0> kv,

SOCKETS

JULIE MORONUKI

Sockets and Pipes
by Chris Martin; edited by Julie Moronuki

© 2023 Chris Martin and Julie Moronuki. All rights reserved.

2023-05-09: First edition

Contents

Preface

Prerequisites

What’s inside
On Hackage

0 Setup

1 Handles

1.1
1.2
1.3
1.4
1.5
1.6

The necessity of indirection .
Writingtoafile
Exceptions
Diligentcleanup
MonadIO

Exercises

2 Chunks

2.1
2.2

2.3

Packed characters
Reading from a file
Exercises

3 Bytes

3.1
3.2
3.3
3.4
3.5
3.6

Packed octets
Copyingafile.
Character encodings
Dangerous classes
Avoiding system defaults
Exercises

4 Sockets

41
4.2
4.3
bty
4.5

Open up and connect
Extra details
Names and addresses
Address information
Exercises

10
10

1
14
16
20
21

23
23
25
27

30
30
31
33
36

. 40

42

5 HTTP

5.1
5.2
5.3
5.4
5.5
5.6

The specification
HTTPrequests
ASCIIstrings
HTTPresponses
Serving others
Exercises

6 HTTP types

6.1
6.2
6.3
6.4
6.5
6.6

The ASCIItype
Request line
Status line

Fields

7 Encoding

741
7.2
73
7-4
7.5
7.6

Stringbuilders
Measuring time
Request and response
Higher-order encodings . . .
Thestartline.

Exercises

8 Responding

8.1
8.2
8.3
8.4
8.5

A measure of success
Response-building utilities .
Integers
Response transmission
Exercises

55
56
57
58
60
62

64

66
67
69
70
72
72
74

76
76
78
81

86
88

89
89
91
94
96

9

Content types

9.4 JSON
9.5 Exercises

10 Change

11

101 STM
10.2 Increment
10.3 Atomically
10.4 The counting server
10.5 Other STM topics
10.6 Exercises

Streaming

111 Chunkedhello
11.2 Chunktypes
11.3 Encodingachunk
11.4 Transfer-Encoding
11.5 Servingthefile.
11.6 Exercises

12 Pipes

12.1 The new response type
12.2 What is a Producer
12.3 Constructing a response . . .
12.4 Encoding aresponse
12.5 Sending aresponse
12.6 Exercises

13 Parsing

13.1 Encoding vs decoding
13.2 Attoparsec
13.3 Requestline
13.4 Explaining what’s wrong . . .
13.5 Incremental parsing
13.6 Exercises

14 Errors 161

14.1 Statuscodes 162
14.2 Constructing error responses 163
14.3 Visibility in two places 164
14.4 Thread-safe logging 169
14.5 Either 170
14.6 ExceptT 173
14.7 Exercises 177
15 Reading fields 178
15.1 Alternatives and repetition . 180
15.2 Accept-Language 184
15.3 Fieldparser. 186
15.4 Fieldlookup 189
15.5 Content-Language 101
15.6 Exercises 192
16 Context 197
16.1 When it pays to be vague . . . 197
16.2 ReaderT and deriving 200
16.3 Ask and you shall receive . . . 203
16.4 A place for your files 205
16.5 Context initialization 207
16.6 Exercises 210
17 Reading the body 212
17.1 Getting 213
17.2 Putting 216
17.3 Anew type of stream 219
17.4 Which kind of body? 220
17.5 Grabbing some input 223
17.6 Chunky 225
17.7 Finishingup 228
17.8 Exercises 228
Epilogue 231
Solutions to exercises 232

Preface

The content that eventually grew into this book began with the question: What exactly is a
web server? A satisfactory answer that does not assume substantial background knowledge
requires spanning quite a few areas of computing. Fortunately, they all serve as fruitful mo-
tivations for simultaneously learning about how to use Haskell, which is the larger objective
of the Joy of Haskell collection.

The language a web server speaks is the Hypertext Transfer Protocol (HTTP), which this
book explores in great detail while walking through the creation of a server from “scratch.”
We encourage readers to follow along in reading the official definition of HTTP (RFC 9110 and
9112 published by the Internet Engineering Task Force) as we implement the specification
in Haskell. While high-level libraries make it possible to create web applications without
detailed knowledge of HTTP, we believe that a full understanding of the underlying layers
we build upon helps us use a platform more effectively. By studying HTTP we also gain an
appreciation for what it is and is not good for, and for what applications we might stand to
benefit from choosing a different network protocol instead.

Prerequisites

This book is for Haskell learners who have some basic faculty with the language and are now
ready to work up to a substantial project. We expect that you understand the basic syntax
and can do things like install GHC, use GHCi, write a case expression, sequence IO actions in
a do block, use qualified imports, and define datatypes. From the base package, we assume
some familiarity with Maybe, Either, [], Eq, Show, Monoid, Foldable, Functor, and Monad.
We do not assume prior knowledge of any additional libraries or GHC language extensions.

What’s inside

Bytes and characters The first several chapters introduce the bytestring and text libraries
and are largely dedicated to tearing apart a traditional hello world program, looking under-

neath the abstract notion of “printing text” to start greeting the world in terms of writing
bytes to a file handle. After discussing bytes, we need only a short hop to sockets, our means
of writing bytes across great distances using the network library.

Encoding and parsers First we encode HTTP messages as byte strings. That’s the easy
part; next, we go in the opposite direction and learn how to interpret byte strings using the
attoparsec library. This will acquaint us even more closely with the HTTP message format.

Monad transformers We introduce some monad transformers that are especially applica-
ble to our subject matter: ResourceT, Producer, ExceptT, and ReaderT. No prior experience
with transformers is required. We do not linger on the general concept, preferring instead to
focus on each of the three examples and to create familiarity with transformers and lifting
chiefly by demonstration. In chapter 16 we begin using newtype wrappers and DerivingVia
to manage the complexity of larger monad stacks.

Resource safety Use of ResourceT begins in chapter 1, and we use it throughout the book.
This makes it a breeze to deal with files and sockets without resource leaks.

Streaming Tomove past toy examples that fit easily into memory, we have to start writing
streaming processes that can deal with large amounts of data by handling it in smaller pieces.
All of the code within this book is written with memory usage in mind. Producer, Pipe, and
Consumer, the subject of chapter 12, constitute an especially convenient facility for working
with streams.

Error handling As features accumulate, the number of possible error conditions starts to
rise. Chapter 14 introduces ExceptT to work with errors in a clean and well-typed manner.

On Hackage

This book has a companion Haskell library called sockets-and-pipes, available from the stan-
dard package repository.

https://hackage.haskell.org/package/sockets-and-pipes

The library re-exports all of the modules from other libraries that we use in the book;
prospective readers are encouraged to browse the documentation at the web address given
above, as it provides an overview of the libraries that you will learn to use from reading this
book.

Chapter o

Setup

We strongly encourage you to follow along with the book and type the code as you read. The
exercises at the end of each chapter make use of the code given in the chapter. Subsequent
chapters will also refer back to definitions from earlier in the book, so it is important to keep
everything as you progress.

GHC version 9.2 or 9.4 is required. You can organize the code however you like, but here
we give a recommended setup for the convenience of less opinionated readers.

book.cabal

cabal-version: 3.0
name: book

version: 0.0.0.0

common base
default-language: GHC2021
default-extensions: BlockArguments DerivingVia NoImplicitPrelude QuasiQuotes
ghc-options: -Wall -fdefer-typed-holes

build-depends: sockets-and-pipes ">= 1.0

library
import: base
hs-source-dirs: library

exposed-modules: Book

cabal-version, name, and version are necessities in any Cabal package file.

The default-extensions field enables a few language extensions:

> Block arguments is a small adjustment to the Haskell syntax which allows a do block
to be used as a function parameter, a task which has traditionally been accomplished
using the ($) operator.

> Deriving via will be used in chapter 16 to concisely define a custom monadic context
based on standard monad transformers.

> No implicit prelude means we will not be making use of the standard Prelude module
from the base package.

> Quasi-quotes enables an alternate form of string literal syntax that we will use for writ-
ing ASCII strings beginning in chapter 5.

The ghc-options field specifies what GHC flags we use:

> -Wall enables all warnings, which we always do because this includes some particu-
larly important ones such as detecting when a case expression is missing some cases.

> -fdefer-typed-holes allows us to write an underscore _ in place of an expression, which
we will use to write definitions that aren’t quite finished yet. Such an underscore is
called a “hole.”

We list what libraries we need in the build-depends field. The only library we’ll be us-
ing is sockets-and-pipes, which re-exports all of the modules used in the book. If you go
off exploring on your own and want to use other libraries that we have not included in the
sockets-and-pipes package, you can add additional entries to this build-depends list, sepa-
rated by commas.

library/Book.hs Start this file as follows:
module Book where

import Relude
import qualified System.Directory as Dir

import System.FilePath ((</>))

getDataDir :: IO FilePath

getDataDir = do
dir <- Dir.getXdgDirectory Dir.XdgData "sockets-and-pipes"
Dir.createDirectoryIfMissing True dir

return dir

This is where you will enter all of the code and exercise solutions. All of the definitions
given in the book are named uniquely, so you should not need to remove anything as you go
along; keep everything for future reference.

The first import is Relude, an alternative prelude module which comes from the relude
package. Relude is similar to the standard prelude, but it includes a few extra conveniences
and will spare us some additional imports.

There are import declarations interspersed throughout the book; each time you en-
counter one, add it to the import list at the top of Book.hs. When we use an identifier that is
re-exported by Relude, we do not give an import declaration since it would be unnecessary,
but we may mention what module it originally comes from.

Once you have book.cabal and library/Book.hs, you can then use the command cabal repl
to load your code into GHCi. We will use the REPL to query for type information and to run
example programs. Try it now:

getDataDir

"/home/chris/.local/share/sockets-and-pipes”

The file path you see here will vary based on your system. Make note of it; this is where
you will be storing data files that we use as examples throughout the book.

Proximitytoreality Thereisalwayssome tensionbetween the code one writes for learning
and the code one writes for some other purpose.

> Our recommendation of putting all the code into a single module is a departure from
normal practice. Organization is a critical aspect of manageably developing software,
but a single file keeps best with the linear progression of a book, and so we set aside
our usual emphasis on designing small, cohesive modules.

> The code that we give in this book is not annotated with any comments; the surround-
ing context of the book serves as the explanation that comments in code would nor-
mally provide. You are encouraged to insert your own comments in your Book.hs file,
for the sake of note-taking and practice in writing API documentation.

> Our code is wrapped into short lines, and some local variables have highly abbrevi-
ated names; these superficial choices follow from the constraints of print and are not
necessarily intended as a recommended style in general.

In all other matters, the code in this book is intended as a presentation of good Haskell
as written in practice. The words of an old theater teacher echo in my mind — “What you do
in rehearsal is what you’ll do in the performance.” — and so we have aimed here to avoid
oversimplification and to make the same choices one might make on the job.

Chapter 1

Handles .

Let us begin with some perspective on a process’s position in the world.

1.1 The necessity of indirection

A typical running computer contains multitudes. Some processes correspond to things that
you see on the screen; others work quietly behind the scenes. Your text editor, your ter-
minal, each tab in your web browser, the synchronization of your system clock with other
machines, that icon in the corner that shows you the signal strength of the wifi — each of
these is controlled by a separate process. For the purposes of this book, we’ll oversimplify a
little and say that a software process is an instance of a program that is running, although the
distinction is not always so simple or clear — for example, a single instance of a web browser
may create a separate process for each tab.

You can start as many processes as you want (within reason). But while this multiplicity
exists in software, the hardware is fixed. A machine might have only one screen displaying
graphics, one speaker playing sound, one chip storing all of the files, one cable or wireless
transmitter linking the machine to the internet. It seems surprising, then, that computers
can work at all — as if a hundred chefs may simultaneously cook a hundred soups sharing
only a single pot among them, or as if a hundred orators may be heard delivering a hundred
speeches at once at a single podium. Allowing many tenants to share the same facilities with-
out interfering with one another is called multiplexing. This is the job of an operating system:
to coordinate shared use of physical resources, weaving together the actions performed by
many separate processes.

When we say that a program performs an action, we are usually talking about interacting
with physical resources. Reading and writing files from the hard drive, downloading from

10

and uploading to the internet, listening to and playing sound — inputs and outputs — I/0: all
of these actions are mediated by the operating system. To say that a program does something
ascribes more agency to it than it really has; the only thing its process can ever really do is
issue requests for the operating system to do things on its behalf. These requests are called
system calls.

Each operating system has its own set of system calls that programs running on it have
to use to do I/O. You can run man 2 syscalls at the command prompt on a Linux machine to
see the complete list of system calls supported by the Linux kernel. We will not give much
attention to the differences between the operating systems because the Haskell libraries we
use take care of these differences for us; the base and network libraries will automatically use
whatever system calls are appropriate for the specific platform our programs are compiled
for.

1.2 Writing to a file

If we consider I/O actions as lines of dialogue in a conversation between process and oper-
ating system, then we might think of a handle as an identifier for the conversation.

A handle for a file is referred to by Microsoft Windows as a file handle and by Linux as a
file descriptor, often abbreviated as fd. In the Haskell libraries we use, you will see both terms
used interchangeably. We prefer ‘handle,’ but both are misleading. In a strained attempt to
justify the metaphor: a handle on a resource is a temporary means of grabbing onto it, like
the handhold provided by an ice climber’s axe.

Our first demonstration involving a file handle is a brief I0 () action that uses the basic
operations of the base library to write two lines of text to a file:

import qualified System.IO as IO

writeGreetingFile = do
dir <- getDataDir
h <- I0.openFile (dir </> "greeting.txt") WriteMode
I0.hPutStrLn h "hello"
I0.hPutStrLn h "world"
I0.hClose h

Enter this into your code file. Open GHCi and run writeGreetingFile, then look at the
file that it created. (Remember that you can run getDataDir to see the path where files are
stored.)

11

Getting a handle The first argument to the openFile function is the path of the file we
want to write. The second argument, whose type is IOMode, is where we declare what we
intend to do with the file: read its contents, write new contents, or both. IOMode is defined
in System.IO as:

data IOMode = ReadMode | WriteMode | AppendMode | ReadWriteMode

Why do we have to specify upfront whether we’re opening this file for reading or for
writing? Remember that we aren’t opening afile directly; we’re asking the operating system
to open afile for us. The answer lies in the OS’s mediation and multiplexing responsibilities:

» The file system may have security restrictions that, for example, permit our process
to read this file but not to write to it. The OS is responsible for enforcing this sort of
access policy, and it does this permission check at the time a file is opened.

> Ours might not be the only process that accesses this file. Two processes simultane-
ously reading a file is fine, but two processes attempting to write to the same file at
once could be trouble. The OS keeps track of all processes’ file handles, and whether
each is for reading or for writing, to prevent any conflicts.

The result of openFile will be a handle, which we’ve called h in this example. hPutStrLn
has to know the handle in order to know where to put its strings.

The Haskell openFile function corresponds to the open system call in Linux. You can run
man 2 open at the command prompt on a Linux machine to see the documentation for this
system call. The return type of open is int, a number that the OS has assigned to you, like
when you file an insurance claim and your insurance company gives you a claim number.
Please provide this number in all further communications regarding this claim, they will tell
you. That’s what the file handle is. We have to provide this number as an argument to all
subsequent system calls that pertain to this particular OS-mediated interaction with this
file. The Haskell openFile function wraps up this number into a value of type Handle, which
is a bit more complicated but serves the same role as a conversation identifier.

Writing to a handle If you’ve seen a Haskell program, you’ve probably seen the putStrLn
function in the Prelude module. We can use it like this:

helloWorld = IO.putStrLn "hello world!"

What you may not have known is that this program is using a handle. putStrLn is a spe-
cialization of a more general function called hPutStrLn in the System.IO module. (The ‘h’
stands for ‘handle.”)

12

I10.hPutStrLn :: Handle -> String -> I0 ()

putStrLn is defined in terms of hPutStrLn and stdout, a handle we discuss shortly below.

I10.putStrLn :: String -> I0 ()
I0.putStrLn s = hPutStrLn stdout s

Even in the simplest hello world program, handles are there, just under the surface. The
small helloWorld program above can be expressed equivalently as:

helloHandle = IO.hPutStrLn IO.stdout "hello world!"

The Handle parameter lets us write strings to destinations other than the standard
output stream stdout. We saw an example of that earlier when we wrote to a file called
greeting.txt.

What is stdout? When the OS starts a process, it creates by default a few “standard” places
for the process to read and write. The standard output stream is one of those, and stdout is
the handle for it.

I0.stdout :: Handle

Each process has its own stdout. What happens when the process writes to its standard
output stream? It depends on context. We often think of it as “how you print messages to
the terminal,” because if we run a program at a command prompt, that’s what will happen.

Suppose you were to place the following into a file named hello-world.hs:
module Main (main) where
import qualified System.IO as IO

main = IO0.putStrLn "hello world!"

When you run it, you see that it prints output to the terminal.

$ runhaskell hello-world.hs
hello world!

13

But remember, a process never does anything directly! All /0 goes through the 0S, and
stdout is no exception. If we start the process in a context where its output is piped to a
file, for example, then what it writes to stdout doesn’t display in the terminal. That same
putStrLn action ends up writing to a file instead.

$ runhaskell hello-world.hs > greet.txt

$ cat greet.txt
hello world!

Background processes like servers often write their log output to stdout with the expec-
tation that the OS will store all of the daemons’ logs.

Closing a handle Once we’re done writing, we use hClose to tell the OS that we’re done
with the file handle. This isn’t really necessary in our little demo program, because when
the process ends, the OS will close all of its handles automatically anyway. But for long-
running processes that may end up doing a lot of file operations, it can be important to make
sure that handles get closed. The OS has to use memory to keep track of all of these handles,
and if the number of handles associated with your process just keeps rising because you’re
not closing them, eventually your operating system will become enraged and refuse to keep
giving you more.

It is okay to run hClose on a handle more than once. After the first time, it has no effect.

1.3 Exceptions

Even in a program so simple as this, we can concern ourselves with the possibility of excep-
tions. What, you might ask, could possibly go wrong in a program as simple as hello world?
The openFile action can fail if filesystem permissions do not allow us to write to the file path.
The putStrLn action can fail if the filesystem is backed by a storage medium that is full.

Try altering the file-opening line of writeGreetingFile as follows. This causes the oper-
ation to fail, because the system cannot create the greeting.txt file at this path because the
parent directory does not exist.

h <- I0.openFile (dir </> "nonExistentDirectory/greeting.txt") WriteMode

14

A> writeGreetingFile
*xx% Exception:
/home/chris/.local/share/sockets-and-pipes/nonExistentDirectory/greeting.txt:

openFile: does not exist (No such file or directory)

tryAny The default behavior when an exception occurs is to halt the action and print the
sort of error message that you see above. Whenever we want to change that behavior, we
will use tryAny from the safe-exceptions package:

import Control.Exception.Safe (tryAny)

tryAny :: I0 a -> IO (Either SomeException a)

To “try” an action is to bring its demons out from the shadows into a place where we
must confront them. The type of I0 Handle indicates that an action returns a Handle, but
it says nothing about the fact that you might get an exception instead. IO (Either Some-
Exception Handle) doesn’t let us get to the Handle until we reckon with what our software
should do with an exception.

One simple reason we might want to customize exception-handling behavior is to make
the output of a command-line application more uniform. Perhaps you want all messages
indicating problems to be printed in bold red. For a fully graphical application, exception
handling is essential, since the user cannot see the output printed by the default behavior at
all. For an easier example, suppose your program leans heavily into emoticons:

writeGreetingTry :: I0 ()
writeGreetingTry = do
dir <- getDataDir
I0.hPutStrLn IO.stderr "About to open the file :/"
openResult <- tryAny $ IO.openFile (dir </> "greeting.txt") WriteMode
case openResult of
Left _ -> I0.hPutStrLn IO.stderr "Cannot open file to write :("
Right h -> do
I0.hPutStrLn h "hello"
I0.hPutStrLn h "world"
I0.hClose h
I0.hPutStrLn IO.stderr "Done :)"

15

One should always take care to ensure that problems are visible in some way. For ~
command-line applications and fooling around in GHCi, the default exception behav- A\ ¢
ior which prints the exception’s error message is decent in this regard. When you start - .'o_
catching exceptions with tryAny, you become responsible for replacing the default be-
havior with something of your own devising! Make sure you don’t write software in which
important error information is left invisible, leaving users no recourse to understand what
went wrong when the unexpected happens.

Asynchronous exceptions There is one class of exception that tryAny does not catch. Even
when not engaged in any risky behavior, an action can receive an exception at any time, when
someone (or something) decides to kill it. This happens, for example, when you send an in-
terrupt from a terminal program (typically using the “ctrl+C” keyboard shortcut), or when
one thread in the program throws an exception to another (see the throwTo function in the
Control.Exception module). An exception received from without is called an asynchronous
exception. Any 10 action’s chief responsibility when receiving an asynchronous exception
is to halt quickly, because this is necessary if we are to have processes that are responsive
to kill signals. It is terribly frustrating when you try to stop an application and it just won’t
quit! Catching asynchronous exceptions is a risky proposition that should be left only to
dedicated libraries that really know what they’re doing.

1.4 Diligent cleanup

We want to make sure our handles get closed when we’re done with them, no matter what
happens. In this light, there is a subtle problem with writeGreetingFile. Although it does
close the file handle, this is only assured if nothing goes wrong. If an exception is raised
during the printing of the “hello world” text, the writeGreetingFile action terminates with-
out closing the handle. In a single-threaded program, this is not a big deal; when the ex-
ception is thrown, the process halts, and the operating system cleans up any open handles.
However, a Haskell program that employs concurrency, such as the server we will be writ-
ing, has many IO actions running at once, and the process can stay alive even if an exception
halts one of its threads.

To be sure that we deal with handle-closing reliably, it might seem like a good idea to
use tryAny to wrap up the steps between openFile and hClose to ensure that no exception
can be thrown between the moment when the handle is opened and the moment that it is
closed. However, this approach is still not a full guarantee because tryAny does not catch
asynchronous exceptions.

16

writeGreetingSafeAttempt :: I0 ()
writeGreetingSafeAttempt = do
dir <- getDataDir
h <- I0.openFile (dir </> "greeting.txt") WriteMode
_ <- tryAny do
I0.hPutStrLn h "hello"
I0.hPutStrLn h "world"
I0.hClose h

We will instead adopt ResourceT, a more reliable and convenient device provided by the
resourcet library. Add the following imports. We will discuss each new bit of the new greet-
ing program in detail below.

import Control.Monad.Trans.Resource (ReleaseKey, ResourceT, allocate, runResourceT)

writeGreetingSafe = runResourceT @I0 do
dir <- 1iftIO getDataDir
(_releaseKey, h) <-
allocate (IO0.openFile (dir </> "greeting.txt") WriteMode) IO.hClose
1iftIO (IO.hPutStrLn h "hello")
1iftI0 (IO.hPutStrLn h "world")

ResourceT The type of the do expression above is ResourceT IO (). The T in ResourceT
stands for “transformer” because ResourceT is a monad transformer — if m is a monad, then
ResourceT m is a monad as well. ResourceT IO represents the concept of I0 that has been
transformed or modified by adding a certain safety feature. A ResourceT IO action is much
like an IO action, but it is augmented with a register of resources that are guaranteed to be
closed when the ResourceT IO action concludes.

Above we have used three new functions: allocate, liftIO, and runResourceT. Before we
talk about what each means, we must first reckon with the many constraints in their type
signatures.

1iftIo :: MonadIO m =>I0 a ->ma
allocate :: MonadResource m => I0 a -> (a -> I0 ()) -> m (ReleaseKey, a)
runResourceT :: MonadUnliftIO m => ResourceT m a ->m a

We said a moment ago that a ResourceT 10 action is much like an 10 action. Whenever one
type is like another, there are probably typeclasses involved. In the constraints above, we

17

see three classes: MonadResource, MonadUnliftIO, and MonadIO. Wherever there are monad
transformers, we find this sort of abundance of polymorphism, because it is often (but not
always) the case that if some operation can be performed in the base context, then it may
also be performed in the transformed context.

MonadIO This class describes any monad that an IO action can be lifted into. Its sole
method is:

1iftI0 :: MonadIO m => I0 a -> m a

ResourceT 10 belongs to the MonadlIO class, which tells us that ResourceT 10 is in some
sense more powerful than plain old I0; anything that you can do in I0, you can also do in
ResourceT I0 by lifting the ordinary IO into a resource-safety-augmented ResourceT IO con-
text.

IO also belongs to the MonadlIO class, which expresses the comically trivial fact that an
IO action is an IO action.

instance MonadIO I0 where

1iftI0 x = x

Such an instance may usually be found whenever a class’s role is only to express that
values of one type may be converted to another type. Although silly-looking, an instance
like this does serve a purpose. When we encounter a function with a MonadlIO constraint, it
means we can use that function in any context that IO can be lifted into. But in situations
where we do not need any augmentations, it also means that we can use that function with
plain old unadorned 10, thanks to the humble MonadIO IO instance.

lift1O originally comes from Control.Monad.IO.Class and is re-exported by Relude.

MonadUnliftI0 We do not need to understand this class. Let it suffice to say that 10 has an
instance for it. You don’t necessarily need to know what every constraint in a polymorphic
type signature means. Sometimes all you need to do is look at the class’s instance list to
verify that the concrete type you’re interested in using satisfies the constraint. This can be
an important skill when reading Haskell API documentation.

MonadResource This class describes the special safety augmentations that the resourcet
library provides. ResourceT I0 belongs to this class, but regular old non-augmented 10 does
not. The MonadResource class exists because ResourceT IO can have further monad trans-
formers applied to it, and the transformed monad in many cases also supports the polymor-
phic allocate function.

18

It is easy to get lost in a sea of typeclasses. If you begin to feel overloaded, focus on
concretized type signatures. The three polymorphic functions listed earlier, as we will use
them in our hello-world program, are specialized as follows:

1iftIo :: I0 a -> ResourceT IO a
allocate :: I0 a -> (a -> I0 ()) -> ResourceT (ReleaseKey, a)
runResourceT :: ResourceT IO a -> IO a

Whenever you learn about a new type, pay attention to which functions introduce that
type and which functions eliminate it. For example, with ResourceT:

> Introduction: 1iftIO and allocate create ResourceT values.
> Elimination: runResourceT takes an ResourceT as its argument and turns it into some-
thing else.

This tells us what the general structure of a program using the type will look like. To use
ResourceT, we construct a ResourceT value using liftIO and allocate, and then we turn it into
IO using runResourceT.

allocate The allocate function has two parameters:

1. I0 a — An action that creates/opens/acquires a resource;
2. a -> 10 () — An action that destroys/closes/releases the resource.

When a ResourceT action performs an allocate, it runs the “open” action immediately
and holds onto the “close” action for later. At the end of the ResourceT computation, it runs
all of the “close” actions that have been registered. The closing phase is guaranteed to take
place even if an exception interrupts the process.

release Incircumstances where it is known that the Handle is no longer needed before the
end of the ResourceT computation, you can use the release function to close it early. We give
it the ReleaseKey that we obtained from the allocate function.

release :: MonadIO m => ReleaseKey -> m ()

Behind the scenes, the ResourceT context is maintaining a register of every cleanup ac-
tion that needs to run once the action is over. If you are done using the file handle before the
end of the action, it is tidier to use release instead of applying 10.hClose directly, because the
release also scratches off the relevant cleanup action from the list.

Our small program does not need to make use of release, so we simply discard the
ReleaseKey that allocate provides.

19

runResourceT One never constructs a ResourceT computation for its own sake; the ulti-
mate purpose is to “run” the computation, which is a cute way to describe converting it to
an 10 action that can be run in GHCi or used as main to compile an executable.

We prefer to use runResourceT with a type application, writing runResourceT @I0 to
specify 10 as the “base” monad. This type application is what allows the compiler to infer
the type signature of writeGreetingSafe that we have not given explicitly:

writeGreetingSafe :: IO ()

Throughout the rest of this book, whenever we open a file handle or other resource that
needs to be closed, the runResourceT function will be involved.

1.5 MonadIO

We have discussed MonadlIO class and what liftI0O means. We add here a few pragmatic notes
about a programmer’s relationship to it.

When introducing a new monad transformer like ResourceT into an IO sequence, every
line under the do keyword whose type is not already of type ResourceT I0 will have to be lifted
into ResourceT 10 using liftI0. (We saw this in the writeGreetingSafe program earlier.) This
is a function that we often forget to apply, and one eventually learns to quickly recognize
the type error “Couldn’t match type IO with ResourceT I0.” An error message like this often
indicates that a missing liftI0 must be inserted.

A design question arises whenever a definition has an I0 type, such as the helloWorld
action.

hellowWorld :: I0 ()
helloworld = IO.putStrLn "hello world!"

Such a definition can always be made polymorphic:

hellowWorld :: MonadIO m => m ()
helloWorld = 1iftIO (IO.putStrLn "hello world!")

In the wild jungle of Haskell libraries, we find disagreement about whether this should
always be done as a matter of course. For example, the System.IO and Prelude modules make
no use of the MonadIO class whatsoever, whereas Relude provides lifted MonadIO variants
of many of the same functions.

20

Neither choice is obviously preferable in all circumstances. Polymorphic MonadIO type
signatures are more convenient for users of monad transformers like ResourceT, since they
remove the need to sprinkle liftI0 throughout the code. Monomorphic IO types are some-
times easier on users who do not need lifted 10 because polymorphism can weaken type in-
ference, requiring type annotations or explicit type applications, such as runResourceT @10
as we have written here. The polymorphic choice may also induce more complicated error
messages if type errors arise.

X

1.6 Exercises
Exercise 1 — File resource function Define a function with the following type signature:

fileResource :: FilePath -> IOMode -> ResourceT IO (ReleaseKey, Handle)

Rewrite writeGreetingSafe, this time using the fileResource function we defined instead
of using allocate directly.

Keep this fileResource function around, because we will continue to make use of it in later
chapters.

Exercise 2 — Showing handles Handle has an instance of the Show typeclass, which means
you can use this function:

show :: Handle -> String

However, show doesn’t give you much of the information you might want to see when
you look at a handle. This is because a Handle is a messy real-world mutable sort of entity
that requires I/O to ascertain its current state, and show is a puny pure function that does
not have IO in its type and cannot look up information about a mutable object. So in addition
to the Show instance, we also have the hShow function:

I0.hShow :: Handle -> IO String

Write a program that uses show and hShow on a few handles to experiment and see the
difference between these two functions’ outputs.

handlePrintTest :: I0 ()
handlePrintTest = _

21

Exercise 3 — Exhaustion How many file handles can you have open at once? Fill in the two
holes below and run howManyHandles to find out.

howManyHandles = runResourceT @I0 do
hs <- openManyHandles

putStrLn ("Opened " <> show (length hs) <> " handles")

openManyHandles :: ResourceT IO [Handlel]

openManyHandles = _

fileResourceMaybe :: ResourceT IO (Maybe Handle)
fileResourceMaybe = do

dir <- 1iftIO getDataDir

result <- tryAny do

case result of
Right x -> return x
Left e -> do
print (displayException e)

return Nothing

The openManyHandles action should keep reopening a file until 10.openFile throws an
exception, and it should return a list of all the handles that were opened. Recursion will be
useful for making this action repeat in a loop.

This action will need to catch the exception that openFile will throw when the maximum
number of file handles has been reached. Use the tryAny function. The type signature we
gave for tryAny earlier was actually a simplification; it is polymorphic. For this exercise,
tryAny specializes to:

tryAny :: ResourceT IO (Maybe Handle)
-> ResourceT I0 (Either SomeException (Maybe Handle))

22

