbarkeit und Konkretheit gegeben.

Dass Robert C. Martin von sauberem Code und nicht von ordentlichem
spricht, mag dem von Martin Fowler im Zusammenhang mit dessen Buch
Refactoring gepragten Begriff code smell geschuldet sein. Was sauber ist,
riecht nicht.

Doch letztlich ist Sauberkeit als Bild zu schwach fiir die nétige Eigenschaft,
die Code haben muss, um deine Softwareentwicklung nicht schwerfillig
zu machen. Was sauber ist, kann immer noch unordentlich, d.h. uniiber-
schaubar bis zu Unbrauchbarkeit sein.

Wenn du dir jetzt allerdings Ordnung vorstellst, denkst du sehr wahr-
scheinlich nicht nur an Sauberkeit als Selbstzweck, sondern auch noch
an Eignung fiir weitere Nutzung. Sauberkeit schiitzt vor Schaden.

o Ordnung hat als Zweck Befahigung!

*https://en.wikipedia.org/wiki/Structured_programming
*https://www.amazon.de/Structured-Design-Fundamentals-Discipline- Programme/
dp/0138544719

https://en.wikipedia.org/wiki/Structured_programming
https://www.amazon.de/Structured-Design-Fundamentals-Discipline-Programme/dp/0138544719
https://www.amazon.de/Structured-Design-Fundamentals-Discipline-Programme/dp/0138544719
https://en.wikipedia.org/wiki/Structured_programming
https://www.amazon.de/Structured-Design-Fundamentals-Discipline-Programme/dp/0138544719
https://www.amazon.de/Structured-Design-Fundamentals-Discipline-Programme/dp/0138544719

Einleitung 23

Und genau darum geht es, wenn ich hier von ordentlichem Code, von
Ordnung im Code spreche. Code soll ordentlich sein, um zu ziigiger
Verdnderung zu befihigen.

Zusammenfassung

Auftraggeber wollen Software, die umfassend tut, was sie tun soll; sie soll
funktional und effizient sein. Diese Qualitaten sollst du in der Software-
entwicklung stets ziigig liefern; du sollst produktiv sein und bleiben.

Ungliicklicherweise ist schon die Herstellung von funktionalem und effizi-
entem Code eine Sache, die sehr komplex ist. Ich denke, davon kannst du
ein Lied singen. Sich mit all den Technologien und Produkten und Ansat-
zen auszukennen, die zur Herstellung von funktionalem und effizientem
Code zur Verfiigung stehen, ist eine Kunst fiir sich.

Und nun soll die Herstellung von Code, der hochqualitatives Verhalten
zeigt, auch noch stets ziigig stattfinden, obwohl dieser Code stiandigen
Anderungen unterliegt und die Anforderungen an ihn notorisch unklar
sind? Das steigert die Komplexitat der Softwareentwicklung erheblich!

Wie es fiir die Herstellung von Verhaltensanforderungen Werkzeuge gibt,
so gibt es zum Gliick aber auch Werkzeuge, die dir helfen, hohe Produkti-
vitét zu produzieren.

. Agilitit
+ Automatisierte Tests
+ Prinzipien und Praktiken des Clean Code Development

Einleitung 24

Voraussetzungen fiir Produktivitdt

Du musst diese Werkzeuge kennen und auch einsetzen. Sie sind nicht neu,
sie sind womdglich noch nicht einmal schwierig zu beherrschen - doch
sie haben eines gemeinsam: sie gehen ans Eingemachte. Damit du sie
konsequent benutzt, musst du eine passende Grundhaltung entwickeln;
die Kultur der Softwareentwicklung in deinem Team und dariiber hinaus
muss darauf ausgerichtet sein. Das braucht Zeit.

Die Agilitit hat es inszwischen geschafft, breit ins Bewusstsein (oder
zumindest auf die Lippen) der Branche zu dringen. Auf die eine oder an-
dere Weise wird also in vielen Softwareentwicklungsteams versucht, die
Wertproduktion hoch zu halten durch iterativ-inkrementelles Vorgehen.

Mit der Korrektheit und der Ordnung hingegen, steht es weniger gut. Das
liegt daran, dass das eine vom anderen abhangig ist: ohne Ordnung ist es
schwer, Korrektheit zuverlassig und nachvollziehbar herzustellen und zu
iiberpriifen. Aber gerade die Ordnung hat es in sich. Nicht umsonst ist sie
geschichtlich der letzte Produktivitétskiller, fir den breites Bewusstsein
geschaffen werden musste.

So verstindlich es war, dass der Fokus von der Steigerung der Produk-
tivitat in Bezug auf den Wert von Software (in den 1990er Jahren) zur
Steigerung der Produktivitat durch Erhohung der Korrektheit (in den

Einleitung 25

2000er Jahren) gewandert ist - so ist es andererseits auch verstandlich,
dass die Produktivititssteigerung dann gegen eine gliserne Decke stoflen
musste. Erst durch einen weiteren Wechsel des Fokus hin zur Ordnung (in
den 2010er Jahren) kann nédmlich die Behinderung aus dem Weg geraumt
werden, die mehr Korrektheit und auch ziigigerer Wertherstellung im
Wege stand.

Dauerhaft hohe Produktivitit braucht...

« eine Organisation, die ihr hochste Prioritat zuweist, um langfristig
wettbewerbsfahig zu bleiben,

« ein Verstandnis dafiir, was Ordnung im Code bedeutet, wie er stets
wandlungsfihig gehalten werden kann,

« den Willen zur Produktion von stabil korrektem Code, um die
Kapazitat fiur die Erweiterung von Code maximal zu halten,

+ den Mut, nur auf der Basis von unzweideutigen Spezifikationen
Code zu produzieren

« und schliefllich die Einsicht, dass Unklarheit und Volatilitat standi-
ge Begleiter der Softwareentwicklung sein werden, so dass Vorlau-
figkeit auf allen Ebenen akzeptiert werden muss.

Leider ist es in der Softwareentwicklung so, wie es der Buddha fiir das
Leben konstatiert hat:

“Frische Milch braucht Zeit zum Sauerwerden, / Unheilsames
Handeln braucht Zeit zum Reifen, / So schwelen im Toren die
Folgen seines Handelns, / Wie unter der Asche verborgene
glithende Kohlen.”, Dhammapada - Die Weisheitslehren des
Buddha, Munish B. Schiekel

Die negativen Auswirkungen deines heutigen Handelns zeigen sich nicht
immer sofort. Sie wachsen unsichtbar und schleichend an - bis du sie
irgendwann und oft zu spét deutlich spiirst.

Deshalb ist es wichtig, die Produktivitit als im Grunde hochstes Gut,
als wichtigste Anforderung zu verstehen und die Softwareentwick-
lung dahingehend zu organisieren. Das ist nachhaltige Softwareent-
wicklung. Zuerst und unverbriichlich soll Produktivitit geliefert werden,
dann erst Funktionalitit, dann Effizienz.

Einleitung 26

Mafinahmen zur korrekten Wertproduktion in Ordnung miissen einen
Rahmen aufspannen, in dem konkrete funktionale und nicht-funktionale
Anforderungen umgesetzt werden. Derzeit geschieht es vielfach noch
umgekehrt: Verhaltensanforderungen werden “irgendwie” realisiert und
insbesondere Korrektheit und Ordnung sind nachrangig.

Alles, was ich dir im Folgenden prasentiere, darfst du vor diesem Hinter-
grund verstehen. Ich méchte dir ein methodisches Rahmenwerk vorstellen,
mit dem du systematisch fiir h6here Korrektheit und Ordnung in deinem
Code sorgen kannst. Mich treibt die eigene leidvolle Erfahrung an, dass
darauf einfach zu wenig und zu spét geachtet wird. Mir ist das frither
auch oft passiert - weil ich es nicht besser wusste. Dir méchte ich diese
Erfahrung ersparen. Dir mochte ich eine Guideline an die Hand geben, mit
der du wahrend der Codierung deinen Weg zur Korrektheit und Ordnung
findest. Keine Angst mehr vor dem blinkenden Cursor, der dich auffordert,
vor allem Funktionalitit zu produzieren. Mit ein bisschen System, gutem
Willen und Ubung wirst du es schaffen, Funktionalitit und dauherhaft
hohe (oder zumindest hohere) Produktivitat herzustellen.

Die Methode

01 - Die Anforderung-Logik
Licke

Um die Softwareentwicklung vom Kopf auf die Fiifle zu stellen, d.h. ihr
einen Rahmen fiir Nachhaltigkeit zu geben, ist es hilfreich, wenn wir ihr
Produkt genauer betrachten. Woraus bestehen “die Maschinen”, die du in
der Softwareentwicklung produzierst, von denen sich der Auftraggeber so
viel Hilfe verspricht?

Logik - Der Stoff aus dem Verhalten
entsteht

Die offensichtlichen Anforderungen des Auftraggebers sind die Verhal-
tensanforderungen an Software. Verhalten wird durch Code hergestellt -
aber nicht der gesamte Code ist dafiir verantwortlich.

Hier als Beispiel eine Software, die eine Datei als Hex Dump ausgeben soll
wie in diesem Bild dargestellt (Quelle: C# von Kopf bis Fuf3**):

Uhttps://www.amazon.de/gp/product/Bo6XDVW33W

https://www.amazon.de/gp/product/B06XDVW33W
https://www.amazon.de/gp/product/B06XDVW33W

O ~NOUAWN R

01 - Die Anforderung-Logik Liicke 29

Qeben Sie kein Argument an, liefevt das Programm
ine Fehlermeldung und bricht die Ausfihrung ab

— A

Juth wenn Sie ¢imen Dakeinamen angeben, den es vicht. gibt,
bricht das Programm mit ¢inem Fehler ab

exe
exdunp Datei

| lbergeben Sie eimen
ailtigen Dateindnen,
wird ein Hex-Dunp
des Inhalts auf der
Korsole ausgegeben.

gibts nicht.datei

0 rs \LS-WI N7 Hexdunp .
tei: g _nicht.datei

derartige Datei
ors\LE-WINZ Hexdunp . exe kartel.dat

90 @1 @ G2 00 Ff if §f — ff 01 09
00 0c B2 08 68 @B

24 61
72
2e

~aaa

.8.6, Culture=n
utrai, Publicke
null n

SRESES

BETITANNOROINTIINAB LIRS
ATVIE

BRETTNADTBEIBINGRALIGSRAB

39
85
72
75
50
75
65
73
o5
13

Gewdhnlieh scheiben
mit. Console WriteLin
auf die Konsole. Aber
2ur fusgabe von Feh-
lern rutzen Sie besser
Ervor WriteLine(),
Fehlermeldungen rich
umaeleitet werden
wir die Ausgabe mit >
oder >> umleiten

%

BT T T T L T]
St

SE2ORLTTNETIBRINIIITA
SE52RTRTISRRNESD
B3P INT A YT ne 3T YT E

gt

Beﬁkhkzzﬂcnargumente
Wenn Sic eine Konsoleranuends
.‘_,.—‘,qu.,._ii_.LImjﬁ:i?fﬁz:ﬂﬂ“lﬂd““u--ﬂa-ﬁh-u—""-‘""“‘“’

Lo

Der C#-Code dafiir sieht im Ausschnitt so aus:

using System;
using System.IO;
using System.Text;

namespace hexdump

// source: "C# von Kopf bis FuR"
flass MainClass

public static void Main (string[] args)

if (args.Length != 1) {
Console.Error.WriteLine ("Usage: hexdump <dateiname>");
Environment.Exit (1);

}

if (!File.Exists(args[0])) {
Console.Error.WriteLine("No such file: {0}", args[0]);
Environment.Exit(2);

using (var input = File.OpenRead (args [0])) {
int position = 0;
var buffer = new byte[16];

while (position <
var charsRead =
if (charsRead >
Console.Write

input.Length) {

input.Read (buffer, 0, buffer.Length);

0)

("{0}: ", string.Format ("{0:x4}", position));

position += charsRead;

for (int i = 0; i < 16; i++) {
if (i < charsRead) {
var hex = string.Format ("{0:x2}", buffer [i]);

Console.Write (hex + " ");
} else {
Console.Write (" ");

Erkennst du, welche Zeilen des Code verhaltensrelevant sind? Die Veran-
derung welcher Zeilen wiirde fiir einen Anwender unmittelbar spiirbar

01 - Die Anforderung-Logik Liicke 30

sein?

Koénnte using System geloscht werden, ohne dass sich das Programm-
verhalten dndert?'* Nein, das Programmverhalten wiirde sich nicht &n-
dern.

Sind die Leerzeilen oder der Kommentar relevant fiir das Programmver-
halten? Nein.

Spiirt ein Anwender, ob es die Funktion Main () gibt? Nein.*®

Aber wenn eine Zeile mit Console.Error.WriteLine(...) fehlen
wiirde, dann wiirde der Anwender das (in manchen Fallen) bemerken.

Oder wenn die Zeile if (i < charsRead) fehlen wiirde oder darin das
< durch ein > ersetzt wiirde, dann wiirde das zu einem anderen Verhalten
des Programms fiithren.

Code ist also nicht gleich Code. Mancher Code/manche Codezeilen sind
fur das Verhalten relevant, manche nicht.

Die fiir das Verhalten relevanten Codezeilen stellen die
Logik von Software dar."*

Logik besteht aus

« Transformationen/Operatoren, z.B. <, ++, args.Length
« Kontrollstrukturen, z.B. i f-else, for, try-catch
« I/O-bzw. allgemeiner API-Calls, z.B. Console.Write(), File.OpenRead()

*Vorausgesetzt die dadurch syntaktischen/semantischen Probleme im Quellcode wiir-
den durch weitere Eingriffe kompensiert.

*Dass Main() in C# notig ist, um ein Programm ausfithrbar zu machen, ist unwe-
sentlich. In anderen Programmiersprachen sind keine Klassen wie MainClass und keine
Methode wie Main () nétig, um ein Programm (iibersetzen und) laufen zu lassen.

“So nenne ich diesen Teil des Code jedenfalls im Weiteren, weil ich keinen anderen
Namen dafiir kenne. Wenn du einen besseren weif3t oder einen schon etablierten, dann lass
ihn mich wissen. Statements finde ich zu wenig, weil damit im Grunde alles gemeint ist, was
in C# (und anderen Sprachen) mit einem ; abgeschlossen wird. Dazu gehort, wie du bald
lesen wirst, aber auch Code, der keine Logik ist.

01 - Die Anforderung-Logik Liicke 31

Wenn nun das fiir Auftraggeber so wichtige Verhalten - Funktionalitét
+ Effizienz - nur durch Logik hergestellt wird, stellt sich die Frage, was
der uibrige Code fiir Zweck hat. Welche Anforderungen hilft er erfiillen?
Warum solltest du irgendetwas anderes codieren als Logik?

o Nicht-Logik Code dient der Herstellung von Produktivitit.

Einige Beispiele:

+ Namespaces reduzieren das Rauschen im Code, das lange Namen
mit redundanten Anteilen verursachen. Sie erhéhen die Ordnung.

« Leerzeilen strukturieren den Code vertikal, indem sie unterschied-
liche inhaltliche Kohésion anzeigen. Sie erhéhen die Ordnung.

« Funktionen “komponieren” Logik zu Funktionseinheiten, die As-
pekte eines Verhaltens unter einem Namen zusammenfassen. Sie
erhohen die Ordnung und die Testbarkeit.

+ Klassen aggregieren Funktionen (und Daten) und stellen damit
zweckvolle Einheiten zusammen. Sie erhdhen die Ordnung.

Funktionalitat

Die erste Kunst bei der Herstellung (oder Entwicklung) von Logik ist,
sie so zu wahlen, dass sie die gewlnschte Funktionalitat hat. Das lernst
du auf alle Félle in jedem Buch einer Programmiersprache oder einem
Programmierkurs.

Logik, die die Zahlen in einem Array summiert, sieht dann z.B. so aus:

static int Sum(int[] numbers) {
var sum = 0;
foreach(var n in numbers)
sum += n;
return sum;

}

Logik, die die Zahlen in einem Array sortiert, sieht hingegen z.B. so aus:

N U hwWN R

e e e
WN R o ©on

01 - Die Anforderung-Logik Liicke 32

// Quelle: https://www.geeksforgeeks.org/bubble-sort/
static void BubbleSort(int [Jarr)
{

int n = arr.Length;
for (int i = 0; i < n - 1; i++)
for (int j = 03 j < n - i - 1; j++)
if (arr[j] > arr[j + 1])
{
int temp = arr[j];
arr[j] = arr[j + 11;
arr[j + 1] = temp;

Welche Logik-Bausteine du aus den von deiner Programmiersprachen,
deinen Bibliotheken und Frameworks angebotenen auswahlst und wie du
sie in Beziehung setzt, macht den Unterschied, ob das eine oder das andere
Verhalten entsteht.

Auch Code, der nur aus Logik besteht, hat insofern eine Struktur. Im
BubbleSort-Beispiel ist die augenfillig durch die Schachtelung der Kon-
trollstrukturen.

Effizienz | - Effizienz durch Algorithmen und
Datenstrukturen

Logik so zu strukturieren, dass sie die gewiinschte Funktionalitit hat,
ist jedoch nicht alles. Sie soll auch z.B. performant sein. Logik tiber die
Funktionalitat hinaus auch noch mit Effizienzen auszustatten, ist die
zweite Kunst, die du lernen musst, wenn du programmieren willst.

Hier ein Beispiel dafiir, wie anders Logik aussehen kann, nur weil sie mehr
Effizienz bieten soll. Bubblesort ist ein bekanntermaflen imperformanter
Sortieralgorithmus. Radixsort soll diesen Makel beseitigen:*’

**Die Funktionalitét ist dieselbe, die Logik-Struktur ist aber eine vollig andere, weil an-
dere Effizenzanforderungen erfillt werden. Doch es kommt noch schlimmer: Sogar dieselbe
Funktionalitat mit denselben Effizienzanforderungen kann zu sehr unterschiedlicher Logik
fithren. Unter anderem das macht es dir so schwierig, aus Logik herauszulesen, welches
Verhalten sie eigentlich erzeugt.

01 - Die Anforderung-Logik Liicke 33

// Quelle: https://www.geeksforgeeks.org/radix-sort/
static void Radixsort(int[] arr, int n)

int mx = arr[0];
for (dnt i = 1; i < n; d++)
if (arr[i] > mx)
mx = arr[i];
for (int exp = 1; mx/exp > 0; exp *= 10)

int[] output = new int[n];

int i

int[] count = new int[10];

for(i = 0; 1 < 10; i++)
count[i] = 03

for (i = 0; i < nj; i++)
count[(arr[i]/exp)%l0]++;

for (i = 1; 1 < 105 d++)
count[i] += count[i - 1];

for (i =n-1; 1 >=0; i--)
output[count[(arr[i]/exp)%10] - 1] = arr[i];
count[(arr[i]/exp)%10]1--;

for (i

= 0; 1 < n; i++)
arr[i] =

output[il;

Logik (und zugehorige Datenstrukturen) fiir Effizienz-Anforderungen
passend zu wihlen, erfordert also mehr als die Kenntnis von Logik-
Bausteinen. Dass du dir z.B. der algorithmischen Komplexitat'® deiner
Logik bewusst bist, gehort dazu, wenn du mit Logik den Auftraggeber
umfassend erfreuen willst. Es kommt auf die Auswahl und Zusammen-
stellung der Logik-Bausteine an, auf ihre Komposition.

Effizienz Il - Effizienz durch Verteilung

Performance und Skalierbarkeit oder auch andere Effizienzanforderungen
lassen sich allerdings nicht immer allein durch Auswahl und Anordnug
von Logik erfilllen. Dann ist zusatzlich Verteilung gefragt, d.h. die Aus-
fihrung von Logik verteilt auf mehrere Threads.

Als simples Beispiel mag die Sortierung von zwei Arrays dienen. Eine
Loésung nur mit Logik kann das auch mit dem schnelleren Algorithmus
nur sequenziell bewerkstelligen:

*Shttps://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/
https://www.bigocheatsheet.com/

N

01 - Die Anforderung-Logik Liicke 34

Radixsort(arrl, arrl.Length);
Radixsort(arr2, arr2.Length);

Die Gesamtlaufzeit ist dann die Summe der Laufzeiten der einzelnen
Aufrufe der Funktion, die die Sortierlogik kapselt.

Wenn die Sortierung jedoch parallel, d.h. auf zwei Threads (verschiedener
Prozessorkerne) stattfinden kann...

var tl = Task.Factory.StartNew(() => Radixsort(arrl, arrl.lLength));
var t2 = Task.Factory.StartNew(() => Radixsort(arr2, arr2.Length));
Task.WaitAll(new[] {t1, t2});

...dann entspricht die Gesamtlaufzeit (ungefahr) nur der des Funktionsauf-
rufs, der ldnger gebraucht hat.

Logik mit mehr Effizienz auszustatten durch Verteilung ist traditionell ein
Teil der Disziplin Softwarearchitektur. Sie kannst du als die dritte Kunst
der Softwareentwicklung ansehen.

Hierarchie der Hosts

Softwarearchitektur verteilt Logik, indem sie sie in Hosts ausfithrt. So
nenne ich geschachtelte Laufzeit-Kontexte/Container, die mit mehr oder
weniger Infrastruktur aufgesetzt, betrieben und in Verbindung gebracht
werden.

« Thread: Multithreading ist der erste Schritt, um Latenz zu ver-
bergen oder zu verringern oder den Durchsatz zu erhéhen. Die
Kommunikation schon zwischen Logik auf verschiedenen Threads
ist aber nicht mehr direkt, d.h. langsamer als die zwischen Logik
auf demselben Thread. Vorsicht ist geboten, wenn Threads auf die
selben Daten zugreifen.

« Process: Logik parallel in verschiedenen Betriebssystemprozessen
zu betreiben, entkoppelt sie stdrker, was zur Robustheit beitragt.
Dass es keinen gemeinsamen Hauptspeicher mehr gibt, reduziert
das Risiko von Fehlern. Allerdings ist die Kommunikation deutlich
aufwindiger zwischen Prozessen.

01 - Die Anforderung-Logik Liicke 35

+ Machine: Logik in mehreren Threads verteilt auf mehrere Prozesse
auf verschiedenen (physischen oder virtuellen) Maschinen auszu-
fithren, ermoglicht ein scale-out oder auch die Ansiedelung von
Logik naher an Ressourcen. Allerdings ist die Kommunikation zwi-
schen Maschinen noch langsamer als zwischen Prozessen, so dass
sehr auf Haufigkeit und Granularitat der Nachrichteniibermittlung
geachtet werden muss.

« Network: Logik auf Maschinen in verschiedenen Netzwerken zu
verteilen, ist allemal unvermeidbar, wenn Speicher- und Prozessor-
ressourcen flexibel genutzt werden sollen (Stichwort “Cloud Com-
puting”). Der Nutzen bei der Skalierbarkeit ist mit den Gefahren
fiir die Sicherheit abzuwégen. Und die Kommunikationsgeschwin-
digkeit sinkt abermals.

Effizienz durch Verteilung steigern zu miissen, ist oft unvermeidbar.
Simpel ist das jedoch nicht. Die Zahl der hilfreichen Technologien nimmt
jeden Tag zu und erfordert von dir ein fleiffiges Studium, wenn du mithal-
ten willst. Vorsicht ist dennoch weiterhin ganz grundsétzlich gegeniiber
den fallacies of distributed computing®” geboten.

Im Weiteren spielen Hosts als Container fiir Logik jedoch keine grofiere
Rolle mehr. Die Darstellungen hier drehen sich nicht um die Herstellung
von Effizienzen, sondern vor allem um die Qualititen Wert, Korrektheit
und Ordnung fiir die Anforderung Produktivitit. Du wirst es mit Struk-
turen zu tun bekommen, aber nur vergleichsweise wenigen Strukturen
bestehend aus mehreren Hosts.

Zusammenfassung

Logik und ihre Verteilung ist das, was fiir den Auftraggeber unmittelbar
sptrbar ist. Mit Logik und Verteilung Verhalten herzustellen, sind die
grundlegenden Kiinste der Programmierung. In ihnen kénnen Software-
entwickelnde stindig reifen; fiir sie werden stédndig neue Paradigmen,
Technologien und Produkte entwickelt.

Logik und Verteilung in hoher Qualitdt herzustellen, ist auch bei guten
Spezifikationen ein komplexes Unterfangen. Umso naheliegender sollte es
sein, dass du diese Transformation systematisch betreibst.

"https://en.wikipedia.org/wiki/Fallacies_of distributed_computing

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

01 - Die Anforderung-Logik Liicke 36

Von den Anforderungen zur Logik

Angesichts des grofien, bewussten und verstandlichen Bedarfs an Soft-
wareverhalten, den Auftraggeber haben, ist es kein Wunder, dass sie
groflen Druck auf die Logik-Produktion ausiiben. Du sollst moglichst
schnell Features mit Logik umsetzen - alles andere ist dem Kunden wenn
schon nicht egal, dann doch meistens nur wenig bewusst. Auf alles andere
achtet er insofern wenig oder kann es sogar nicht einmal beurteilen.

Logik schwer definierbar

Doch leider “ergibt sich” Logik nicht “einfach so”. Sie liegt nicht auf der
Hand. Funktionale und effiziente Logik zu finden, ist fiir dich auch mit viel
Erfahrung eine komplexe Angelegenheit. Schon eine sehr simple Aufgabe
macht das deutlich:

Iteration 1: Hello, World!
Schreibe ein Programm, dass auf der Console “Hello, World!” ausgibt.
Das Ergebnis soll von der Ausgabe her so aussehen:

Py

[) : netcoreapp3.1 — -bash — 80x24

(base) Hereafter-3:netcoreapp3.l ralfw$ dotnet exec hello.dll
Hello, World!
(base) Hereafter-3:netcoreapp3.l ralfw$

Eine Beispielausgabe als Spezifikation

Welche Logik ist dafiir notig?

Diese Frage wirst du fiir deine Programmiersprache sicher aus dem Stand
beantworten kénnen. In C# sieht sie so aus:**

*Fur weitere 599 Programmiersprachen kannst du dir hier die Antworten anschauen.
Aber Achtung: Viele enthalten nicht nur Logik, sondern auch sprachnotwendiges “Rauschen”
drumherum.

http://helloworldcollection.de/

01 - Die Anforderung-Logik Liicke 37

Console.WriteLine("Hello, World!");

Das Programm selbst ist umfangreicher, weil noch eine Klasse und eine
Funktion “als Verpackung” erforderlich sind, aber die reine Logik ist so
trivial.

Auf zur néichsten Iteration:

Iteration 2: Personliche Begriilung

Das Programm aus Iteration 1 soll erweitert werden. Der Auftragge-
ber sagt dir:

“Bitte bauen Sie das Programm so um, dass User dem Programm
ihren Namen mitteilen, um damit personlich begriifit zu werden.
Anwenderin Janine wird nicht mehr mit “Hello, World!”, sondern mit
“Hello, Janine!” begriift. Kriegen Sie das hin?”

Welche Logik brauchst du dafir?

Auch diese Frage wirst du wahrscheinlich aus dem Stand beantworten
kénnen, wenn auch vielleicht mit ein wenig Unsicherheit, wofiir solch ein-
fache Problemstellungen gut sein sollen. Ein Verhalten wie das Folgende
zu erzeugen, ist nun wirklich kein Hexenwerk:

[)

@ @ netcoreapp3.1 — -bash — 80x24

(base) Hereafter-3:netcoreapp3.l ralfw$ dotnet exec hello.dll Janine
Hello, Janine!

(base) Hereafter-3:netcoreapp3.l ralfw$

Natirlich ist das keine grofle Herausforderung an deine Kunst, Logik fiir
Funktionalitit zu finden.

Aber was, wenn dieses Verhalten nicht den Qualitatsanforderungen in
puncto Benutzbarkeit entspricht? Das stellt der Auftraggeber fest, wenn
du ihm deine neue Losung vorstellst. Eine Anwenderin kann zwar dem
Programm den Namen “mitteilen”, muss dazu aber wissen, dass das auf
der Kommandozeile zu geschehen hat. Das hatte der Auftraggeber nicht
im Sinn mit seiner obigen Spezifikation; wie selbstverstandlich hatte er

01 - Die Anforderung-Logik Liicke 38

gedacht, dass eine Anwenderin natiirlich nach ihrem Namen gefragt wird,
um ihn dann mitzuteilen.*

“Gedacht” hatte sich der Auftraggeber ein solches Verhalten:

@ netcoreapp3.1 — -bash — 80x24

(base) Hereafter-3:netcoreapp3.l ralfw$ dotnet exec hello.dll
Name: Janine
Hello, Janine!

(base) Hereafter-3:netcoreapp3.l ralfw$

Das passt genauso zur verbalen Spezifikation. Die Logik dafiir sieht jedoch
ganz anders aus als fiir die erste Implementation!

// Variante 1
Console.WriteLine("Hello, {0}!", args[0]);

// Variante 2
Console.Write("Name: ");

var name = Console.ReadlLine();
Console.WriteLine($"Hello, {name}!");

Und damit ist die Losung immer noch nicht in trockenen Tichern! Denn
was geschieht, wenn ein Anwender keinen Namen eingibt und nur ENTER
driickt? Dann passiert dies bei Variante 2:

Name :
Hello, !

(base) Hereafter-3:netcoreapp3.l ralfw$

Ist das ein erwiinschtes Verhalten aus Sicht des Auftraggebers? Nein.
Der hatte sich bei der Formulierung “mitteilen ... kann” gedacht, dass
ohne Name weiterhin mit “Hello, World!” begrufit wird. Es gilt aller-
dings: “Gedacht ist nicht gemacht!” Auftraggeber mussen mehr, als sich
Anforderungen denken oder darauf vertrauen, dass du “als Fachmann”
schon weifft, was gemeint sein konnte. Sieh durch den Honig durch,
den dir solche Formulierungen um den Bart schmieren: “Sie haben doch
Erfahrung. Sie wissen doch, wie man das macht und was ich meine” Nein,

“’Ich habe dich hier ein wenig hereingelegt. In der ersten Iteration war die Bildschirmaus-
gabe die Spezifikation. In der zweiten eine rein verbale, auf die ich sofort einen Screenshot
habe folgen lassen. Der hat dir vielleicht suggeriert, dass das darin zu sehende Verhalten das
spezifizierte ist. Aber mitnichten! Es war schon eine Interpretation der verbalen Spezifikation.
Du siehst, es ist so eine Sache mit den Anforderungen. Welche gelten, wann liegen sie vor,
welche Form sollten sie haben, damit du ihnen vertrauen kannst? Dazu spéter mehr.

01 - Die Anforderung-Logik Liicke 39

weifd du nicht! Du kannst dir zwar eine Menge denken - nur bedeutet das
nicht, dass es dasselbe ist, wie sich der Auftraggeber denkt oder was ihm
am Ende gefillt, was Wert darstellt. Wenn du horst “Sie als Fachmann”,
ist Gefahr im Verzug! Dann musst du die Anstrengungen verdoppeln, den
Kunden aus der Unklarheit zu locken - oder ihm ganz klar sagen, dass du
nur Vorldufiges programmieren kannst.

Eine oder drei oder auch fiinf Zeilen Logik zu finden, ist in diesem
Szenario nicht das Problem. Doch schon bei dieser Gréflenordnung fehlt
es eben an Klarheit, was tiberhaupt Wert fiir den Auftraggeber darstellt.

Mit iterativem Vorgehen lasst sich der Schaden jedoch begrenzen. Wenn
du dem Auftraggeber nicht vorgaukelst, dass du seine Wiinsche direkt
umsetzen kannst, sondern Feedback-Schleifen benoétigst, fithren Kontraste
zwischen Wunsch und Lieferung nicht zu Konflikten, sondern zu Informa-
tionen. Motto: “Gut, dass wir dartiber gesprochen haben!”

Nach zwei Iterationen kann die Losung dann so aussehen:

(base) Hereafter-3:netcoreapp3.l ralfw$ dotnet exec hello.dll
Name: Janine

Hello, Janine!

(base) Hereafter-3:netcoreapp3.l ralfw$ dotnet exec hello.dll

Name:
Hello, World!!
| (base) Hereafter-3:netcoreapp3.l ralfw$

Und die Logik hat dir natiirlich keine Probleme gemacht. Wenn klar ist,
was gewiinscht ist, ergibt sie sich quasi von selbst und sieht z.B. so aus:

Console.Write("Name: ");

var name = Console.ReadLine();

if (string.IsNullOrWhiteSpace(name)) name = "World";
Console.WriteLine($"Hello, {name}!");

Vielmehr war es der Kunde mit der unklaren Spezifikation, der zu einem
Umweg gefithrt hat. Garbage in, garbage out: Das gilt auch bei der
Softwareentwicklung.

Iteration 3: Party time!

Das Programm aus Iteration 2 soll nun abermals erweitert werden,
um zur Begriiflung auf Partys eingesetzt zu werden. Der Auftragge-

01 - Die Anforderung-Logik Liicke 40

ber sagt dir:

“Ich bin Veranstalter von 2-3 Partys pro Woche, die von 50-100 Gdsten
besucht werden. Solche Partys veranstalte ich in 20-25 Wochen pro
Jahr in den ndchsten 1-2 Jahren. Die neue Version des Programms
mdchte ich auf meinem Laptop am Eingang der Partys laufen lassen.

Jeder Gast soll darin seinen Namen eingeben und persénlich begriifit
werden. Wenn z.B. Roger das erste Mal eine dieser Partys besucht,
wird er mit “Hello, Roger!” begriifst. Kommt er zum zweiten Mal, heift
es aber “Welcome back, Roger!” Ab dem dritten Besuch lautet die
Begriifiung “Hello my good friend, Roger!”. Und ist Roger schlief3lich
das 25. Mal auf einer Party, ist einmalig der Zusatz auszugeben
“Congrats! You are now a platinum guest!

Ich erwarte, dass ich wdhrend der Nutzungsdauer des Programms
immer denselben Laptop verwende. Der wird vor Party-Beginn hoch-
gefahren, das Programm wird einmalig gestartet fiir den Abend und
am Ende mit CTRL-C beendet. Eine Internetverbindung besteht am
Veranstaltungsort leider nicht verldsslich.

Konnen Sie das Programm in dieser Weise erweitern?”

Was nun? Sind die Anforderungen wieder unklar? Eher nicht. Es lielen
sich zwar noch ein paar Fragen stellen, wie sich das Programm verhal-
ten soll, wenn verschiedene Giste denselben Namen haben. Doch diese
Restunklarheit ist bei dieser Iteration nicht das Problem. Vertrau mir.

Bei dieser Iteration liegt vielmehr die Logik selbst bei klaren Anforderun-
gen nicht mehr auf der Hand. Sie mag am Ende 10 oder 20 Zeilen umfassen
- viel wire das allerdings immer noch nicht. Dennoch wirst du bei dieser
Iteration eine deutlich groflere Unsicherheit verspiiren. Du siehst keinen
geraden Weg mehr zur Logik; sie springt dir nicht vor dein geistiges Auge.
Deine Gedanken kreisen... du kannst jetzt nicht einfach codieren, sondern
musst zuerst nachdenken.

Die Funktionalitét selbst stellt jetzt schon ein Problem dar, obwohl das
Szenario immer noch trivial ist. Und deshalb wird auch die Korrektheit
relevant. Denn wo unklar ist, welche Logik die passende ist, ist sehr schnell
auch unklar, ob die ausgewéhlte tatsachlich die Anforderungen erfillt.

01 - Die Anforderung-Logik Liicke 41

Dariiber hinaus aber kommst du nicht mehr ohne Ordnung im Code
aus. Deine kreisenden Gedanken suchen nicht nur die Logik fiir das
Verhalten, sondern auch nach einer ordentlichen Struktur, in der du die
Logik aufhangen kannst, um deine eigene Losung zu verstehen.”

Diese Struktur wird jedoch nicht durch die Logik gebildet, es geht also
nicht um den Algorithmus. Vielmehr geht es um einen Rahmen um Logik
herum, also um Nicht-Logik Code. Wenn du dabei an Funktionen und
Klassen (oder allgemeiner: Module) denkst, hast du die richtige Intuition.

Die Phasen der Programmierung

Zwischen den Anforderungen des Auftraggebers und der Logik, die
zumindest die spiirbaren Verhaltensanforderungen erfiillt, klafft eine ge-
waltige Liicke: die Anforderung-Logik Liicke. Schon in sehr simplen
Szenarien wie dem vorgestellten liegt Logik nicht auf der Hand, sondern
will gewissenhaft erarbeitet werden.

Wie die Iterationen des Beispiels zeigen sollten, geschieht das in drei
Phasen, die strickt aufeinander folgen. Immer. Auch bei dir. Selbst, wenn
du das nicht wahrnimmst oder nicht glaubst. Und auch wenn sie iterativ,
also mehrfach durchlaufen werden, tut das dem Vorhandensein und der
Reihenfolge der Phasen keinen Abbruch.

1. Phase: Analyse

Konfrontiert mit Anforderungen ist die Softwareentwicklung aufgerufen,
zunéchst eine fiir sie relevante Analyse zu machen. Diese Analyse hat als
Ziel, Verstandnis zu erzeugen. Nur wenn du wirklich verstanden hast,
solltest du dich auf den Pfad der Code-Entwicklung machen. Ansonsten
ist zu befiirchten, dass das Resultat keinen Wert hat und/oder inkorrekt
ist.

*Ich habe das Experiment geniigend oft live mit Entwicklergruppen gemacht, um zu
wissen wovon ich rede. Wahrend bei den ersten beiden Iterationen die Logik herausge-
sprudelt wird, héngen Probanden dieses Experiments bei Iteration 3 und “stammeln sich
etwas zusammen”. Sie kénnen die Logik nicht “herunterbeten”, sondern drehen gedankliche
Schleifen auf unterschiedlichen Ebenen. Meistens wollen sie mir etwas auf dem Level von
Pseudocode erzéhlen oder nennen mir Gliederungspunkte. Konkrete Logik ist das alles aber
nicht. Und das kann auch nicht sein. Dafiir ist selbst dieses Beispiel zu grofi. Es im Kopf und
geradlinig zu 16sen, kénnen nur die allerbesten auf Anhieb - und auch das nicht verlésslich.

01 - Die Anforderung-Logik Liicke 42

nen aus.

o Verstandnis driickt sich ausschlieSlich zweifelsfrei in Kon-

Das weif} jeder, der eine Mathematik-Prifung (aus eigenen Kréften)
bestanden oder auch nicht bestanden hat.

Ein konkreteres Beispiel: Wer versteht, wie Fibonacci-Zahlen berechnet
werden, der kann die Folge 1, 1, 2, 3, 5, 8 beliebig fortsetzen. Der weif3,
welche Zahl auf 8 folgt, der weif3, welche Zahl auf 21 folgt; der weif3 auch,
ob 35 eine Fibonacci-Zahl ist oder nicht.

Der unzweideutige formale Ausdruck von Verstdndnis besteht deshalb in
“Beispielaufgaben” fir dich als Entwickler bzw. fir die von dir zu entwi-
ckelnde Software. Nur Software, die diese “Beispielaufgaben” fehlerfrei
16st, kann als anforderungskonform und korrekt akzeptiert werden.

Vorgelegt werden die “Beispielaufgaben” natiirlich in Form von automa-
tisierten Testfallen. Andernfalls ist nicht zu erwarten, dass sie verlasslich
und nachvollziehbar und personenunabhéngig iiberpriift werden.

werden soll, muss Software auf Reife und Stabilitit stets
automatisiert mit relevanter Codeabdeckung getestet wer-
den.

o Wenn Produktivitit nicht durch Inkorrektheit behindert

Automatisierte Tests sind die erste Bastion im Kampf gegen den
Morast der schleichend wachsenden Unwandelbarkeit, der deine Pro-
duktivitit in die Knie zwingt.

Der automatisierte Test hat allerdings eine Voraussetzung: Es muss auch
klar sein, wie ein Test “an Logik angelegt” werden kann. Wie bekommt
der Test Zugang zur zu testenden Logik? Das geschieht vor allem durch
Aufruf von Funktionen.

Funktion in seiner Génze repréasentiert (API-Funktion). Die
Funktion oder andere unterhalb ihr im Aufrufbaum enthal-
ten die Logik, die im Test getriggert wird.

o Das gewiinschte Verhalten wird durch mindestens eine

01 - Die Anforderung-Logik Liicke 43

Verstindnis als Resultat der Analyse driickt sich aus in einer Reihe
von Tupeln der Form (Testfall, Funktion).

Fiir das Beispiel der Fibonacci-Zahlen kénnte das so aussehen:

o Funktion: int[] Fib(int n)
o Testfalle:
— Input: n=0, erwartetes Resultat: []
- Input: n=1, erwartetes Resultat: [1]
— Input: n=4, erwartetes Resultat: [1,1,2,3,]

Daraus folgt:

Softwareentwicklung, die nachhaltige Produktivitat ernst
nimmt als Anforderung, ist grundsétzlich test-first Pro-

grammierung.

Das Ergebnis der Analyse sind Akzeptanztests fiir die zu entwickelnde
Logik. Ohne Erfiilllung ihrer Akzeptanztests ist Logik nicht reif; Akzep-
tanztests sind die Reifetests “an der Auflenhaut” von Software. Und ohne
unausgesetzte Erfillung bisheriger Akzeptanztests ist Logik nicht stabil.
Beides ist inakzeptabel im Sinne dauerhaft hoher Produktivitat.

Der zweiten Iteration des obigen Programms fehlte es an formalem,
dokumentiertem Verstandnis. Deshalb ist die Entwicklung in die falsche
Richtung gelaufen und hat auch noch den Eindruck der Inkorrektheit
gemacht.

2. Phase: Entwurf

Die dritte Iteration im Beispiel hat natiirlich auch noch unter einem
Mangel an dokumentiertem Verstandnis gelitten. Dartiber hinaus waren
die Anforderungen aber so umfangreich, dass sich auch gutes Verstindnis
nicht mehr “einfach so” in Logik hat umsetzen lassen.

Das Nachdenken iiber Code vor der Codierung in der IDE, das die dritte
Iteration erzwungen hat, ist das, was ich Design oder Entwurf nenne.
Diese Phase ist die zentrale Provokation der Softwareentwicklung, scheint

01 - Die Anforderung-Logik Liicke 44

mir. Thr miissen sich alle Entwickelnden stellen, hier ist echte Kreativitat
gefragt. Und hier gibt es den grofiten Widerstand seit Anfang der 2000er.
Entwurf scheint tberfliissig, hinderlich, verlangsamend. Meine Erkennt-
nis ist allerdings gegenteilig: Ich sehe, dass die Produktivitat leidet, weil
Entwicklungsteams einen Entwurf vernachldssigen.

0 Im Entwurf wird eine Lsung fiir das Problem gefunden,

das die Anforderungen aufwerfen. Das ist allerdings nur
eine konzeptionelle Losung, ein Losungsansatz. Der mani-
festiert sich in Code erst in der néchsten Phase.

Entwurf findet immer statt. Du kannst ihn sehr bewusst oder ganz
unbewusst durchfithren. Erfolgt er bewusst, ist er allerdings noch nicht
notwendig auch systematisch. Deshalb lasst die Ordnung der “entworfe-
nen” Strukturen oft zu wiinschen iibrig.

e Entwurf ist per definitionem deklarativ.

Das heif3t, im Entwurf steht keine Logik zur Verfiigung. Entwurf liefert
keine Algorithmen, sondern plant ein Modell.

Das Modell als Ergebnis des Entwurfs besteht aus einer Reihe von Funk-
tionen die in Tupeln der Form (Funktionl1, Funktion2, Beziehungen) ver-
bunden sind.

Beispielhafte Beziehungen zwischen Funktionen f und g des Modells sind:

f ruft g auf (Abhéngigkeit)

« g folgt auf f (Sequenz)

« f spezialisiert g (Vererbung)

« fund g haben inhaltlich etwas gemeinsam (sie verfolgen den selben
Zweck)

« fund g benutzen gemeinsamen Zustand

01 - Die Anforderung-Logik Liicke 45

Das mag abstrakt klingen und Modelle miissen auch nicht in Form
von 3-spaltigen Excel-Blattern geliefert werden. Ein Klassendiagramm,
ein Datenfluss, eine Zustandsmaschine... das und mehr sind hilfreiche
Ausdrucksformen fiir Modelle - die sich allerdings alle auf die obige sehr
allgemeine Definition zuriickfithren lassen.

Zentral beim Entwurf eines Modells ist, dass es ganz bewusst von kon-
kretem Code abstrahiert. Die Feinheiten einer Programmiersprache oder
eines Framework und der Detailreichtum von Logik stehen nicht zur
Verfiigung. Der Losungsansatz ist “mit einfacheren Mitteln” zu finden.

Diese freiwillige Selbstbeschrankung hat mehrere Griinde:

+ Weniger Details erlauben eine schnellere Losungsfindung - auf
hohem Abstraktionsnivau in Form eines Durchstichs.

« Eine deklarative Losung erlaubt die einfachere visuelle Darstellung
und damit Kommunikation zwischen Teammitgliedern. Mentale
Modelle lassen sich externalisieren.

« Visuelle, abstrakte Losungsansitze lassen sich in groflerer Vielfalt
gegeniiberstellen, was der Findung besserer Losungen dient.

« Einen Losungsansatz zu finden erfordert andere geistige Aktivitét/-
Fahigkeit als die Codierung eines Losungsansatzes. Die explizite
Modellierung vor einer Codierung dient mithin der Entzerrung des
Entwicklungsprozesses; es wird ermiidendes, verlangsamendes und
fehlertrachtiges Multitasking vermieden.

Ein bewusster und systematischer Entwurf stellt ein Modell her,
das nicht nur die Losung der Verhaltensanforderungen reprisentiert,
sondern auch noch der Forderung nach Ordnung geniigt.

Wo die Analyse eine Bastion gegen Wertarmut und Inkorrektheit ist, da
ist der Entwurf eine Bastion gegen Unordnung.

3. Phase: Codierung

Die Codierung schliellich setzt den Entwurf um in Code. Du tibersetzt ein
Modell mit einer Programmiersprache in Funktionen, die du mit konkreter
Logik ausfiillst.

01 - Die Anforderung-Logik Liicke 46

Ist das Modell gut, kann dieser Phase durchaus eine gewisse Langeweile
anhaften. Das Problem ist ja (theoretisch) gel6st. Die Spannung ist raus aus
den Anforderungen. Insofern ist mein Ziel mit Programming with Ease, dir
die Codierung etwas zu verleiden. Du sollst sie am Ende als mechanische
Arbeit auffassen, bei der nur noch relativ wenig Kreativitét nétig ist. Ok,
vielleicht iibertreibe ich ein wenig, aber so ungefihr stelle ich mir das vor,
weil ich es selbst so erfahren habe. Je leichter ich mir die Programmierung
gemacht habe, desto unspannender wurde die Codierung.

Nachlassigkeit darf sich deshalb jedoch nicht einschleichen. Die Codie-
rung hat ihre eigenen Probleme, die noch gelost werden wollen. Hier
schlagt die Stunde des Handwerkers, der seine Technologien beherrscht.

Das Ergebnis der Codierung ist - wie sollte es anders sein - Code. Aber
nicht irgendein Code, sondern Code, der erstens der Ordnung des Modells
folgt und zweitens in den Detail-Ebenen unterhalb des Modells ebenfalls
Ordnung walten lasst.

Dartiber hinaus ist die Codierung die Phase, in der du die automatisierten
Priifungen der Korrektheit implementierst.

Codierung stellt Produktionscode und Testcode paarweise
test-first her.

Ordnung und Korrektheit diirfen bei der Codierung auf den letzten Metern
nicht kompromittiert werden. Das ist kein kleines Kunststiick unter dem
iiblicherweise herrschenden Druck von Lieferterminen.

Zusammenfassung

Die Ubersetzung von Anforderungen in Code ist eine komplexe Tatigkeit,
die nur systematisch verlésslich alle Qualititen herstellt: Wert in Form
von Funktionalitit + Effizienz, Korrektheit und Ordnung.

Die minimale Systematik, die ich dir mit Programming with Ease insge-
samt vermitteln will, besteht darin, fiir gegebene Anforderungen eine firr
dich als Entwickler relevante Analyse durchzufithren, die nachvollzieh-
bares Verstindnis nicht nur dokumentiert, sondern auch automatisiert
tberpriifbar macht.

01 - Die Anforderung-Logik Liicke 47

Ausgehend von diesem Verstindnis wird dann im néchsten Schritt ein
Losungsansatz modelliert, der von den Feinheiten der Codierung bewusst
abstrahiert fiir mehr Uberblick, bessere Kommunizierbarkeit und groiere
Flexibilitat.

Erst nach diesen Vorarbeiten kann alles bereit sein, um das zu tun, was
man gemeinhin als die vordringliche Aufgabe von Softwareentwicklung
sieht: die Codierung.

s

/womm Lh versterduis hodell (/9& i

Eine Briicke iiber die Anforderung-Logik Liicke

Analyse — Entwurf — Codierung (AEC): Dieser Prozess ist unver-
briichlich, gar unvermeidbar. Daran glaube ich fest; das zu verstehen, hat
mir die Softwareentwicklung erheblich erleichtert.

Das bedeutet jedoch nicht, dass Softwareentwicklung deshalb “im Wasser-
fall” oder nach BDUF (Big Design Up-Front) verlaufen musste. Die Phasen
AEC konnen beliebig haufig und beliebig schnell durchlaufen werden. Sie
sollten lediglich dem Umfang und Schwierigkeitsgrad der anliegenden
Anforderungen entsprechen.

Auf diese Weise wird die Liicke zwischen Anforderungen und Code
systematisch und nachvollziehbar und teamfahig tiberwunden.

01 - Die Anforderung-Logik Liicke 48

Ubungsaufgaben

Ubung macht den Meister! Deshalb gibt es zu (fast) jedem Kapitel Ubungs-
aufgaben, die du in deiner Geschwindigkeit l6sen kannst. Kein Druck,
keine Anpriiche, die andere dabei an dich haben kénnten. Mach es dir
gemiitlich damit.

Zu allen Ubungsaufgaben findest du im Anhang auch Musterlgsungen.
Mit denen méchte ich dir das Selbststudium erleichtern; versuche also
nicht zu luschern, wihrend du die Ubungsaufgaben 16st. Und bitte ver-
stehe die Musterlosungen auch nicht als Abkiirzung, mit denen du dir die
eigene Losung der Ubungsaufgaben (er)sparst.

Wenn du wirklich, wirklich daran interessiert bist, zu lernen, d.h. deine
Gewohnheiten zu verdndern, dann brauchst du eigene Praxis. Du musst
nach dem Lesen etwas tun mit dem Gelesenen. Gern kannst du natiirlich
die Anwendung in deinem Projektalltag versuchen; frither oder spiter
musst du diesen Sprung ja ohnehin machen. Aber erstens sind die Pro-
bleme in deinem Projektalltag weniger iiberschaubar, so dass dir weniger
klar ist, wie und wo mit dem Transfer des Gelesenen du anfangen kannst.
Zweitens wirst du durch Anwendung des Neuen erstmal langsamer,
weil du noch unsicher bist; das kann dir schnell scheele Blicke von den
Kollegen einbringen und du féllst in alte Gewohnheiten zuriick. Drittens
kann ich dir keinerlei Feedback geben, noch nicht einmal in Form einer
monologischen Musterlosung. Feedback ist aber extrem wichtig, wenn du
eine neue Fahigkeit erwirbst.

Deshalb empfehle ich dir sehr, die Ubungen zu machen als erste Anwen-
dung des Lernstoffs “in einer Sandkiste”. Die Aufgaben sind tiberschaubar,
keiner redet dir rein und macht druck und mit den Musterlosungen
bekommst du zumindest eine gewisse Form von Feedback bzw. Kontrast
zum Nachdenken.

Um deine Lésungen der Ubungsaufgaben zu dokumentieren, lege fiir dich
ein Git-Repository an, in dem du all deine Arbeitsergebnisse speicherst.
Committe haufig und vergiss am Ende das Push nicht.”*

*Wenn du noch nicht so viel mit Git gearbeitet hast, kannst du einen der bequemen
visuellen Git-Clients benutzen wie z.B. den kostenlosen von GitHub. Eine Ubersicht findest
du hier.

https://desktop.github.com/
https://git-scm.com/downloads/guis/

01 - Die Anforderung-Logik Liicke 49

Ein Git-Repository ist das unterste und einfachste Sicherheitsnetz, das du
fiir deine Programmierung spannen kannst. Never code without it.*

Reflexionsaufgabe

Bitte formuliere eine Frage oder eine Erkenntnis zum Kapiteltext.

« Wo bist du gedanklich hingengeblieben, was ist dir unklar,
was passt fiir dich irgendwie nicht zusammen, wozu wiirdest
du dir noch etwas mehr Erklarung wiinschen? Steht irgendet-
was zu deiner bisherigen Praxis im Widerspruch und du fragst
dich, warum du etwas dndern solltest?

« Oder: Wann hast du einen Aha-Moment gehabt, was ist
dir als bemerkenswert, spannend, ausprobierenswert aufgefal-
len? Hat irgendetwas “in dir Klick gemacht”, weil dir nun ein
Zusammenhang aufgegangen ist? Oder verstehst du jetzt aus
deiner bisherigen Praxis irgendetwas besser?

Am besten formulierst du Frage bzw. Erkenntnis schriftlich. Indem
du deine Gedanken aufschreibst, wirst du dir ihrer bewusster. Bei
einer Frage kommst du dadurch vielleicht schon einer Antwort aus
dir selbst heraus naher. Bei einer Erkenntnis fallt dir vielleicht schon
etwas ein, das du ab jetzt anders machen kannst.

Aufgabe 1 - Erkldren

Beschreibe mit min. 500 bis max. 1000 Worten den Nutzen eines ex-
plizten Entwurfs bzw. der Modellierung fiir die Softwareentwicklung.
Warum sollte man selbst bei hohem Verstandnis der Anforderungen
nicht sofort loslegen mit der Codierung, sondern zuerst nachdenken
und modellieren?

**Aber nicht nur den Codeanteil deiner Losungen solltest du in Repository legen. Alle
Artefakte sind es wert, aufbewahrt zu werden. Vielleicht schreibst du Analysen in einem
.txt/.docx Dokument auf oder machst eine Zeichnung in Visio oder hast eine Skizze auf
Papier (die du fotografieren kannst), dann committe all das ebenfalls. So schaffst du dir eine
Dokumentation der kompletten Losungsentwicklung.

01 - Die Anforderung-Logik Liicke

Versuche dich an einer ganz einfachen Erklarung im Stile von ELI5:
Explain it like 'm 5 years old?

*https://www.dictionary.com/e/slang/eli5/

Aufgabe 2 - Modellieren

Auf der Basis des bisher Gesagten und deinem Verstédndnis von dem,
was Entwurf ausmacht, entwickle ein Modell fiir die Iteration 3 des
Hello-World Problems: Géste sollen auf Partys begrifit werden. Wie
kann ein Losungsansatz aussehen, ohne dass du auch nur eine Zeile
Code schreibst. Halte also auch Abstand vom tiblichen Pseudocode!

Erinnere dich, dass ein Modell deklarativ ist. Logik steht dir nicht zur
Verfiigung - und trotzdem soll mit einem Modell der Losungsansatz
beschrieben werden. Einem anderen Entwickler, dem du ein Modell
zeigst, soll die Codierung deutlich leichter fallen, als ohne Modell.

Einerseits soll das Modell die Losung beschreiben, also schon konkret
sein. Andererseits jedoch soll das Modell nicht zu konkret sein. Es soll
Abstand von Details halten, die erst in der Codierung ausgefleischt
werden. Ein Modell ist mithin eine abstrakte Losung.

Wie konnte die fiir das Hello-World Problem aussehen? Was sollte
darin beschrieben sein - und was sollte ausgelassen werden?

Versuche dich einmal daran mit deinen bisherigen Erfahrungen mit
Softwareentwiirfen. Oder vielleicht hast du von anderen schonmal
gehort, wie die soetwas angehen.

Keine Angst, dass du diese Aufgabe “falsch” 16sen konntest. Es geht
nicht darum, sie in bestimmter Weise zu erfiillen, also auf “das eine
richtige” Modell zu kommen. Diese Aufgabe soll dich schlicht auf
andere Weise als die erste zu einer aktiven Auseinandersetzung mit
dem Entwurfsbegriff anregen.

https://www.dictionary.com/e/slang/eli5/
https://www.dictionary.com/e/slang/eli5/
https://www.dictionary.com/e/slang/eli5/

02 - Entwurf im Uberblick

Im Entwurf wird die Umsetzung vorweggenommen. Er stellt die Losung
des Problems dar, ohne “es zu tun”. Er entwickelt nur eine Vorstellung
davon, wie die geforderte Leistung durch Software erbracht werden
konnte.

Bevor ich dir konkret erkldre, wie ich meine, dass du sehr leichtgewichtig
entwerfen solltest und warum genau so in einer bestimmten Weise,
mochte ich dir ausfiihrlich darstellen, was ich grundsétzlich damit meine
und was das soll.

In Kapitel 01 habe ich schon versucht, den Entwurf als unverbriichliche
Phase jeder Softwareentwicklung herauszuarbeiten. Du kommst aus mei-
ner Sicht sowieso nicht um ihn herum, auch wenn du der Meinung bist,
ihn nicht zu brauchen. Doch lass uns noch einen genauere Blick darauf
werden, was das ist, der Entwurf.

Den Entwurf abstecken

Mit ein paar Aussagepflocken stecke ich das Thema Entwurf mal grob ab.
Das ist abstrakt, aber keine Sorge, du wirst spéter noch geniigend konkrete
Entwiirfe sehen.

1. Ein Entwurf stellt die Losung eines Problems dar, d.h. er erfillt die
Anforderungen des Auftraggebers.

2. Entwurf ist allerdings nicht die eigentliche Sache, die der Auftrag-
geber will. Wie auch immer ein Entwurf aussieht, es ist also kein
Code, er ist nicht ausfithrbar. Das widerspréche der Definition von
Entwurf.

3. Ein Entwurf ist nur eine Beschreibung der eigentlichen Sache,
insofern ist seine Losung nur theoretisch/konzeptionell. Nicht jede
Beschreibung der eigentlichen Sache ist jedoch ein Entwurf. Damit
eine Beschreibung ein Entwurf ist, muss sie vor der Herstellung
der Sache angefertigt worden sein. Eine Beschreibung der eigentli-
chen Sache nach der Herstellung ist eine Dokumentation.

02 - Entwurf im Uberblick 52

4. Ein Entwurf als Beschreibung dessen, was Code leisten soll, bevor
dieser Code geschrieben wird, hat den Zweck, die Codierung deut-
lich zu erleichtern, wenn nicht gar, sie tiberhaupt zu erméglichen.

5. Der Preis fiir die Erleichterung der Codierung darf allerdings nicht
zu hoch sein. Es ist ein gutes Verhaltnis zwischen Entwurfs- und
Codierungsaufwand zu finden, das den Gesamtaufwand der Soft-
wareherstellung reduziert. Indem Entwurf und Codierung zusam-
menkommen, soll Energie frei werden, die vorher gebunden war
in “roundtrips” (aka Debugging, Testsitzungen, Iterationen).

6. Um eine Losung zu sein, die vor der Codierung entwickelt werden
kann, diese erleichtert und selbst nicht zu aufwandig ist, muss ein
Entwurf auf einer deutlich héheren Abstraktionsebene stattfin-
den, als die Codierung. Er darf nicht durch Details der Codierung
behindert werden; er sollte weniger Komplexitat als der spitere
Code aufweisen.

7. Die hohere Abstraktion darf jedoch nicht dazu fithren, dass der Ent-
wurf abhebt. Er muss also gleichzeitig konkret und aussagekriftig
sein.

8. Leichtgewichtigkeit ist ein Kennzeichen fiir hilfreiche Entwurfs-
werkzeuge, denn sonst werden sie nicht benutzt, wenn der Druck,
mit der Codierung zu beginnen, grof} ist.

9. Und schliellich muss ein Entwurf durch die Realitat der Codierung
informiert sein und sich geradlinig in Code iibersetzen lassen. Es
braucht also Bezugspunkte im Entwurf fiir den Code.

Entwurfund Implementation sollen “nicht itberlappen” und die Implemen-
tation soll den Entwurf “spiegeln”.

« Der Entwurf 16st das Problem, nur nicht genauso wie der Code.
« Und der Code lasst erkennen, dass er aus dem Entwurf abgeleitet

wurde, d.h. Verbindungen zwischen ihm und den Entwurfsmitteln
sind klar.

Mit dem Entwurf erarbeitest du eine Zielvorstellung fiir den Code, d.h. die
lauftahige Losung.

02 - Entwurf im Uberblick 53

Hierarchie der Lésungen

Nun gibt es die Sichtweise, dass Code selbst schon ein Entwurf (engl.
design) sei.”> Denn der Code, den du in C# oder Java oder JavaScript
schreibst, ist ja nicht das, was am Ende ausgefiihrt wird und tatséchlich
das Problem des Kunden 16st.

Dein Hochsprachencode wird iibersetzt in Maschinencode. Das kann man
als eine Form von Produktion ansehen. Und Produktion basiert auf einem
Plan, einem Entwurf. Ein Haus wird nach einem Plan hergestellt, einen
IKEA-Schrank baust du nach einem Plan auf.

In der materiellen Welt ist die Produktion so sichtbar und aufwiandig, dass
ein vorheriger Entwurf zwingend ist und auffillt. Bei der Softwareent-
wicklung ist die Produktion hingegen so unsichtbar und schnell, dass sie
nicht auffillt - und man die Codierung fiir die Produktion halten konnte.

Ich mag mich diesem Verstandnis jedoch nicht recht anschlieen. Oder
wenn ich mich ihm anschliefe, dann finde ich die Aussage nicht hilfreich.
Ob Code nun ein Entwurf ist oder nicht, andert nichts an der Tatsache,
dass er selbst unabhéngig von jeder Kategorie sehr schwer zu schreiben
und zu verstehen ist.

Wenn Code eine Form von Design darstellt, dann ist eben dieses Design
sorgféltig zu produzieren. Dann muss ein Entwurf sogar vor diesem
Design stattfinden.

Bei einer gegebenen manifesten Losung, sei das Maschinencode oder
Hochsprachencode, ist ein Entwurf das, was der Losung vorhergeht
und sie auf einem h6heren Abstraktionsniveau vorwegnimmt. Losungen
existieren mithin nicht nur in einer Form, sondern in einer Hierarchie.
Losungen gibt es auf vielen unterschiedlichen Abstraktionsebenen. So
kann des einen manifeste Losung des anderen theoretische sein, also
“nur” ihr Entwurf. Aus dieser Perspektive betrachtet sehe ich mindestens
folgende Abstraktionsniveaus:

1. Maschinencode ist die manifeste Losung, das Produkt? Dann ist
Hochsprachencode der Entwurf.

*vgl. Code as Design: Three Essays by Jack W. Reeves,
https://www.developerdotstar.com/mag/articles/PDF/DevDotStar_Reeves_CodeAsDe-
sign.pdf

02 - Entwurf im Uberblick 54

2. Hochsprachencode ist die manifeste Losung, das Produkt? Dann ist
ein Modell dessen Entwurf.

3. Ein Modell ist die Losung, das Produk? Dann ist ein Losungsansatz
dessen Entwurf.

4. Ein Losungsansatz ist die Losung, das Produkt? Dann ist eine
“Produktidee” dessen Entwurf.

Mit Maschinencode bist du wahrscheinlich nicht vertraut. Das macht
nichts, denn ich will ja nicht die Umwandlung von Hochsprachencode
in ihn behandeln. Auch wenn ich es frither immer gern schreiben wollte,
ist dies kein Buch tiber Compilerbau.

Mit Hochsprachencode bist du vertraut. Den will ich dir deshalb ebenfalls
nicht erklaren. Dies ist keine Einfithrung in die Programmierung. Aber die
Ubersetzung von Entwurf - genauer: Modell - in Hochsprachencode, das
ist eine andere Sache, den werde ich dir ausfiihrlich vorstellen.

Entwurf, wie ich ihn hier verstehe, fithrt zu Hochsprachencode und
erfolgt auf zwei Ebenen: zuerst in Form eines informellen Losungsansatzes
fiir eine “Produktidee”, dann in Form einer formalen Modellierung des
Lésungsansatzes.

Die “Produktidee” - also letztlich das, was Anforderungen des Auftragge-
bers beschreiben - lasse ich ebenfalls aus in diesem Band. Wie du zu den
Voraussetzungen fiir einen Entwurf von Hochsprachencode kommst, ist
Thema des dritten Buches der Reihe Programming with Ease.

Nur soviel an dieser Stelle: Auch die Anforderungen beschreiben die Lo-
sung. Allerdings ist dieser Entwurf so abstrakt, so weit von der Codeebene
entfernt, dass man “das entwerfende Element” darin im Grunde nicht
erkennt. Anforderungen sind mehr ein “Wunschkonzert”. Dennoch, wenn
du genau hinschaust, befinden sich Anforderungen in dem von den neun
obigen Pflocken abgesteckten Gebiet. Lediglich Punkt 9, die geradlinige
Ubersetzbarkeit in Code, erfiillen sie nicht.?*

**Ja, sogar den Punkt 8, die Leichtgewichtigkeit, wiirde ich ihnen zugestehen. Darum hat
sich die Agilitat sehr bemiiht. Die Moglichkeit der Leichtgewichtigkeit ist ein Resultat des
iterativ-inkrementellen Vorgehens.

02 - Entwurf im Uberblick 55

J’J \EMJ—uva M’
Tyiwschat, S| J/@'w(ch S\ grrwalisioey —> 'MVIIWMF“‘“ ——>{conpilieres e
% <& 4] % %
*. s & Z “
% /s K> K3
(’\4 [(‘r <
ﬁes e %

\
\

S —_

Der Entwurfsprozess - oder sogar die mehreren Entwurfsschritte hinab die
Abstraktionshierarchie - kannst du als Scharfung verstehen. Ein zunéchst
grobes Bild, ein Wunschbild, wird scharfer, detailreicher, klarer mit jeder
Phase. Wie dir die 3. Iteration des Hello-World Beispiels in Kapitel 01
gezeigt hat, ist ein Sprung vom Wunsch zum Hochsprachencode nicht
moglich. Du musst dich heranarbeiten. Du musst dir erst ein grobes Bild
machen, das du nach und nach verfeinerst.

Von der Kunst lernen

In der bildenden Kunst werden Skizzen und Kompositionen angefertigt,
bevor der Kiinstler sich an die Schaffung des eigentlichen Werkes macht.
Hier ein Beispiel dafiir aus meiner Zeichenmappe aus Jugendjahren:

02 - Entwurf im Uberblick 56

Von der groben Idee zum finalen Werk in vier Entwurfsschritten

Am Anfang stand nur eine Idee: Ich wollte die Endlichkeit des
menschlichen Lebens darstellen. Eine Sanduhr war mir dazu gleich
vor Augen. “Bild mit Sanduhr und Mensch” war also meine Anfor-
derung.

Davon ausgehend habe ich zuerst recht pauschale Entwiirfe ge-
macht. Die haben die Komposition geklart, also die Grobstruktur
des Werkes. Anfinglich hatte ich nur die Idee einer Sanduhr in
einer Hand. Erst im zweiten Schritt kam die menschliche Gestalt
dazu. Die war also noch nicht Bestandteil der urspriinglichen
Anforderungen, sondern hat sich ergeben.

Im dritten Schritt ist die Sanduhr auf die Hand gewandert, die nun
auch schon etwas detaillierter ausgearbeitet ist. Auch dieser Schritt
war nicht vorherzusehen, sondern ein Ergebnis dessen, dass ich
mir die Idee vorher mit den beiden anderen Entwiirfen vor Augen
gefiihrt hatte.

Das vierte Bild ist eine Detailstudie. Der Entwurf konzentriert
sich auf eine genauere Ausarbeitung nur der Sanduhr mit der
menschlichen Figur. Dort habe ich wohl noch Unsicherheit gespiirt
und wollte mich vergewissern.

Im finalen Werk spiegeln sich die Entwiirfe deutlich - aber es sind
auch Abweichungen zu erkennen. Die Handhaltung ist nochmal
leicht anders und die Form der Sanduhr hat sich verandert. Wenn
ich mich recht erinnere, hatte ich bei der Ausarbeitung gemerkt,

02 - Entwurf im Uberblick 57

dass ich meine linke Hand, die mir Modell stand, besser so mit dem
Stundenglas halten konnte. Aulerdem hatte das konkrete Glas, das
ich hielt, diese Eiform.

Die Entwiirfe waren schnell gemacht und abstrakt. Dennoch - oder gerade
deshalb - konnte ich mich mit ihnen ziigig an die letzte Variante der
Losung heranarbeiten, das Modell. Die Ubersetzung in das endgiiltige
Werk hat dann deutlich langer gedauert und musste das Modell nochmal
der Realitit der Umsetzung anpassen.

Meine Erfahrungen mit der Zeichnenkunst sagen mir: ohne Entwurf geht
esnicht. Ein nicht triviales Werk entsteht nicht ohne eine erkleckliche Zahl
von Entwiirfen, die auf unterschiedlichen Abstraktionsniveaus liegen und
sogar unterschiedliche Ausschnitte behandeln.

Entwerfen ist fachgerecht

Das kreative Werk als manifeste Losung braucht einen iterativen Prozess.
In dem wird eine Vorstellung als Skizze externalisiert, um dann in der
Betrachtung zuriick zu wirken auf die Vorstellung.

Vorstellungen so greifbar wie moglich vor sich zu stellen, um sie von allen
Seiten auf ihre Wirkung (Losungstauglichkeit) zu @iberpriifen, ist fiir mich
genauso natiirlich wie zwingend. Weniger geht nicht in einem kreativen
Prozess. Wer versucht, das Kunstwerk lediglich im Kopf kurz anzudenken,
um es dann sogleich in seiner finalen Form zu produzieren, wird viel
Verschwendung betreiben.® Beim Zeichnen besteht sie aus Zeit und ist
erkennbar am Verbrauch von Papier und Stiften.

Bei der Programmierung besteht die Verschwendung auch aus Zeit, aber
erzeugt leider keinen Materialverbrauch. Das macht es so verfiithrerisch,

*Nicht zu entwerfen und sofort zu produzieren, gibt es allerdings auch. Das ist eine
eigene Kunst. Die nennt man Improvisation, wiirde ich sagen. Ohne Planung geht’s gleich ins
Tun. Im Theater gibt es dafiir z.B. eine eigene Kategorie: das Improvisationstheater (Impro-
Theater). Schauspieler im Impro-Theater zu sein, ist eine ganz andere Herausforderung als
Schauspieler in einem normalen Stiick zu sein. Im normalen Stiick gibt es ein Theaterstiick
als “Entwurf”, das durch die Auffithrung “produziert” wird. Beim Impro-Theater gibt es
das nicht. Es wird ohne Entwurfsschritt eine Idee aus dem Publikum sofort in Handlung
umgesetzt. Das ist eine ganz eigene Kunst mit ihrem eigenen Reiz und ihren eigenen Grenzen.
Ein Aquivalent in der Softwareentwicklung konnte vielleicht das Prototyping sein. Das hat
seinen Nutzen und Reiz und auch seine Grenzen.

02 - Entwurf im Uberblick 58

glaube ich, den Entwurf zu tGberspringen. Verschwendung ist von pro-
duktiver Arbeit oberflachlich schwer zu unterscheiden. Erkennbar ist
Verschwendung primér an Inkorrektheit und Unordnung und sekundar
an Verzogerungen und Frustrationsduf3erungen.

Nach 40 Jahren Programmierung bin ich der festen Meinung: Wer auf
einen expliziten und auch noch visuellen Entwurf vor der Produk-
tion von Hochsprachencode verzichtet, der handelt fahrlissig und
verschwendet das Geld seiner Auftraggebers. Vor dem Codieren zu
entwerfen, ist fiir mich ein Grundbaustein fachgerechter Arbeit als
Softwareentwickler. Und ebenso gehort zur fachgerechten Arbeit die
test-first Codierung, wie im ersten Band der Reihe ausgefiihrt.

Entwerfen ist agil

Dass der explizite Entwurf seit Aufkommen der Agilitit zunehmend in
Verruf geraten ist, ist ein Ubelstand, den ich nicht genug bedauern kann.
Und wo das im Namen der Agilitat geschehen ist, halte ich es fiir ein
grobes Missverstandnis der Agilitat.

“Working software over comprehensive documentation” im Agilen Mani-
fest®® ist keine Aufforderung, auf Entwurf zu verzichten. Ausdriicklich ist
ja documentation genannt, nicht design. Wie oben definiert, ist Entwurf
jedoch keine Dokumentation, wenn auch “lediglich” eine Beschreibung
und keine working software.

Und nur, weil es heifit “responding to change over following a plan”, ist das
keine Aufforderung jegliches Planen sein zu lassen. Dann diirfte es ja auch
kein Spring Planning in Scrum geben. Ein Entwurf ist ein Plan im Sinne
einer Gestaltungsidee fiir einen zukiinftigen Zustand der Welt. Er driickt
den Glauben aus, “Ja, so wird es wohl funktionieren!” Doch deshalb ist
ein Entwurf nicht unumst68ilich. Meine Skizzen oben im Vergleich zum
finalen Werk beweisen es: Nur, weil das Werk anders ist als die Skizzen,
sind die nicht unnétig gewesen. Die Abweichung vom Plan, den Skizzen
darstellen, ist selbstverstandlich erlaubt, wenn bei der Ausfithrung neue

**https://agilemanifesto.org/

https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/

02 - Entwurf im Uberblick 59

Erkenntnis auftauchen.?”

Ein Entwurf steht einem “deliver working software frequently” aus den
12 Prinzipien des Agilen Manifests*® ebenfalls nicht im Wege. Im Gegen-
teil! Durch Entwurf wird der Code korrekter und ordentlicher und also
wandelbarer.

Und ein visueller Entwurf, wie ich ihn dir nahelegen werde, ich ein Bef6r-
derer des Prinzips “the most efficient and effective method of conveying
information to and within a development team is face-to-face conversa-
tion.” Wenn du eine Losungsidee hast und kannst die nicht anders als
in Code ausdriicken, dann lasst sie sich nur sehr schwer kommunizieren
und diskutieren. Ohne Entwurf reduzierst du die Chance auf face-to-face
conversation.

SchlieBlich: Wie willst du als agiler Programmierer dem Prinzip “Simpli-
city - the art of maximizing the amount of work not done - is essential”
dienen, ohne einen Entwurf? Nur mit einem Entwurf kannst du namlich
iiberhaupt iiber Arbeit sprechen, bevor du sie tust. Sobald du an der IDE
sitzt und Code tippst, steigerst du den amount of work. Besser, du klérst
vorher ein paar Alternativen ab und diskutierst mit deinen Kollegen.

Dafiir brauchst du allerdings eine klare und anfassbare Vorstellung von
deiner Losung vor deren Implementation. Zu der kommst du in zwei
Schritten:

#Der Zweck von Planung ist, Uberblick zu gewinnen und zu entzerren. Eine Form
von Multitasking soll vermieden werden. Wenn ich eine Aufgabenliste abarbeite, die ich
mir gestern fiir heute zusammengestellt habe, profitiert meine Konzentration davon, dass
ich mich nicht mehr frage, “Was soll ich als néchstes tun?” Die Frage habe ich gestern
beantwortet, als ich dafiir in einem “speziellen Bewusstseinszustand” war. Gestern war ich
kreativ, gestern hatte ich Uberblick. Heute will ich nicht mehr kreativ sein, sondern Dinge
nur erledigen. Dazu brauche ich einen anderen “Bewusstseinszustand”. Falls ich jedoch auf
ein Hindernis stof3e, kann ich auch vom Plan abweichen. Neue Informationen diirfen, sollen,
miissen den Plan verdndern konnen. Hétte ich die Informationen gestern gehabt, hatte ich
den Plan von vornherein anders gestaltet. Das Hindernis reift mich heute zwar aus meinem
“Bewusstseinszustand” der Abarbeitung - aber was soll’s? Lésst sich nicht dndern. Ich mache
das beste daraus, indem ich kurz wieder in den Planungsmodus gehe.

**https://agilemanifesto.org/principles.html

https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html

02 - Entwurf im Uberblick 60

1. Der L6sungsansatz

In den Entwurf gehst du, wenn du die Anforderungen verstanden hast.
Vorher hast du einfach nicht gentigend Grundlage, auf der du eine Losung
aufbauen konntest.

Hier ein Beispiel fiir Anforderungen die das Kriterium auf Kapitel 01
erfiillen: Es liegen Beispiele vor und eine Funktionssignatur ist gegeben.

Eine Liste von ganzen Zahlen soll in eine Ordnung gebracht werden,
bei der fiir jede Zahl am Listenplatz mit Index i (kurz: z[1]) gilt:
z[1-1] <= z[i] <= z[1i+1].

Funktion:
e« int[] Ordnen(int[] zahlen)
Beispiele:

M [175:2,918,4]‘> [1,214;5,819]
« [1-=11

Du erkennst natiirlich sofort, das mit “ordnen” hier gemeint ist “sortieren”:
Die Zahlen sollen aufsteigend sortiert werden.

Schon diese Klassifikation der Anforderungen ist ein erster Schritt in
Richtung Losung. Jetzt kannst du namlich in der Literatur nachschlagen,
wie man das macht. Andere haben das Problem schon vor dir gelst.
Du miisstest nicht einmal selbst entwerfen, sondern womaglich nur eine
Losung abschreiben. Oder noch besser: deine Programmiersprache oder
Standardbibliothek der Programmiersprache bieten bereits eine fertige
Sortierfunktion.

“Ah, das Problem lasst sich durch Sortieriung l6sen!” wiirde ich als erste
Erkenntnis im Sinne eines Losungsansatzes in diesem Fall zéhlen.

Aber der Ubung halber will ich davon absehen, dass es schon Lésungen fiir

02 - Entwurf im Uberblick 61

das Sortieren gibt. Das Problem ist namlich gut geeignet, um zu erklaren,
was ein Losungsansatz ist.

Du koénntest natiirlich jetzt jedes weitere Nachdenken in den Wind schla-
gen und mit classical TDD in die Tasten greifen. Inkrementell konntest du
versuchen, direkt eine Losung zu codieren. Das ist bestimmt moglich. Die
Testfélle konnten z.B. wie folgt schrittweise schwieriger werden:

[1-> [] // Akzeptanztest und natiirlicher Startpunkt

[3]-> [3]

[1,3]->1[1,3]

[3,1]1->[1,3]

[3,1,4]->[1,3,4]

[3a4:l]'> [1:3’4]

[1,5,2,9,8,4]--[1,2,4,5,8,9] // finaler Akzeptanztest

NSk N

Die Zunahme des Schwierigkeitsgrades der Tests sieht plausibel aus. Ohne
weitere Losungsidee kannst du dir da jedoch nicht sicher sein. Das ist ein
Grund, warum ich zwar sehr fiir test-first Codierung bin, doch nur mit
einem vorherigen Entwurf.

Wenn du einmal versuchst zu vergessen, was du alles schon tiber Sortieral-
gorithmen weift, was wiirdest du nach Studium der Anforderungen tun?
Nein, nicht codieren, sondern im Kopf oder auf einem Stiick Papier.

Jetzt ist womdglich die grofite Kreativitit in der Softwareentwicklung
gefragt. Ich halte diese Phase jedenfalls fiir ihren Kern. Dafiir sind
Millonen Menschen Softwareentwickelnde geworden! Das ist der Teil, wo
du an einem Problem knobeln kannst. Wer knifflige Probleme liebt, der ist
im Entwurf bei der (Er)Findung eines Losungsansatzes genau richtig.

Ich glaube, selbst dieses Problem 16st du nicht im Kopf. Du musst deine
Vorstellungen vor dir manifestieren. Blatt und Stift reichen dafiir aus.
Beim Losungsansatz gelten keine Regeln. Alles ist erlaubt, was dich dem
Ergebnis néher bringt. Das ist echte Freistil-Softwareentwicklung. In allen
weiteren Phasen musst du irgendwelchen Regeln und Formalismen folgen.
Genief3e also die Freiheit in diesem Moment!

Wie kannst du das Problem auf einem Blatt Papier angehen? Hier ist mal
ein Vorschlag:

02 - Entwurf im Uberblick 62

SorA ey

ldee © Groh F<bf i i Besid auy Bude shllor.
a3 AL /Vhﬁw 3 47234 {} 4
oy A 3 X 2,24
//—f L— ><>
2. ?_,?/115 (3 2.4,2,37%
2. A,2,7 [mac 2 7 7}
= [z(j?/} o 94,243
‘ L
1.4,273 /Etw(([A uw U.o4,2,3% [Eady 37
- wod v b -

8 [
Vow Seelisbencd, VAgLVV:A/Juf.

Losungsskizze fiir die Sortierung

Ist das formal? Nein. Verstehst du, was ich damit meine? Wahrscheinlich
nicht. Kenne ich jetzt die Losung? Ja! Und nur das zahlt.

Ich habe mit einer Notation mit graphischen Elementen und Konventio-
nen, die ich mir spontan ausgedacht habe, eine Darstellung geschaffen,
die es mir erlaubte, meine ganz grobe Losungsidee aus meinem Kopf aufs
Blatt zu bekommen. Du siehst eine Losung als Skizze.

Es hitte aber auch anders aussehen konnen. Uber die folgende Darstel-
lungsart bin ich im Internet gestolpert, als ich fir das Buch recherchiert

habe:

SerHertt, -
m(&h =<\ Mmi By Uhes Srl«rwmy/wm Desddy

—

S Oosvay

Hier wird die zu sortierende Liste als Matrix dargestellt, bei der in der ver-
tikalen die Werte an der jeweiligen Position aufgetragen sind. Dadurch ist
die schrittweise Herstellung der gewiinschten Ordnung visuell sehr schén
nachvollziehbar. Der gelbe Wert in einem Bild i ist im Bild i+1 einfach
mit dem bis dahin letzten im blau markierten Listenabschnitt vertauscht

02 - Entwurf im Uberblick 63

worden (rot). So formen die Punkte von Bild zu Bild zunehmend eine
aufsteigende Linie.”

Beim Losungsansatz geht es nur um das Verfahren. Solange das plausibel
wird, konkret und erklarbar(er) ist, ist das Ziel dieser Entwurfsphase
erreicht.

Wenn du mit einem Problem konfrontiert bist, kann es sein, dass du es
sofort l6sen kannst. Das ist der Fall bei der vorliegenden Aufgabe. Du
kannst natiirlich eine Liste von Zahlen sortieren.

Nur, weil du das kannst, kannst du es aber noch lange nicht auch noch
erklaren. Wie geht das mit dem Sortieren? Wie gehst du vor? Was ist
dein Verfahren, deine Herangehensweise, deine Methode, dein Ansatz?
In der ersten Phase des Entwurfs findest du nicht nur heraus, ob du “es”
kannst oder “irgendwie weif}t wie es geht”. Nein, du musst dein Kénnen
und Wissen vermitteln konnen. Erste Herausforderung: Kannst du es dir
selbst erkldaren? Zweite Herausforderung: Kannst du es anderen erklaren?

In dieser Phase bist du im Grunde Erfinder. Du brauchst dafiir kein
wirres Haar, keine Brille und auch kein chaotisches Arbeitszimmer. Du
bist Erfinder qua Aufgabe, die lautet: Finde eine Losung, die du erkliren
kannst.

Deine Erfindung bezieht sich auf die anliegende funktionale oder nicht-
funktionale Aufgabe. Im Beispiel ist es zunéchst nur die funktionale, eine
Liste tiberhaupt zu sortieren. Sie besonders effizient zu sortieren, war nicht
gefragt.®

*Der Losungsansatz “erfindet” iibrigens den Sortieralgorithmus Selection Sort. Den habe
ich hier gewdhlt, weil er so naheliegend ist. Ohne mich an Selection Sort konkret erinnert
zu haben, fiel mir dieser Ansatz einfach ein. Wenn dir ein anderer eingefallen ist, ist das
natiirlich ebenso gut. Nur, wie héttest du deinen Losungsansatz dargestellt?

**Um auch noch eine besonders effiziente (hier: performante) Losung zu finden, musst
du wahrscheinlich mehrere Losungsansitze entwickeln und vergleichen. Nimm dir also zu
Anfang nicht zu viel vor: Finde zunéchst einen funktionalen Losungsansatz. Erst wenn du
den hast, suche nach weiteren mit besseren Effizienzcharakteristika. Das zu trennen, fillt
vielen Entwicklern schwer. Sie wollen gleich die optimale Losung. Doch damit stehen sie
sich selbst im Wege. Das halte ich fiir ein Rezept fiir Frust und Verzégerung. Auflerdem
verschenkt soviel Vorsatz die Chance auf kleinere Iterationen. Wenn der Auftraggeber eine
funktionale und effiziente Losung will, dann biete ihm an, zunachst nur eine funktionale
zu liefern. Dann kann er schonmal tiberpriifen, ob das seinen Wiinschen entspricht. Falls
namlich nicht, hast du keinen Optimierungsaufwand verschwendet. Und sollte alles ok sein,
fangst du dann mit der Optimierung an - oder der Auftraggeber entscheidet, dass mehr
Effizienz doch nicht nétig ist, da er nun gesehen hat, was eine “nur” funktionale Losung
schon bietet. Auch dann hast du keinen Optimierungsaufwand verschwendet.

https://en.wikipedia.org/wiki/Selection_sort

02 - Entwurf im Uberblick 64

Ich kann mir vorstellen, dass diese “Losungsansatzdenke” fiir dich noch
ein bisschen abstrakt ist. Deshalb ein weiteres Beispiel, bevor es an die
néachste Entwurfsphase geht:

Party time again!

“Ich bin Veranstalter von 2-3 Partys pro Woche, die von 50-100 Gdsten
besucht werden. Solche Partys veranstalte ich in 20-25 Wochen pro
Jahr in den ndchsten 1-2 Jahren. Die neue Version des Programms
mdchte ich auf meinem Laptop am Eingang der Partys laufen lassen.

Jeder Gast soll darin seinen Namen eingeben und persénlich begriift
werden. Wenn z.B. Roger das erste Mal eine dieser Partys besucht,
wird er mit “Hello, Roger!” begriif$t. Kommt er zum zweiten Mal, heifst
es aber “Welcome back, Roger!” Ab dem dritten Besuch lautet die
Begriiffiung “Hello my good friend, Roger!”. Und ist Roger schlief3lich
das 25. Mal auf einer Party, ist einmalig der Zusatz auszugeben
“Congrats! You are now a platinum guest!

Ich erwarte, dass ich wdhrend der Nutzungsdauer des Programms
immer denselben Laptop verwende. Der wird vor Party-Beginn hoch-
gefahren, das Programm wird einmalig gestartet fiir den Abend und
am Ende mit CTRL-C beendet. Eine Internetverbindung besteht am
Veranstaltungsort leider nicht verldsslich.

Konnen Sie das Programm in dieser Weise erweitern?”

Das ist wieder die 3. Iteration des Hello-World Programms. Schon diese
Anforderungen umzusetzen war ja schwierig, solange ein Entwurf fehlt,
wie ich versucht habe, in Kapitel 01 zu vermitteln. Wie konnte der jetzt
also aussehen, um die Umsetzung zu vereinfachen? Oder genauer: Wie
konnte sogar zunachst nur ein Losungsansatz aussehen?

Fiir mich beginnt der Losungansatz oft mit einer Sammlung dessen, was
gebraucht wird. Welche “Komponenten” sind notig? Was fur Funkti-
onseinheiten sind klar ersichtlich? Welche Subprobleme miissen gelost
werden? Im konkreten Fall gehort fiir mich dann auch dazu, welchem
Ansatz die Persistenz folgen soll.

02 - Entwurf im Uberblick 65

Wlls Lol 3

1 Punl How slereiche
—_———— o Vamen wlepes
ibzﬂu,aue

Vone: Tnay “Fad bl Palpen
Wy, ey ‘%‘f"ifxwffpwui o I

B S W P S e &

Meuig 1)
H Voo g | Ty DFnbente
‘T Ve, 4
/// ()D"‘M‘u(g
Donid 3 CSV ek (e
Pole, 3

]
WMevon Tu'&"‘-u oy %{,suot‘/_

S i T L NN VRIS SV P SR S T

2‘, s e WS W S N

Auf der linken Seite siehst du ein Gedachtnisstiitze. Ich habe die Benut-
zerschnittstelle skizziert, um mir wihrenddessen das Problem nochmal
zu vergegenwartigen. Natirlich ist die Benutzerschnittstelle schon Teil
der Anforderungsdefinition, die du mit dem Auftraggeber zusammen
erarbeitest. Doch zur Fokussierung auf den Entwurf ist es nicht schlecht,
die Oberflache dessen, was nun zu entwerfen ist, zu wiederholen und ggf.
in ein anderes Format zu bringen, das dir als Entwickler taugt.

Rechts oben eine Liste der Funktionsbereiche. Aus den Anforderungen
und der Vorstellung, wie die Bedienung des Programms sich anfithlen
konnte, habe ich abgeleitet, was mindestens getan werden muss innerhalb
des Programms. Dafiir reicht erstmal eine Spiegelstrichliste ohne weitere
Ordnung. Die ist sozusagen ein brain dump dessen, was dir so einfallt.
Achte nicht auf Abstraktionsniveaus oder Beziehungen zwischen diesen
Funktionsbereichen. Mir ist eingefallen:

o Irgendwie muss der Name erfragt werden. Das ist eine “Kompetenz”,
die im Programm ausgebildet werden muss. Die kann z.B. leere
Namen abweisen und erneut auffordern, wenn das gewollt sein
sollte.

« Irgendwie muss dann auch die Liste der Géaste gefithrt werden, in
der gezahlt wird bzw. aus der abgelesen werden kann, wie oft ein
Gast (identifiziert iber seinen Namen) schon da war.

02 - Entwurf im Uberblick 66

« Und irgendwie muss der Name inkl. seiner Besuchszahl in eine
konkrete Begriifiung tiberfithrt werden, die dann angezeigt wird.
Jenachdem, wie oft der Gast schon da war, wird hier entschieden,
mit welcher Formel er begriifit wird.

Weniger geht nicht, finde ich. Diese Funktionsbereiche stechen fiir mich
als eigenstindig heraus.

Zum Abschluss dann noch eine Idee, wie die Gisteliste tiber die Laufzeit
des Programms hinaus persistent gemacht werden kénnte. Mir scheint,
dass daftr eine simple Textdatei im CSV-Format ausreicht. Zu jedem
Namen wird darin vermerkt, wie oft der Gast schon da war. Kommt der
Gast wieder, wird sein Besuchszahler erhoht.

Vielleicht hast du eine &hnliche Idee gehabt fiir einen Ldsungsansatz,
vielleicht auch nicht. Wichtig ist nicht, dass er genau so aussieht wie mei-
ner, sonder dass es iiberhaupt einen gibt. Jeder Losungsansatz auf einem
Blatt Papier (oder in einer iPad-App wie Notability oder GoodNotes) ist
besser als keiner. Denn mit jedem aufgezeichneten, d.h. externalisierten,
explizierten und visualisierten Losungsansatz bist erstens du dir selbst
klarer tiber die Losung geworden und zweitens kannst du jetzt anfangen,
den Losungsansatz mit anderen zu diskutieren. Wenn du mit Kollegen das
Problem angehst, dann hast du die Losung auf einem Medium, das ihr teilt.
Darauf konnt ihr beide schauen, daran kénnt ihr beide arbeiten.

Aber auch wenn ich sage, dass es fiir den Losungsansatz keine spezielle
Form gibt, weil du moglichst frei sein sollst, deiner Kreativitdt Raum zu
geben, gibt es Grenzen der Niitzlichkeit. Hier ein Bild aus einem Clean
Code Workshop. Diesen Losungsansatz hatte ein Team am Whiteboard
zuriickgelassen, als es sich an die Codierung gemacht hat. Bei aller
Offenheit fiir personlichen Stil und individuelle Darstellungen ist mir das
dann doch zu wenig.

02 - Entwurf im Uberblick 67

TEAM 1,
ITERATION 3

Also: Beim Losungsansatz geht eine Menge. Mach dir keinen Kopf, “es
richtig zu tun”. Wichtiger ist, dass du es @iberhaupt versuchst und einen
Ausgangspunkt fiir den nichsten Entwurfsschritt schaffst. Doch achte
darauf, dass ein substanzieller Bezug zum Problem zu sehen ist. Nur dann
kann sich ein gemeinsames Modell entwickeln, weil alle von demselben
Bild ausgehen. Ansonsten hingen nur Worte in der Luft, unsichtbar und
flichtig. Auf die kannst du ungleich schwerer Bezug nehmen. Deren
Interpretation geht schnell auseinander.

Ein zu Papier gebrachter, expliziter Losungsansatz hilft dir auch zu
iterieren. Sei nicht mit der ersten Idee zufrieden. Wenn du sie vor dir siehst
(oder auch nur versuchst, sie vor dich hinzustellen), kann es sein, dass du
erstmalig merkst, dass die Idee doch noch nicht so gut ist. Schwierigkeiten
in der Visualisierung im Speziellen oder Erkldrung mit Worten im Allge-
meinen sind ein gutes Signal fiir dich, weiter dariiber nachzudenken. Und
so kann es sein, dass du auf einen neuen Lésungsansatz kommst - den du
selbstverstandlich ebenfalls zu Papier bringst. Hier ein Beispiel fiir eine
Revision der Persistenzidee fiir das Hello-World Beispiel:

02 - Entwurf im Uberblick 68

‘ \/BLE:JCI)W?O‘(‘P\/LJ Surh ety
= D Tendon b

Cdrua /I

(o
@D»V;H(

Pohs [Tt i
()0”" g Lol
Dz el Jh//

{ oud
@rua_ %07

s A A

WMevonr 4_14'6‘°u ﬂcs&wl.,(_

RN SR SV SOV N Y Y cdi Y ”M‘pj

Die Funktionsbereiche haben sich nicht verandert. Doch das Persistenzfor-
mat gefallt mir nicht mehr. Warum die Namen zusammen mit Besuchszéh-
lern speichern? Dann muss die Gésteliste immer komplett neu geschrieben
werden, wenn es eine Textdatei ist, obwohl sich nur ein Wert verandert hat.
Oder ich miisste zu einer echten Datenbank greifen, die einen gezielten
Zugriff auf nur einen Datensatz bietet. Oder ich miisste die Namen statt
in einer Datei auf viele verteilen, die ich getrennt aktualisieren kann.

Viel einfacher scheint mir jedoch, bei einer Datei zu bleiben, an die Namen
allerdigs nur angehingt werden. Jeder Name taucht darin dann so héufig
auf, wie der Gast auf einer Party war. Das kann jederzeit gezéhlt werden.

Diesen Ansatz nenne ich Event Store, weil jeder Besuch ein Ereignis ist,
das minimal mit dem Besuchernamen dokumentiert wird. Das ist ein total
flexibler Ansatz, der ohne Schema auskommt.**

Wie auch immer der Ansatz aussieht, das Wesentliche ist, iiberhaupt
Klarheit tiber deine Losungsidee zu bekommen. Versuche Anforderungen

*Dass der Ansatz nicht geniigend skaliert, auch wenn es tausende, gar zehntausende
Besucher gibt, ist nicht zu fiirchten. Festplatten und Prozessoren sind schnell genug, um
selbst fiir jeden Besucher eine solche Datei komplett zu laden (was nicht einmal sein misste).
Aber falls du das bezweifeln solltest, probiere es schnell aus. In wenigen Zeilen kannst du
deine Hypothese mit einer spike solution tberpriifen. Schlieffe einen Lésungsansatz, der
Vorteile hat (hier: Flexibilitat), nicht aufgrund nur eines Gefiihls aus, dass die Nachteile
iiberwiegen konnten. Mache lieber ein Experiment.

http://www.extremeprogramming.org/rules/spike.html

02 - Entwurf im Uberblick 69

nicht sofort in Code umzusetzen. Versuche nicht einmal, eine Losung
fiir die Anforderungen sofort mit einem formalen Modell zu beschreiben.
Nein, nimm dir die Zeit, die Losung “im Freistil” zu erarbeiten. Deiner
Kreativitét sollen dabei keine Grenzen gesetzt werden. Dadurch wird der
Loésungsansatz sehr wahrscheinlich auch schon ganz natiirlich deklarativ.
Betrachte in ihm Verhalten und/oder Daten, wie du magst. Wie es dir
taugt, um Klarheit zu bekommen. “Ah, ja, so kann es gehen!” sollst du am
Ende ausrufen. Dann bist du bereit fiir den nichsten Schritt.

Lediglich auf Papier musst** du deinen Losungsansatz frither oder spater
bringen. Das ist ein erster Test, ob er etwas taugt. Denn wenn du ihn nicht
mal “im Freistil” auf Papier beschreiben kannst, wie willst du das spéter
im Korsett des Codes schaffen?

2. Das Modell

Der Losungsansatz ist notwendig, aber nicht hinreichend als Entwurf.
Mit ihm hast du zwar eine Losung erarbeitet, die kannst du nur nicht
geradlinig in Code tbersetzen. Damit kommen wir zum Modell: Das
Modell ist die Losung in solchermaflen formalisierter Form, dass dir
danach die Codierung der Losung leicht(er) von der Hand geht.

Jede Phase im Softwareentwicklungsprozess, den ich dir im Rahmen von
Programming with Ease empfehle, hat einen sehr konkreten, engen Zweck:

1. Die Anforderungsanalyse baut bei dir Verstindnis fiir ihr Problem
in einer Form auf, die konkret und testbar ist. Das Ergebnis sind
Funktionen mit zugehorigen Testféllen.

2. Der Entwurf findet eine Losung fiir das Problem, das du nach der
Analyse verstanden hast. Das Ergebnis ist ein Modell.

1. Zunichst erarbeitest du die Losung in Form eines Losungsan-
satzes. Das ist informell, sehr abstrakt, moglichst visuell und
“auf Papier”.

*’Naja, du “musst” nicht. Aber ich lege es dir sehr, sehr ans Herz. Die Vorteile eines
solchen Ausdrucks sind zu vielfiltig, als das du sie in den Wind schlagen solltest. Am Anfang
mag es dir schwerfallen. Mit der Ubung wird es dann leichter. Am Ende kannst du dir eine
Programmierung ohne “verbildlichte” Losungsansitze nicht mehr vorstellen.

02 - Entwurf im Uberblick 70

2. AnschlieSend konkretisierst und formalisierst du den Lo-
sungsansatz. Das Abstraktionsniveau sinkt etwas, die Losung
wird feiner ausgearbeitet, dennoch ist das resultierende Mo-
dell deklarativ und “codefrei”.

3. Die Codierung iibersetzt die entworfene Losung in Hochsprachen-
code. Das Ergebnis sind Produktions- und Testcode.

1. In der Codierung schreibst du zuerst einen Test, um dir eine
Latte aufzulegen, tiber die du springen willst. Mit test-first
vergisst du nicht, Tests zu schreiben, und du weifdt sofort,
wann du fertig bist mit dem Produktionscode.

2. Der Produktionscode ist die Ubersetzung des Modells in eine
Form, die dem Kunden am Ende nutzt. Die Funktionen und
Beziehungen aus dem Modell iibersetzt du in Code. Anschlie-
Bend fiillst du die Funktionen mit Logik an, so dass tatséchlich
Verhalten hergestellt wird. Das ist nun die imperative Losung
des Problems, das die Anforderungen aufgeworfen haben.

3. Immer wieder refaktorisierst du Produktions- und durchaus
auch Testcode, um das, was trotz eines guten Modells und ge-
radliniger Ubersetzung unsauber geworden ist, wieder in eine
zukunftsfahige Ordnung zu bringen. Das passiert immer mal
wieder und ist nicht schlimm. Gelegentlich weichst du auch
vom Modell ab, weil du in der Codierung neue Erkenntnisse
gewinnst.

Fiir gegebene Anforderungen ist das mehr oder weniger ein Wasserfall.
Du durchschreitest diese Phasen von 1. bis 3.3. in dieser Reihenfolge.
Theoretisch jedenfalls, denn praktisch gibt es darin Schleifen bzw. Riick-
wartsschritte: Du gehst von der Modellierung zuriick zum Losungsansatz,
weil du bei der Konkretisierung bemerkst, dass irgendetwas noch fehlt.
Du gehst womoglich vom Losungsansatz zuriick zur Anforderungsana-
lyse und sprichst mit dem Auftraggeber, weil du bemerkst, dass dir
irgendetwas noch unklar ist. Du “drehst dich im Kreis” innerhalb der
Codierung wihrend der Ubersetzung eines Modells; das gehst du Funktion
fur Funktion mit 3.1, 3.2 und 3.3 an.

Der Wasserfall ist also entschérft. Keine Sorge, du musst keinen “Agili-
tatseid” brechen. Auflerdem gilt der Wasserfall nur fir die anliegenden
Anforderungen. Es gibt keine Not, alle Anforderungen erst komplett zu
analysieren. Du kannst einen beliebig kleinen Ausschnitt wahlen. Manch-
mal rauschst du den Wasserfall in vier Stunden herunter, manchmal in

02 - Entwurf im Uberblick 71

einem Tag, manchmal in zwei Tagen. Linger sollte es zumindest fiir
Entwurf + Codierung nicht dauern. Ich glaube fest daran, dass Inkremente
nicht mehr als 16 Stunden fiir die Umsetzung brauchen sollten, d.h. z.B.
von heute 9:00 Uhr bis morgen 17:00 Uhr.*®

Modellarten

Das Modell formalisiert den Losungsansatz. Es konkretisiert, was der Lo-
sungsansatz mehr oder weniger grob angedacht hat. Was bisher vielleicht
nur verschwommen zu sehen war, muss nun geklart werden. Das betrifft
beide Seiten jeder Losung: das Verhalten und die Daten. Es gibt daher zwei
Arten von Modellen:

« Das Verhaltensmodell beschreibt, was getan werden muss, um das
Problem zur Laufzeit zu losen.

« Das Datenmodell beschreibt, mit welchen Daten etwas getan wer-
den muss.

Software weifdt insofern eine grundsatzliche Dualitat auf. Verhalten und
Daten sind deren gegeniiberstehende Seiten und ergeben zusammen das
Ganze. Ohne Daten kein Verhalten, ohne Verhalten keine Daten.

Allerdings hat einer dieser Aspekte fiir mich Prioritdt: das Verhalten.
Dafiir wird Software gemacht! Eine Problemlosung besteht immer in

*Eine solche Arbeitsweise nennen ich spinning und habe den gleichnamigen Workout
im Fitness-Studio im Sinn. Dass in 16 Stunden nicht unbedingt Wert fiir den Auftraggeber
hergestellt werden kann, ist mir klar. Doch das ist auch nicht der Zweck, so kleiner Inkre-
mente. Nach 16 Stunden soll vielmehr eine Umsetzung vorliegen, zu der der Auftraggeber
“nur” Feedback geben kann. Du willst als Programmierer einfach nicht langer als zwei Tage
im Ungewissen sein, ob das, woran du arbeitest in die richtige Richtung geht. Und auch
der Auftraggeber sollte nicht ldnger im Unklaren sein, ob du ihn verstanden hast bzw. ob
er tiberhaupt in Auftrag gegeben hat, was er wirklich braucht. Aus mehreren Feedback-
Inkrementen setzt sich dann ein Wert-Inkrement zusammen. Wann Wert fiir den Kunden
entsteht, ist nicht dein Job zu beurteilen. Mit jeder Umsetzung produzierst du lediglich
Qualitétscode in jeder Hinsicht in Bezug auf die dir vorliegenden Anforderungen. Das ist
wirklich alles. Doch das ist schwierig genug. Belaste dich also nicht noch mit der Wertfrage.

02 - Entwurf im Uberblick 72

Verhalten, das Daten transformiert.*

Datenmodelle

Die mainstream Objektorientierung wie auch lange Jahrzehnte sehr be-
grenzter Hauptspeicher und daraus folgend eine Wichtigkeit von Daten-
banksystemen haben aus meiner Sicht viele Softwareteams dazu verleitet,
zuerst und vor allem iiber Datenmodelle nachzudenken. Fiir diesen Aspekt
hat Entwurf eine gewisse Akzeptanz und Sichtbarkeit behalten. Ich nehme
an, dass auch du schon z.B. von Entity-Relationship (ER)-Modellen®
gehort hast:

**Oder sogar noch genauer: Software wird fir gréf8ere Effizienz entwickelt. Mit genii-
gend Ressourcen wie Zeit oder Menschen kénnen die Probleme, die Software 16st, auch
ohne Software gelost werden. Es geht also nicht primédr um Funktionalitdt. Auftraggeber
versprechen sich von Software vielmehr, dass sie effizienter ist als softwarelose Alternativen.
Der Effizienzgewinn kann in performanterer Funktionalitét liegen oder in benutzerfreund-
licherer oder sicherer usw. Es geht um den Komparativ erkenntlich am “-er” der Effizienz-
Adjektive. Manchmal scheint es zwar auszureichen, nur eine Funktionalitit in Software zu
gielen, um sie schlicht jederzeit fiir Anwender verfiigbar zu haben. Aber auch damit ist eine
Effizienz gemeint.

*https://en.wikipedia.org/wiki/Entity %E2%80%93relationship_model

https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

02 - Entwurf im Uberblick 73

) CreatedOn Type w . Plagrsn
(Sbscrbriame

Account

Character : Region

1

Carrying

CreepName

C HitPoints

Beispiel fiir ein Entity-Relationship Datenmodell aus Wikipedia

Diese Darstellung ist “nur” ein Modell, weil sie kein Code ist. Weder siehst
du programmiersprachliche Anweisungen, um eine solche Datenstruktur
in einer Datenbank herzustellen, noch siehst du Klassen, die sie in-
memory darstellen konnten, noch ist tiberhaupt klar, wie die einzelnen
Elemente des Modells implementiert werden.*

Oder hier ein anderes Datenmodell von einer Seite®’, die UML (Unified
Modelling Language)*® Klassendiagramme vorstellt:

**Die Implementierung des ER-Modells konnte mittels eines RDBMS oder auch einer
Dokumentendatenbank geschehen. Dass und welche Relationen existieren, erzwingt kein
RDBMS, auch wenn das lange die erste Wahl gewesen sein mag.

*"https://datamodelprototype.wordpress.com/2014/01/30/uml-modeling- class-
diagrams/

**https://en.wikipedia.org/wiki/Unified_Modeling Language

https://datamodelprototype.wordpress.com/2014/01/30/uml-modeling-class-diagrams/
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://datamodelprototype.wordpress.com/2014/01/30/uml-modeling-class-diagrams/
https://datamodelprototype.wordpress.com/2014/01/30/uml-modeling-class-diagrams/
https://en.wikipedia.org/wiki/Unified_Modeling_Language

02 - Entwurf im Uberblick 74

Person Cup
- name : String _ _ - owner : Person = void
- section : String cupOwned cupOwner | aterial : String
- item : Cup = void - totalVolume : double
- fatigue : boolean 1.* 1 - amountFull : double
+ getCup(fatigue : boolean) : Cup + overflow() : double

+ fillCup() : void

+ drinkCup() : void
+ dropCup() : void

Coffee Cup Plastic Cup

- handle : boolean - straw : boolean

+ insulate(volume : double) : degrees + crack() : void
+ stack() : void

Ein Klassendiagramm als Datenmodell

Bei Datenmodellen geht es darum, Datenelemente zu benennen, Daten
zusammenzufassen und Zusammenfassungen in Beziehung zu stellen.
Diese Daten tun nichts, vielmehr wird mit ihnen etwas getan. Das ist die
Aufgabe von Verhalten.

Im weiteren werde ich nicht viel zu konkreten Datenmodellierungsansat-
zen sagen. Ich entwerfe und benutze Datenmodelle einfach in der einen
oder anderen Form. Datenmodellnotationen sind bei aller Unterschied-
lichkeit der Darstellungen doch so einfach und naheliegend und weit
verbreitet, dass ich mir weitere Ausfithrungen erspare. Ich bin gewiss, dass
du mit der Datenmodellierung keine Schwierigkeiten haben wirst, wenn
du erstmal weiflt, um welche Daten es bei einer Losung geht.

Das allerdings ist wiederum innerhalb der Lésungsfindung ein Problem,
mit dem wir uns befassen wollen. Zu oft wird namlich fiir meinen
Geschmack eine vorzeitige Optimierung im Hinblick auf das Datenmo-
dell vorgenommen. Das Datenmodell wird gesetzt und daran muss sich
dann das Verhalten anlagern. Fir mich steht auf diese Weise jedoch die
Entwurfswelt auf dem Kopf!

Verhaltensmodelle

Wie gesagt, Prioritét hat fiir mich das Verhaltensmodell. Im Verhaltensmo-
dell wird beschrieben, was passieren soll. Man konnte sagen: Verhaltens-
modelle drehen sich um Verben, Datenmodelle um Substantive. Funktions-
einheiten werden benannt, zusammengefasst und Zusammenfassungen in
Beziehung gesetzt. Diese Funktionseinheiten tun etwas mit Daten.

02 - Entwurf im Uberblick 75

Vielleicht fallt dir sogar eine Art Verhaltensmodell ein: lange Zeit war das
Flowchart® sehr beliebt.

Lamp doesn't work

Lamp
plugged in?

>

Plug in lamp

Bulb
burned out?

>

Replace bulb

Ein Flowchart nach Wikipedia als Verhaltensmodell

Das sieht konkreter aus als die bisherigen Losungsansitze, oder? Das
kannst du “runterprogrammieren”, oder?

Ich halte das aber fiir kein niitzliches Modell. Es abstrahiert fiir meinen
Geschmack zu wenig von den Mitteln einer Hochsprache. Ein Flowchart
stellt einen Kontrollfluss dar wie Hochsprachencode. Es enthélt Fallunter-
scheidungen und vor allem auch Schleifen wie Hochsprachencode. Diese
Art der Darstellung von Verhalten bietet schlicht keine Skalierbarkeit.
Du kannst damit keine grofleren Losungen beschreiben: das resultierende
Diagramm ist dann genauso wenig verstdndlich wie Hochsprachencode.

Flowcharst stammen aus einer Zeit vor der Strukturierten Programmie-
rung®. In ihnen sind beliebige Verzweigungen (lies: Spriinge) erlaubt. Es
gibt keine wirklich beschriankende Syntax. Sie sind mithin wenig hilfreich
in der Praxis - auch wenn sie hier und da bei sehr begrenzter Funktionalitat

*https://en.wikipedia.org/wiki/Flowchart
“https://de.wikipedia.org/wiki/Strukturierte_Programmierung

https://en.wikipedia.org/wiki/Flowchart
https://de.wikipedia.org/wiki/Strukturierte_Programmierung
https://de.wikipedia.org/wiki/Strukturierte_Programmierung
https://en.wikipedia.org/wiki/Flowchart
https://de.wikipedia.org/wiki/Strukturierte_Programmierung

0N UA WN

02 - Entwurf im Uberblick 76

mal zum Einsatz kommen kénnen.

Fir mich gibt es zwei Kategorien von Loésungen: algorithmische und
prozessurale. Algorithmische Losungen bewegen sich sehr nah an den
Mitteln der Strukturierten Programmierung von Programmiersprachen.
Du bist versucht, sie mit Pseudocode oder Flowcharts zu modellieren. Der
Losungsansatz fiir das Sortierproblem fallt in diese Kategorie.

Als Beispiel fiir Pseudocode die obige Losung fiir die Behandlung einer
nicht funktionierenden Lampe:

If lamp is plugged in then

if bulb is burned out then
replace bulb

else
repair lamp
end if
else
plug in lamp
end if

Den Code verstehst du, auch wenn er zu keiner speziellen Program-
miersprache gehort. Er ist eine Verallgemeinerung dessen, was in vielen
Sprache an Mitteln vorhanden ist. Deshalb lésst er sich schnell hinschrei-
ben; du musst auf keine syntaktischen/semantischen Feinheiten achten.
Hauptsache er liest sich flissig.**

Algorithmische Losungen sind am Ende aber die unkritischen. Sie miissen
gefunden werden, klar. Doch ihr Umfang ist gewo6hnlich vergleichsweise
klein. Ich sage mal etwas flapsig: Der Code rein algorithmischer Losungen
passt handschriftlich auf eine DIN A4 Seite. Das ist kein Umfang, der
fir langfristig hohe Produktivitat eine grofle Hiirde darstellt. Solange
die Logik fiir eine algorithmische Losung fokussiert in einer Funktion
steht und keine funktionalen Abhéngigkeiten bestehen, wirst du dir ein
Verstandnis erarbeiten konnen. Debugging hilft im Zweifelsfall.

Natiirlich ist das eine Vereinfachung. Mir gehts hier aber um das big
picture. Wenn du auf einen “algorithmischen Kern” in einem Problem
gestoflen bist, dann modelliere mit einem Flowchart. Nur vermute ich,
dass du zu frith gewiss bist, dass ein Problem schon algorithmisch ist.

“!Allerdings: Schau genau hin! Héttest du es lieber gehabt, die Losung zuerst als Pseudo-
code oder zuerst als Flowchart prisentiert zu bekommen? Ich finde eine visuelle Losung in
den meisten Féllen besser zu iiberblicken. Sie ist zweidimensional, was Fallunterscheidungen
und Schleifen zugute kommt. Im textuellen Pseudocode muss alles linearisiert werden.

02 - Entwurf im Uberblick 77

Du machst es dir damit zu schwer, ein Modell (oder spéter den Code) zu
finden.

Ich glaube, dass die meisten Probleme zuerst und vor allem prozessuale
Losungen brauchen. In denen findest du dann keine Fallunterscheidun-
gen oder Schleifen, sondern lediglich Funktionsaufrufe. Die stehen fiir
Schritte in einem Prozess, der das gewiinschte Verhalten erzeugt durch die
Transformation von Eingabedaten in Ausgabedaten unter Verwendung
von Zustand und Ressourcen.

(Ei L{{m\(q/q qu)>

Y

ﬂwob\ rien

Auch ein Verhaltensmodell: ein Datenflussmodell fiir die allgemeine Funktionsweise von
Software-Funktionseinheiten

Algorithmische Modelle sind schon sehr nah am Wie. Prozessuale Modelle
hingegen zeigen vor allem das Was. Hier als Beispiel ein UML Sequenz-
diagramm aus Wikipedia**:

“https://en.wikipedia.org/wiki/Sequence_diagram

https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/Sequence_diagram

02 - Entwurf im Uberblick 78

:Computer :Server

P checkEmail >

sendUnsentEmail

newEmail '
response
LR

]
[newEmail] downloadEmail [

deleteOldEmail !

1

Ein Sequenzdiagramm als Verhaltensmodell

Die durchgezogenen Pfeile stellen “Funktionsaufrufe” dar. Im Bild ruft
also der Computer den Server mehrfach auf im Rahmen der Losung
des Problems “check mail”.**

Das ist ein deutlich abstrakteres Verhaltensmodell als ein Flowchart. Hier
geht es nicht um einzelne Anweisungen, sondern lediglich um die zu
erledigenden Schritte. Wie genau ein Schritt wie sendUnsentEmai 1l sein

“Ich sage hier so kithn, dass es sich um Funktionsaufrufe handelt. Vielleicht liest du
jedoch lediglich Datenfliisse heraus: da flielen einfach Nachrichten zwischen Computer
und Server. Diese Interpretation ist fiir mich auch ok. Nur frage ich dich: Wie werden
denn diese Nachrichten verarbeitet? Von Logik! Und wo findest du diese Logik? Eingefasst
in Funktionen. Das ist die Coderealitat: Am Ende erzeugt Logik das Verhalten - hier z.B.
Transformation einer newEma+i 1-Nachricht in eine response-Nachricht - und diese Logik
steckt besser fur sich in bzw. hinter genau einer Funktion, um klar idenfizierbar zu sein mit
ihrer Verantwortlichkeit.

02 - Entwurf im Uberblick 79

Teilverhalten erzeugt, ist unterhalb des Radars dieses Modells. Die Logik
dafiir wiirdest du in einer test-first Codierung finden. Sie ist ganz bewusst
kein Bestandteil des Entwurfs.

Allerdings: Solange du in der Modellierung noch das Gefiihl hast, dass so
eine Funktionseinheit wie der Block fir sendUnsentEmail zu grof ist,
um in der Codierung ziigig mit Logik gefullt zu werden, solange solltest
du mit dem Modell noch nicht zufrieden sein. Aber dazu spater mehr.

Im Verhaltensmodell liegt der Fokus auf dem Was. Deshalb werde ich
dir im Weiteren keine Flowcharts oder Pseudocode nahelegen. In beiden
steckt fiir mich zuviel Wie. Aber auch das Sequenzdiagramm werde ich
nicht weiter verwenden. Es skaliert ebenfalls nicht, wenn die Prozess-
schritte zu vielen “Akteuren” angehéren (im Beispiel z.B. Computer).

Dennoch geben Sequenzdiagramme einen ersten Eindruck davon, wie ein
Verhaltensmodell grundsétzlich aussieht.

Abstraktion

Verhaltensmodelle und Datenmodelle beschreiben die zwei Seiten von
Software: Verarbeitung und Material. Das kann in ganz vielféltiger Weise
geschehen. Die obigen Modelle sind sollen dafiir nur Beispiele sein, um
dir das Thema Modellierung etwas fasslicher zu machen.

Wenn du dir einen Eindruck von der Bandbreite an Modellierungsansétze
verschaffen willst, dann schau dir z.B. Biicher wie UML Distilled von
Martin Fowler** oder Modellierung: Grundlagen und formale Methoden
von Uwe Kastens* an. Du wirst erstaunt sein, wie vielfaltig du Losungen
ohne Code beschreiben kannst; oder manchmal auch nur Losungsansatze,
denn einige Modellierungsmethoden ordne ich eher der vorgelagerten
Phase zu.

Egal aber, welchen Ansatz du insbesondere fiir die im Weiteren fokus-
sierte Verhaltensmodellierung wahlen solltest, solltest du eines nicht aus
den Augen verlieren: die Umsetzung in Code. Beim Blick auf einen
Modellierungs- oder allgemeiner Entwurfsansatz frage ich mich immer:

“UML Distilled: A Brief Guide to the Standard Object Modeling Language, Martin
Fowler, Addison-Wesley, ISBN 978-0321193681

“Modellierung: Grundlagen und formale Methoden, Uwe Kastens, Carl Hanser Verlag,
ISBN 978-3446454644

https://www.amazon.de/Martin-Fowler/dp/0321193687
https://www.amazon.de/Modellierung-Grundlagen-Methoden-Uwe-Kastens/dp/3446454640

02 - Entwurf im Uberblick 80

“Und wo sind die Funktionen?” Denn die Funktionen sind die Container
fiur die Logik. Und die Logik ist das, was das Verhalten erzeugt und so
schwierig korrekt hinzubekommen ist. Und um sie korrekt zu erschaffen
und auch zu erhalten, ist ein test-first Vorgehen bei der Codiernung nétig.
Und dafiir wiederum sind Funktionen als Ansatzpunkte zwingend.**

Was du als und wie du in der Entwurfsphase die Losung findest, am Ende
musst du sie in einem Modell formalisiert formulieren, das glasklar macht,
welche Funktionen mit welchen Verantwortlichkeiten der Code aufweisen
muss.

Diese funktionalen Atome, die alle ihren Beitrag leisten zum Gesamt-
verhalten, diirfen aber natiirlich nicht “einfach herumliegen”. Vielmehr
miissen sie in Beziehung gesetzt werden, um ein Zusammenspiel zu
erreichen. Im Sequenzdiagramm oben ist das der Fall:

 Funktionen wie sendUnsentEmail oder deleteOldEmatil sind
Verhaltensatome.

. Pfeile zwischen den “Akteuren” Computer und Server setzen
Funktionen in Beziehung, hier: checkEmail mit z.B. sendUnsen-
tEmail; erstere ruft letztere auf.

Und die “Akteure” selbst setzen Funktionen ebenfalls in Beziehung. Sie
fassen sie zusammen, hier: in Server sind sendUnsentEmail und
deleteOldEmail vereint.

Modelle als konkrete, formalisierte Losungen und Ausgangspunkte fiir
deinen Code miissen damit mindestens Folgendes leisten:

« Atomisieren: Die noch zu findende Logik mit Funktionen, d.h.
Verhaltensatomen représentieren.

« Komponieren: Funktionen mit ihren Teilverhalten zu groflerem
Verhalten zusammenfassen. Aus Verschiedenem wird etwas Neues.

« Aggregieren: Funktionen thematisch zusammenfassen. Aus Ahnli-
chem wird etwas Grofieres.

“Siehe dazu den ersten Band dieser Reihe: Test-first Codierung

02 - Entwurf im Uberblick 81

/}%me&h Lo en LuQ,rCL\
o © /?
ao
)]

Dass Modelle auflerdem auch noch die Daten, die die Funktionen verar-
beiten, beschreiben miissen, ist selbstverstandlich. Wie gesagt, das halte
ich jedoch fiir ein vergleichsweise kleines Problem und sekundéir. Wenn
du von der mainstream Objektorientierung gepragt sein solltest, mag dir
das merkwiirdig erscheinen, doch versuche einmal deine Skepsis fiir die
folgenden Seiten auf Urlaub zu schicken.

Atomisieren, komponieren und aggregieren sind fiir mich Abstraktions-
leistungen. Fiir Details, Einzelteile, Feinheiten werden Begriffe gefunden,
mit denen es sich leichter umgehen lasst. Und das kann dann sogar auf
beliebig vielen Ebenen stattfinden.

- []

ﬁo\ - £ e
L= [o [T
e L / 7
1L [j

Das Ergebnis ist ein Abstraktionsbaum mit beliebiger Tiefe fiir Komposite
und Aggregate.

Ohne einen solchen Baum in zwei Dimensionen - Komposition und
Aggregation - bekommen wir wachsende Losungen einfach nicht in den
Griff, glaube ich. Er existiert am Ende de facto im Code - fragt sich nur,

02 - Entwurf im Uberblick 82

wie es zu ihm gekommen ist. War das “Zufall”, “hat es sich ergeben”? Oder
hast du ihn bewusst entworfen? Ich pladiere firr Letzteres.

Plane deine Abstraktionen. Plane sie vor allem nicht allein, sondern ge-
meinsam mit deinen Entwicklerkollegen. Strebe nicht nur nach collective
code ownership*’, wie es einmal im eXtreme Programming heif3t. Ich
meine, es muss auch ein collective design ownership geben. Ihr misst alle
zusammen hinter den Abstraktionen stehen, die die Losung reprasentieren
und formen.

Die soziale Dimension eines Entwurfs ist nicht zu verachten. Er ist ein
Werkzeug fiir’s Denken wie fiir's Kommunizieren. Deshalb ist es auch
nicht so wichtig, dass ein Entwurf “fiir sich selbst stehen kann”. Lege
deinen Losungsansatz oder auch dein Modell nicht einfach jemandem zur
Weiterverarbeitung stumm vor. Beide sind bei allem Detailreichtum “nur”
Gesprachsanlasse. Entwiirfe miissen fiir die Weiterverarbeitung mit Erkla-
rungen ibergeben werden. Am besten geschieht das im Dialog, zur Not
schriftlich oder per Video. Je mehr Interaktionsmoglichkeit zwischen dem
Empfanger deines Entwurfs und dir, desto besser. Denn der Empfénger
wird Fragen haben. Er muss Fragen haben, weil du nie alles, was dir zu
einer Losung im Kopf herumgeht, vollstdndig in einem Entwurf festhalten
kannst.

Zusammenfassung

Im Entwurf findest du zuerst eine Losung und formalisierst sie dann
abstrakt. Fiir mich gilt dabei: Behavior first, data second. Was das bedeutet,
wirst du in den folgenden Kapiteln sehen.

Wihrend du in der Losungsfindung noch sehr frei bist, was den visuellen
Ausdruck angeht - und visuell sollte er sein! -, engt die das Modell jedoch
ganz bewusst sein. Seine Abstraktionen sollten so gestaltet sein, dass du
sie leicht in Codestrukturen iibersetzten kannst.

Es gibt eine Vielzahl an Modellierungswerkzeugen. Manche machen es dir
schwerer, andere leichter, diese Forderungen zu erfiillen. In den folgenden
Kapiteln stelle ich dir den Ansatz vor, von dem ich meine, dass er fiir dich

“"https://explainagile.com/agile/xp-extreme-programming/practices/collective-code-
ownership/

https://explainagile.com/agile/xp-extreme-programming/practices/collective-code-ownership/
https://explainagile.com/agile/xp-extreme-programming/practices/collective-code-ownership/
https://explainagile.com/agile/xp-extreme-programming/practices/collective-code-ownership/
https://explainagile.com/agile/xp-extreme-programming/practices/collective-code-ownership/

02 - Entwurf im Uberblick 83

der erste sein sollte, durch dessen Brille du auf eine Losung schaust, um sie
zu formalisieren. Nicht der einzige, aber der erste, dein Default. Er ist breit
einsetzbar und leichtgewichtig, wie ich dir hoffentlich vermitteln kann.
Andere Ansitze hab gerne auch in deinem Entwurfskocher — doch gerade
um deine Ldsungen in groben Strichen zu skizzieren fir “das Ausmalen”
in der Codierung, halte ich das Flow-Design, wie ich es nenne, fiir ideal.

02 - Entwurf im Uberblick 84

Ubungsaufgaben

Reflexionsaufgabe

Bitte formuliere eine Frage oder eine Erkenntnis zum Kapiteltext.

« Wo bist du gedanklich hingengeblieben, was ist dir unklar,
was passt fiir dich irgendwie nicht zusammen, wozu wiirdest
du dir noch etwas mehr Erklarung wiinschen? Steht irgendet-
was zu deiner bisherigen Praxis im Widerspruch und du fragst
dich, warum du etwas dndern solltest?

« Oder: Wann hast du einen Aha-Moment gehabt, was ist
dir als bemerkenswert, spannend, ausprobierenswert aufgefal-
len? Hat irgendetwas “in dir Klick gemacht”, weil dir nun ein
Zusammenhang aufgegangen ist? Oder verstehst du jetzt aus
deiner bisherigen Praxis irgendetwas besser?

Am besten formulierst du Frage bzw. Erkenntnis schriftlich. Indem
du deine Gedanken aufschreibst, wirst du dir ihrer bewusster. Bei
einer Frage kommst du dadurch vielleicht schon einer Antwort aus
dir selbst heraus naher. Bei einer Erkenntnis fallt dir vielleicht schon
etwas ein, das du ab jetzt anders machen kannst.

Aufgabe - Losungsansatz finden

Die SARS-CoV-2 Pandemie 2020 hat vielleicht das Interesse fiir Statis-
tik in der Bevolkerung nicht erhoht, doch zumindest haben jetzt mehr
Menschen von Begriffen wie Sensitivitat und Spezifizitat gehort und dass
ein positives Testergebnis auf SARS-CoV-2 Infektion weder notwendig
eine Erkrankung bedeutet, noch zwingend korrekt ist. Aus diesem An-
lass folgende Aufgabe, der so genannte Bedingte Wahrscheinlichkeiten
zugrundeliegen. Das ist Mathematik, die nicht jedem jenseits der 4. Klas-
se Spall gemacht hat, doch es ist keine hohere Mathematik und lasst
sich mit ein bisschen googlen zu dem Begriff gut erkunden; mehr als
Grundrechenarten sind nicht nétig. Dass du dich mal mit Bedingten

02 - Entwurf im Uberblick 85

Wahrscheinlichkeiten auseinandersetzt, ist ein Gewinn fiirs Leben. Da bin
ich gewiss.

Entwickle bitte nur einen Lisungsansatz fir folgende Anforderungen.

Der Auftraggeber wiinscht ein Programm, mit dem Anwender be-
stimmen konnen, wie hoch die Wahrscheinlichkeit einer Erkrankung
bei einem positiven Testergebnis ist.

Ein Beispiel aus der Literatur:?

Ein Prozent der Frauen, die sich regelmdfSig einer Mam-
mogrphie unterziehen, haben Brustkrebs. In 80% der
Falle ergibt sich fiir Frauen mit Tumoren in der Brust
ein positiver Befund. In 9,6 % der Fille zeigt sich jedoch
auch bei gesunden Frauen ein positiver Befund.

Wie wahrscheinlich ist es nun, dass eine Frau mit positivem Test-
ergebnis auch tatséchlich Brustkrebs hat?

Nur etwas 15% der Arzte, denen diese Frage mit den Angaben
vorgelegt wurde, konnten sie korrekt beantworten. Das legt einerseits
weitere Ausbildung nahe, aber auch Unterstiitzung durch Software
kann helfen.

Das Programm soll auf einer Datenbank basieren, die Privalenzen
fir Diagnosen enthalt, aber auch Sensitivitat und Spezifizitat zu-
gehoriger Tests. Beispiel fiir einen Eintrag in Bezug auf das obige
Mammographie-Szenario:

1 Test: Mammographie
2 Diagnose: Brustkrebs
3 Pravalenz: 0,01

4 Sensitivitat: 0,8

5 Spezifizitat: 0,904

Der Anwender sucht nach Test oder Diagnose und gibt an, ob
der Test positiv oder negativ ist. Das Programm gibt daraufthin die
Wabhrscheinlichkeit aus, dass das Testergebnis tatsichlich korrekt ist.

Beispiel fiir das obige Szenario:

02 - Entwurf im Uberblick 86

$ ergebnischeck.exe mammographie positiv
Die Wahrscheinlichkeit fir eine korrekte positive Diagnose von 'Brustkrebs' dist: 0,078.
Nur bei ca. 8 von 100 getesteten Personen ist die Aussage des Tests korrekt.

N

rw

AWard Casscells, B.S, et al; Interpretation by
Physicians of Clinical Laboratory Results, 1978,
https://www.nejm.org/doi/full/10.1056/NEJM197811022991808

Weder Modell, noch Codierung sind notig. Mach dir also nicht zu viel
Arbeit. Uberlege, was hier wirklich “entwurfswiirdig” nur in Bezug auf
einen Losungsansatz ist. Konzentriere deinen Losungsansatz darauf. Sei
so visuell wie moglich. Anhand deines Losungsansatzes solltest du die
Losung jemand anderem leicht erklaren konnen.

03 - Radikale
Objektorientierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die Welt bestehend aus Objekten?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Ursprung der Objektorientierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Wer hat's erfunden?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die zentrale Analogie der radikalen
Objektorientierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

03 - Radikale Objektorientierung 88

Principle of Mutual Oblivion (PoMO)

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Unabhangigkeit

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Geschlossenheit

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Unidirektionalitat

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Ein Prinzip als Destillat

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Implementationsidee

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

03 - Radikale Objektorientierung 89

Integration Operation Segregation
Principle (IOSP)

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Objekte verbinden als Verantwortlichkeit

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.
Ein Prinzip als Destillat
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Implementationsidee
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Philosophischer Exkurs

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Ubungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

03 - Radikale Objektorientierung 90

Aufgabe - Mit POMO/IOSP implementieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

04 - Flow-Design mit
1-dimensionalen
Datenflussen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

0-dimensionale Datenfliisse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Notation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Funktionseinheiten mit Seiteneffekten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

04 - Flow-Design mit 1-dimensionalen Datenfliissen 92

1-dimensionale Datenfllisse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Datenfluss als Scope

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf- mit-flow-
design.

FlieBende Mengen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Ubungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

05 - Flow-Design mit
2-dimensionalen
Datenflussen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Abstraktion durch Komposition

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Stratified Design

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

2-dimensionale Datenfllusse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aus Operationen werden Integrationen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

05 - Flow-Design mit 2-dimensionalen Datenfliissen 94

Notation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Datenflisse als aufgemotzte
Abhangigkeitsdiagramme

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Konsistenz

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Strukturierte Daten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

n:1 Ubersetzungen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Rekursion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

05 - Flow-Design mit 2-dimensionalen Datenfliissen 95

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Ubungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit
modularisierten
Datenflissen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Abstraktion durch Aggregation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Physisch kategorisieren mit dem Dateisystem

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Module

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Abhéangigkeiten
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit modularisierten Datenfliissen 97

Services stabilisieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Clients immunisieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Orthogonale Containerdimension

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die Modul-Hierarchie

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Klasse - Abhédngigkeiten mit Kontrakten zahmen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Hierarchische Modularisierung mit Klassen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit modularisierten Datenfliissen 98

Kriterien fur die Aggregation mit Klassen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Klassen als Datenstrukturen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Abstrakte Datentypen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Kriterien fiir instanziierbare Klassen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Explizite Interfaces fiir Klassen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Namensraum - Kontraktkollisionen vermeiden

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit modularisierten Datenfliissen 99

Bibliothek - Wiederverwendbarkeit ermoéglichen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Paket - Abhédngigkeiten stabilisieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Paket-Funktionen als Logik

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Komponente - Die Arbeitsteilung beférdern

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Service - Module plattformneutral machen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Wave - Softwareevolution zur Laufzeit

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit modularisierten Datenfliissen 100

Die Modul-Hierarchie im Uberblick

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Datenfliisse modularisieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Notation & Implementation | - Funktionen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modularisierungsrichtung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modularisierungskriterien

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Notation & Implementation Il - Daten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

06 - Flow-Design mit modularisierten Datenfliissen 101

Wider die Primitive Obsession

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modularisierungsbeispiel

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Ubungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

07 - Flow-Design mit
3-dimensionalen
Datenflissen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die wahren Ubersetzungsverhiltnisse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Streams

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Einsatzgebiete fiir Streams

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Parallelverarbeitung mit Streams

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

07 - Flow-Design mit 3-dimensionalen Datenfliissen 103

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Continuation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf- mit-flow-
design.

Event-Based Components

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Iterator

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Fallunterscheidung in der Integration

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Discriminated Unions

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

07 - Flow-Design mit 3-dimensionalen Datenfliissen 104

Polymorphie

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Warteschlange

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Ubungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

08 - Die IODA Architektur

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die Softwarezelle

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

System vs. Umwelt

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

“Kleiderbugelarchitektur”

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Die Membran

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

08 - Die IODA Architektur 106

Ventrale Interaktion: Portale

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Dorsale Interaktion: Provider

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Adapteraufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

“Griechische Architekturen”

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Kern

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Domanenlogik

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

08 - Die IODA Architektur 107

Domanendaten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

“Vitruvianische Architektur”

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

The Missing Concern: Integration

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

IOSP in der Architektur

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Interactors

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Application

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

08 - Die IODA Architektur 108

Controller

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Interactor als injection point

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Processors

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

IODA: All together now!

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Ubungsaufgaben

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

09 - Finaleim
Softwareuniversum

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Explizite Entwurf ist notig

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Der Entwurf ist deklarativ

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Das Modell beschreibt Funktionen in
Beziehungen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

09 - Finale im Softwareuniversum 110

Flow-Design im 4-dimensionalen Raum

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Orientierungshilfe fir die Softwareentwicklung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf- mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Anhang -
Musterlosungen

Wenn du nachhaltig Software entwickeln willst, wie ich es mir vorstelle,
dann musst du dir nicht nur ein paar Tipps&Tricks merken. Es ware
schon, wenn es so einfach wire - doch das reicht leider nicht. Du braucht
vielmehr Ubung und Experimente und Reflexion. Immerhin gilt es, einige
Gewohnheiten abzustreifen und Glaubenssétze zu verandern. Jedenfalls
ist es mir so ergangen auf meinem Weg zu Programming with Ease.

Um dich zu einer solch aktiven Auseinandersetzung mit der Methode zu
animieren, gehéren zu den Kapiteln Ubungsaufgaben. Vielleicht hast du
dich an der einen oder anderen schon versucht. Das wére super, denn
dann hast du den ersten Schritt zur erfolgreichen Verénderung und zum
Kompetenzaufbau schon getan.

Der zweite Schritt besteht anschliefend in der Reflexion deiner Losungen.
Die kannst du allein vornehmen, indem du dich am Ende zurticklehnst und
iiberlegst, was gut und was schlecht gelaufen ist usw. Damit bewegst du
dich jedoch nur innerhalb deiner eigenen Komfortzone. Tiefer geht deine
Reflexion, wenn du sie von einem Kontrast ausgehen ldsst. Den mochte
ich dir mit den Musterlosungen in diesem Band bieten.

Meine Vorstellung davon, wie die Ubungsaufgaben gelost werden konn-
ten, weicht sehr wahrscheinlich von deiner ab. “Kénnten” schreibe ich
hier bewusst statt “sollten”, weil ich nicht glaube, dass es nur eine Losung
fir die Ubungsaufgaben gibt. Vielmehr gibt es eine Losungsbandbreite,
die z.B. davon bestimmt ist, wie Schwerpunkte bei der Anwendung von
Prinzipien und Praktiken gesetzt werden. Hier und da wiirde ich zwar
sagen, dass es “keine zwei Meinungen geben sollte”, doch allermeistens ist
das nicht so.

112

Die folgenden Musterlosungen sind daher nicht die Losungen. Sie sind
nicht “richtig” und deine “falsch”, wenn sie anders aussehen. Der Wert
meiner Musterlésungen liegt nicht in einer “Wahrheit”, die sie verkorpern,
sondern vor allem in ihrer Andersheit.

Die Differenz zwischen deinen Losungen und meinen Musterlgsungen soll
dich noch weiter anregen, dariiber nachzudenken, warum du zu deinen
gekommen bist. Hattest du etwas missverstanden oder tibersehen oder
sogar in gutem Willen ergianzt? Hast du einen anderen Schwerpunkt
gesetzt?

Warum meine Musterlosungen sind, wie sie sind, erklare ich natiirlich.
Meine Entscheidungen sind (hoffentlich) alle begriindet und plausibel fiir
dich - was jedoch nicht heif3t, dass man dariiber nicht diskutieren kénnte.
Hitte ich mich anders entschieden, wo Entscheidungsfreiheit bestand,
wire ich zu anderen Losungen gekommen - die vielleicht néher an deinen
liegen wiirden. Der Kiirze wegen biete ich dir allerdings nur jeweils eine
Musterlgsung pro Ubungsaufgabe - und das auch nur in einem Monolog,
wie ihn ein Buch erméglicht.

Doch eine Musterlosung ist besser als keine, wiirde ich sagen. Damit
kannst du deine Reflexion schonmal anregen und tiefer in den Lernstoff
eintauchen.

Fiir personlicheres, konkreteres und dialogisches Feedback stehe ich dar-
iber hinaus natiirlich gern zur Verfiigung. Melde dich jederzeit per Email
oder schaue dir auf meiner Homepage*® an, was ich dir ergédnzend an
Trainings und Coaching bieten kann.

Viel Erfolg und Freude bei der Lésung der Ubungsaufgaben und der
anschlieenden Reflexion!

“*https://ralfw.de/

https://ralfw.de/
https://ralfw.de/

Musterlosung: 01 - Die
Anforderung-Logik Licke

Aufgabe 1 - Erkldren

Wie ist es dir ergangen mit der Aufgabe? Ich konnte es verstehen, wenn
du dich damit schwer getan hast. Erstens iiberhaupt “ein Essay schreiben”,
zweitens die Darstellung auch noch besonders einfach in der Sprache
halten. Das waren schon zwei ordentliche Herausforderungen und ich
wirde mich wunder, wenn du weniger als 60 Minuten dafiir gebrauchst
hast.

Ich selbst habe fiir die folgende Musterlosung auch einige Anlédufe nehmen
miissen. Mit 60 Minuten war es dabei nicht getan. (Aber eine gréfiere
erwartete Bearbeitungsdauer wollte ich auch nicht in der Aufgabe nennen,
um dich nicht gleich abzuschrecken.)

Wie so oft, ist das Ergebnis gerade wegen der begrenzten Zeit dann
etwas langer geworden. Mit mehr Zeit wire ja Gelegenheit, Redundanzen
herauszukiirzen oder knappere, elegantere Formulierungen zu finden.

Andererseits ist eine Erkldrung, die sich an Laien richtet, quasi notwendig
langlicher, weil weniger an Begriffe und Konzepten vorausgesetzt werden
kann. Man muss dann mehr mit Beispielen/Analogien arbeiten, um das
Abstrakte fiir sie zumindest halbwegs greifbar zu machen.

Wie dein Ergebnis am Ende aussieht, ist fir den Zweck der Aufgabe
jedoch zweitrangig. Schon, wenn es gut lesbarer Text herausgekommen
ist. Wichtiger jedoch ist aus meiner Sicht das, was vor und wéihrend dem
Schreiben passiert ist.

Fiir eine Erkldrung musstest du erstmal selbst dein Verstidndnis der Begrif-
fe “Entwurf” und “Modell” aufbauen und schirfen.

Musterlosung: 01 - Die Anforderung-Logik Liicke 114

Und dann musstest du fiir die Anforderung ELI5 dein Verstidndnis noch-
mal transformieren in eine laienverstandliche Form. Du musstest auswah-
len und ordnen und auch noch in Worte fassen, was dir “intuitiv klar ist”.

Um diesen Prozess ging es mir bei dieser Aufgabe. Ein Prozess, der beim
Lernen im Allgemeinen und bei der Vermittlung von Programmierkennt-
nissen im Besonderen viel zu selten durchlaufen wird, finde ich. Denn auf
diese Weise findet Lernen viel intensiver statt. Auf diese Weise erst eignest
du dir den Stoff namlich wirklich an. (Zumindest gilt das fiir Stoff, dessen
Verstandnis du nicht unmittelbar durch Tun iberpriifen kannst.)

Nach dieser Vorrede hier nun erstmal mein Versuch:

Vom Nutzen der Modellierung fir die
Programmierung (ELI5)

Spielst du manchmal mit einer Puppe oder mit einem Spielzeugauto oder
mit einer Dinosaurierfigur? Oder hast du womdglich sogar ein Puppen-
haus oder einen Kaufladen oder Bauernhof, die du in deinem Zimmer
aufbauen kannst zum Spielen?

Super, denn dann weif3t du auch, was ein Modell ist. Eine Puppe ist ein
Modell eines Menschen, ein Kaufladen ist ein Modell eines Supermarktes,
weil Puppe und Kaufladen in vielen Dingen einem Menschen bzw. einem
Supermarkt sehr dhnlich sind - aber sie sind eben viel kleiner und es fehlt
ihnen auch in anderer Hinsicht so einiges.

Dennoch macht es Spaf3, mit einer Puppe oder einem Kaufladen zu spielen,
oder? Die haben ja auch Vorteile, z.B. dass sie dir zur Verfiigung stehen,
wenn du es willst. Oder ein Spielzeugauto ist viel billiger als ein echtes.
Oder eine Dinosaurierfigur gibt es iiberhaupt, wihrend echte Dinosaurier
gar nicht mehr leben. Du konntest einen echten Dinosaurer nicht mal im
Zoo besuchen, wihrend du auf einem echten Bauernhof allerdings Urlaub
mit deinen Eltern machen konntest.

Modelle gleichen dem, was sie darstellen, einerseits also sehr; wenn du
damit spielst, ist es fast so, als wiirdest du z.B. wirklich ein Auto haben
oder einen Bauernhof. Andererseits sind Modelle handlicher und giinstiger.
Dein Eltern kénnen dir z.B. ein Spielzeugauto kaufen, aber fiir ein echtes
miissten sie ganz lange sparen und du miisstest auch erstmal erwachsen
werden, um es fahren zu diirfen.

Musterlosung: 01 - Die Anforderung-Logik Liicke 115

Ein Modell ist also eine tolle Sache. Du kannst mit etwas spielen, was dir
sonst nicht zugdnglich wdre. Du kannst dir damit vorstellen, wie es wire,
z.B. einen echten Bauernhof zu haben, ohne deshalb gleich umzuziehen.
Mit einer Puppe kannst du dir vorstellen, wie es wire, ein Baby zu haben,
ohne deshalb gleich wirklich ein eigenes Kind oder auch nur ein kleines

Geschwister bekommen zu miissen. Modelle sind also total bequem und
billig.

Wenn man nun programmiert, dann baut man im Grunde eine Art
Maschine. Die besteht zu einem Teil aus einem Computer, zum anderen
Teil besteht sie aus einem Rezept, das der Computer abarbeitet, um
irgendetwas zu tun, z.B. als Roboter euren Rasen zu mdhen oder beim
Spiel auf deinem Smartphone eine Figur zu bewegen. Dieses Rezept heif3t
Programm oder Software.

Ein Auto ist auch eine Maschine. Fiir die hast du ein Modell, mit dem du
dir vorstellen kannst, wie es wire, ein richtiges Auto zu haben.

Genauso kann man als Programmierer fiir eine Software-Machine, die
man bauen will, zundchst auch erstmal nur ein Modell herstellen; damit ist
jedoch weniger der Computer gemeint, sondern vor allem das Programm,
das er abarbeiten soll. Dieses Modell kann dann natiirlich nicht das, was
die echte Software-Maschine einmal tun soll - aber es sieht ihr eben doch
dhnlich und ist viel billiger.

Mit so einem Programm-Modell hat es ein Programmierer einfacher, sich
vorzustellen, wie es wdre, wenn er die spdtere Software-Maschine wirklich
hdtte. Das ist total niitzlich, weil es sehr, sehr schwierig und teuer ist,
richtige Software-Maschinen zu bauen.

Einen Unterschied gibt es aber zwischen einem Spielzeugauto als Modell
und einem Modell fiir eine Software. Das Spielzeugauto-Modell wird dem
echten Auto nachempfunden; es gibt zuerst das echte Auto und dann das
Modell. Beim Programmieren macht man es anders herum: Da baut man
zuerst ein Modell oder auch zwei oder drei, um danach das echte Programm
dem Modell nachzuempfinden.

Auf diese Weise kann sich ein Programmierer sparen, erst eine total
komplizierte Software-Maschine zu bauen, um dann zu merken, dass sie
doch nicht so geworden ist, wie er es gerne gehabt hitte. Besser ist es, er
stellt erstmal nur ein Modell her und beschiftigt sich damit, um ein Gefiihl
dafiir zu bekommen, wie es wire, die echte Maschine zu haben. Wenn ihm

Musterlosung: 01 - Die Anforderung-Logik Liicke 116

das nicht gefillt, macht er einfach ein neues Modell. An so einem Modell
kann er sich halt eine Menge Dinge tiberlegen, ohne viel Arbeit zu haben:
Wie soll die Maschine aussehen? Wie soll sie bedient werden? Aus welchen
Teilen soll die Maschine bestehen? Wie sollen die Teile zusammengesteckt
werden, damit die Maschine leicht zu bauen ist?

Natiirlich mdéchte ein Programmierer auch mega gern mit der echten
Software-Maschine arbeiten, so wie du am liebsten in einem echten Kauf-
laden etwas kaufen oder verkaufen wiirdest. Wenn der Programmierer
allerdings zu friih anfingt, seine Software-Maschine zu bauen, dann hat
er sich vielleicht noch gar nicht alles ausgedacht, was dazu nétig ist. Dann
wdre es spdter voll schwierig, die echte Maschine umzubauen, wenn ihm
etwas Neues einfillt, was sie konnen soll oder wie sie etwas anstellt. Auch
deshalb ist es hilfreich, dass der Programmierer sich erstmal nur mit einem
Modell beschdftigt. Das konnte ja aus soetwas wie Knete oder Lego oder
auch nur Papier sein, damit er ganz schnell neue Ideen ausprobieren kann.

Vielleicht hast du das ja auch schon gemacht: Statt ein Spielzeugauto zu
kaufen, hast du eines aus Lego selbst gebaut. Und als es dir nicht mehr
gefallen hat, hast du es umgemodelt oder eine Rakete aus den Legosteinen
gebaut.

Genau das sollten Programmierer auch tun, wenn sie eine Software-
Maschine bauen miissen. Sobald sie dann ein schénes Modell haben,
koénnen sie es ja “in echt” bauen. Auf diese Weise wird es auch viel leichter,
die echte Maschine zu bauen. Die Programmierer miissen sich weniger
drgern, weil sie sich vor allem wdhrend des Modellbaus vertan haben, wenn
es leicht ist, etwas zu korrigieren.

Modelle machen also das Programmieren leichter und giinstiger.

Reflexion

Ich fand es schwierig, eine griffige Analogie fiir ELI5 zu finden. Mit dem
Spielzeug bin ich dann zufrieden gewesen. Vorher hatte ich es u.a. mit
Rezepten und einem Bauplan fiirs Haus probiert. Das fiihlte sich fiir das
Sprachniveau dann letztlich aber nicht so passend an.

Natiirlich ist auch dieser Text nicht wirklich fiir 5jahrige geeignet. Wich-
tiger ist, dass er moglichst wenig Jargon enthélt und versucht, den Begriff
Modell und die Vorteile des Modellierens anschaulich zu machen. Was ist

Musterlosung: 01 - Die Anforderung-Logik Liicke 117

die Absicht dahinter, wenn man sich nicht negativen Konotationen und
UML-Feuerwerk beirren lasst?

Diese Absicht kommt im Text hoffentlich gut riiber: Modelle erlauben es,
dass man sich etwas vorstellen kann, ohne es real in den Handen zu halten.
Man soll ohne groflen Aufwand ein Gefiihl fiir etwas bekommen.

Was an Echtheit fehlt, ersetzt die Imagination. Das ist Sinn und Zweck
von Modellen, weil sie dadurch eben viel, viel einfacher herzustellen sind
als “the real thing”. Und weil das viel, viel einfacher ist, kann man sich
mehr Modelle leisten als “real things” - bzw. es sind Verdnderungen an
Modellen einfacher, schneller, giinstiger als an “real things”.

Dass Modellen viele Eigenschaften des Echten fehlen, kann mithin keine
Kritik sein. Es ist vielmehr ihr Vorteil und Hauptzweck. Es geht um Abs-
traktion. Statt Echtheit und “high fidelity” bekommt man etwas anderes.
Das sind Handlichkeit, Vereinfachung, Flexibilitdt und Fokus. Die sind
allesamt sehr niitzlich, wenn man Anforderungen in Code umsetzen soll.

Code ist so komplex, dass man sich nicht einfach auf ihn stiirzen kann,
sobald man meint, die Anforderungen verstanden zu haben. Besser, du
machst dich als Programmierer mit dem, was der Code tun soll und wie
er strukturiert sein konnte, erstmal anhand von Modellen vertraut. Du
kannst dir damit einige Trénen sparen!

Aufgabe 2 - Modellieren

Beim Modellieren ist alles erlaubt - nur kein Code. Das Modell soll
einerseits halbwegs “lebensecht” sein, andererseits soll ihm Wesentliches
fehlen, um den Aufwand klein zu halten und sich nicht Details zu
verlieren. Skizze statt Gemélde, so konnte man vielleicht sagen.

Musterlosung: 01 - Die Anforderung-Logik Liicke 118

Vom Modell zum Produkt in fiinf Schritten

Léosungsansatz

Ich weif3 schon, dass das Programm iiber die Console bedient werden soll.

Auflerdem ist klar, dass das Programm irgendwie die Besucherdaten
tiber seine Laufzeit hinweg speichern muss. Der Auftraggeber will den
Laptop zwischen den Parties ausschalten; ausschliefSlich im Hauptspeicher
konnen die Géastedaten also nicht gehalten werden.

Auf der Festplatte konnten die Daten in einer Datenbank (z.B. RDBMS
mit SQLite) gehalten werden oder sogar noch einfacher in einer Textdatei.
Eine iiberschlagige Rechnung ergibt, dass ca. 15.000 Besucher iiber all
die Jahre mit dem Programm begriifit werden sollen. Das ist nicht zu
viel, um sehr pauschal in einer Textdatei gespeichert zu werden. Eine
1,5MB Textdatei konnte bei Programmstart in den Hauptspeicher geladen
werden. Sie konnte auch wihrend der Programmlaufzeit standig erweitert
werden, damit keine Daten bei einem Programmabsturz verlorengehen.
Wahrscheinlich kénnte die Datei sogar fiir jeden Gast geladen werden,
ohne dass eine Performanceeinbufie zu befiirchten wire. (Das kann ich
mir als ein “Forschungsthema” fiir eine spike solution* merken, falls
spater beim Modellieren eine Entscheidung davon abhéngt.)

“http://www.extremeprogramming.org/rules/spike.html

http://www.extremeprogramming.org/rules/spike.html
http://www.extremeprogramming.org/rules/spike.html

VN D WN R

Musterlosung: 01 - Die Anforderung-Logik Liicke 119

Das Speicherformat innerhalb einer Textdatei konnte fiir jeden Besucher
dessen Namen und seine Besuchsanzahl festhalten.

Modell

Software hat viele Stakeholder. Deren Anspriiche an ein Modell kénnen
sehr unterschiedlich sein. Auftraggeber bzw. Anwender mochten mit
einem Modell ein Gefiihl dafiir bekommen, wie sich der Umgang mit der
Software spater anfiihlen wird. Fir Entwickler hingegen ist es vor allem
interessant, ein Gefiihl dafiir zu bekommen, wie die Software aufgebaut
ist und ihr Verhalten erzeugt.

Es scheint mir deshalb angemessen, nicht nur ein Modell, sondern min-
destens zwei zu bauen.

Oberflache

Das Oberflachenmodell konnte im einfachsten Fall aus einem Text wie
dem folgenden bestehen. Der ist zwar nicht interaktiv, aber er demons-
triert das Verhalten:

$ helloworld.exe

Name: Janine

Hello, Janine!

Name: Peter

Welcome back, Peter!

Name:

Name: Mike

Hello my good friend, Mike!
gTRL*C

« Es ist zu sehen, dass es verschiedene Begriilungen gibt.
+ Das Layout von Abfragen, Eingaben und Ausgaben ist zu sehen.

Ein Betrachter sieht, was passiert, wenn jemand keinen Namen
eingibt.
« Es ist klar, wie das Programm zu beenden ist.

Das vermittelt ohne jeglichen Programmieraufwand schon einen guten
Eindruck dafiir, wie sich das Programm zur Laufzeit anfiihlt.

In anderen Szenarien kénnte die Codierung eines Prototyps fiir die Be-
nutzerschnittstelle angezeigt sein. Das lohnt allerdings nur, wenn dessen

Musterlosung: 01 - Die Anforderung-Logik Liicke 120

Code um Groflenordnungen weniger umfangreich ist, als der spiter
wirklich benotigte. Ul Mockup Werkzeuge aller Art haben hier auch ihren
Zweck.

Ginge es um eine graphische Benutzeroberflache, konnte ich z.B. mit
Balsamiq Mockups ein visuelles Modell so herstellen:

e eey SWempw SV NN

. AASa.
Mockups O = ?
. Welcome!)
=
New Mockup 1 I - I }
Greetings! j
-
=
o =7 .
2a Hello, Janine!
New Mockup 1 copy -
New Mockup 1 copy 2 !

Dazu hitte ein Auftraggeber sicherlich eine Meinung, kénnte Feedback
geben - und all das, ohne auch nur eine Zeile Code zu schreiben.

Aber um diese Art Modelle geht es mir ja in diesem Buch nicht. Die liegen
auf der Hand.

Interna

Das Problem bei dieser Hausaufgabe ich das Modell fiir dich als Ent-
wickler, d.h. ein Modell fiir die Interna des Programms. Wie kann Code
modelliert werden, der am Ende ja nur aus Text in Dateien besteht?

Ich kénnte mit Dateien beginnen. Warum nicht aufschreiben, auf welche
Dateien der Code am Ende aufgeteilt werden sollte? Technisch reicht
eine einzige, z.B. program.cs. Aber dann ist mit einem Modell nichts
gewonnen.

Musterlosung: 01 - Die Anforderung-Logik Liicke 121

Aber es gibt vielleicht “Themen”, deren Code in unterschiedlichen Dateien
liegen konnte, z.B.

« benutzerschnittstelle.cs
« datenspeicherung.cs
e program.cs

Die Ausgabe auf der Console ist etwas ganz anderes, als die Datenspei-
cherung. Die Logik dafiir zu trennen, macht bestimmt Sinn. Und der Rest
passiert dann in program.cs, der Datei, die es in C# sowieso gibt, um
die Funktion Main () zu beherbergen.

Die Liste der Dateien ist ein Modell. Jemand, der die Logik schreibt, wird
dadurch schon etwas angeleitet. Etwas Entscheidendes fehlt allerdings
noch: die Verbindungen zwischen diesen Codebausteinen. Die Logik, die
auf die Dateien verteilt wird, muss ja irgendwie zur Laufzeit zusammen-
arbeiten.

Eine simple Beziehung kénnte schon die Reihenfolge der Dateien in einer
Liste ausdriicken. Dann kénnte Ausfithrung laut obiger Liste z.B. mit Logik
in benutzerschnittstelle.cs beginnen, danach geht es weiter bei
datenspeicherung.cs und schlieBflich in program. cs. Aber das hort
sich nicht plausibel an, oder? Naher lige es, bei program. cs zu beginnen.

Auflerdem soll wahrscheinlich Logik nicht nur einmal in benutzer-
schnittstelle.cs ausgefithrt werden, nachdem z.B. etwas in pro-
gram.cs passiert ist. Deshalb ist eine Reihenfolgenbeziehung zu wenig.
Die Verbindungen zwischen der Logik in den Dateien miissen flexibler
sein.

Mit Text lassen sich Verbindungen zwischen Elementen allerdings schwer
flexibel und verstandlich beschreiben. Besser ist es, das Medium zu
wechseln und visuell zu werden.

Musterlosung: 01 - Die Anforderung-Logik Liicke 122

Die Linien driicken erstmal nur aus, dass es tiberhaupt Beziehungen
zwischen den Dateien gibt. Allerdings kann jetzt mehrfach Logik aus
derselben Datei im Spiel sein.

Aber worin bestehen diese Beziehungen? Wenn die Abarbeitung von
Logik nicht einfach von einer Datei in die néchste fliefit, sondern hin
und her, dann geht das nur tiber Funktionsaufrufe. Die Verbindungslinien
stehen also ganz pauschal dafiir, dass Logik aus der einen Datei Logik in
einer anderen mittels einer Funktion aufruft, die ihr von dort bekannt ist.

Wenn das Modell hilfreich sein soll, dann braucht es also noch etwas mehr
Detail in Form von Funktionsaufrufen: Welche Datei ruft wann welche
Funktion in welcher anderen auf? Das kann z.B. so aussehen:

Musterlosung: 01 - Die Anforderung-Logik Liicke 123

Von einer Funktion ist klar, in welcher Datei sie sich befindet: Main()
steckt konventionshalber als Eintrittspunkt fiir das Programm in pro-
gram.cs. Welche anderen Funktionen es gibt und wie sie auf die Dateien
verteilt sind, ist dann meine Sache. Das festzulegen, ist ein Teil der
kreativen Leistung wéhrend des Entwurfs. Die Dateinamen geben ja aber
schon einen Hinweis darauf, wie ich meine, dass die Verteilung aussehen
konnte.

Was du in dem “Sequenzdiagramm” siehst, ist eine Moglichkeit der
Verteilung. Ich behaupte nicht, dass es die beste ist. Um die Giite geht
es hier nicht, sondern darum, wie ein Modell iberhaupt aussehen kénnte.
Nur dariiber solltest du dir erstmal Gedanken machen.

Reflexion

Erfiillt das, was ich produziert habe, die Anforderungen an ein Modell?

« Ein Modell soll deklarativ sein. Das bedeutet, es beschreibt nicht
das Wie, sondern das Was. Vor allem enthilt es keine Logik. Das
ist der Fall. Ich habe nicht enthiillt, wie genau die Daten dargestellt,
geladen, transformiert werden. Dass Daten geladen werden, ist zu
sehen. Wie Daten geladen werden, welche Logik dafiir notig ware
oder sogar welches Datenformat benutzt wiirde, ist nicht zu sehen.
Ein Modell soll eine Liste von Funktionen liefern, die in der
Codierung mit Logik gefiillt werden. Das ist auch der Fall. Mindes-
tens fiinf Funktionen sollte der Code zu diesem Modell am Ende
aufweisen. Sogar deren Signaturen sind definiert.

Ein Modell soll die Beziehungen zwischen den Funktionen deutlich
machen. Das ist auch der Fall. Da ist die Aggregationsbeziehung,
die beschreibt, welche Funktionen in einer Datei zusammengefasst
werden sollen.”® Da ist die Abhangigkeits- oder Nutzungsbeziehung
zwischen den Funktionen: Welche Funktion ruft welche andere
auf? Da ist die Teilenbeziehung: Welche Funktionen teilen sich
Daten?’! Das ist die Sequenzbeziehung: Welche Funktion folgt
welcher anderen in der Nutzung?

*Der Allgemeingiiltigkeit iiber Sprachen hinweg habe ich mich auf Dateien als Aggre-
gate von Funktionen konzentriert. Das funktioniert in Python oder Ruby oder JavaScript aus
dem Stand. In C# oder Java braucht es dariiber hinaus allerdings noch eine Klasse. Doch
wenn die genauso wie die Datei benannt ist, dann macht sie das Modell nicht komplizierter.

*Das sind z.B. loadA11lGuests () und getGreeting(), die beide mit der Gésteliste
List<(string,int)> arbeiten.

Musterlosung: 01 - Die Anforderung-Logik Liicke 124

Ob die Mittel der Darstellung fiir das Modell die besten sind, ob das
Modell ein Gutes ist, sei dahingestellt. Formal erfiillt das Obige jedoch die
Kriterien fiir ein Modell. Und ich wiirde sogar sagen: Selbst dieses Modell
ist besser als keines.

Die Qualitat des Modells besteht darin, dass es mich zwingt, mir Gedanken
zu machen. Ich muss mir die Software vorstellen, wenn auch nur sehr grob.
Unter Kenntnis dessen, wie ein Computer funktioniert und welche Logik
mir zur Verfiigung steht, kann ich im Kopf simulieren, was passieren wiir-
de. Das kann ich vergleichen mit dem, was ich an Verstdndnis wihrend
der Anforderungsanalyse erarbeitet habe.

Wenn dir das schwer gefallen ist, verstehe ich das gut. Auch mir ist dieses
Modell schwer gefallen. Allerdings lag das daran, dass ich versucht habe,
alles zu vergessen, was ich dir eigentlich sagen mochte iiber Modellierung.
Ich habe mich zuriickgenommen, um naher an deiner Situation zu sein. Du
liest das Buch ja wahrscheinlich, weil du noch keine grofiere Erfahrung
mit dem Softwareentwurf hast. Auf welche Ideen kommst du da? Das habe
ich mir versucht vorzustellen.

Deshalb auch nochmal: Es kommt hier vor allem darauf an, dass du dir
ernsthaft Mihe gegeben hast. Hast du versucht, die Definition fiir ein
Modell umzusetzen? Mehr ist nicht wichtig gewesen bei dieser Ubung.

Denn wenn dein Modell der Definition folgt, dann bist du weiter, als ohne.
Dann hast du mehr als einen Container fiir Logik - aka Funktion -, was es
dir schon viel leichter macht, die Logik zu finden. Logik in kleine Happen
teilen, damit sie verstandlicher und testbarer wird, ist das Ziel.

Dass ein Modell vieles ungesagt lasst, dass es die Losung unterspezifi-
ziert, ist selbstverstdndlich. Das gehort zu seinem Zweck und ist kein
Kritikpunkt. Dass du modellierst, ist mithin auch nicht im Widerspruch
zu jedem Anspruch der Agilitat. Nur, weil du gerade nicht in die Tasten
haust, bedeutet das nicht, dass du nicht dabei bist, Wert fur den Kunden
herzustellen. Es kommt halt aufs richtige Maf} an.

Musterlosung: 02 - Entwurf
im Uberblick

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe - Losungsansatz finden

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Lésungsansatz fir die Doméanenlogik

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 03 - Radikale
Objektorientierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe - Mit POMO/IOSP
implementieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Modellskizze

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Codierung der Integration

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Codierung der Operationen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 03 - Radikale Objektorientierung 127

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 04 -
Flow-Design mit
1-dimensionalen
Datenflussen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Aufgabe 1 - Modellieren und
implementieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Losungsansatz verfeinern: Pra-Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 04 - Flow-Design mit 1-dimensionalen Datenfliissen 129

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 2 - Reverse modeling

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 3 - Losen, modellieren,
implementieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Losungsansatz

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Codierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 04 - Flow-Design mit 1-dimensionalen Datenfliissen 130

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 05 -
Flow-Design mit
2-dimensionalen
Datenfliissen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 1 - Implementation eines
Modells

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 2 - Die Dimensionalitat eines
Modells erhéhen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 05 - Flow-Design mit 2-dimensionalen Datenfliissen 132

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 3 - Anforderungen umsetzen
mit 2-dimensionalem Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Verstehen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Losen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modellieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Zerlegen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 05 - Flow-Design mit 2-dimensionalen Datenfliissen 133

Verdrahten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Codieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 06 -
Flow-Design mit
modularisierten
Datenflussen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Aufgabe 1 - Datenfluss modularisieren

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Schrittweise Modularisierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Klassendiagramm

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 06 - Flow-Design mit modularisierten Datenfliissen 135

Bibibliotheken

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Aufgabe 2 - Game of Life

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Léosungsansatz

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modellierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Zerlegungsbaum

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Datenfluss

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 06 - Flow-Design mit modularisierten Datenfliissen 136

Modularisierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Klassendiagramm

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Bibliotheksdiagramm

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 07 -
Flow-Design mit
3-dimensionalen
Datenfliissen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 1 - Tic-Tac-Toe

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Losungsansatz

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Spielerwechsel

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Spielende
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 07 - Flow-Design mit 3-dimensionalen Datenfliissen 138

Das Domanenmodell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Das Domanendatenmodell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

High-level Datenfluss

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Port-Datenfliisse

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Datenfluss-Wurzeln innerhalb von EBCs

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 07 - Flow-Design mit 3-dimensionalen Datenfliissen 139

Intergrationen verfeinern

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Inkrementelle Implementierung

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Schlaglichter auf den Code

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 08 - Die IODA
Architektur

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 1 - Umbau nach IODA

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Abhéangigkeiten zeigen den
Abstraktionsgradienten hinab

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Aufgabe 2 - Enturf nach IODA inkl.
Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Anforderungsanalyse
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 08 - Die IODA Architektur 141

Nachrichten an den Processor

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Losungsansatz

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Modell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Spiel starten

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Rateversuch beurteilen

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

Application

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

Musterlosung: 08 - Die IODA Architektur 142

Implementation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Schlaglichter auf den Code

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-

design.

Reflexion

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/softwareentwurf-mit-flow-
design.

http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design
http://leanpub.com/softwareentwurf-mit-flow-design

	Inhaltsverzeichnis
	Zum Geleit
	Motivation
	Programming with Ease
	Das Softwareuniversum

	Einleitung
	Anforderungskategorien
	It's the productivity, stupid!
	Produktivitätskiller
	Fehlende Korrekheit
	Fehlender Wert
	Fehlende Ordnung

	Zusammenfassung

	Die Methode
	01 - Die Anforderung-Logik Lücke
	Logik - Der Stoff aus dem Verhalten entsteht
	Funktionalität
	Effizienz I - Effizienz durch Algorithmen und Datenstrukturen
	Effizienz II - Effizienz durch Verteilung
	Zusammenfassung

	Von den Anforderungen zur Logik
	Logik schwer definierbar
	Die Phasen der Programmierung
	Zusammenfassung

	Übungsaufgaben

	02 - Entwurf im Überblick
	Den Entwurf abstecken
	Hierarchie der Lösungen
	Von der Kunst lernen
	Entwerfen ist fachgerecht
	Entwerfen ist agil

	1. Der Lösungsansatz
	2. Das Modell
	Modellarten
	Abstraktion

	Zusammenfassung
	Übungsaufgaben
	Aufgabe - Lösungsansatz finden

	03 - Radikale Objektorientierung
	Die Welt bestehend aus Objekten?
	Der Ursprung der Objektorientierung
	Wer hat's erfunden?
	Die zentrale Analogie der radikalen Objektorientierung

	Principle of Mutual Oblivion (PoMO)
	Unabhängigkeit
	Geschlossenheit
	Unidirektionalität
	Ein Prinzip als Destillat
	Implementationsidee

	Integration Operation Segregation Principle (IOSP)
	Objekte verbinden als Verantwortlichkeit
	Ein Prinzip als Destillat
	Implementationsidee

	Philosophischer Exkurs
	Übungsaufgaben
	Aufgabe - Mit PoMO/IOSP implementieren

	04 - Flow-Design mit 1-dimensionalen Datenflüssen
	0-dimensionale Datenflüsse
	Notation
	Implementation

	1-dimensionale Datenflüsse
	Der Datenfluss als Scope
	Fließende Mengen
	Implementation

	Übungsaufgaben

	05 - Flow-Design mit 2-dimensionalen Datenflüssen
	Abstraktion durch Komposition
	Stratified Design
	2-dimensionale Datenflüsse

	Notation
	Datenflüsse als aufgemotzte Abhängigkeitsdiagramme
	n:1 Übersetzungen
	Rekursion

	Reflexion
	Übungsaufgaben

	06 - Flow-Design mit modularisierten Datenflüssen
	Abstraktion durch Aggregation
	Physisch kategorisieren mit dem Dateisystem

	Module
	Abhängigkeiten
	Orthogonale Containerdimension

	Die Modul-Hierarchie
	Klasse - Abhängigkeiten mit Kontrakten zähmen
	Namensraum - Kontraktkollisionen vermeiden
	Bibliothek - Wiederverwendbarkeit ermöglichen
	Paket - Abhängigkeiten stabilisieren
	Komponente - Die Arbeitsteilung befördern
	Service - Module plattformneutral machen
	Wave - Softwareevolution zur Laufzeit
	Die Modul-Hierarchie im Überblick

	Datenflüsse modularisieren
	Notation & Implementation I - Funktionen
	Notation & Implementation II - Daten
	Modularisierungsbeispiel

	Reflexion
	Übungsaufgaben

	07 - Flow-Design mit 3-dimensionalen Datenflüssen
	Die wahren Übersetzungsverhältnisse
	Streams
	Einsatzgebiete für Streams

	Implementation
	Continuation
	Iterator
	Fallunterscheidung in der Integration
	Polymorphie
	Warteschlange

	Reflexion
	Übungsaufgaben

	08 - Die IODA Architektur
	Die Softwarezelle
	System vs. Umwelt
	``Kleiderbügelarchitektur''
	Die Membran
	``Griechische Architekturen''
	Der Kern
	``Vitruvianische Architektur''

	The Missing Concern: Integration
	IOSP in der Architektur
	Interactors
	Processors
	IODA: All together now!

	Übungsaufgaben

	09 - Finale im Softwareuniversum
	Der Explizite Entwurf ist nötig
	Der Entwurf ist deklarativ
	Das Modell beschreibt Funktionen in Beziehungen
	Flow-Design im 4-dimensionalen Raum
	Orientierungshilfe für die Softwareentwicklung

	Anhang - Musterlösungen
	Musterlösung: 01 - Die Anforderung-Logik Lücke
	Aufgabe 1 - Erklären
	Vom Nutzen der Modellierung für die Programmierung (ELI5)
	Reflexion

	Aufgabe 2 - Modellieren
	Lösungsansatz
	Modell
	Reflexion

	Musterlösung: 02 - Entwurf im Überblick
	Aufgabe - Lösungsansatz finden
	Lösungsansatz für die Domänenlogik
	Reflexion

	Musterlösung: 03 - Radikale Objektorientierung
	Aufgabe - Mit PoMO/IOSP implementieren
	Modellskizze
	Codierung der Integration
	Codierung der Operationen

	Reflexion

	Musterlösung: 04 - Flow-Design mit 1-dimensionalen Datenflüssen
	Aufgabe 1 - Modellieren und implementieren
	Lösungsansatz verfeinern: Prä-Modell
	Modell
	Implementation

	Aufgabe 2 - Reverse modeling
	Aufgabe 3 - Lösen, modellieren, implementieren
	Lösungsansatz
	Modell
	Codierung
	Reflexion

	Musterlösung: 05 - Flow-Design mit 2-dimensionalen Datenflüssen
	Aufgabe 1 - Implementation eines Modells
	Reflexion

	Aufgabe 2 - Die Dimensionalität eines Modells erhöhen
	Reflexion

	Aufgabe 3 - Anforderungen umsetzen mit 2-dimensionalem Modell
	Verstehen
	Lösen
	Modellieren
	Codieren
	Reflexion

	Musterlösung: 06 - Flow-Design mit modularisierten Datenflüssen
	Aufgabe 1 - Datenfluss modularisieren
	Schrittweise Modularisierung
	Klassendiagramm
	Bibibliotheken

	Aufgabe 2 - Game of Life
	Lösungsansatz
	Modellierung
	Reflexion

	Musterlösung: 07 - Flow-Design mit 3-dimensionalen Datenflüssen
	Aufgabe 1 - Tic-Tac-Toe
	Lösungsansatz
	Modell
	Implementation
	Reflexion

	Musterlösung: 08 - Die IODA Architektur
	Aufgabe 1 - Umbau nach IODA
	Abhängigkeiten zeigen den Abstraktionsgradienten hinab

	Aufgabe 2 - Enturf nach IODA inkl. Implementation
	Anforderungsanalyse
	Lösungsansatz
	Modell
	Implementation
	Reflexion

