

 Smart Teens. Book 1: The Abode Paradigm (A STEM Adventure)

 Kairat Zinashov

 Smart Teens. Book 1: The Abode Paradigm (A STEM Adventure)

 Kairat Zinashov

 This book is available at https://leanpub.com/smartteens-stem-book1-theabodeparadigm

 This version was published on 2026-02-05

 [image: publisher's logo]

 * * * * *

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

 © 2026 Kairat Zinashov

Table of Contents
	
		
	
	
	
	
	
	
	
	
	
	
	

Chapter 1.
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/smartteens-stem-book1-theabodeparadigm.

🐍 Python Practice: Scanning Logic
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/smartteens-stem-book1-theabodeparadigm.

📶 Synchronization Scale
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/smartteens-stem-book1-theabodeparadigm.

Writing in Markua

Writing in Markua is easy! You can learn most of what you need to know with just a few examples.

To make italic text you surround it with single asterisks. To make bold text you surround it with double asterisks.

Section One

You can start new sections by starting a line with two # signs and a space, and then typing your section title.

Sub-Section One

You can start new sub-sections by starting a line with three # signs and a space, and then typing your sub-section title.

Including a Chapter in the Sample Book

At the top of this file, you will also see a line at the top:

1 {sample: true}

Leanpub has the ability to make a sample book, which interested readers can download or read online. If you add this line above a chapter heading, then when you publish your book, this chapter will be included in a separate sample book for these interested readers.

Links

You can add web links easily.

Here’s a link to the Leanpub homepage.

Images

You can add an image to your book in a similar way.

First, add the image to the “Resources” folder for your book. You will find the “Resources” folder under the “Manuscript” menu to the left.

If you look in your book’s “Resources” folder right now, you will see that there is an example image there with the file name “palm-trees.jpg”. Here’s how you can add this image to your book:

[image:]

If you want to add a figure title, you put it in quotes:

[image: Palm Trees]
Figure 1. Palm Trees

If you want to add descriptive alt text, which is good for accessibility, you put it between the square brackets:

[image: a picture of palm trees against a blue sky]
Figure 2. Palm Trees

You can also set the alt text and/or the figure title in an attribute list:

[image: a picture of palm trees against a blue sky]
Figure 3. Palm Trees

Finally, if no title is provided, and the alt-title document setting is the default of all, the alt text will be used as the figure title instead of as alt text.

[image: Palm Trees]
Figure 4. Palm Trees

You can set the important document settings at Settings > Generation Settings.

Lists

Numbered Lists

You make a numbered list like this:

	
kale

	
carrot

	
ginger

Bulleted Lists

You make a bulleted list like this:

	
kale

	
carrot

	
ginger

Definition Lists

You can even have definition lists!

	term 1

	
definition 1a

	
definition 1b

	term 2

	
definition 2

Page Breaks

We don’t recommend that you manually break pages, since that is brittle and can lead to unexpected formatting if you edit text earlier in your chapter and forget about the manual page breaks. But if you really want to add a page break, you use the {pagebreak} directive on a line by itself, with blank lines above it and below it.

Code Samples

You can add code samples really easily. Code can be in separate files (a “local” resource) or in the manuscript itself (an “inline” resource).

Local Code Samples

Here’s a local code resource:

Figure 5. Hello World in Ruby 1 require 'time'
 2
 3 # This is just some pointless code so you can see the syntax highlighting...
 4 def display_info
 5 pi = Math::PI.round(10)
 6 time_last_year = (Time.now - 365 * 24 * 60 * 60).getlocal("-08:00")
 7 formatted_time = time_last_year.strftime("%Y-%m-%d %H:%M:%S")
 8 puts "Pi to 10 decimal places: #{pi}"
 9 puts "The time 1 year ago in Pacific Time: #{formatted_time}"
10 end

Inline Code Samples

Inline code samples can either be spans or figures.

A span looks like puts "hello world" this.

A figure looks like this:

 1 require 'time'
 2
 3 # This is just some pointless code so you can see the syntax highlighting...
 4 def display_info
 5 pi = Math::PI.round(10)
 6 time_last_year = (Time.now - 365 * 24 * 60 * 60).getlocal("-08:00")
 7 formatted_time = time_last_year.strftime("%Y-%m-%d %H:%M:%S")
 8 puts "Pi to 10 decimal places: #{pi}"
 9 puts "The time 1 year ago in Pacific Time: #{formatted_time}"
10 end

You can also add a figure title using the title attribute:

Figure 6. Hello World in Ruby 1 require 'time'
 2
 3 # This is just some pointless code so you can see the syntax highlighting...
 4 def display_info
 5 pi = Math::PI.round(10)
 6 time_last_year = (Time.now - 365 * 24 * 60 * 60).getlocal("-08:00")
 7 formatted_time = time_last_year.strftime("%Y-%m-%d %H:%M:%S")
 8 puts "Pi to 10 decimal places: #{pi}"
 9 puts "The time 1 year ago in Pacific Time: #{formatted_time}"
10 end

Tables

You can insert tables easily inline, using the GitHub Flavored Markdown (GFM) table syntax:

	Header 1
	Header 2

	Content 1
	Content 2

	Content 3
	Content 4 Can be Different Length

Tables work best for numeric tabular data involving a small number of columns containing small numbers:

	Central Bank
	Rate

	JPY
	-0.10%

	EUR
	0.00%

	USD
	0.00%

	CAD
	0.25%

Definition lists are preferred to tables for most use cases, since reading a large table with many columns is terrible on phones and since typing text in a table quickly gets annoying.

Math

You can easily insert math equations inline using either spans or figures.

Here’s one of the kinematic equations [image: Code Test] inserted as a span inside a sentence.

Here’s some math inserted as a figure.

[image: Something Involving Sums]Figure 7. Something Involving Sums

Headings

Markua supports both of Markdown’s heading styles.

The preferred style, called atx headers, has the following meaning in Markua:

 1 {class: part}
 2 # Part
 3
 4 This is a paragraph.
 5
 6 # Chapter
 7
 8 This is a paragraph.
 9
10 ## Section
11
12 This is a paragraph.
13
14 ### Sub-section
15
16 This is a paragraph.
17
18 #### Sub-sub-section
19
20 This is a paragraph.
21
22 ##### Sub-sub-sub-section
23
24 This is a paragraph.
25
26 ###### Sub-sub-sub-sub-section
27
28 This is a paragraph.

Note the use of three backticks in the above example, to treat the Markua like
inline code (instead of actually like headers).

The other style of headers, called Setext headers, has the following headings:

 1 {class: part}
 2 Part
 3 ====
 4
 5 This is a paragraph.
 6
 7 Chapter
 8 =======
 9
10 This is a paragraph.
11
12 Section
13 -------
14
15 This is a paragraph.

Setext headers look nice, but only if you’re only using chapters and sections.
If you want to add sub-sections (or lower), you’ll be using atx headers for at
least some of your headers. My advice is to just use atx headers all the time.
(The {class: part} attribute list on a chapter header to make a part header
does actually work with Setext headers, but it’s really ugly.)

Note that while it is confusing and ugly to mix and match using atx and Setext
headers for chapters and sections in the same document, you can do it. However, please don’t.

Block quotes, Asides and Blurbs

Block quotes are really easy too.

—Peter Armstrong, Markua Spec

Asides are useful
for longer text.

But typing them like this
isn’t fun.

Asides can be written this way, since adding a bunch of A> stuff at the beginning of each line can get annoying with longer asides.

	
	
Blurbs are useful

	
	
Blurbs are useful

There are many types of blurbs, which will be familiar to you if you’ve ever read a computer programming book.

	[image: An icon indicating this blurb contains comments]	
This is a discussion.

You can also specify them this way:

	[image: An icon indicating this blurb contains comments]	
This is a discussion

	[image: An icon of a bug]	
This is an error.

	[image: An icon indicating this blurb contains information]	
This is information.

	[image: An icon of a question-circle]	
This is a question. (Not a question in a Markua course; those are done differently!)

	[image: An icon of a key]	
This is a tip.

	[image: An icon indicating this blurb contains a warning]	
This is a warning.

	[image: An icon of a pencil]	
This is an exercise. (Not an exercise in a Markua course; those are done differently!)

Good luck, have fun!

If you’ve read this far, you’re definitely the right type of person to be here!

Our last piece of advice is simple: once you have a couple chapters completed, publish your book in-progress!

This approach is called Lean Publishing. It’s why Leanpub is called Leanpub.

If you want to learn more about Lean Publishing, read this or watch this.

 EPUB/resources/__leanpub_equation_1.png
d = Uﬂf -+ —Cth

EPUB/resources/__leanpub_equation_2.png

EPUB/styles/resources/leanpub_pencil.png

EPUB/styles/resources/leanpub_question-circle.png

EPUB/styles/resources/leanpub_warning.png

EPUB/styles/resources/leanpub_comments.png

EPUB/styles/resources/leanpub_bug.png

EPUB/styles/resources/leanpub_info-circle.png

EPUB/resources/palm-trees.jpg

EPUB/resources/hello.rb
require 'time'

This is just some pointless code so you can see the syntax highlighting...
def display_info
 pi = Math::PI.round(10)
 time_last_year = (Time.now - 365 * 24 * 60 * 60).getlocal("-08:00")
 formatted_time = time_last_year.strftime("%Y-%m-%d %H:%M:%S")
 puts "Pi to 10 decimal places: #{pi}"
 puts "The time 1 year ago in Pacific Time: #{formatted_time}"
end

EPUB/media/resources/publisher-logo.png
[

Leanpub

EPUB/styles/resources/leanpub_key.png

