Uberwachen und steuern Sie lhr Haus mit Raspberry Pi, ioBroker
und selbst programmierten WebApps

aurelo

Roger Inigo

Smarthome DIY

Uberwachen und steuern Sie Ihr Haus mit Raspberry Pi,
ioBroker und selbst programmierten WebApps.

Roger Inigo
Dieses Buch wird verkauft unter http://leanpub.com/smarthdiy

Diese Version wurde veroffentlicht am 2020-08-30

)

Leanpub

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von
Lean-Publishing, neue Méglichkeiten des Publizierens. Lean Publishing bedeutet die
wiederholte Veroffentlichung neuer Beta-Versionen eines eBooks unter der Zuhilfenahme
schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei der Finalisierung und der
anschlieBenden Vermarktung des Buches. Lean Publishing unterstiitzt den Autor darin ein
Buch zu schreiben, das auch gelesen wird.

© 2018 - 2020 Roger Inigo, c/o AutorenServices.de, Kénig-Konrad-Str. 22, D-36039 Fulda

http://leanpub.com/smarthdiy
http://leanpub.com/
http://leanpub.com/manifesto

Inhaltsverzeichnis

Kapitel 3: IoBroker Scripting 1
Einrichtung des Script-Hosts
Einfache Skripte 5
Skripte sichern 24

Kapitel 4: Standalone Front-End 25
Teil 3: DoubleGauge 35
Teil 4: Druckknopf 49
Teil 5: Tri-State Button 59
Teil 6: Lineare Anzeigegerdte 66

Kapitel 6: Bastelstunde 71
Grundatzliches und was man zum Basteln braucht 72
Barometer 85
Motor 101

Kapitel 3: loBroker Scripting

Nachdem wir jetzt verschiedene Komponenten eingerichtet und im ioBroker UI geschaltet und
ausgelesen haben, wollen wir anfangen, ein paar Sachen zu automatisieren. Dazu verwenden
wir den in ioBroker enthaltenen Scripting-Host.

Es sei an dieser Stelle darauf hingewiesen, dass ioBroker verschiedene Methoden kennt, um
Abldufe zu automatisieren. Ich verwende hier die “pure” JavaScript-Methode. Dies einerseits,
weil es mir gefillt, exakt kontrollieren zu kénnen, was ein Programm tut, und andererseits, weil
man auf diese Weise “alles” kann und nicht auf die Méglichkeiten der jeweiligen Automatisie-
rungstechnik begrenzt ist bzw. nur mit zusatzlicher Mithe daraus ausbrechen kann. Dennoch:
Wenn Thnen visuelles Programmieren besser liegt, schauen Sie sich zum Beispiel den “Node
Red”-Adapter oder den “Scenes”-Adapter genauer an. Insbesondere Node Red ist inzwischen
eine weitverbreitete Programmiertechnik geworden, fiir die es auch viel Hilfe im Netz gibt.

(https://nodered.org).
Falls Sie aber auf die “harte Tour” skripten wollen, folgen Sie mir bitte weiter.

Alle Skripte, die ich im Folgenden zeige, finden Sie auch im Verzeichnis “iobroker-scripts” der
Begleitsoftware, welche Sie wie im Anhang gezeigt auf Thren Computer klonen kénnen. Ich
empfehle Thnen, dies auch zu tun da ich hier machmal nur die relevanten Teile der Skripte
vorstelle. Den vollstandigen Code finden Sie dann jeweils im Quellen-Verzeichnis.

Die hier besprochenen Skripts befinden sich im Unterverzeichnis ‘iobroker’, wenn Sie das
Repository wie im Anhang gezeigt clonen, und dann den Haupt-Branch auschecken:

git checkout master

https://nodered.org

Kapitel 3: IoBroker Scripting 2

Einrichtung des Script-Hosts

Richten Sie Thren Browser auf ioBroker (http://homeview.local:8081) und 6ffnen Sie den Reiter
‘Adapter’. Sie benétigen die ‘Script Engine’, bzw. ‘Skriptausfiihrung’ in der deutschen Version (Sie
konnen auch einfach ‘script’ in das Feld ‘Filter’ eingeben, dann brauchen Sie nicht die immer
langer werdende Liste zu durchsuchen). Installieren Sie diesen Adapter in gleicher Weise wie
im vorigen Kapitel gezeigt, und lassen Sie alle Einstellungen der Instanz-Konfiguration auf den
Vorgaben. Nach erfolgreicher Installation haben Sie einen neuen Reiter namens ‘Skripte’ in Threr
ioBroker Oberflache.

111
4 o B sy iacal D0ES i 1 ST,
A Amazon t aflry u Deakingcom BE Bonpria n Facohoak m Pocket \JI Cir-Wg? [sphele] Deemicp [Acple

@ e NeuelGruppe!

Abb. 3.1: Scripting-Host

Klicken Sie dann zunichst auf den runden plus-Button fiir neue Gruppe und erstellen Sie
eine Gruppe namens Smarthome-diy (Oder einen Namen Ihrer Wahl). Markieren Sie dann die
eben erstellte Gruppe und klicken Sie auf den Button ‘neues Script’. Wahlen Sie als “type”
dann ‘JavaScript’. Geben Sie dem Script, das nun als “Skript1” aufgelistet ist, den wesentlich
fantasievolleren Namen “test” und klicken Sie »speichernc.

Schreiben Sie dann in das weif3e Feld rechts:
log("Hello, World", "info")

Klicken Sie auf »speichern<, und dann auf den >Play< Button im linken Teilfenster neben dem

http://homeview.local:8081

Kapitel 3: IoBroker Scripting 3

Namen des Scripts. Im rechten unteren Teilfenster erscheinen einige Textzeilen, darunter auch
eine, die “Hello, World” enthélt. Gratuliere, Sie haben Thr erstes ioBroker Script geschrieben.

Einschub: Méglicherweise ist im log-Feld nichts erschienen. Auch hier hakelt Admin3
manchmal, aber gliicklicherweise nur am Anfang. Folgendes kann helfen: Klicken Sie
in der linken Spalte auf ‘Log’, um die volle Log-View zu 6ffnen. Dort sehen Sie die
Ausgaben Thres Skripts auf jeden Fall. Loschen Sie das Log durch Klick aufs rote
Papierkorb-Symbol, das vierte Icon von links. Loschen Sie dann noch das lokale Log
durch Klick auf das blaue Papierkorb-Symbol daneben. Wenn Sie dann wieder auf
‘Skripte’ gehen, sollte das untere Teilfenster zum Leben erwacht sein. Wenn nicht, starten
Sie den Raspi neu.

“log” bedeutet dabei, dass das Skript etwas in die “Log-Datei” schreiben soll. Den Inhalt der
Log-Datei sehen Sie jeweils im Reiter Log der Admin-Oberflache. In diese Log-Datei schreiben
alle Adapter und Skripte, was sie dem Administrator mitteilen wollen. Das sind Mitteilungen
unterschiedlicher Wichtigkeitsstufen, die man als “debug”, “info”, “warn” und “error” bezeichnet.
Allgemeine Informationen erhalten die Stufe >info<, wahrend Nachrichten, die man nur zum
Debuggen benétigt, mit dem Level >debug« geschrieben werden. Ernsthaftere Stérungen werden
als >warn«< ausgegeben, und Fehler, die die normale Funktion unméglich machen, als »error<. Im
Log-Fenster kann man einstellen, welche Stufen man sehen will. Ich werde Thnen das spater noch
zeigen. Interessant ist fiir uns, dass wir Log-Meldungen unserer Skripte auch direkt im untersten
Teilfenster der Skript-View sehen.

Also zusammengefasst: Unser erstes Skript schreibt “Hello World” mit der Wichtigkeit “info” in
die Logdatei, was der Skripting-Host uns gleichzeitig auch hier im Fenster anzeigt.

L
L L B T S

B imives Joley . [[Jekrgans B Rerpen ([rerviean. D Pened O G paw Cwaraw dygin e aa b dn W Eipeis

@ O
[+ i Dty [ore.
= P L, Or.) Ergestyn Lraasorpiia
[eee T @ i]
B Adspier ﬂ hokal 1 o™l le, =il infa™);
» Lwrartore dy i i
B Irsargen = B =

loschen

Loag it TR PP fric] presscepe] Sunp BORCH RS [RTETTNOTS O AT
g ERdicH Fiek fric] e 5 fonm ol il _ g e
. T M e el D Ty M i, Rl
B2 AT M] vl soripd b Oy T reegeeten B mabacepiond b 0 Eraiuies

Abb. 3.1: Log Ausgabe

Im Folgenden werden wir einige einfache Aufgaben per Skript erledigen.

Kapitel 3: IoBroker Scripting 4

Doch zunéchst eine kurze Erklarung zu den Ordnern, die wir bereits in ‘Skripte’ vorgefunden

haben:

« Common ist einfach ein Ablageort, gedacht fiir allgemein benétigte Code Teile

« Mit ‘Global’ hat es aber eine besondere Bewandtnis: Was hier drin steht, wird an den
Anfang jedes anderen Skripts gesetzt. Wir nutzen da gleich aus, um ein paar Konstanten zu
definieren:

! - loBroker x ') GitHub - loBrokerfioBroker. oy x

icher homeviewlocal: B0 Mah-javaserip

o0 2 ¥ o1 Mame |_§!ﬂhﬂ| _¢-
o ' s globals

~ commen [
: 1gluba! : m Speichermn e Abbrechen Zeilen

. —globals g el 1 conskt DFF-B;
+ Lgmarthome_diy 1] 2 const ON-1;

i 3 consk ALTO=Z;
- test 1] gy w0

Abb. 3.2: Globale Skripte

Wir werden diese Konstanten spater benutzen und ggf. erweitern. Beachten Sie, dass das Skript
in “global” gestartet (griin) sein muss, damit andere Skripte die Werte benutzen kénnen.

Kapitel 3: IoBroker Scripting 5

Einfache Skripte

Lampe einschalten

Erstellen Sie ein neues Skript und geben Sie ein:
setState(

Klicken Sie dann rechts oben im Skriptfenster auf ‘ID Einfigen’. Im daraufhin 6ffnenden Dialog
wahlen Sie das gewiinschte Licht oder die gewiinschte Lichtgruppe aus, markieren dort die
Eigenschaft ‘on’ und klicken danach ‘Auswéhlen’.

|D&nbep; suswkhlen - on ﬂ

- L L+ Mamss Redle Raum Wert
] 5 A 5
T |
Fiiida [=)
D
Jarwiiarin O =
4 . Ighityd =
R0OCCO0S000000 Crmmsen Group
& | SENCOCHNG D5 ald Deviicn tnum
Bl 4] lavel demmar B %
oomimandl oommand skake ril, g, b, sal255%, on
= el avyn] oo e P i 1 JiEA K
groupid groepid Bl o
on - wwitch]
peanhsbis rabirabls AR SOnnSMed 2
refrash ribEil LR] i
[T Baed Bl 3 mE
Byt Fatiin Earl ¥

Abb. 3.3: IoBroker State auswihlen

Im Skriptfenster steht dann etwas wie:
setState("lightify.0.663254887.0on" /*on*/)

IoBroker hat also fiir uns die manchmal etwas unhandliche Gerate-ID eingefiigt (die bei Ihnen
selbstverstandlich anders aussehen wird, als hier gezeigt). Den Teil zwischen /* und */ kann
man loschen, der ist nur als Information gedacht (und hier tiberflissig), dafiir muss man aber
noch ergénzen, was ioBroker nun genau tun soll:

setState("lightify.0.663254887.on", true);

Speichern und starten Sie dieses Skript, und wenn Sie alles richtig gemacht haben, wird dadurch
das genannte Licht oder die genannte Lichtgruppe eingeschaltet. Wenn Sie ‘false’ statt ‘true’
einsetzen, wird es ausgeschaltet. True und false sind sogenannte bool’sche Konstanten, die nur
diese beiden Werte annehmen konnen, und darum gern fiir Schaltvorgénge verwendet werden.
Man hatte auch 1 und 0 schreiben kénnen, JavaScript (und damit ioBroker) ist da recht tolerant.

Kapitel 3: IoBroker Scripting 6

Zwei Lampen miteinander verknupfen

Nun wollen wir Folgendes erreichen: Wann immer jemand das Licht im Esszimmer einschaltet,
soll auch das Licht im Korridor angehen. Das kénne man bei Hue und Lightify auch dadurch
erreichen, dass man diese beiden Lampen in einer Gruppe zusammenfasst, und dann die Gruppe
ein- und ausschaltet, aber die Losung mit dem Skript ist besser, da es egal ist, in welcher Weise das
Esszimmerlicht eingeschaltet wird (Lichtschalter oder App), und da es nur in einer Richtung geht
(man kann das Korridorlicht ohne Esszimmer schalten, aber nicht umgekehrt), und nicht zuletzt
auch, weil es flexibler ist (Das Korridorlicht kann in mehreren verschiedenen Schaltlogiken
eingebunden sein), und die beiden Lichter konnen zu ganz verschiedenen Geratearten gehoren:
Man kann auf diese Weise problemlos Hue, Lightify und myStrom Lampen verkniipfen (und hier
sehen Sie nun somit das erste Mal in diesem Buch den ‘Mehrwert’, den Sie dank der Bemiihungen
mit ioBroker erzielen).

const esszimmerlicht = "lightify.0.64EADAQQ02261884"
const korridorlicht = "hue.0.Philips_hue.Korridor"

n "

const esszimmer_an_aus = esszimmerlicht + ".on

const korridor_an_aus = korridorlicht + ".on"
on({ id: esszimmer_an_aus }, function () {
var State = getState(esszimmer_an_aus).val

setState(korridor_an_aus, state)

In den ersten beiden Zeilen weisen wir die unhandlichen Objekt-IDs etwas menschenverstiand-
licheren Variablen zu. Es bewéahrt sich, das immer so zu halten. Wenn man spater einmal eine
Lampe auswechselt oder &ndern mochte, muss man nur die Zuweisung am Anfang dndern, und
nicht das ganze Skript nach Verweisen auf das betroffene Gerat durchsuchen.

Die nichsten zwei Zeilen sind vielleicht etwas schwieriger zu verstehen: Wir addieren “.on” zu
einem Variablennamen? Nanu?

Dazu ein kleiner Exkurs, den Sie tiberspringen konnen, wenn Sie sich mit JavaScript schon ein
wenig auskennen:

Ein besonders vielseitiger Variablentyp ist das “Objekt”. Ein Objekt wird so dargestellt:

var irgendein_name = {
frage: "Das Leben etc.",
antwort: 42,
attribut3: false,
attribut4: [1, 2, 3],
attribut5: { name: "Rumpelstilzchen" }

Jedes Attribut kann nur einmal vorkommen und einen beliebigen Namen haben, der aus
Buchstaben, Zahlen und Unterstrich bestehen darf, aber mit einem Buchstaben beginnen muss.
Jeder Wert kann vom Typ String (Zeichenkette), number (Zahl), Array, Boolean oder Object sein.

© 00 N O O & W N =

(RN
= O

Kapitel 3: ToBroker Scripting 7

Attribute innerhalb eines Objekts sind durch Komma getrennt, das ganze Objekt ist immer mit
geschweiften Klammern umschlossen.

In ioBroker wird ein Objekt, das einen Zustand eines Gerates anzeigt, >State« genannt, und solche
State-Objekte sind entsprechend aufgebaut, zum Beispiel konnte eine Lampe so definiert sein:

const licht = {
on: true,
bri: 70,
r: 255,
g: 2595,
b: 125,
reachable: true

Wenn ich jetzt >licht.on« referenziere, dann meine ich damit das Attribut on des Objekts licht.
Somit ist klar: esszimmer_an_aus ist hier: esszimmerlicht.on.

Die Bedeutung der einzelnen Attribute eines ioBroker-Objekts ist iibrigens rein vom Adapter
abhéangig. Hier bedeutet on den Einschaltzustand, bri die Helligkeit in Prozent, r, g und b sind die
Rot- Griin- und Blau-Anteile des Lichts, als Werte zwischen 0 und 255 ausgedriickt. Reachable
gibt Auskunft dariiber, ob das Gerat tiberhaupt per Software erreichbar ist (das ist nicht der Fall,
wenn es zum Beispiel mit dem Lichtschalter ausgeschaltet wurde). All diese Attribute konnen
wir in ioBroker Skripten auslesen und setzen. Nicht alle Adapter sind gleich gut dokumentiert,
und manchmal muss man ein wenig mit den Werten herumspielen, um herauszufinden, was sie
bedeuten.

Zeitschaltuhr

Zum Aufwirmen bilden wir jetzt eine dieser billigen Zeitschaltuhren mit unserem teuren
Smarthome-System in Software nach.

Erstellen Sie ein neues Skript namens ‘zeitschaltuhr’ in der Gruppe smarthome-diy.

const licht ="lightify.0.904AA200AA3EBOTC.on"

schedule("0 17 * * *", function(){
log("Schaltuhr ein")
setState(licht,true)

)

schedule("30 23 * * *" function(){
log("Schaltuhr aus")
setState(licht, false)

)

Kapitel 3: IoBroker Scripting 8

Eingangs definieren wir die Lampe, die wir steuern wollen. Dann folgen zwei schedule Ausdrii-
cke, die vielleicht noch néaher erklart werden sollten: Damit teilt man ioBroker (bzw. der V8-
Engine, auf der ioBroker lauft) mit, dass eine Funktion zu bestimmten Zeiten ausgefiithrt werden
soll. Die allgemeine Syntax ist:

schedule("Zeitausdruck", function () { })

Der Zeitausdruck kann ganz einfach vom Skripteditor aus eingegeben werden, indem man rechts
oben auf >Cronc« klickt. Es geht dann dieses Fenster auf:

Cron-Ausdruck H

| g l
Jede 0, 10, 20, 30, 40 und 50 Sekunde

Sekunden benutzen: ¥

Sakunden] Minuten l Stunden l Monatstag l Monate l YWochentage -
Jede Sekundi | Alle N Sekunden I Jede -||_|:.:_:|-.".'.'.|I|I!:-5::-.|||||i|- _

Alle 10 Sekunden

Einfugen Loschen Abbrachen

Abb. 3.5: Cron-Ausdruck per UI

Hier kann man ganz einfach die gewiinschten Zeiten angeben. Die Syntax ist dem Unix cron
nachempfunden, daher der Name: Man schreibt 5 oder 6 Sterne (je nachdem, ob Sekunden
benutzt werden sollen). der Stern ganz links ist jeweils die kleinste Mafleinheit, dann bedeutet
jedes Feld von links nach rechts: (Sekunde, wenn vorhanden), Minute, Stunde, Tag des Monats,
Monat, Tag der Woche. So wiirde etwa “30 3,15 * * *” bedeuten: Um 3:30 und 15:30 Uhr an jedem
Tag in jedem Monat, wihrend “0 12 * 5,7,9 1-6” bedeuten wiirde: Jeden Montag bis Samstag im
Mai, Juli und September um 12:00 Uhr. Sie sehen, man kann da ziemlich jeden gewiinschten
Zeitpunkt ausdriicken. Und gliicklicherweise muss man dank der intuitiven Cron-Auswahlbox
von ioBroker diese komplizierte Schreibweise gar nicht kennen.

Erweitern Sie unser allererstes Script so:

© 00 N O O & W N =

[N T NS T N T N T o S S e = = G G Y
W N O O 0N 0O O k& W N =~ O

Kapitel 3: IoBroker Scripting 9

log("Hello, World", "info")
schedule("*/10 * * * * *" function () {

log("und wieder 1@ Sekunden vergangen", "info")

D)

Wenn Sie es starten, wird es brav alle 10 Sekunden laut geben. Allerdings nicht ganz genau.
Cron ist kein Prézisionstimer, sondern wird die Zeiten nur ungefihr einhalten. Wenn es auf
Sekundengenauigkeit ankommt, braucht man andere Methoden.

Bewaffnet mit diesen Wissen erkennen Sie nun, dass obige Zeitschaltuhr das Licht um 17:00 Uhr
ein- und um 23:30 Uhr wieder ausschaltet, und zwar jeden Tag.

Wir werden das Konzept gleich ein wenig ausbauen:

AulB3enbeleuchtung nach Sonnenuntergang bis Mitternacht
einschalten

Die Auflentreppe ist im Dunkeln ein wenig gefahrlich. Damit niemand hinauf- und hinunterstol-
pert, soll sie wenigstens bis Mitternacht beleuchtet sein. Das soll einerseits automatisch erfolgen,
andererseits muss es aber auch moglich sein, manuell einzugreifen, damit man die Treppe etwa
fir spate Partygiaste auch (und gerade!) zu vorgeriickter Stunde beleuchten kann.

Erstellen Sie ein neues Skript namens »aussenlicht_nachts< in der Gruppe smarthome-diy.

createState("aussenlicht_manuell",AUTO)
const treppenlicht ="lightify.0.904AA200AA3EBOTC.on"

function toggle(mode){
log("toggle "+mode)
if(getState("aussenlicht_manuell").val==AUTO){
setState(treppenlicht, mode)

on({id: "javascript.@.aussenlicht_manuell", val:OFF}, function(){
log("manuell aus")
setState(treppenlicht, false)

1)

on({id: "javascript.0.aussenlicht_manuell",val: ON}, function(){
log("manuell an")
setState(treppenlicht, true)

b

on({id: "javascript.0.aussenlicht_manuell", val:AUTO}, function(){
log("switched to auto")
if(isAstroDay()){

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Kapitel 3: IoBroker Scripting 10

log("it's day")
setState(treppenlicht, false)
lelse{
log("it's night™")
setState(treppenlicht,compareTime('sunset', '23:59"', 'between'))

)

schedule({astro: "sunset", shift: 15}, function(){
log("sunset, lights on")
toggle(true)

)

schedule("30 23 * * *" function(){
log("23:30, lights off")
toggle(false)

1)

Hier geschieht eine ganze Menge Neues. Zunachst erstellen wir mit “createState” einen Software-
State. Sie erinnern sich: Ein ‘State’ ist der Zustand eines von ioBroker kontrollierten Objektes,
also etwa der Zustand “an” einer Lampe. Wir konnen in einem Skript aber auch Pseudo-States
oder Software-States mit beliebigen Namen erstellen, auf die man dann genau so zugreifen kann,
wie auf “echte” States. Hier erstellen wir einen solchen State mit einem initialen Wert von AUTO.
AUTO wiederum ist (ebenso wie ON und OFF) eine Konstante, die wir vorhin in unserem globals-
skript in der global-Gruppe des Skripting Hosts erstellt hatten.

Nachdem Sie dieses Skript zum ersten Mal ausgefiithrt haben, finden Sie unter Objekte in der
Gruppe javascript.0 einen neuen State namens ‘aussenlicht_manuell’:

E - [= [I
"] Marrs Typ Relia [Funkzizm Wit

= 4w
Al - Als - A = dle
aiman D @&
darzenny D -
L b
[]
hmerpa
hmepe s
o [®]
riusthid
& PvancrpLd "
waarEn] el i mannbchl e alea EvART Fj
smE e
kghiigl .
mId L]

Abb. 3.4: Software-State >aussenlicht_manuell<

Diesen State konnen Sie genauso wie “echte” States von dieser Admin- Benutzeroberflache
(und spéter von Visualisierungen und Programmen) aus schalten, wie z.B. den “on” Status einer
Lampe.

Dann folgt eine Funktion toggle, die das Treppenlicht je nach mode-Argment ein- oder
ausschaltet, aber nur, wenn unser vorhin definierter aussenlicht _manuell State auf AUTO steht.
Wenn der State also nicht auf “Automatik” steht, dann ignoriert diese Funktion die Aufforderung.

© 00 N O O & W N =

N = =y
O© 00 I O O b W N =~ O

Kapitel 3: IoBroker Scripting 11

Ab Zeile 13 reagieren wir auf manuelles Ausschalten also auf die Situation, dass “irgendwer” den
state aussenlicht_manuell auf OFF stellt. ioBroker schickt uns dann eine Benachrichtigung, die
wir mit einer solchen “on({state},value)” Funktion verarbeiten konnen. In diesem Fall schalten
wir das Treppenlicht aus. Unser Software-State ist jetzt nicht mehr auf AUTO, sondern auf OFF.
Kiinftige automatische Schaltvorgange werden also nicht ausgefiihrt.

Ab Zeile 17 kommt dasselbe fiir den Fall dass der State ON geht.

Ab Zeile 21 verarbeiten wir die Nachricht dass unser State auf AUTO geschaltet wurde. In diesem
Fall schauen wir zuerst mal nach, ob es gerade Tag oder Nacht ist.

Dabei kommt eine schone Funktion von ioBroker zum Zuge: isAstroDay() liefert true zuriick,
wenn es Tag ist, sonst false. Das ist iibrigens auch der Grund, warum ioBroker bei der Installation
TIhre Koordinaten wissen wollte. Nur so kann diese Funktion (und andere tageszeitabhédngige
Funktionen, die wir spater noch sehen werden) korrekt funktionieren.

Die letzten beiden Funktionen implementieren nun die Automatik: Um 15 Minuten nach
Sonnenuntergang ({astro: sunset, shift 15}) wird das Licht eingeschaltet (falls es im Automatik-
Modus ist), und um 23:30 wird es ausgeschaltet (falls es im Automatik-Modus ist).

AulB3enbeleuchtung mit Bewegungssensor verkniipfen

Wir wollen das Aufienlicht nicht nur zu bestimmten Zeiten einschalten, sondern auch, wenn
jemand sich in der Ndhe der Treppe befindet. Wir mdchten sie also mit einem Bewegungssensor
zusammenschalten. Ausserdem soll es, wenn es manuell oder per Sensor aktiviert wurde, heller
leuchten, als das Dauerlicht. Und last but not least soll auch ein Licht an der Eingangstiir angehen,
wenn jemand in die Nahe kommt.

Dazu miissen wir nur relativ wenig ergénzen:

const DEFAULT_BRI=35;
createState("aussenlicht_manuell",AUTO)

const treppenlicht="lightify.0.904AA200AA3EBOTC.on"
const treppenlicht_bri="lightify.0.904AA200AA3EBOTC.bri"
const tuerlicht="1lightify.0.64EADAQVQO261884 .0on"

const sensor="hm-rpc.0.NEQO320745.1.MOTION"

const helligkeit="hm-rpc.0.NEQY320745.1.BRIGHTNESS"

function toggle(mode){
log("toggle "+mode)
if(getState("aussenlicht_manuell").val==AUTO){
setState(treppenlicht, mode)

on({id: "javascript.@.aussenlicht_manuell", val:OFF}, function(){

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Kapitel 3: IoBroker Scripting

log("manuell aus")
setState(treppenlicht, false)
setState(treppenlicht_bri,DEFAULT_BRI)
setState(tuerlicht, false)

P

on({id: "javascript.@.aussenlicht_manuell",val: ON}, function(){

log("manuell an™")
setState(treppenlicht,true)
setState(treppenlicht_bri,90)
setState(tuerlicht, true)
P
on({id: "javascript.@.aussenlicht_manuell", val:AUTO}, function(){

log("switched to auto")

setState(treppenlicht_bri,DEFAULT_BRI)

setState(tuerlicht, false)
if(isAstroDay()){

log("it's day")

setState(treppenlicht, false)
lelse{

log("it's night")

setState(treppenlicht,compareTime('sunset', '23:59', 'between'))

1))

/7 (1)
on({id: sensor, val: true}, function(){
if(getState(helligkeit).val<90){
setTimeout(function(){

log("motion sensor timeout")
setState(" javascript.0.aussenlicht_manuell",AUTO)

},120000)

log("motion sensor activated")
setState(tuerlicht,true)
setState(treppenlicht, true)
setState(treppenlicht_bri,100)

P

schedule({astro: "sunset", shift: 15}, function(){

log("sunset, lights on")
toggle(true)

)

schedule("30 23 * * *" function(){

12

66
67
68

Kapitel 3: IoBroker Scripting 13

log("23:30, lights off")
toggle(false)

D)

Grundsatzlich hat sich nicht viel gedndert, ausser dass beim manuellen Ein- und Ausschalten
auch das Tirlicht geschaltet wird, und dass ein zusatzlicher setState() auf die Helligkeit des
Treppenlichts erfolgt. Im Auto-Modus wird die Helligkeit auf 35% zuriickgefahren und das
Tiirlicht ausgeschaltet. Bis jemand in den Erfassungsbereich des Sensors tritt, was in der Funktion
bei (1) behandelt wird: Hier wird fiir 120 Sekunden alles eingeschaltet, falls die Hellgkeit unter
einem bestimmten Grenzwert ist. Der Grenzwert von 90 ist empirisch gefunden: Wenn es vor
unserer Haustiir so dunkel ist, dass man gerne etwas mehr Licht hatte, dann zeigt der Sensor bei
uns diesen Wert an.

Die Schaltfunktion bedarf vielleicht einer kleinen Erklarung:

setTimeout(function(){
setState(" javascript.@.aussenlicht_manuell",AUTO)
},120000)

setState(tuerlicht, true)
setState(treppenlicht, true)
setState(treppenlicht_bri,100)

Die JavaScript Standardfunktion setTimeout fithrt die im ersten Argument genannte Funkti-
on nach der im zweiten Argumenten Zeit (in Millisekunden) aus. Hier wird also nach 120
Sekunden der State fiir den Aussenlicht-Schalter auf “AUTO” gestellt. Das bewirkt, dass dann
die on(...,AUTO) Funktion ausgefithrt wird, die alles auf den Normalzustand setzt. Nach dieser
Vorbereitung werden sofort drei setState-Kommandos abgesetzt, die die Lichter einschalten und
auf volle Helligkeit setzen.

Fernsehbeleuchtung einschalten, wenn der Fernseher lauft

Wenn der Fernseher lauft, sollen die Philips Living-Colors Leuchten angehen.

var hue="hue.Q.Philips_hue.Wohnzimmer.on";
createState("fernsehlicht_manuell", AUTO)

/7 (1)
function licht(val){
if(getState("fernsehlicht_manuell™").val==AUTO){
if(getState("hue.@.Philips_hue.Wohnzimmer.on").val!=val){
console.log("schalte Licht: "+val, 'debug')
setState(hue,val)

Kapitel 3: IoBroker Scripting 14

/7 (2)

on({id: "javascript.@.fernsehlicht_manuell", val:ON}, function(){
setState(hue, true)

P

/7 (3)
on({id: "javascript.Q.fernsehlicht_manuell", val:OFF}, function(){
setState(hue, false)

1))

/7 (4)
schedule({astro: "sunset", shift: -15}, function () {
log("sunset", "info')
if(getState("lgtv.0.on"/*TV is ON*/).val){
licht(true)

});

// (5)
on({id: 'lgtv.0.on', val: true, change: "ne"}, function(){
log("tv switched on",'info")
if(!isAstroDay()){
licht(true)

1))

/7 (6)

on({id: 'lgtv.0@.on', val: false, change: "ne"}, function(){
log("tv switched off",'info")
licht(false)

D)

/7 (7)
schedule({astro: "sunrise"}, function(){
log("sunrise"

licht(false)
1)

Am Anfang definieren wir, wie nun schon gewohnt, die benotigten Geréte-IDs und den State, den
wir zur Kontrolle verwenden wollen. Dann folgt bei (1) die Funktion “licht”, die die Aufgabe hat,
dann, im Automatik Modus das Licht ein oder auszuschalten. Bei (2) und (3) werden manuelle
Schaltvorgange verarbeitet. Die Schedule Funktion bei (4) wird nur einmal pro Tag 15 Minuten
vor Sonnenuntergang aufgerufen und priift dann, ob der Fernseher lauft. Wenn ja, schaltet sie
das Licht ein. (5) und (6) werden aufgerufen, wenn der Fernseher ein- oder ausgeschaltet wird.
(7) schliesslich kommt dann zum Zug, wenn der Fernseher bei Sonnenaufgang immer noch lauft

Kapitel 3: IoBroker Scripting 15

und schaltet dann das Licht aus.

Auto laden, wenn genug Strom von der Solaranlage da ist

Vermutlich sind unter den ‘early adoptern’ der Heimautomation auch viele Menschen, die
auch in anderen Dingen einen Hang zu moderner Technik haben. Zum Beispiel Photovoltaik
oder Elektroautos. Daher wollen wir in dieser Ubung den Strom vom Dach, das Auto und die
Heimautomation miteinander verkniipfen:

Das Auto soll tagsiiber nur dann laden, wenn die Photovoltaikanlage dafiir ausreichend Strom
liefert. Andernfalls soll es nachts den Niedertarif nutzen.

Wir brauchen also die momentane Leistung des Solardachs und wir brauchen eine Moglichkeit,
das Ladegerat des Autos davon abhéngig zu schalten. Ersteres ist einfach: Es gibt ja bereits einen
ioBroker Adapter fiir den Fronius Wechselrichter, der unter Anderem auch die Momentleistung
und die Netto-Leistung vom/ins Netz ausspuckt. Falls Sie einen Wechselrichter eines anderen
Herstellers haben, gibt es auch da vermutlich Moglichkeiten, die Leistungsdaten auszulesen.

Unser Auto lasst sich zwar ebenfalls per Fernsteuerung laden, aber die Schnittstelle dafiir ist
leider nicht offengelegt, und ausserdem lasst der Hersteller sich die Fernsteuerung recht teuer
per Jahresabo bezahlen.

Aber es gibt eine andere Moglichkeit: Man kann das Ladegerit an eine schaltbare Steckdose
anschlieffen. Davon gibt es eine ganze Reihe, zum Beispiel von Homematic etc. Ich hatte aber
ein Exemplar von myStrom.

Fur dieses existierte zum Zeitpunkt dieses Schreibens noch kein “offizieller” ioBroker Adapter. Ich
habe Thnen im vorigen Kapitel gezeigt, wie man einen inoffiziellen Adapter verwenden kann. Da
das myStrom API offengelegt und recht simpel ist, wollen wir die Gelegenheit auch nutzen, einen
eigenen ioBroker Adapter fiir myStrom zu programmieren. Um den Schreib- und Lesefluss hier
nicht zu unterbrechen, habe ich das aber in Kapitel 5 ausgelagert. Lesen Sie dort weiter, wenn Sie
wissen wollen, wie man einen eigenen Adapter programmiert, oder lesen Sie hier weiter, wenn
Sie zunéchst sehen wollen, wie die Lade-Logik programmiert wird.

Theorie

Wir beginnen damit, uns zu iiberlegen. wie wir die Schaltvorginge steuern wollen. Dazu gibt es
folgende Bedingungen zu beriicksichtigen.

Erstens: Der myStrom Switch ist fiir 9.9 A Last spezifiziert, und der Hersteller bestétigte mir auf
Anfrage, dass dies als mogliche Dauerlast zu verstehen ist. Allerdings zieht der Netzadapter des
Autos in Standardeinstellung 10A. Auch wenn das nur ein kleiner Unterschied zu sein scheint,
mochte ich das dem filigranen myStrom-Switch nicht zumuten (Haben Sie schon einmal die
Temperatur an einem gewohnlichen Netzstecker gefiihlt, durch den einige Stunden lang 10 A,
also 2400 Watt geflossen sind?)

Gliicklicherweise lasst sich das Ladegerat auch so konfigurieren, dass es maximal 5A, also 1200
Watt zieht. Das geht dann problemlos, allerdings dauern Ladevorgiange dann natiirlich doppelt
so lang. Da unser typischer Auto-Tagesbedarf aber nur bei 6-8 kWh liegt, ist das gerade noch
ertraglich.

Kapitel 3: IoBroker Scripting 16

Zweitens: Vermutlich ist es nicht so gut, wenn das Ladegerat bei jeder vorbeiziehenden Wolke
aus- und dann wieder eingeschaltet wird.

Um diese Anforderungen zu erreichen, spezifizieren wir:

Das Ladegerat wird eingeschaltet, wenn ausreichend Strom zur Verfiigung stehen, und es zieht
dann maximal 1200 Watt.

Wenn es einmal eingeschaltet ist, soll es mindestens 10 Minuten lang eingeschaltet bleiben, egal
wieviel Strom hereinkommt.

Danach soll es sich wieder ausschalten, sobald die Solaranlage nicht mehr ausreichend Strom
liefert. Frithestens nach 10 Minuten kann es sich wieder einschalten.

Praxis

Obige Spezifikation wollen wir nun als Script formulieren. Das erweist sich dann, nach diesen
Voriiberlegungen, doch wieder als erstaunlich einfach:

var power_pv="fronius.@.powerflow.P_PV" // was wir produzieren

var power_use="fronius.@.powerflow.P_Grid" // was wir vom/zum Netz beziehen/liefe\
rn

var mystrom_switch="mystrom.1.switchState" // Der Schalter

createState("loadcar_manual",2) // Ein, Aus oder Automatik.

/%

Ladevorgang Ein oder Ausschalten, falls Automatik-Modus

*/

function toggle(mode){

if(getState(" javascript.0.loadcar_manual").val==2){
if(getState(mystrom_switch).val != mode)(

log("toggle "+mode, 'info')
setState(mystrom_switch,mode)

}
}
}
/%
manuelles Einschalten
*/

on({id: "javascript.0.loadcar_manual",val: 0}, function(){
log("manual on")
setState(mystrom_switch,true)

1))

J*
manuelles Ausschalten
*/

on({id: "javascript.@.loadcar_manual",val: 1}, function(){

Kapitel 3: ToBroker Scripting 17

log("manual off")
setState(mystrom_switch, false)

D)

schedule("*/10 7-19 * * *" function(){
var net_flow=getState(power_use).val
// log("available: "+getState(power_pv).val+", net flow: "+net_flow, 'info')
if(net_flow < -1500){
toggle(true)
lelse if(net_flow > 0){
toggle(false)

P

schedule("5 21 * * *", function(){
log("night schedule: on"
toggle(true)

D)

schedule("59 6 * * *" function(){
log("day schedule: off")
toggle(false)

D)

Die Funktion toggle schaltet an oder aus, wenn der Schalter auf ‘automatik’ steht, ganz dhnlich,
wie wir es bei der Auffenbeleuchtung gemacht haben. Die nichsten zwei Funktionen schalten
den Strom absolut ein oder aus. Das konnen wir brauchen, wenn wir das Auto auch mal aufladen
wollen, ohne genug Sonnenstrom zu haben.

Mittels der dann folgenden Schedule-Funktion fithren wir alle 10 Minuten zwischen 7 und 19 Uhr
Code aus, welcher den Stromfluss vom bzw. zum Netz priift. Wenn mehr als 1500 Watt exportiert
werden, wird das Ladegerit eingeschaltet und zieht dann maximal 1200 Watt. Wenn kein Strom
mehr exportiert wird (also die Leistung nicht mehr reicht, um den Verbrauch zu decken), wird die
Steckdose wieder ausgeschaltet. Da die Funktion nur alle 10 Minuten ausgefithrt wird, werden
zu schnelle Schaltvorgange von vornherein vermieden.

Die néachsten beiden Schedule-Funktionen sorgen dafiir, dass die Steckdose jeden Abend um 21:05
eingeschaltet, und jeden Morgen um 06:59 wieder ausgeschaltet wird, falls sie auf ‘Automatik’
steht. (Niedertarif ausnutzen, falls die Sonne des vorigen Tages nicht fiir volle Ladung gereicht

hat).

Den etwas kryptischen Inhalt der “schedule” Ausdriicke kénnen Sie automatisch setzen lassen,
wenn Sie oben rechts auf “Cron” klicken.

Fernseher leise stellen, wenn das Telefon klingelt

Das ist nun sehr einfach:

Kapitel 3: IoBroker Scripting 18

const ringing="tr-064.0.callmonitor.ringing"

const volume="1lgtv.0.volume"

on({id: ringing,val:true}, function(){
setState(volume,10);
1}

Heizung regeln

Hier sind ein wenig mehr Gedanken notwendig. Die Heizung ist ja, vor allem in ihrer modernen
Auspragung als Bodenheizung, ein vergleichsweise trages Gerdt. Wenn wir sie erst dann
aufdrehen, wenn die Temperatur unangenehm kiihl ist, dann werden wir einige Zeit frieren,
und dann schwitzen, weil die Regelung tiberschief3t. Wir miissen zusétzliche Parameter in die
Regelung einbeziehen. Dies ist in erster Linie die Auflentemperatur, und die Erwartung iiber
deren kiinftigen Verlauf. Wenn die Aussentemperatur sinkt, miissen wir damit rechnen, heizen
zu miissen. Wenn die Vorhersage aber baldiges Steigen prophezeit, miissen wir weniger heizen,
als wenn es noch kalter wird. Wenn die Innentemperatur nur sinkt, weil jemand ein Fenster
geoffnet hat, dann sollten wir tberhaupt nicht nachheizen, sondern warten, bis das Fenster
wieder geschlossen ist.

Das sind bereits eine ganze Menge “unscharfer” Parameter, die berticksichtigt werden missen.
Dazu kommt eine ganz wesentliche weitere einzubindende Konstante: Die Qualitét der Isolation.
Bei exakt gleicher Aufen- und Innentemperatur wird der Heizbedarf dennoch je nach Isolation
unterschiedlich sein. Wir brauchen also eine Konstante, die dieses Element berticksichtigen kann.
Leider ist das nicht wirklich eine Konstante: Bei hoher Differenz von Auf3en- zu Innentemperatur
wird der Warmeverlust grofier sein, als bei kleiner Differenz. Es wird also eine von Haus zu
Haus unterschiedliche Kennlinie sein, die den Heizbedarf je nach Auflen- und Innentemperatur
angibt. Wenn Thr Haus neuer als vielleicht ca. 20 Jahre ist, wird der Hersteller Ihrer Heizung
diese Kennlinie bereits in die Regelung eingespeist haben. Leider niitzt das nicht unbedingt viel
fiir eine in der Heimautomation einzubindende Steuerung. Wir wollen eher die Temperatur je
Zimmer regeln, wahrend die Heizungsautomatik die gesamte Heizleistung der Anlage anpasst.

Derartige Aufgaben iibernimmt in vielen Fallen bereits ein Raum- oder Etagenthermostat. Dieser
beriicksichtigt aber oben genannte Faktoren gar nicht, sondern vergleicht nur eine Soll- mit einer
Ist-Temperatur.

Damit wird unsere Aufgabe ein wenig einfacher: Wir brauchen nicht bei Adam und Eva
anfangen, sondern wir missen nur den existierenden Thermostaten so “aufbohren”, dass er
mehr Parameter einbezieht, und dass er zu spezifischen Regelprogrammen je nach Tages- und
Nachtzeit, Ferien etc. fahig ist.

Die fiir jeden zu regelnden Raum giiltige Kennlinie kann man nicht errechnen. Zu vielfaltig
sind die Einfliisse. Man kann der Steuerung aber einen Lernmodus spendieren: Eine Zeit lang
soll sie nur beobachten, wie die existierende Regelung bei jeder Auflen- und Innentemperatur
reagiert, und wie gross der Fehler jeweils ist. Dann beginnt sie, in die Regelung einzugreifen,
wobei sie weiterhin versucht zu lernen, in welchen Fallen sie nicht perfekt reguliert hat (ndmlich
dann, wenn die Ist-Temperatur von der Soll-Temperatur abweicht), und die Kennlinie so laufend
anzupassen.

Kapitel 3: IoBroker Scripting 19

Sie sehen, dieses Projekt wird deutlich aufwandiger, als die Bisherigen. Ich werde es deshalb
in mehreren Etappen angehen, und im Rahmen dieses Buches auch nicht ganz vollstindig
implementieren.

Wetterdaten bereitstellen

Wir mochten, dass unsere Skripte und spater auch externe Programme eine gewisse Vorstellung
davon haben koénnen, wie das Wetter ist und wird. Dinge wie Heizungsautomatisierung,
Markisensteuerung und Schaltung von grésseren Stromverbrauchern in Abhangigkeit von der
erwarteten Windstdrke und Sonneneinstrahlung lassen sich dann besser planen.

Es gibt mehrere Wetterdienste, die ein REST-API bieten. Ich habe mehr oder weniger zufillig den
Dienst von DarkSky ausgewahlt. Ein Hauptvorteil dieses Dienstes ist, dass tausend Abfragen pro
Tag kostenlos sind. Das sollte fiir unsere Zwecke reichen. Bevor man den Dienst nutzen kann,
muss man sich allerdings registrieren: https://darksky.net/register. Man erhalt dann einen API-
KEY, denn man seinen Abfragen mitgeben muss (und den man tunlichst geheim halten sollte).

Um lokale Wetterdaten zu erhalten, ben6tigt man die exakten Koordinaten als dezimale Langen,
und Breitengrade. Die kann man zum Beispiel bei http://mygeoposition.com durch Angabe der
Adresse erfahren.

Eine Simple Abfrage wiehttps://api.darksky.net/forecast/API_KEY/BREITENGRAD, LAENGENGRAD?units=si&1
liefert dann eine ganze Reihe von Wetterdaten im handlichen JSON-Format.

Wir wollen diese Daten alle paar Stunden abholen und fiir uns relevante Teile davon fiir interne
Abfragen vorhalten.

Fiir einfacheres Rechnen mit Datum und Zeit verwenden wir die moment.js Library. Diese ist
leider nicht standardmassig mit ioBroker installiert. Das wollen wir nun nachholen:

ssh pi@homeview.local
cd /opt/iobroker/node_modules/iobroker. javascript
sudo npm install --save moment

Vielleicht wundern Sie sich tiber das Verzeichnis, in das wir wechseln, um moment.js zu
installieren. Es ist das Verzeichnis des javasript-interpreters in ioBroker, der wiederum, wie
alle Adapter, im node_modules-Verzeichnis der ioBroker Installation gespeichert ist. Generell
miissen alle Libraries, die man in Skripten verwenden will, in iobroker.javascript installiert sein.

Dann richten Sie Ihren Browser auf die Skript-Konsole http://homeview.local:8081/#javascript
und geben dort folgendes Skript ein (oder fiigen es mit copy&paste aus der Begleitsoftware dieses
Buchs ein):

https://darksky.net/register
http://mygeoposition.com

O 0 N O O & W N =

OB W0WWWWWWWWWNNDNDNDDNDDDNDDNDDNDN S R,
a & W0 N 2~ 0 O 0 N 0 O & WON A~ O O© 0 N O U & W N~ OO O© 0 N O U & Ww N~ O

Kapitel 3: IoBroker Scripting

Wetterbericht einlesen

20

var latitude=46.631094047;
var longitude=7.72370708;
var API_KEY="Sollte geheim bleiben";

const request=require('request')

const moment=require('moment')

const NOW = "wetter.darksky. jetzt."
const TODAY = "wetter.darksky.heute."
const TOMORROW = "wetter.darksky.morgen."

const attribution = "https://darksky.net/poweredby/"

createState("wetter.darksky.lastcall","")
createState(NOW + "temp", 0)
createState(NOW + "bedeckt", 0)
createState(NOW + "wind", 9)
createState(NOW + "niederschlag", 0)

createState(TODAY
createState(TODAY
createState(TODAY
createState(TODAY
createState(TODAY

"maxtemp", Q)
"mintemp", 0)
"bedeckt", 0)
"wind", @)
"niederschlag", 0)

+ o+ o+ 4+ o+

createState(TOMORROW
createState(TOMORROW
createState(TOMORROW
createState(TOMORROW
createState(TOMORROW

"maxtemp", 0)
"mintemp", 0)
"bedeckt", 0)
"wind", @)
"niederschlag", @)

+ o+ o+ o+ o+

var call = "https://api.darksky.net/forecast/" + API_KEY + "/" + latitude + "," +\

longitude + "?units=si&lang=de&exclude=minutely,daily, flags,alerts"”

console.log("powered by: " + attribution)

const getMinMax = function (range, curr, accum) {
const currtime = moment(curr.time * 1000)
if (currtime.isAfter(range[0]) && currtime.isBefore(range[1])) {
accum.minTemp = Math.min(accum.minTemp, curr.temperature)
accum.maxTemp = Math.max(accum.maxTemp, curr.temperature)
accum.wind = Math.max(accum.wind, curr.windSpeed)

accum.cloudsum = accum.cloudsum + curr.cloudCover

accum.precipsum = accum.precipsum + curr.preciplntensity * curr.precipProbabi\

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
4!
72
73
T4
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

Kapitel 3: IoBroker Scripting 21

lity
accum.counter = accum.counter + 1
accum.cloud = accum.cloudsum / accum.counter
accum.precip = accum.precipsum / accum.counter
return accum
function fetch() {

request(call, function (error, response, body) {
if (error) {
log.warning("Error! " + error)
} else {
if (response && (response.statusCode == 200)) {
const forecast = JSON.parse(body)
const today = forecast.hourly.data
const now = forecast.currently

setState(NOW + "temp", now.temperature)

setState(NOW + "bedeckt", Math.round(100 * now.cloudCover))
setState(NOW + "wind", now.windSpeed)

setState(NOW + "niederschlag", now.preciplntensity)

const tsNow = moment(now.time * 1000)

const tomorrow = tsNow.clone()

tomorrow.add(1, 'days')

const spanToday = [tsNow.clone(), tsNow.clone().endOf('day')]

const spanTomorrow = [tomorrow.clone().startOf("day"), tomorrow.clone().e\
ndOf("day")]

const accumTemplate = {
minTemp: 100, maxTemp: -100, wind: -5, cloudsum: @, counter: 0, precips\
um: 0
}
const todayMinMax = today.reduce((accum, curr) => getMinMax(spanToday, cu\
rr, accum)

, Object.assign({}, accumTemplate))

const tomorrowMinMax = today.reduce((accum, curr) => getMinMax(spanTomorr\
ow, curr, accum), Object.assign({}, accumTemplate))

setState(TODAY + "mintemp", todayMinMax.minTemp)

setState(TODAY + "maxtemp", todayMinMax.maxTemp)

setState(TODAY + "wind", todayMinMax.wind)

setState(TODAY + "bedeckt", Math.round(100 * todayMinMax.cloud))

setState(TODAY + "niederschlag", Math.round(100 * todayMinMax.precipsum))

setState(TOMORROW + "mintemp", tomorrowMinMax.minTemp)

setState(TOMORROW + "maxtemp", tomorrowMinMax.maxTemp)

setState(TOMORROW + "wind", tomorrowMinMax.wind)

92
93
94
95
96
o7
98
99
100
101
102
103

Kapitel 3: IoBroker Scripting 22

setState(TOMORROW + "bedeckt", Math.round(100 * tomorrowMinMax.cloud))
setState(TOMORROW + "niederschlag", Math.round(100 * tomorrowMinMax.preci\

psum))
setState("wetter.darksky.lastcall", tsNow.toString())

} else {

console.log("no response")

D)

schedule("20 4,8,11,14,17,20,23 * * *" fetch)

Ganz am Anfang kommen die Daten zu Koordinaten und API-KEY, die Sie fiir Ihre Gegebenhei-
ten anpassen miissen.

Dann muss man sich iiberlegen, welche der Angaben von DarkSky man tiberhaupt benétigt.
Ich habe mich hier entschlossen, nur die momentanen Daten, sowie die Tageshochst- und
Tiefstwerte der Temperatur fiir den Rest des heutigen und des ganzen morgigen Tages zu spei-
chern, ausserdem die maximale Windgeschwindigkeit, den durchschnittlichen Bewolkungsgrad
und schliellich die erwartete Niederschlagsmenge und -wahrscheinlichkeit. Fir jede dieser
Positionen wird ein State erstellt. Die Attribution geben wir auf der Konsole aus, da die
Lizenzbedingungen von DarkSky verlangen, dass man die Herkunft der Daten deklariert. Ein
kleiner Preis fiir so einen Service.

Die Funktion getMinMax() in Zeile 30ff werden wir spéter nutzen, um die jeweiligen Daten aus
einem zu ibergebenden Zeitraum zu fischen. Dann kommt in der Funktion fetch() ab Zeile 44
die eigentliche Arbeit: Mit “request” setzen wir einen REST-Call an DarkSky ab, und wenn die
Antwort Erfolg signalisiert, parsen wir deren body nach JSON. Dann kommt ein wenig Zeit-
Rechnerei, um Anfang und Ende der interessierenden Zeitraume zu definieren, und mit diesen
(spanToday und spanTomorrow) fiittern wir eine reduce-Funktion, welche die vorhin genannte
getMinMax()-Funktion als Parameter erhilt. Reduce gehort zu den Funktionen, die man fast bei
jeder funktionalen Sprache findet. Sie “reduziert” eine Collection auf einen einzigen Wert, indem
sie auf jedes Element dieselbe Funktion anwendet, die jeweils das bisherige Ergebnis (accum) und
das momentane Element (curr) als Parameter erhalt. Was wir am Ende erhalten, ist todayMinMax
resp. tomorrowMinMax, also zwei Objekte mit den jeweils zu speichernden Extrakten aus den
Gesamtdaten. Diese Extrakte schreiben wir dann in die vorhin definierten States.

Ganz am Ende sorgen wir dafiir, dass fetch() 7 Mal pro Tag ausgefithrt wird, damit die Daten
einigermassen aktuell sind (Das ist natiirlich eine vollkommen willkiirliche Zahl, die weit genug
von den 1000 Abfragen weg ist, die DarkSky erlaubt, so dass Sie sie gern auch erhéhen diirfen.)

Vielleicht ist Thnen aufgefallen, dass der Ausdruck am Ende lautet:
schedule("* 4,8,11,14,17,20,23 * * *" fetch)

und nicht etwa:

Kapitel 3: IoBroker Scripting 23

schedule("* 4,8,11,14,17,20,23 * * *" fetch())

Man muss als Callback den Namen der Funktion angeben, und nicht etwa die Funktion
ausfithren. Also immer ohne Klammerpaar schreiben.

Und weiter? Nun, die so erzeugten States konnen wir mit anderen Skripten oder von aussen
auslesen. Ich werde das spater noch zeigen.

SMS Warnung

Es kommt zwar nicht sehr haufig vor, aber stellen Sie sich vor, wahrend Ihres Skiurlaubs fillt die
Heizung aus. Die Leitungen frieren ein, und wenn Sie nach Hause kommen, empfangt Sie eine
Uberschwemmung. An sich hatten Sie ja eine Fernabfrage fiir alle Bestandteile Thres Smarthomes
gehabt, aber Sie hatten nicht daran gedacht, jeden Tag darauf zu schauen. Wieso auch.

Das ist verhinderbar, wenn Ihr Smarthome Ihnen bei Problemen aller Art eine SMS schickt. Die
werden Sie vermutlich bemerken.

Aber wie kann der Raspberry Pi eine SMS versenden? Nun, dafiir gibt es mehrere Moglichkeiten.
Beispielsweise konnten Sie ihn via Bluetooth oder Kabel mit einem nicht mehr gebrauchten
Handy oder einem GSM-Modem verbinden. Allerdings brauchen Sie dann immer noch eine
SIM-Karte, die mehr kostet, als die Losung, die ich Thnen im Folgenden vorstellen werde. Falls
Sie doch den Weg tibers Handy gehen wollen, liefere ich Thnen das Stichwort >Gnokii< zum weiter
googeln.

Ich werden Thnen hier aber den Weg iiber einen SMS Service zeigen. Von diesen gibt es mehrere
(Such-Stichworter sind z.b. »sms api< pder Seb sms<), allen gemeinsam ist, dass man tiber ein
vorgegebenes API via Internet darauf zugreifen und SMS versenden kann. Ich verwende hier
aspsms.com, weil es unter Anderem ein nodejs.api hat, und weil man einige kostenlose SMS
zum Testen bekommt, und weil einmal gekaufte SMS Credits ungegrenzt giiltig bleiben. Der
Preis einer SMS ist bei ungefahr 8 cents.

Als Erstes miissen Sie einen Account bei https://www.aspsms.com/de/registration/ eréffnen. Sie
bekommen dann einen Userkey und ein Passwort. Mit diesen Credentials kann der Raspberry
dann auf das API zugreifen.

Zunichst installieren Sie das NodeJS API:

ssh pi@homeview.local
cd /opt/ioBroker
npm install mod-aspsms

—tbd —

Kapitel 3: IoBroker Scripting 24

Skripte sichern

Nachdem wir jetzt schon so viel Arbeit in unsere Skripte gesteckt haben, stellen Sie sich
vermutlich die Frage, was eigentlich bei einem Defekt des Raspberry oder der SD-Karte geschieht.
Nun, wenn die SD-Karte beschadigt wird, dann sind die Skripte futsch. Und leider geht eine SD-
Karte mit Sicherheit frither oder spéter kaputt, denn sie ertragt prinzipbedingt nur eine begrenzte
Zahl von Schreibzugriffen. Der Wert der Skripte fiir Sie diirfte zu diesem Zeitpunkt den Wert der
SD-Karte um ein Vielfaches tibersteigen. Stellen Sie sich vor, Sie haben Thr Smarthome perfekt
eingerichtet, wie viel Zeit wiirde es Sie wohl kosten, alle Skripte wieder zu rekonstruieren? Eben.

P u DO+ Skripte

Export von allen Skripten

irthome-diy m
amon]
nal 7]

Abb. 3.6: Skripte exportieren

Gliicklicherweise ist guter Rat hier ausnahmsweise billig (und im Preis dieses Buches bereits
enthalten): Klicken Sie im Skripte Fenster einfach auf den Button ‘Export von allen Skripten’.
Diese werden dann gezippt, je nach Einstellung Ihres Browsers entweder mit oder ohne Frage
nach dem gewiinschten Speicherort, als Backup heruntergeladen. Falls Sie Thren Heimserver
jemals neu aufsetzen miissen, konnen Sie die so gespeicherten Skripte ebenso einfach mit dem
daneben liegenden Button “Import von allen Skripten” im neuen ioBroker wieder installieren.
Sie miissen nur noch dafiir sorgen, dass die heruntergeladene .zip Datei an einem sicheren und
wiederauffindbaren Ort gespeichert wird. Idealerweise bewahrt man mehrere Generationen von
mehreren Daten auf, damit man einen eventuell irgendwann eingeschlichenen Fehler ausbiigeln
kann.

Kapitel 4: Standalone Front-End

... Auszug ...

Echte Messwerte

Bisher haben wir ja nur Werte angezeigt, die unser “Mock” lieferte. Nun wird es Zeit, dass
wir uns echte Messwerte anzeigen lassen. Ich gehe im Folgenden davon aus, dass Sie irgend
ein Messgerdt in ihrer ioBroker Konfiguration eingebunden haben. Hier benutzen wir zur
Demonstration ein Homematic IP Innenthermometer / Hygrometer ‘HmIP-STH’ (z.B. hier:
https://www.elv.ch/homematic-ip-temperatur-und-luftfeuchtigkeitssensor-innen.html).

Damit ioBroker seine ‘States’ iberhaupt an ein Fremdprogramm herausriickt, muss man ei-
ne entsprechende Schnittstelle installieren. Gehen Sie auf die ioBroker Admin Seite (home-
view.local:8081) und installieren Sie den “Simple API Adapter” aus der Gruppe “Kommunikation.
Dieser Adapter bietet auf Port 8087 ein REST API zum Lesen und Schreiben von States an. Lassen
Sie bei der Installation alles auf Default-Werten. Zum Testen kénnen Sie nach der Installation
folgendes in Ihren Browser eingeben:

http://homeview.local :8087/get/system.adapter.simple-api.@.uptime?prettyPrint
Das Resultat sollte ein JSON Objekt dhnlich wie dieses sein:

{
"val": 785918,
"ack": true,
"ts": 1513019750949,
"q": 0,
"from": "system.adapter.simple-api.Q",
"le": 1513019750949,
"_id": "system.adapter.simple-api.@.uptime",
"type": "state",
"common": {
"name": "simple-api.@.uptime",
"type": "number",
"read": true,
"write": false,
"role": "indicator.state",
"unit": "seconds"
},

"native": {}

https://www.elv.ch/homematic-ip-temperatur-und-luftfeuchtigkeitssensor-innen.html

Kapitel 4: Standalone Front-End 26

Wenn Sie statt ‘system.adapter.simple-api.0.uptime’ die ID eines Threr Geréte-States eintragen,
wird der Zustand dieses States angezeigt. Damit Sie die ldnglichen IDs nicht abtippen miissen,
konnen Sie sie durch Klick auf “kopieren” direkt in die Zwischenablage nehmen und in den
Programmeditor einfiigen.

]

COCEMIORADLACE v
CROLSTORF 24T iE
+ | DODGSTOGAIIOSE I dwevica

(=] srans
El 1 [l
ACTIVE_PROFILE

DOOST_MODE - e P
NOOST_ TRIE b
CONMG, DFFERENTIAL TEWPERATURE]

Abb. 4.10: State copy&paste

L-]

Jetzt konnen Sie in app.ts das echte Gerat eintragen:
constructor(private ea:EventAggregator){

setInterval (()=>{
this. fetcher.getlobrokerValue("hm-rpc.1.000F570AA11B84 .1 . ACTUAL_TEMPERATU\
RE").then(result=>{
this.ea.publish("temperatur", result)
},reason=»>{
alert("an error occured "+reason)

D)
},1000)

Allerdings werden Sie, wenn Sie das Programm laufen lassen, immer noch dasselbe wilde Hiipfen
des Zeigers sehen, wie zuvor. Das liegt daran, dass der FetchService auch die Variable env.mock
beachtet. Die miissen wir nun auf false setzen. Das tun wir in aurelia_project/environments/-
dev.ts:

export default {
debug: true,
testing: true,
mock: false,
iobroker: 'http://homeview.local:8087'

};

Bei dieser Gelegenheit haben wir auch gleich die korrekte Adresse und Port des ioBroker REST
API eingetragen.

(Diesen Stand des Projekts kann ich Thnen nicht zum Auschecken anbieten, da ich ja nicht weif3,
wie die IDs Threr Gerate sind. Ich werde in diesem Buch daher weiterhin mit Mock-Werten
arbeiten.)

Wenn Sie das Programm jetzt starten, wird der Zeiger unserer CircularGauge nicht mehr so
frohlich umherspringen, sondern uns die reale Temperatur anzeigen. Um die Netzwerkbelastung

Kapitel 4: Standalone Front-End 27

und den Stromverbrauch nicht unnétig hoch zu lassen, wiirde ich in app.ts nun auch das
Abfrageintervall von 1000 auf etwa 60000 hoch setzen, damit das Thermometer nur noch jede
Minute statt jede Sekunde ausgelesen wird.

Natiirlich kénnen Sie auch problemlos zwei oder mehr CircularGauges als Thermometer in die
Site einbinden. Allerdings werden Sie dann auf ein Problem stossen: Da alle CircularGauges auf
dieselbe Nachricht - “temperatur” vom EventAggregator abonniert sind, werden alle Anzeigen
auf alle Thermometer reagieren. Wir miissen also auch die Nachricht parametrisierbar machen.
Das erreichen wir mit einem zusatzlichen Attribut “message” in cfg, und einer kleinen Anpassung
in der attached() Funktion der CircularGauge:

attached() {

this.configure()

this.body = select(this.element).append("svg:svg")
.attr("class", "circulargauge")
.attr("width", this.cfg.size)
.attr("height", this.cfg.size)

this.render()

this.ea.subscribe(this.cfg.message, data => {
this.redraw(data)

)

“Subscribe” geht jetzt auf den in this.cfg.message festgelegten String, anstatt auf den hartco-
dierten Text “temperatur”. So konnen wir in der Konfiguration jedem Thermometer eine eigene
Nachricht mitgeben, auf die es lauschen soll.

Um eine ganze Website mit Innen- und Aussenthermometer zu demonstrieren, brauchen wir
eine “verninftige” Moglichkeit, die IDs er interessierenden Geréte irgendwo zu sammeln. Das
Verteilen dieser IDs im ganzen Code ist keine gute Idee, wie Sie spatestens beim Ersetzen eines
Gerats nach einem halben Jahr oder so merken wiirden, wenn Sie keine Ahnung mehr haben,
wo im Code die ID fiir dieses Gerat sich befindet. Stattdessen ergédnzen wir unsere Environment-
Definitionen config/environment.json und config/environment.production.json um einen Ab-
schnitt “devices”, so dass Sie jetzt so aussehen:

config/environment.json

{

"debug": true,

"testing": true,

"mock": false,

"iobroker": "http://homeview.local:8087",

"influx": "http://homeview.local:8086",

"devices": {
"barometer": "mqtt.0.Wetter.Wohnzimmer.Luftdruck",
"aussen_temp": "hm-rpc.0.0EQQOXXXX4.1.TEMPERATURE",
"aussen_hygro": "hm-rpc.0.0EQQOXXXX4.1.HUMIDITY",
"wohnzimmer_temp": "hm-rpc.1.000ES5569AXXXXE .1 .ACTUAL_TEMPERATURE"

Kapitel 4: Standalone Front-End 28

"wohnzimmer_hygro": "hm-rpc.1.000ES5569AXXXXE .1 .HUMIDITY",
"dusche_temp": "hm-rpc.1.000ES57Q9AXXXX4 .1 .ACTUAL_TEMPERATURE",
"dusche_hygro": "hm-rpc.1.000E57T0O9AXXXX4.1 .HUMIDITY",
"dachstock_temp": "hm-rpc.1.000ES5TOI9AXXXX3.1.ACTUAL_TEMPERATURE",
"dachstock_hygro": "hm-rpc.1.000E57Q9AXXXX3.1.HUMIDITY",
"treppenlicht_direkt": "lightify.0.904AA200AA3XXXXC.on",

"treppenlicht_modus": "javascript.@.aussenlicht_manuell" ,
"fernsehlicht_direkt": "hue.@.Philips_hue.Wohnzimmer.on",
"fernsehlicht_modus": "javascript.@.fernsehlicht_manuell",

"helligkeit": "hm-rpc.0.NEQY320745.1.BRIGHTNESS",
"esstisch_helligkeit": "hue.0.Philips_hue.Esstisch.bri",

"esstisch_schalter": "hue.@.Philips_hue.Esstisch.on",
"_car_loader_manual": "javascript.0.loadcar_manual",
"_car_loader_state": "mystrom-wifi-switch.1.switchState",
"_car_loader_power": "mystrom-wifi-switch.1.power",

"ACT_POWER": "fronius.@.powerflow.P_PV",
"DAY_ENERGY": "fronius.@.inverter.1.DAY_ENERGY",
"YEAR_ENERGY": "fronius.Q.inverter.1.YEAR_ENERGY",
"TOTAL_ENERGY": "fronius.©.inverter.1.TOTAL_ENERGY",
"energy_grid_flow": "fronius.@.powerflow.P_Grid",
"MAX_POWER" : 10000,

"MAX_DAILY_ENERGY": 70000

(Beachten Sie die noch nicht benétigten Eintrage einfach nicht :-))

Auf diese Weise muss ich, im Fall eines spateren Geratetauschs, nur an einer Stelle nachsehen
und dndern.

Sie erhalten den Quellcode dieses Teils, wenn Sie eingeben:

git checkout -f origin/stufe_05
git clean -f
npm install

Doch hier die wichtigsten Codednderungen:

In app.html setzen wir zwei Anzeigen nebeneinander:

Kapitel 4: Standalone Front-End

src/app.html

29

<template>

<require from="components/circulargauge"></require>

<div class="container">

<h1 class="h1">Temperatur-Demo</h1>

<div class="row">
<div class="col™">
<h2>Aussen</h2>

<egircular-gauge cfg.bind="aussentemp_cfg"></circular-gauge>

</div>
<div class="col">
<h2>Wohnzimmer</h2>

<circular-gauge cfg.bind="wohnzimmertemp_cfg"></circular-gauge>

</div>
</div>
</div>
</template>

Temperatur-Demo

Aussen

Ll

5

ok 1
5. Ay
.t
b
A07
-
5
-20

Wohnzimmer

s,
1=
....'.'

il 218

10

Abb. 4.11: Zwei Anzeigen

Hier sehen Sie zwei unterschiedlich parametrisierte CircularGauges nebeneinander. Der entspre-
chende Code in app.ts braucht vielleicht ein wenig Erlauterung:

Kapitel 4: Standalone Front-End 30

src/app.ts

import {FetchService} from './services/fetchservice'
import {autoinject} from 'aurelia-framework'
import {EventAggregator} from 'aurelia-event-aggregator'

import * as env from '../config/environment. json'

const dev=env.devices

@autoinject
export class App {
message = 'Hello World!'
fetcher=new FetchService()
wohnzimmertemp_cfg={
"device": dev.wohnzimmer_temp,
"size":250,
bands: [{ from: 10, to: 17, color: "#8cf2e4" },
{from: 17, to: 20, color: "yellow"},
{from: 20, to: 26, color: "green"},
{from: 26, to: 40, color: "red"}],
MAX_ANGLE : 300,
min: 10,
max: 40,
message: "wohnzimmer_temp"
}
aussentemp_cfg={
"device": dev.aussen_temp,
"size":250,
bands: [{ from: -20, to: 0, color: "#8cf2e4" },
{from: 0, to: 18, color: "yellow"},
{from: 18, to: 27, color: "green"},
{from: 27, to: 50, color: "red"}],
MAX_ANGLE : 300,
min: -20,
max: 50,
message: "aussen_temp"
}
constructor(private ea:EventAggregator){
let devices=[this.wohnzimmertemp_cfg,this.aussentemp_cfg]
setInterval (()=>{
this. fetcher.getlIobrokerValues(devices.map(dev=>dev.device))
.then(results=>{
for(let i=0;i<results.length;i++){
this.ea.publish(devices[i].message,results[i])
}
},reason=>{

alert("an error occured "+reason)

Kapitel 4: Standalone Front-End 31

1)
},10000)

Wir erstellen zwei Konfigurationsobjekte, wohnzimmertemp_cfg und aussentemp_cfg, die die
beiden Geridte referenzieren, und die unterschiedliche Anzeigebereiche und unterschiedliche
message-attribute haben. Im constructor packen wir die beiden Objekte in ein Array namens
devices. Danach kommt die setInterval-Funktion, die wir schon frither betrachtet haben. Darin
rufen wir die getIoBrokerValues()-Funktion des FetchServices aus. Diese holt in einem Rutsch
beliebig viele States, deren IDs es in einem Array als Parameter erwartet. Dieses Array erstellen
wir on the fly mit devices.map(dev=>dev.device) (Die Javascript-Standardfunktion map erstellt
ein Resultat-Array, indem es auf jedes Element des Ursprungs-Arrays eine Operation anwendet,
hier dev.device. Es entsteht also ein Array aus Strings, welche die “device”-Attribute jedes
Elements von “devices” sind). Dieses Array ist dann das Argument fiir get IoBrokerValues(). Als
Riickgabewert erhalten wir eine Promise, welche wieder zu einem Array resolved, diesmal einem
Array der Resultate, in derselben Reihenfolge, wie die Elemente des Eingangs-Arrays. Diese
Resultate lesen wir aus und schicken sie iiber den EventAggregator zum passenden Empfanger.

Komplexe Figuren erstellen und rotieren

Ich mochte die Entwicklung unserer CircularGauge mit einer letzten Verschonerung abschlies-
sen: Der Zeiger soll nicht einfach nur ein Strich sein, sondern, eben ein Zeiger. Das gibt mir
Gelegenheit zu zeigen, wie man Formen jenseits von einfachen geometrischen Figuren mit D3
resp. SVG erstellen kann, und vor allem, wie man solche Figuren verschiebt und rotiert, so dass
es natiirlich aussieht.

Sie erhalten diesen Stand mit:

git checkout -f origin/stufe_06
git clean -f
npm install

Fir komplexe Figuren halt SVG die Elemente Polygon, Polyline und Path bereit, wobei Path
das bei Weitem flexibelste ist. Wir hatten es schon bei der arc-Funktion unseres Helper-Objekts
kennengelernt, dort hat allerdings D3 uns die Details abgenommen, und wir mussten nur die
Parameter des Kreisbogens angeben. Diesmal werden wir selber die Armel hochkrempeln und
Path von Hand bedienen.

Fir die Definition eines Path benutzt SVG eine einfache Beschreibungssprache. Falls Sie
TurtleGraphics oder Logo kennen, wird Thnen das bekannt vorkommen, aber auch ohne dies
ist es nicht besonders schwierig. Die wichtigsten Befehle' sind:

« M - Moveto
e L - Lineto

'Eine vollsténdige Befehlsreferenz finden Sie z.B. bei https://www.w3schools.com/graphics/svg_path.asp

https://www.w3schools.com/graphics/svg_path.asp

Kapitel 4: Standalone Front-End 32

e C - Curveto
e A-Arc
« Z - Close Path

Ein Rechteck von 10/10 nach 30/20 kénnte man zum Beispiel so definieren:
M 10 10 L 30 10 L 30 20 L 10 20 Z

Die Beschreibung darf im Prinzip beliebig lang sein, aber es ist klar, dass es doch arg uniibersicht-
lich und schwer korrigierbar wird, wenn sich so eine Anweisung tiber eine halbe Seite erstreckt.
Dann ist man froh, wenn ein Toolkit wie D3 die Feinarbeit itbernimmt.

Fiir unseren Zeiger reicht aber Handarbeit:

In unserer render() Funktion definieren wir einige Konstanten fiir den Zeiger, und mit pointer_-
stroke den Path. Dann erstellen wir ein “g” Element. Die g (group) Elemente dienen in SVG dazu,
andere Komponenten zusammenzufassen. Beachten Sie, dass wir dieses g-Element nach der
Erstellung sofort nach (center,center) verschieben, und um unsere Skalenrotation drehen. Dies
ist darum notwendig, weil SVG Rotationen sich stets auf den Ursprung (0,0) des tibergeordneten
Elements beziechen. Wenn Sie sehen wollen, was ich meine, kommentieren Sie den transform-

Ausdruck einfach mal aus und starten Sie das Programm.

In dieses g Element malen wir dann den Pointer und einen kleinen Kreis ums Zentrum.

src/components/circulargauge.ts

render() {
// basic setup
let dim = this.cfg.size
let center = dim / 2
let size = (dim / 2) * 0.9

const pointer_width = 10

const pointer_base = 0.3

const pointer_stroke = "M ${-size * pointer_base} 0
L @ ${-pointer_width / 2}

L ${size * (1 - pointer_base)} 0

L 0 ${pointer_width / 2}

7°

this.hlp. frame(this.body, dim)

Ve
Draw the coloured bands for the scale
*/
this.cfg.bands. forEach(band => {
this.hlp.arch(this.body, center, center, size - this.arcsize, size,
this.hlp.deg2rad(this.scale(band. from)),
this.hlp.deg2rad(this.scale(band.to)), band.color, this.rotation())

Kapitel 4: Standalone Front-End 33

b

// Draw the pointer
let pframe = this.body.append("g")
.attr("transform",
“translate(${center}, ${center}) rotate(${this.rotation() - 90})")
this.pointer = pframe.append("g")
this.pointer.append("svg:path")
.attr("d", pointer_stroke)
.classed("pointer", true)
this.pointer.append("svg:circle")
.attr("cx", 0)
.attr("cy", 0)
.attr("r", 8)

/* field for actual measurement */

let valuesFontSize = Math.round(size / 4)

this.valueText = this.hlp.stringElem(this.body, center, center + size / 2,
valuesFontSize, "middle")

/* create tickmarks */
let tickmarkFontSize=this.arcsize/3
this.scale.ticks(15). forEach(tick => {
let p1 = this.valueToPoint(tick, 1.2)
let p2 = this.valueToPoint(tick, 1.0)
let p3= this.valueToPoint(tick,1.35)
this.hlp.line(this.body, center - p1.x, center - pl.y, center - p2.x, cente\
r - p2.y, "black", 1.2)
this.hlp.stringElem(this.body, center-p3.x,center-p3.y,tickmarkFontSize, "mid\
dle").text(tick)
b

this.update(Q)

Und in update() zeichnen wir jetzt den Zeiger nicht mehr neu, sondern drehen ihn einfach um
den gewiinschten Winkel:

Kapitel 4: Standalone Front-End 34

src/components/circulargauge.ts

// called if new value arrives

update(value) {

this.pointer
.transition()
.duration(700)
.attr("transform", ‘rotate(${this.scale(value)})")

this.valueText.text(value)

Wie Sie sehen wurde zwar das initiale Zeichnen des Zeigers ein wenig komplizierter, aber dafiir
wurde die update() Funktion wesentlich einfacher. Und das Problem mit der ‘unnatiirlichen’
Bewegung des Zeigers, welches wir vorhin hatten, hat sich damit ebenfalls erledigt. Jetzt konnen
wir eine relativ lange ‘duration()’ einstellen, die bewirkt, dass die Drehung des Zeigers recht
natiirlich wirkt.

Vermutlich haben Sie bemerkt, dass wir dem Zeiger noch eine CSS Klasse mitgegeben haben:

this.pointer.append("svg:path")
.attr("d", pointer_stroke)
.classed("pointer", true)

Solange wir diese Klasse nicht definiert haben, bleibt der Zeiger unschon schwarz. Das wollen
wir dndern und schreiben dazu in styles.scss:

svg{
.pointer{
stroke: #ff000O;
fill: #££1100;
opacity: 0.8;

Mit dem ‘opacity’ Attribut bewirken wir, dass der Zeiger leicht durchscheinend wirkt. Opacity
muss eine Zahl zwischen 0 (ganz durchsichtig) und 1 (ganz undurchsichtig) sein.

Natiirlich diirfen Sie den Zeiger gerne noch beliebig schon gestalten, ich wollte Thnen nur zeigen,
wie man eine komplexere SVG Figur erstellen und drehen kann.

Kapitel 4: Standalone Front-End

Teil 3: DoubleGauge

35

Nun haben wir so teure Homematic Thermo/Hygrometer angeschafft und lesen nur die Tem-
peratur ab. Natiirlich kénnten wir je zwei CircularGauges pro Instrument bereitstellen, und je
eines fiir Temperatur und eines fiir Feuchtigkeitsanzeige parametrisieren. Das Anzeige-Widget
ist ja flexibel genug programmiert. Aber das finde ich, ist Platzverschwendung. Vor allem, wenn
ich es dann auch auf einem Handy-Bildschirm ablesen will.

Wohnzimmer

Abb. 4.12: Double Gauge

Als letzten Teil unserer Exkursion durch die Welt der
Rundinstrumente werde ich daher mit Thnen, wenn
Sie wollen, eine DoubleGauge bauen: Ein Rundinstru-
ment mit zwei Anzeigen. Nach unserer Vorarbeit in
den letzten Kapiteln ist das eher trivial. Wir miissen
einfach jedes Element doppelt programmieren, und
vielleicht ein, zwei Gedanken an die entgegengesetzte
Drehrichtung des unteren Zeigers aufwenden, dann
sollte es klappen. Den Ausgangspunkt dieses Kapitels
erhalten Sie mit

git checkout -f origin/stufe_07
git clean -f
npm install

Als erstes definieren wir die Konvention, dass alles,
was die obere Anzeige betrifft, mit der prafix ‘upper’
gekennzeichnet wird, alles fiir die untere Anzeige mit
‘lower’.

Von dieser Verdoppelung mal abgesehen, sieht der Anfang unserer DoubleGauge sehr dhnlich

aus, wie der der CircularGauge:

src/components/doublegauge.ts

const MIN_ANGLE = 15
const MAX_ANGLE = 165

@autoinject

@noView

export class DoubleGauge {
@bindable cfg;
private arcsize;
private upperScale
private lowerScale
private upperPointer
private lowerPointer
private upperValueText
private lowerValueText

Kapitel 4: Standalone Front-End 36

private body

constructor(private hlp: Helper, public element: Element,
private ea: EventAggregator) { }

configure() {
this.cfg = Object.assign({}, {
size: 150,
upperMin: 0,
upperMax: 100,
lowerMin: 0
lowerMax: 100
message: ["doublegauge_upper_value",
"doublegauge_lower_value"],
upperBands: [{ from: 0, to: 100, color: "blue" }],
lowerBands: [{ from: 0, to: 100, color: "green" }]
}, this.cfg)
this.upperScale = scalelinear()
.domain([this.cfg.upperMin, this.cfg.upperMax])
.range([MIN_ANGLE, MAX_ANGLE])
this.upperScale.clamp(true)

this.lowerScale = scalelinear()
.domain([this.cfg.lowerMin, this.cfg.lowerMax])
.range([MAX_ANGLE, MIN_ANGLE])

this.lowerScale.clamp(true)

this.arcsize = this.cfg.size / 7

attached() {
this.configure()
this.body = select(this.element).append("svg:svg")
.attr("class", "circulargauge")
.attr("width", this.cfg.size)
.attr("height", this.cfg.size)
this.render()

this.ea.subscribe(this.cfg.message[0], data => {
this.upperRedraw(data)

3]

this.ea.subscribe(this.cfg.message[1], data => {
this.lowerRedraw(data)

1))

Kapitel 4: Standalone Front-End 37

// geht nachher noch weiter

MIN_ANGLE und MAX_ANGLE sind zu Konstanten geworden, da es angesichts des beengteren
Platzes in unserer Gauge keinen Sinn mehr macht, den Kreisbogen konfigurierbar zu machen.

Beachten Sie, dass die .range in der unteren Skala nicht von MIN_ANGLE zu MAX_ANGLE
geht, sondern umgekehrt. Grossere Werte werden hier also auf kleinere Winkel umgesetzt und
umgekehrt.

Die attached() Funktion ist fast identisch zu CircularGauge, nur dass wir auf zwei verschiedene
Nachrichten lauschen. Theoretisch hétte man natiirlich auch eine einzelne Nachricht definieren
konnen, die beide Werte fiir oben und unten enthilt. (Der mit dem EventAggregator tiberge-
bene data-Wert kann ein beliebiger Datentyp sein, auch ein Array oder ein beliebig komplex
aufgebautes Objekt). Ich habe mich hier aber entschieden, die beiden Teile von DoubleGauge als
unabhéngige Instrumente zu behandeln, weil sie dadurch flexibler zu handhaben sind.

Spatestens an dieser Stelle fallt nun aber auf, dass wir ziemlich viel geschrieben haben, was
fast gleich aussieht, wie in der CircularGauge. Das ist schlecht. Ein wichtiges Prinzip des
Programmierens lautet: DRY (Don’t repeat yourself, wiederhole dich nicht). Das hat nicht nur
mit Faulheit zu tun, sondern auch mit Folgendem: Wenn Sie irgendwann einen Fehler in einem
solchen Stiick Code finden, oder eine Verbesserung oder nur Verdnderung einbauen, dann
miissen Sie mithsam jedes Programmteil suchen, wo Sie diesen Code verwendet haben. Wenn
Sie sich aber an DRY gehalten hatten, dann brauchen Sie nur eine einige Stelle zu dndern, und
die Anderung erscheint automatisch tiberall.

Wir machen deshalb hier einen kleinen Exkurs, um den gemeinsamen Code zu definieren

Exkurs: DRY

Wir lagern also den Teil jeder Komponente, der immer gleich ist (auch “boilerplate code”
genannt, Textbaustein), in eine gemeinsame Komponente aus. Dazu gibt es verschiedene mog-
liche Ansatze. Wir konnen das, was gemeinsam ist, in eine gemeinsame Oberklasse unserer
Komponentenklassen packen. Oder wir packen den Initialiserungscode in eine Helferfunktion.
So oder so miissen wir uns iiberlegen, was es ist, das unsere Komponenten ausmacht, wo also
die Gemeinsamkeit liegt. In Typescript kann man solche Dinge in einem Interface deklarieren:

in src/components/helper.ts

export type eaMessage={
message: string,

data: any

}

export interface Component {
configure() // Konfiguration der Komponente
render() // Zeichnen der Komponente

update(data:eaMessage)// Einen neuen Wert anzeigen

Kapitel 4: Standalone Front-End 38

cfg: any // Konfigurationsdaten
element: Element // DOM Element

body: Selection // SVG Bssiselement
component_name: String

Ein Interface ist einfach eine Beschreibung, welche Eigenschaften ein Objekt mindestens hat, das
dieses Interface implementiert. Jede Klasse, die “Component” implementiert, hat also mindestens
die oben genannten Funktionen und Felder.

Dann lagern wir den Initialisierungscode in eine initialize() Funktion aus, die wir ebenso wie
das Interface in unsere Helper-Klasse verschieben (Das ist eine mehr oder weniger willkiirliche
Entscheidung. Wir hétten auch eine eigene Klasse dafiir erstellen konnen, oder die Helper-Klasse
zu einer Oberklasse unserer Komponenten machen konnen).

src/components/helper.ts

export class Helper {
static BORDER = 5

constructor(public ea: EventAggregator) { }

initialize(component: Component, defaultCfg: any) {
component.cfg = Object.assign(
{
width: component.cfg.width || component.cfg.size || 150,
height: component.cfg.height || component.cfg.size || 150,
modify: a => a
}, defaultCfg, component.cfg)
component .configure()
component .body = select(component.element).append("svg:svg")
.attr("class", component.component_name)
.attr("width", component.cfg.width || component.cfg.size || 180)
.attr("height", component.cfg.height || component.cfg.size || 80)
component .render();
([].concat(component.cfg.message)). forEach(msg => {
this.ea.subscribe(msg, data => {
component . update(<eaMessage> {
message: msg,
data: component.cfg.modify(data)
b
b
1

// ... rectangle, arch, stringElem, line und deg2rad hier weggelassen ...

Kapitel 4: Standalone Front-End 39

defaultFrame(c: Component): { x: number, y: number, w: number, h: number } {
const yoff = this.frame(c.body, c.cfg.width, c.cfg.height, c.cfg.caption, c.c\
fg.capsize)
return {
x: Helper.BORDER,
y: yoff,
w: c.cfg.width - 2 * Helper.BORDER,
h: c.cfg.height - yoff - Helper.BORDER

frame(parent, outer_width: number, outer_height: number, caption: string = unde\
fined, capsize: number = outer_height / 8): number {
this.rectangle(parent, 0, 0, outer_width, outer_height, "frame")
let x_offset = Helper.BORDER
let y_offset = Helper.BORDER
let width = outer_width - 2 * Helper.BORDER
let height = outer_height - 2 * Helper.BORDER
if (caption) {
let fontsize = Math.round(capsize)
y_offset = y_offset + fontsize
height = height - fontsize - 2
this.rectangle(parent, x_offset, y_offset, width, height, "inner"
let off = (y_offset - fontsize) / 2
this.stringElem(parent, outer_width / 2, Helper.BORDER + off, fontsize, "mi\
ddle").text(caption)
return y_offset
} else {
this.rectangle(parent, x_offset, y_offset, width, height, "inner"
return Helper.BORDER

Sie sehen, der initialize() - Teil ist recht dhnlich dem, was wir vorher im configure()
Teil der Komponente gemacht haben: Zunachst wird ein Default-cfg mit dem per cfg.bind
in app.html tibergebenen Konfigurationsobjekt tiberlagert. Etwas seltsam erscheint vielleicht
die Zeile modify: a=>a bei (1). Die Auflosung folgt bei (2): Um die Komponente moglichst
universell zu gestalten, kann der anzuzeigende Wert anwendungsspezifisch modifiziert werden,
bevor er an die Komponente tibergeben wird. In diesem Fall kann man in der individuellen cfg
eine entsprechende Funktion als ‘modify’ Attribut eintragen. Die Default-Implementation liefert
einfach den unmodifizierten Wert (a=-a). Funktionen wie ‘a=-1/a’ oder ‘a=a*a’ konnten je nach
Anwendung eine bessere Grafik ergeben. Einen konkreten Anwendungsfall zeige ich spéter.

Ausserdem haben wir Helper.ts eine Funktion “defaultFrame” spendiert, die einen Standard-
Rahmen um eine Komponente zeichnet, und die Innenmasse des Rahmens, also den eigentlichen

Kapitel 4: Standalone Front-End 40

Zeichenbereich der Komponente, zuriickliefert. Auf diese Weise erzielen wir ein einheitliches
Design unserer Komponenten, das wir bei Bedarf auch sehr einfach dndern konnen.

Also fangen wir noch einmal von Vorne an und erstellen das Grundgeriist unserer DoubleGauge
besser.

Falls Sie keine Lust haben, das abzutippen, konnen Sie es auch auschecken:

git checkout -f origin/stufe_08
git clean -f
npm install

Das hier sind die Anderungen:

components/doublegauge.ts redesigned

import { bindable, noView, autoinject } from 'aurelia-framework'
import { scalelLinear } from 'd3-scale'’

import 'd3-transition’

import { Helper, Component, eaMessage } from './helper'

const MIN_ANGLE = 15
const MAX_ANGLE = 165
@autoinject

@noView

export class DoubleGauge implements Component {
@bindable cfg;
component_name = "DoubleGauge";

private arcsize;
private upperScale
private lowerScale
private upperPointer
private lowerPointer
private upperValueText
private lowerValueText
body

constructor(private hlp: Helper, public element: Element) { }

configure() {
this.upperScale = scalelLinear()
.domain([this.cfg.upper.minValue, this.cfg.upper.maxValue])
.range([MIN_ANGLE, MAX_ANGLE])
this.upperScale.clamp(true)

this.lowerScale = scalelLinear()

Kapitel 4: Standalone Front-End 41

.domain([this.cfg.lower.minValue, this.cfg.lower.maxValue])
.range([MAX_ANGLE, MIN_ANGLE])
this.lowerScale.clamp(true)

this.arcsize = this.cfg.size / 7

attached() {
this.hlp.initialize(this, {

size: 150,

upper: {
minValue: 0
maxValue: 100
bands: [{ from: 0, to: 100, color: "blue" }],

1,

lower: {
minValue: O,
maxValue: 100
bands: [{ from: 0, to: 100, color: "green" }]

1,

message: ["doublegauge_upper_value",

"doublegauge_lower_value"],

1))

render() {
const dim=this.hlp.defaultFrame(this)
let size = { w: (dim.w / 2) ¥ 0.9, h: (dim.h / 2) ¥ 0.9 }
let center= {x: dim.w/2 +dim.x, y: dim.h/2+dim.y}

const pointer_width = 10
const pointer_base = 0.3
const pointer_stroke =
‘M ${-size.w * pointer_base} 0
L © ${-pointer_width / 2}
L ${size.w * (1 - pointer_base)} 0
L 0 ${pointer_width / 2}
7°

J*
Draw the coloured bands for the scale

*/

const drawBands = (bands, scale, angle) => {
bands. forEach(band => {

Kapitel 4: Standalone Front-End

this.hlp.arch(this.body, center.x, center.y,

size.w - this.arcsize, size.w,
this.hlp.deg2rad(scale(band. from)),
this.hlp.deg2rad(scale(band.to)), band.color, angle)

1))
}

drawBands(this.cfg.upper.bands, this.upperScale, 270)

drawBands(this.cfg.lower .bands, this.lowerScale, 90)

// Draw the pointers

const pframe

= this.body.append("g")

.attr("transform",
“translate(${center.x},${center.y}) rotate(180)")

this.upperPointer = pframe.append("svg:path")

.attr("d", pointer_stroke)

.classed("pointer", true)

this.lowerPointer = pframe.append("svg:path")

.attr("d", pointer_stroke)

.classed("pointer", true)

pframe.append("svg:circle")
.attr("cx", 0)
.attr("cy", 0)

.attr("r",

"

10)

/* field for actual measurement */

const valuesFontSize = Math.round(size.h / 5)

this.upperValueText = this.hlp.stringElem(this.body, center.x,

center.y - size.h / 2, valuesFontSize, "middle")

this.lowerValueText = this.hlp.stringElem(this.body, center.x,

center.y + size.h / 2, valuesFontSize, "middle")

/* create tickmarks */

const tickmarkFontSize = this.arcsize / 3

const createTickmarks = (scale, f) => {
scale.ticks().forEach(tick => {
const valueToPoint = (val, factor, scale) => {

let
let
let
let
let

arc
rad

r

X

y

scale(val)

this.hlp.deg2rad(arc)

((dim.w / 2) ¥ 0.9 - this.arcsize) * factor
r * Math.cos(rad)

r * Math.sin(rad)

42

Kapitel 4: Standalone Front-End

return { x, y }

}
let p1 = valueToPoint(tick, 1.2, scale)
let p2 = valueToPoint(tick, 1.0, scale)

let p3 = valueToPoint(tick, 1.35, scale)

this.hlp.line(this.body, center.x + pl.x * f, center.y + pl.y * f,
center.x + p2.x * f, center.y + p2.y * f, "black", 1.2)

this.hlp.stringElem(this.body, center.x + p3.x * f, center.y + p3.y * f,
tickmarkFontSize, "middle").text(tick)

1))

}

createTickmarks(this.upperScale, -1)
createTickmarks(this. lowerScale, 1)

this.upperRedraw(0)
this.lowerRedraw(Q)

update(newVal: eaMessage) {
if (newVal.message === this.cfg.message[0]) {
this.upperRedraw(newVal .data)
} else {
this.lowerRedraw(newVal.data)

upperRedraw(upper) {
if (isNaN(upper)) {
this.upperValueText.text("Fehler");
this.upperPointer.attr("style", "opacity:0.1")
} else {
this.upperPointer
.transition()
.duration(600)
.attr("transform", “rotate(${this.upperScale(upper)})”)
this.upperValueText.text(upper + this.cfg.upper.suffix)

}

lowerRedraw(lower) {
if (isNaN(lower)) {
this.lowerValueText = lower
this.lowerPointer.attr("style", "opacity:0.1")
} else {
this.lowerPointer
.transition()

43

Kapitel 4: Standalone Front-End 44

.duration(600)
.attr("transform", “rotate(${180 + this.lowerScale(lower)})")
this.lowerValueText.text(lower + this.cfg.lower.suffix)

Wie Sie sehen, wurde die Initialisierung doch deutlich vereinfacht. Wir werden kiinftig alle
Elemente in dieser Weise erstellen. Sie konnen dann Thr eigenes “look&feel” ganz einfach durch
andern von style.css und der defaultFrame() Funktion in helper.ts erstellen.

Wegen der Anderungen in helper.ts sind auch einige kleine Anpassungen in der CircularGauge
notwendig. Versuchen Sie es selber zu korrigieren, oder schauen Sie sich an, wie CircularGauge
jetzt im Quellcode zu stufe_08 aussieht.

Das Umbauen bereits existierenden Codes, um neue Aspekte oder Verbesserungen einzubringen,
nennt man auch Refactoring’. Bei grosseren Projekten kann das ein recht fehlertrachtiger Prozess
sein. Es empfiehlt sich darum generell, dass man, sobald man erkennt, dass etwas nicht optimal
gelost wurde, moglichst frih iiber ein Refactoring nachdenkt, und es dann (und nur dann), wenn
die Vorteile die Nachteile tiberwiegen, ziigig umsetzt, dann aber griindlich testet um keinen
existierenden Programmcode zu bersehen, der angepasst werden miisste.

Endes des Exkurses

In der render() Funktion mussten wir wieder jeden Schritt verdoppeln. Um nicht alles zweimal
schreiben zu miissen, habe ich drawBands() und createTickmarks() als interne Funktionen
definiert, die dann jeweils zweimal mit passenden Parametern fiir die obere und die untere
Anzeigehalfte aufgerufen werden.

Und last but not least gibt es nicht nur eine, sondern zwei redraw() Funktionen: upperRedraw()
und lowerRedraw().

Der Einbau dieser Komponente in app.html erfolgt erwartungsgemaf:

src/app.html

<template>
<require from="components/circulargauge"></require>
<require from="components/doublegauge"></require>
<div class="container">
<h1 class="h1">Klima-Demo</h1>
<div class="row">
<div class="col">
<double-gauge cfg.bind="conf.aussentemp_cfg">
</double-gauge>
</div>

<div class="col">

Kapitel 4: Standalone Front-End 45

<double-gauge cfg.bind="conf.wohnzimmertemp_cfg">
</double-gauge>
</div>
</div>
</div>
</template>

In app.ts habe ich nun aber, wo ich schon mit dem Refactoring beschaftigt war, ebenfalls eine
Anderung eingebaut: Der Teil mit den Konfigurationsdefinitionen fir die Anzeigen wird immer
langer, und er droht mit zunehmender Komplexitat des Programms, noch langer zu werden. Das
macht app.ts unnétig untibersichtlich. Ich lagere darum den Teil mit den Konfigurationsdateien
aus in eine neue Datei namens config.ts:

src/config.ts

import env from './environment'
const gauge_size=242;

const switch_size=80;

const climate={

temperature: {
caption: "Temperatur",
suffix: "°C",
minValue: 17,
maxValue: 35,
precision: 1

3,

humidity: {
caption: "Luftfeuchte",
suffix: "%",
minValue: 20,
maxValue:80,
precision: 0

1

temp_scale: {
bands: [{ from: 10, to: 17, color: "#8cf2e4" 1},
{ from: 15, to: 20, color: "yellow" },
{ from: 20, to: 26, color: "green" },
{ from: 26, to: 35, color: "red" }],
minValue: 15,
maxValue: 35,
suffix: "°C",
precision: 1

1

humid_scale: {
bands: [{ from: 20, to: 40, color: "yellow" },
{ from: 40, to: 60, color: "green" },

Kapitel 4: Standalone Front-End

{ from: 60, to: 80, color: "yellow" }],
minValue: 20,
maxValue: 80,
suffix: "%",

precision: 0

export default {
"SWITCH_ON": 1,
"SWITCH_OFF": @,
"SWITCH_AUTO": 2,

wohnzimmertemp_cfg: {
"devices": [env.devices.wohnzimmer_temp, env.devices.wohnzimmer_hygro],
"size": gauge_size,
upper: climate.temp_scale,
lower: climate.humid_scale,
message: ["wohnzimmer_temp", "wohnzimmer_hygro"],
caption: "Wohnzimmer",
timeout: 86400,
visible: true
},
aussentemp_cfg: {
"devices": [env.devices.aussen_temp, env.devices.aussen_hygro],
"size": gauge_size,
upper: {
bands: [{ from: -15, to: 0, color: "#8cf2e4" },
{ from: 0, to: 10, color: "yellow" },
{ from: 10, to: 25, color: "green" },
{ from: 25, to: 40, color: "red" }],
minValue: -15,
maxValue: 40,
suffix: "°C",
precision: 1,
}
lower: {
bands: [{ from: 20, to: 40, color: "yellow" },
{ from: 40, to: 60, color: "green" },
{ from: 60, to: 80, color: "yellow" }],
minValue: 20,
maxValue: 80,
suffix: "%"
precision: 0

46

Kapitel 4: Standalone Front-End 47

message: ["aussen_temp", "aussen_hygro"],
caption: "Aussen",
timeout: 86400,

visible: true

Wie Sie sehen, habe ich nebst dem Auslagern der Konfigurationsobjekt auch noch einige
Vereinfachungen eingebaut, indem ich Teile, die wiederholt benétigt werden, in die vorgelagerte
Konstante ‘climate’ verschob. Dies hat erneut den Vorteil, dass man, wenn man beispielsweise
Temperaturskalen verandern will, nur an einer Stelle anpassen muss.

Config.ts wiederum lese ich als externes Modul in app.ts ein.

src/app.ts

import { FetchService } from './services/fetchservice'
import { autoinject } from 'aurelia-framework'

import { EventAggregator } from 'aurelia-event-aggregator'
import configs from './config'

import env from './environment'

const dev=env.devices

@autoinject

export class App {
message = 'Hello World!'
fetcher = new FetchService()
conf=configs /7 (1)

constructor(private ea: EventAggregator) ({
let devices = [configs.wohnzimmertemp_cfg, configs.aussentemp_cfg]
let ids = []
let messages = []
devices. forEach(dev => {
ids = ids.concat(dev.devices)
messages = messages.concat(dev.message)

)
setInterval(() => {
this. fetcher.getlIobrokerValues(ids).then(results => {
for (let i = 0; i < results.length; i++) {
this.ea.publish(messages[i], results[i])
}
}, reason => {
alert("an error occured " + reason)

1)
}, 3000)

Kapitel 4: Standalone Front-End 48

Vielleicht wundern Sie sich tiber die Zeile: conf=configs bei (1). Schliellich greife ich spater in
app.ts nicht mehr auf conf zu. Das Ratsel 16st sich, wenn Sie etwas weiter oben app.html noch
einmal anschauen.

<ecircular-gauge cfg.bind="conf.aussentemp_cfg">

</circular-gauge>

Dort benétigen wir die Variable conf, um auf die Konfigurationen zugreifen zu koénnen.
Die Binding-Engine hatte nicht direkt einen Ausdruck wie configs.aussentemp_cfg auswerten
konnen. Die View kann nur Variablen lesen, die direkt in ihrem ViewModel definiert sind.
Wenn man hier etwas falsch macht, sind die Fehler oft schwer zu finden, weil die IDE einem
keine Hilfestellung geben kann. Der Editor “weif3” nichts von der Bindung zwischen View und
ViewModel, die Aurelia erst zur Laufzeit herstellt. Lassen Sie die Zeile conf=configs in app.ts mal
weg und starten Sie das Programm. Es wird keine Fehlermeldung geben, aber es funktioniert
nicht.

Zusammenfassung:

Jetzt haben wir einen deutlich robusteren und lesbareren Grundstock fiir unsere spéteren
Komponenten. Ich verlasse daher fiir jetzt die Rundinstrumente, und iiberlasse Thnen die weitere
Verschonerung der Zeiger und Skalen, und vielleicht unterschiedliche Farben oder Formen fiir
obere und untere Zeiger, als Ubung.

Kapitel 4: Standalone Front-End 49

Teil 4: Druckknopf

Bisher haben wir nur Daten abgelesen. Jetzt wollen wir aktiv werden. Also Dinge ein- und
ausschalten. Wir fangen mit einem einfachen Druckknopf an. Den Startpunkt dieses Teils
erhalten Sie, wenn Sie Folgendes eingeben:

git checkout -f origin/stufe_09
git clean -f
npm install

Ein Druckknopf hat zwei visuell und funktional unterscheidbare Zustédnde: Geldst und gedriickt.
manchmal bleibt er nur solange gedriickt, wie er bedient wird, manchmal rastet er im gedriickten
Zustand ein. Fir unsere derzeitige Position als UI-Designer stellt sich die Frage, wie wir den
aktuellen Zustand des Schalters darstellen wollen. Ich fange mit einem sehr einfachen Beispiel
an, um das Konzept zu zeigen:

Zunichst bereiten wir in app.html ein Platzchen fiir unsere neue Komponente:

<template>
<require from="components/doublegauge"></require>
<require from="components/pushbutton"></require>
<div class="container">
<h1 class="h1">Klima-Demo</h1>
<div class="row">
<div class="col">
<double-gauge cfg.bind="conf.aussentemp_cfg">
</double-gauge>
</div>
<div class="col">
<double-gauge cfg.bind="conf.wohnzimmertemp_cfg">
</double-gauge>
</div>
<div class="col">
<push-button cfg.bind="conf.pushbutton_cfg" pressed="pb_on">
</push-button>
</div>
</div>
</div>
</template>

Und sorgen dafiir, dass in config.ts die referenzierten Variablen bereit stehen

Kapitel 4: Standalone Front-End 50

src/config.ts

/S
pushbutton_cfg: {
message: "treppenlicht",
size: switch_size
},
/S

Dann erstellen wir die Komponente, diesmal als Einstieg zuerst ganz konventionell mit .ts und
html-Teilen:

src/components/pushputton.ts

import { bindable, autoinject } from 'aurelia-framework'
import { EventAggregator } from 'aurelia-event-aggregator'

@autoinject

export class PushButton{
@bindable cfg
@bindable pressed:boolean;

constructor(private ea:EventAggregator){}

attached(){
this.cfg=Object.assign({}, {
message: "pushbutton”
},this.cfg)

toggle(){
this.pressed=!this.pressed

this.ea.publish(this.cfg.message,this.pressed)

src/components/pushbutton.html

<template>

<p>Pushbutton</p>

<div if.bind="pressed" click.trigger="toggle()">
On!

</div>

<div if.bind="!pressed" click.trigger="toggle()">
Off!

</div>

</template>

Kapitel 4: Standalone Front-End 51

Moglicherweise kannten Sie das von Aurelia bereitgestellte if.bind Konstrukt bisher noch nicht.
Damit binden wir ein beliebiges HTML-Element in Abhéngigkeit von einer Bedingung ein,
hier abhangig vom Zustand der pressed - Variable im Viewmodel. Starten Sie das Programm
und probieren Sie es aus! Wenn Sie auf On! klicken, wird es zu Off! und umgekehrt. Damit ist
auch gleich klar geworden, was die click.trigger-Ausdriicke bedeuten: Sie rufen die angegebene
Funktion auf, wenn auf das Element geklickt wird.

Nun sind wir natiirlich nicht auf die Worter On und Off limitiert. Wir kénnen beliebig viel
beliebiges HTML und SVG in diese DIVs packen, die wir per if.bind ein- und ausblenden.

Zum Beispiel ein Bild:

<template>
<div if.bind="pressed" click.trigger="toggle()">

</div>
<div if.bind="!pressed" click.trigger="toggle()">

</div>

</template>

Eine &hnliche Technik hatten wir ja schon im Kapitel iiber Schalter beim Scripting-host
besprochen. Der Nachteil dieser Darstellungsweise ist: Da der Schalter ein Pixel-Bild ist, skaliert
er nur bedingt auf andere Grossen. Bei so einer einfachen Figur ist das allerdings kein allzu
grosses Problem. Wir kénnen es ja mal testen (Die beiden Button Bilder befindne sich, wenn
Sie die aktuellen Quellen ausgecheckt haben, im Ordner “static”. Sie konnen aber natiirlich nach
belieben zwei eigene Bilder fur “an” und “aus” dort hin kopieren)

<template>
<div if.bind="pressed" click.trigger="toggle()">

</div>
<div if.bind="!pressed" click.trigger="toggle()">

</div>

</template>

Das sieht immer noch einigermassen akzeptabel aus. Aber schoner ware natiirlich eine Vektor-
grafik. Einfaches Beispiel:

Kapitel 4: Standalone Front-End

<template>
<div if.bind="pressed" click.trigger="toggle()">
<svg width="100px" height="100px">

<rect class="frame" width="100px" height="100px"></rect>

52

<rect class="inner" x="5px" y="5px" width="90px" height="90px"></rect>
<rect x="10px" y="10px" width="80px" height="80px" fill="#eb5fc1b" rx="10px"\

ry="10px"></rect>
</svg>
</div>
<div if.bind="!pressed" click.trigger="toggle()">
<svg width="100px" height="100px">

<rect class="frame" width="100px" height="100px"></rect>
<rect class="inner" x="5px" y="5px" width="90px" height="90px"></rect>
<rect x="10px" y="10px" width="80px" height="80px" fill="#41454c" rx="1\

Opx" ry="10px"></rect>
</svg>
</div>
</template>

Doch im Sinn eines einheitlichen Designs unserer Oberfldche erstellen wir den Pushbutton jetzt
wieder tiber unsere Standardmethode, und rein mit d3js ohne HTML Teil. Diesen Teil erhalten

Sie mit
git checkout -f origin/stufe_10

git clean -f
npm install

Die Komponente sieht vertraut aus:

src/components/pushbutton2.ts

import { autoinject, noView, bindable } from "aurelia-framework";

import { Component, eaMessage, Helper } from "./helper";
import { detect } from 'detect-browser'

// Leider will Safari es anderes als die Anderen. .. (1)
let LINK = "href"
const browser = detect.detect()

if (browser && (browser.name === 'safari' || browser.name ===
LINK = "xlink:href"

}

@autoinject

@noView

export class PushButton2 implements Component {
@bindable cfg
body: any;

tios')) {

Kapitel 4: Standalone Front-End 53

component_name: "Push Button"
private state = "off"
private button;

constructor(private hlp: Helper, public element: Element) { }
attached() {
this.hlp.initialize(this, {
size: 110,
message: "pushbutton2",
caption: "Klick mich"

D)

configure() {}

render() {

const dim=this.hlp.defaultFrame(this)

this.button=this.body.append("svg:image")
.attr(LINK,"/off_button.png")
Lattr("x",dim.x)
attr('y",dim.y)
attr("width",dim.w)
.attr("height",dim.h)
.on("click",event=>{

this.state=this.state==="on" ? "off" : "on"
if(this.state === "on"){
this.button.attr(LINK,"/on_button.png")
lelse{
this.button.attr(LINK,"/off_button.png")
}

1))

update(val: eaMessage) {
// TODO

Die Stelle der LINK-Definition bei (1) ist einem Phanomen geschuldet, dass trotz aller Standardi-
sierungsbemithungen immer noch existiert: Browser-Inkompatibilitat. Wahrend sonst meistens
IE die Rolle des Schlusslichts bei der Implementation von Neuerungen tibernimmt, sind es hier
Safari und sein mobiler iOS-Kollege: Der Link zu einem eingebetteten Bild in einem SVG Element
musste in SVG Version 1 mit dem Attribut “xlink:href” deklariert werden. Diese Form wurde

Kapitel 4: Standalone Front-End 54

in SVG 2 durch “hlink” ersetzt, und die alte Variante wurde als “deprecated” erklart (https:
//developer.mozilla.org/en-US/docs/Web/SVG/Attribute/xlink:href), was bedeutet, dass sie in
kiinftigen Browser-Versionen wohl nicht mehr unterstiitzt wird. Leider scheint Safari sich hier
nicht um Standards zu kiimmern: “href” wird schlicht nicht beachtet, und die Bilder werden
nur mit “xrefthref” korrekt angezeigt (probieren Sie es aus!). Das bedeutet, man muss sich
entscheiden, ob man zu Safari inkompatibel sein will, oder zu kiinftigen Versionen der anderen
Browser. Oder man baut, so wie hier, eine Entscheidung in den Code ein. (Um das zu tun miissen
Sienpm install --save detect-browser ausfithren, damit dieses Tool eingebunden werden kann
- wenn Sie teil 11 ausgecheckt haben, habe ich das bereits fiir Sie getan, und Sie miissen nur noch
npm install ausfiihren).

Generell empfehle ich: Wenn Code sich “seltsam” verhélt, testen Sie ihn zunéchst in Chrome,
der sich meist recht eng an Standards und deren Neuerungen orientiert. Wenn etwas in Chrome
erwartungsgemaf} funktioniert, in einem anderen Browser aber nicht, dann googeln Sie - meist
wird schon jemand dasselbe Problem gehabt haben. Hier lieferte zum Beispiel die Suchanfrage
“safari svg href” ausreichend Antworten. Im Zweifelsfall verwenden Sie dann einen Adapter,
wie hier gezeigt. Der Fairness halber sei gesagt, dass das nur noch sehr selten nétig ist. Erstens
sind Browser generell viel standardkonformer geworden, und zweitens biigeln Framworks wie
Aurelia die meisten noch verbliebenen Unterschiede hinter den Kulissen sauber aus.

Ansonsten ist der Code nun frei von tberraschenden Stellen. Es wird ein “image”-Element
namens “button” eingehéngt, und je nachdem, ob das Feld state gerade “off” oder “on” ist, wird
das passende Bild angebunden. Bei Klick wird state und das Bild zum jeweils anderen Zustand
gewechselt. Binden Sie die Komponente ein, indem Sie in app.html den Teil mit dem Push Button
so andern:

<l-- o0 -2
<require from="components/pushbutton2"></require>
<l-- .. ==
<div class="col">
<push-button2 cfg="conf.pushbutton_cfg" pressed="pb_on"></push-button2>
</div>
<l-- -2

Und probieren Sie das Programm aus. Sie konnen den Schalter ein- und ausschalten, aber
natiirlich passiert noch nichts, wenn Sie das tun, ausser dass das Bild im Schalter sich andert.

Wie konnten wir nun zum Beispiel die Aussenbeleuchtung einschalten? Bisher haben wir nur
betrachtet, wie wir iber das SimpleAPI aus ioBroker States auslesen kdnnen. Die Vermutung liegt
nahe, dass wir Uiber dasselbe REST API auch States setzen konnen. Die allgemeine Syntax ist:
http://homeview.local :8087/set/<state>?value=x, wobei x fiir den gewiinschten Wert steht.

Um diese Funktion an zentraler Stelle als Service bereitzustellen, schreiben wir eine neue
Funktion im services/fetchservice.ts:

https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/xlink:href
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/xlink:href

Kapitel 4: Standalone Front-End 55

src/services/fetchservice.ts: setloBrokerValue

public async setloBrokerValue(id, value) {
if (env.mock) {
return {
"idr: id,
"value": value
}
} else {
let raw = await this.http.fetch(${env.iobroker}/set/${id}?value=${value})
let result = await raw. json();

return result

(Lassen Sie sich nicht davon irritieren, dass ein fetch Befehl abgesetzt wird, um einen Wert zu
setzen. Das REST API merkt anhand der URL, dass ein Wert gesetzt werden soll, und der Begriff
“fetch” bezieht sich hier auf die Antwort des REST Services. Diese Antwort liefern wir auch
zuriick.)

Wir kdnnten jetzt beispielsweise in der toggle() Funktion von pushbutton.ts oderimon('click")
Handler von pushbutton2.ts diesen Service aufrufen, und es wiirde funktionieren. Allerdings
wiirden wir damit unseren Vorsatz verletzen, universelle, lose gekoppelte Komponenten zu
programmieren. Dieser Button ware dann eng ans Treppenlicht gekoppelt, und wenn wir nach
ein paar Jahren nicht mehr genau wissen, wie er im Einzelnen funktioniert, dann wird es uns
schwer fallen, ihn fiir ein anderes Projekt anzupassen und zu verwenden.

Daher verwenden wir lieber unsere vorhin schon geiibte Technik mit dem EventAggregator,
nur eben umgekehrt: Diesmal initiiert die Komponente eine Nachricht, die von Interessenten
aufgefangen und ausgewertet werden kann. Wir teilen der PushButton Komponente beim
Instanzieren mittels des cfg-Parameters mit, welche Nachricht sie versenden soll, und kénnen
dann entspannt darauf warten, dass sie uns diese Nachricht zukommen lésst. Die Komponente
braucht nicht zu wissen, was der Empfanger mit der Nachricht zu tun gedenkt.

src/components/pushbutton2.ts

/S
render() {

const dim = this.hlp.defaultFrame(this)

this.button = this.body.append("svg:image")
.attr(LINK, "img/off_button.png")
.attr("x", dim.x)
.attr("y", dim.y)
Lattr("width", dim.w)
.attr("height", dim.h)

.on("click", event => { //(1)
this.hlp.ea.publish(this.cfg.message,
{ state: (this.state == "on") ? "off" : "on" ,

direction: "out"})

Kapitel 4: Standalone Front-End 56

1))

update(val: eaMessage) {
const img = val.data.state === "on" ? "/on_button.png" : "/off_button.png"
this.state = val.data.state
this.button.attr(LINK, img)

Da wir ohne View auskommen miussen, konnen wir nicht, wie beim ersten PushButton,
einen click.trigger() im HTML definieren, sondern wir hangen bei (1) einen click-Handler
(.on("click", function(){})) an die Definition des Buttons.

Wieso sendet render() eine Nachricht, anstatt den Button einfach direkt im click-Handler
korrekt zu setzen? Nun, stellen Sie sich vor, mehrere Leute im Haus haben diese WebApp
geoftnet. Jemand driickt auf den Pushbutton, und das Licht geht an resp. aus. Aber was zeigen
die anderen Instanzen der WebApp an? Genau: Der PushButton muss nicht nur darauf reagieren,
dass er von jemandem gedriickt wird, sondern er muss auch auf die Nachrichten reagieren, die
eintreffen, wenn jemand anders woanders darauf gedriickt hat. Eine solche Nachricht wird ja
vom Initialisierungscode in Helper.ts zu update() gesendet. Wiirden wir nun schon im Click-
Handler den Zustand des Knopfs dndern, und dann die Nachricht versenden, dann wiirden wir
unsere eigene Nachricht kurz darauf empfangen und den Knopf noch einmal anpassen. Also
versenden wir lieber im click.Handler nur die Nachricht und 4ndern den Knopf erst dann, wenn
eine (in unserem Fall die eigene) Nachricht bei update() eintriftt.

Natiirlich miissen wir die Nachricht des PushButtons auch irgendwo anders auffangen, damit sie
tiberhaupt irgendeine Wirkung ausser der Anderung der Anzeige hat. Das kénnen wir in jedem
Objekt tun, das Zugriff auf den EventAggregator hat. Wir tun es fiir jetzt gleich in app.ts.

src/app.ts

import { FetchService } from './services/fetchservice'
import { autoinject } from 'aurelia-framework'

import { EventAggregator } from 'aurelia-event-aggregator'
import configs from './config'

import env from './environment'

const dev=env.devices

@autoinject

export class App {
message = 'Hello World!'
fetcher = new FetchService()
pb_on=false

conf=configs

Kapitel 4: Standalone Front-End 57

constructor(private ea: EventAggregator) {
let devices = [configs.wohnzimmertemp_cfg, configs.aussentemp_cfg]
let ids = []
let messages = []
devices. forEach(dev => {
ids = ids.concat(dev.devices)

messages = messages.concat(dev.message)

1))

this.switches()
setInterval(() => {
this. fetcher.getlIobrokerValues(ids).then(results => {
for (let i = 0; i < results.length; i++) {
this.ea.publish(messages[i], results[i])
}
}, reason => {
alert("an error occured " + reason)

P
}, 3000)

switches(){
this.ea.subscribe(configs.pushbutton_cfg.message, pushed => {
this. fetcher.setIoBrokerValue(dev.treppenlicht_direkt, pushed)

1))

Wie Sie sehen, habe ich eine neue Funktion switches() eingefithrt, die die Nachricht des Push-
buttons abfangt und auswertet. Natiirlich héatte man den subscribe-Ausdruck auch direkt in den
constructor() setzen konnen, aber dann wiirde dieser langsam zu gross und uniibersichtlich.
Eine Faustregel besagt, dass eine einzelne Funktion nicht grosser als eine Bildschirmseite sein
sollte.

App.html bleibt unverandert:

src/app.html

<template>
<require from="components/doublegauge"></require>
<require from="components/pushbutton2"></require>
<div class="container">
<h1 class="h1">Klima-Demo</h1>
<div class="row">
<div class="col">
<h2>Aussen</h2>
<double-gauge cfg.bind="conf.aussentemp_cfg"></double-gauge>

Kapitel 4: Standalone Front-End

</div>
<div class="col">
<h2>Wohnzimmer</h2>
<double-gauge cfg.bind="conf.wohnzimmertemp_cfg"></double-gauge>
</div>
<div class="col">
<h2>Push Button</h2>
<push-button2 cfg="conf.pushbutton2_cfg" pressed="pb_on"></push-button2>
</div>
</div>
</div>
</template>

58

Kapitel 4: Standalone Front-End 59

Teil 5: Tri-State Button

Bevor ich das Reich der Knopfe verlasse, mochte ich einen weiteren Button-Typ vorstellen, den
wir fiir unsere HomeView-Einrichtung benétigen: Einen Knopf, der die Stellungen Ein, Aus und
Automatik einnehmen kann. Wir hatten einen solchen Schalter ja schon mit der Vis-Oberfl4che
erstellt.

Den Startpunkt dieses Teils erhalten Sie, wenn Sie folgendes eingeben:

git checkout -f origin/stufe_11
git clean -f
npm install

T e Das Grundgeriist der Klasse TristateButton ist sehr

TV-Licht ahnlich wie das der anderen @noView Komponen-

|_ E =T ten; ich gehe darum hier nicht mehr weiter darauf
| TriState Button eingefiigt und in config.ts eine neue
|

|
' ein. Ich habe in app.html ein neues Feld fiir den
‘ cfg. Die TristateButton Klasse beginnt wie gehabt mit
[
|

auto configure() und attached(); interessant wird erst
— die render ()-Methode. Hier zeige ich Thnen zunéchst
etwas, was wir bisher noch nicht benutzt haben: SVG
Abb. 4.13: Tri State Button clipping:

src/components/tristatebutton.ts#render()

render() {
const dim = this.hlp.defaultFrame(this)
const ratio = 0.6

this.upper = this.hlp.rectangle(this.body, dim.x,
dim.y, dim.w, dim.h, "light_on")
.attr("rx", 15)
.attr('ry", 15)
.attr("clip-path", "url(#clip-bottom)") // (1)
.on("click", () => {
this.ea.publish(this.cfg.message, {
state: this.state === "on" ? "off" : "on",
mode: "manual",
direction: "out"
)
1)

this.lower = this.hlp.rectangle(this.body, dim.x,
dim.y, dim.w, dim.h, "mode_auto")
.attr("rx", 15)

Kapitel 4: Standalone Front-End 60

.attr("ry", 15)
.attr("clip-path", "url(#clip-top)") /7 (2)
.on("click™, () => {
this.ea.publish(this.cfg.message, {
state: this.state,
mode: this.mode == "auto" ? "manual" : "auto",
direction: "out"
)
b

const defs = this.body.append("svg:defs")
defs.append("svg:clipPath")

.attr("id", "clip-bottom")

.append("svg:rect")

Lattr("x", dim.x)

Lattr('y", dim.y)

attr("width", dim.w)

.attr("height", dim.h * ratio)

defs.append("svg:clipPath")
.attr("id", "clip-top")
.append("svg:rect")
.attr("x", dim.x)
.attr("y", dim.y + dim.h * ratio)
.attr("width", dim.w)
.attr("height", dim.h * (1 - ratio))

let fontsize = Math.floor(dim.h / 5)
let text_cx = this.cfg.size / 2
let text_y = Math.round(dim.y + dim.h * ratio + (dim.h * (1 - ratio)) / 2) - 1
let txtgroup = this.body.append("svg:g")
.attr("transform", “translate(${text_cx}, ${text_y})")
this.autoText = this.hlp.stringElem(txtgroup, @, @, fontsize, "middle")
.text("auto")

this.powerText = this.hlp.stringElem(this.body, text_cx, dim.h / 2, fontsize,\
"middle", 0)
.style("pointer-events", "none");

Zunachst erstellen wir zwei Rechtecke mit abgerundeten Ecken. Den Fiillstil der Rechtecke,
“light_on” etc. haben wir in der styles-Datei hinzugefugt:

Kapitel 4: Standalone Front-End 61

src/style.scss

svg {

.pointer {
stroke: #ff000O;
fill: #££1100;
opacity: 0.8;

}

.light_on{
fill: #ebfcilb;
stroke: #a79eal;
stroke-width: 0.8;

}

.light_off{
fill: #41454c;

}

.mode_auto{
fill: #£714205d;
stroke: #a79eal;
stroke-width: 0.8;

}

.mode_manual {
fill: #d3d3d3;
stroke: #a79eal;
stroke-width: 0.8;
opacity: 0.2;

Das einzig Neue ist das Attribut “clip-path” bei (1) und (2). Mit diesem Attribut weisen wir
SVG an, nur einen Teil des Objekts zu zeichnen. Namlich den Teil, der sich mit der in clip-path
definierten (und beliebig komplexen) Struktur iiberschneidet. Der eine Clip-Path beschneidet das
obere, der andere das unter Rechteck.

Diese clip-paths wiederum definieren wir im Element “defs”, welches wir unserem body ebenfalls
anhéngen, hier unterhalb der Rechtecke, aber der Ort ist fiir SVG egal. Das Resultat ist jedenfalls,
dass wir von jedem Rechteck nur einen Teil sehen.

Schliellich sorgen wir dafiir, dass die beiden Teile auf Mausklicks reagieren.

Weiter unten definieren wir noch zwei Textfelder, deren Position und Schriftgrésse wir anhand
der Bemafiung ausrechnen, um im oberen und unteren Teil Informationen auszugeben.

Die update() Methode sollte keine groflen Probleme machen: Wir geben einfach jedem der
Rechtecke die passende Klasse und blenden den Text “auto” ein, wenn der Modus auf auto ist.

Kapitel 4: Standalone Front-End 62

Ausserdem wird optional im oberen Teil im eingeschalteten Zustand diese Verbrauchsangabe
eingeblendet.

Dieses Textfeld hat keinen Inhalt, wird also standardmaflig nicht angezeigt. Wir zeigen es in der
Funktion update() nur dann an, wenn die Variable power gesetzt ist, und runden es (bei (1)) je
nach Groflenordnung der Zahl auf keine, eine oder zwei Stellen:

src/components/tristatebutton.ts#update()

update(val: eaMessage) ({
let newstate = val.data

// console.log(val.message+", "+JSON.stringify(val.data))

let bActState = (newstate.state === "on"
let bActMode = (newstate.mode === "auto")
this.upper

.classed("light_on", bActState)
.classed("light_off", !bActState)
this.lower
.classed("mode_manual", !bActMode)
.classed("mode_auto", bActMode)
this.autoText.attr("opacity", bActMode ? 1.0 : 0.2)

if (newstate.power) { // (1)
let tx = newstate.power
if (newstate.power > 1000) {
tx = Math.round(newstate.power)
} else if (newstate.power > 100) {
tx = Math.round(10 * newstate.power) / 10
} else {
tx = Math.round(100 * newstate.power) / 100
}
this.powerText.text(tx + " W")
}
this.state = newstate.state
this.mode = newstate.mode

Spielen Sie ein wenig mit dem Button. Wenn Sie auf die untere Flache klicken, wechseln Sie
zwischen auto und manual, wenn Sie auf die obere Flache klicken, zwischen an und aus, wobei
ein Klick auf die obere Flache ein manueller Eingriff ist, und darum auch in jedem Fall in den
Modus “manual” fihrt.

Allerdings tut unser Button noch nichts. Wir miissen ihn noch verdrahten. Da er ausschliesslich
tiber EventAggregator-Nachrichten gesteuert wird, erfolgt das “verdrahten” drahtlos. Im Grund
kann die Steuerung an beliebiger Stelle im Programm liegen. Der Einfachheit halber packen wir
sie zu allem Anderen nach app.ts.

Dabei miissen wir beriicksichtigen, dass es jetzt nicht mehr um reine Einweg-Kommunikation
geht. Der bisherige Aufbau von app.ts gentigt nicht, um sowohl Anzeigen (“Licht ist an”), als

Kapitel 4: Standalone Front-End 63

auch Aktionen (“Schalte Licht an”) zu ermdéglichen.

App.ts wurde mit diesen zusatzlichen Abfragen ein wenig uniibersichtlich. Ich habe daher die
Gelegenheit ergriffen, die Klasse gleich aufzurdumen und ein wenig zu reorganisieren. Also ein
Weiteres Refactoring. Sie erhalten diesen Stand des Projekts, wenn Sie eingeben:

git checkout -f origin/stufe_12
git clean-f
npm update

src/app.ts

import { FetchService } from './services/fetchservice'
import { autoinject } from 'aurelia-framework'

import { EventAggregator } from 'aurelia-event-aggregator'
import env from './environment'

const dev=env.devices

import configs from './config'

import { tristateMessage } from './components/tristatebutton';

@autoinject
export class App {
fetcher = new FetchService()
conf = configs
constructor(private ea: EventAggregator) {
let gauges = [configs.wohnzimmertemp_cfg, configs.aussentemp_cfg]
let switches = [configs.fernsehlicht_cfg]
this.subscribe(switches)
setInterval(() => {
this.getGaugeValues(gauges)
this.getSwitchValues(switches)

}, 3000)

Vess
* Subscribe to messages of all configured TriStateButtons
* and send changed values to ioBroker
* @param switches Array with TristateButton configurationa
*/
subscribe(switches) {
switches. forEach(sw => {
this.ea.subscribe(sw.message, msg => {
let value = 2
if (msg.mode == "manual") {
value = msg.state == "on" ? 0 : 1

Kapitel 4: Standalone Front-End 64

this. fetcher.setIoBrokerValue(sw.mode_id, value)

P
});

Veis
* Fetch ioBroker values for all configured Gauges
* @param gauges Array with gauge configurations
*/
getGaugeValues(gauges) {
let gauge_ids = []
let gauge_messages = []
gauges. forEach(dev => {
gauge_ids = gauge_ids.concat(dev.devices)
gauge_messages = gauge_messages.concat(dev.message)

H
this. fetcher.getIobrokerValues(gauge_ids).then(results => {
for (let i = 0; i < results.length; i++) {
this.ea.publish(gauge_messages[i], results[i])
}
}, reason => {

alert("an error occured " + reason)

1))

/**
* Fetch ioBroker values for all configured TristateButtons
* @param switches Array with tristatebutton configurations
*/
getSwitchValues(switches) {
this. fetcher.getIobrokerValues(switches.map(sw => sw.mode_id)).then(async res\
ult = {
for (let i = 0; i < result.length; i++) {
let msg: tristateMessage;
if (result[i] == 2) {
let state = await this.fetcher.getlobrokerValue(switches[i].state_id)
msg = {
state: state 7 "on" : "off",
mode: "auto"
}
} else {
msg = {
state: result[i] == 1 ? "off" : "on",

mode: "manual"

Kapitel 4: Standalone Front-End 65

}

this.ea.publish(switches[i].message, msg)

D)

Eine Faustregel lautet, dass eine einzelne Funktion normalerweise nicht grosser als eine Bild-
schirmseite sein sollte, damit das Programm gut lesbar bleibt. Ich habe darum die Abfragen
der Messinstrumente und der Schalter in jeweils eigene Funktionen ausgelagert und rufe in
setInterval() diese beiden Funktionen auf. getGaugeValues() entspricht im Wesentlichen dem,
was vorher hier stand, wahrend getSwitchValues() neu ist:

Mit switches.map(sw => sw.mode_id) erstellen wir ‘on the fly’ ein Array, welches nur die
mode_id Attribute der TristateButton-Konfigurationen enthalt, also die im ioBroker Javascript
programmatisch erstellten States fiir die entsprechenden Schaltelemente. Dieses Array senden
wir an den fetcher, der die entsprechenden Werte vom Homeview-Server abholt und wieder als
Array zuriick liefert. Das sind Werte zwischen 0 und 2, die fiir ein, aus und auto stehen. Der
TriStateButton erwartet aber eine Message des Typs tristateMessage, also ein Objekt mit den
Attributen state und mode. Damit wir dieses Objekt herstellen konnen, brauchen wir im Fall von
“2” (auto) die zusatzliche Information, ob das Licht derzeit gerade an oder aus ist. Wir deklarieren
deshalb die Resultatfunktion fiir . then als async, damit wir mit await eine zweite Abfrage zum
ioBroker schicken konnen, um den Schaltzustand abzufragen. Dieser hat den Wert true oder
false, den wir dann in die vom TristateButton erwartete Form “on” bzw. “off” wandeln. Die so
zusammengebastelte Nachricht schicken wir dann, nein, nicht zum TristateButton, sondern wir
publizieren sie iiber den EventAggregator, so dass jeder Interessent sie abfangen kann.

Um den TriStateButton zu verwenden, habe ich in config.ts eine neue Konfiguration fiir ein Licht
eingefiigt, die mit dem Fernsehgerat kombiniert ist (Vgl. auch in Kapitel 3)

src/config.ts

/S

fernsehlicht_cfg: {
"state_id": env.devices. fernsehlicht_direkt,
"mode_id": env.devices. fernsehlicht_modus,
"size": switch_size,
"message": "fernsehlicht",
"caption": "TV-Licht"

Kapitel 4: Standalone Front-End 66

Teil 6: Lineare Anzeigegerate

Da wir grossere Stromverbraucher wie Waschmaschi-
ne, Tumbler und Geschirrspiiler gern dann einschal-
ten, wenn gerade genug Sonnenstrom zur Verfiigung PR oY et S
steht, wollen wir nun eine Anzeige zum schnellen L e
Uberblick iber die momentane Stromsituation erstel-
len. Eine lineare Skala, welche positiven oder nega-
tiven Stromfluss anzeigt. Damit wir die neue Anzeige nicht nur hierfiir verwenden kénnen,
machen wir sie erneut konfigurierbar.

[Metto Strom

Abb. 4.14: Lineare Anzeige

git checkout -f origin/stufe_18
git clean -f
npm installl

Wir beginnen mit dem dem nun schon gut bekannten Grundgeriist:

components/lineargauge.ts

import {autoinject, bindable, noView} from 'aurelia-framework';
import {EventAggregator} from "aurelia-event-aggregator"

import {scalelLinear} from "d3-scale";

import 'd3-transition’

import {Helper, Component, eaMessage} from './helper'

@autoinject

@noView

export class Lineargauge implements Component{
@bindable cfg
readonly component_name = "Lineargauge"
private scale
body
private indicator

private value

constructor(public element: Element,
private hlp: Helper) {}

attached() {
this.hlp.initialize(this, {

message: "Lineargauge_value",

caption: "",
suffix: "",
minValue 10,
maxValue : 100,

height : 50,

Kapitel 4: Standalone Front-End 67

width : 180,

padding: O,

bands : [{from: 0, to: 100, color: "blue"}]
b

configure() {

this.scale = scalelLinear()
.domain([this.cfg.minValue, this.cfg.maxValue])
.range([5 + this.cfg.padding, this.cfg.width - 5 - this.cfg.padding])
.clamp(true)

/S

// render()
// update()
/7

Die render () Methode macht etwas ganz Ahnliches, wie die der CircularGauge: Sie malt farbige
Streifen und Tickmarks. Nur diesmal eben in Form von Geraden anstatt Kreisbogen. Der Zeiger
ist diesmal ein simpler roter Strich. Fiir die Textanzeige des Messwerts miissen wir ein wenig
rechnen, um die Grosse so hinzukriegen, dass alles gut lesbar bleibt. Dann setzen wir sie
halbtransparent mitten in die Anzeige.

render() {

o),

// Rahmen
const dim=this.hlp.defaultFrame(this)
const baseline = dim.y+4*dim.h/5
const scalesize=dim.h/10
// draw colored bands
this.cfg.bands. forEach(band => {
this.hlp.line(this.body, this.scale(band.from), baseline, this.scale(band.t\
baseline, band.color, scalesize).attr("opacity", 0.5)

1))

// draw tick marks and text on every second tick
const ticks = this.scale.ticks(10)
const tickFormat = this.scale.tickFormat(10, "s")
const fontSize = dim.h / 6
let even = true
ticks. forEach(tick => {
const pos = this.scale(tick)
this.hlp.line(this.body, pos, baseline + scalesize/2, pos, baseline - scale\

size, "black", 0.6)

if (even || (tick == 0)) {

Kapitel 4: Standalone Front-End 68

this.hlp.stringElem(this.body, pos, baseline-1.5 * fontSize, fontSize, "m\
iddle")
.text(tickFormat(tick))
}
even = leven

1))

// Zeiger
this.indicator = this.hlp.line(this.body, this.scale(@), dim.y+1, this.scale(\
©), dim.y+dim.h-2, "red", 1.2)
.attr("id", "indicator1")

// Textanzeige des Messwerts
let valueFontSize = 0.8 * 3*dim.h/5
this.value = this.hlp.stringElem(this.body,
this.scale(this.cfg.minValue + ((this.cfg.maxValue - this.cfg.minValue) / 2\
)),
valueFontSize-3,
valueFontSize,
"middle",
0
).attr("opacity", 0.4).style("fill", "grey")

Die update() Funktion ist dann wieder sehr einfach: Wir schieben einfach den Zeiger an die neue
Position, die uns von der d3.scaleLinear() aus dem tibergebenen Messwert errechnet wird und
beschriften das Textfeld neu.

update(newVal : eaMessage)

const value=newVal.data

const x = this.scale(value)

this.indicator.transition()
.duration(300)
.attr("x1", x)
.attr("x2", x)

this.value.text(value + this.cfg.suffix)

Damit die neue Komponente iiberhaupt angezeigt wird, muss sie in app.html eingetragen
werden:

Kapitel 4: Standalone Front-End 69

<require from="components/lineargauge"></require>

<div>
<lineargauge cfg.bind="conf.powermeter_cfg"></lineargauge>
</div>

und die dort angegebene Konfiguration muss in config.ts vorhanden sein. Und erst mit dieser
Konfiguration wird aus einem universellen Linear-Anzeigeinstrument eine Stromfluss-Anzeige:

src/config.ts

export default {
/S
powermeter_cfg: {
devices: [env.devices.energy_grid_flow],
width: gauge_size,
height: switch_size,
minValue: -10000,
maxValue: 10000,
caption: "Netto Strom",

message: "fronius_net",

suffix: "w",
padding: 10,
bands: [

{from: -10000, to: ©, color: "red"},
{from: 0, to: 10000, color: "green"}
1,

modify: x => -x

Y/

Hier sehen Sie auch eine Anwendung der modify-Funktion in cfg: In diesem Fall multiplizieren
wir den erhaltenen Wert jeweils mit -1. Der Grund ist: Der ioBroker State fiir den GRID_FLOW,
also den Netto-Fluss von oder zum Elektrizitatswerk, liefert negative Werte fiir Export und
positive Werte fiir Import von Strom. Ich méchte es aber lieber umgekehrt haben und positive
Werte sollen dann angezeigt werden, wenn wir mehr Strom produzieren, als verbrauchen. Daher
also alles mal -1.

Zu guter Letzt muss auch app.ts angewiesen werden, die neue Komponente mit Daten zu
versorgen. Das ist sehr einfach:

Kapitel 4: Standalone Front-End 70

src/app.ts

export class app({

/S

constructor(){
/S
let gauges = [configs.wohnzimmertemp_cfg, configs.aussentemp_cfg,

configs.powermeter_cfg]
/)
}
/S
}

Wir mussten nur unsere powermeter_cfg in die Liste der abzuklappernden gauges eintragen,
den Rest erledigt die frither schon geschriebene Logik. Der anfangs erbrachte Aufwand zahlt
sich langsam aus.

Kapitel 6: Bastelstunde

Das Hauptgewicht dieses Buchs lag bisher ja auf der Software-Seite der Hausautomation. Nun
gibt es leider nicht immer fiir alles eine Fertigkomponente. Oder der Preis fiir eine solche
Fertigkomponente ist in einer fiir Privatleute inakzeptablen Hohe. Andererseits gibt es heute
alles, was zum selber bauen (fast) beliebiger Komponenten nétig ist, zu durchaus akzeptablen
Preisen und in riesiger Auswahl.

Natiirlich wird ein selbstgebautes Gerédt nie so kompakt und elegant sein konnen, wie ein
industriell gefertigtes Produkt. Fiir viele Zwecke wird es aber dennoch gut genug sein.

Kapitel 6: Bastelstunde 72

Grundatzliches und was man zum Basteln braucht

Das “Internet der Dinge” besteht aus unabhangigen Einzelkomponenten, die miteinander und mit
tibergeordneten Steuerungen vernetzt sind, und gemeinsam ein “intelligentes” System bilden. In
diesem Kapitel werden zunichst die grundsatzlichen Bestandteile besprechen und dann auch
selber kreativ tatig sein.

Jargon

Natirlich hat sich im IoT-Bereich ein eigener Jargon entwickelt. Ich denke, es geniigt zunachst,
wenn Sie mit folgenden Begriffen etwas anfangen kénnen

« 10T (Internet of Things, Internet der Dinge) - Ein Sammelbegriff fiir alle autonomen “Dinge”
die sich via Internet vernetzen konnen.

« GPIO (general purpose input ouput) - Universalanschliisse, die entweder etwas ausgeben
oder etwas einlesen konnen. Was welcher Anschluss tut, wird softwareseitig bestimmt.

« ADC (analog digital converter) - Ein Pin, der eine Spannung am Eingang in einen
proportionalen Zahlenwert umwandeln kann.

« PWM (pulse width modulation) - Ein Pin, der “pseudo-analoge” Ausgangssignale erzeugen
kann, indem er schnelle Ein/Ausschaltvorgange produziert. Je nach auszugebendem Wert
ist das Verhaltnis von Ein- zu Ausschaltzeit anders. So kann beispielsweise ein Licht
gedimmt werden, indem man es nur in 50% statt in 100% der Zeit einschaltet, diese
Schaltvorgange aber so schnell nacheinander ausiibt, dass das Auge davon getduscht wird.
In gleicher Weise kann man auch die Leistung von Motoren variieren.

 Output Current (Ausgangsstrom) - Die mogliche Ausgangsleistung. Wenn man mehr
Leistung verlangt, als diese Zahl angibt, dann wird es nicht einfach “nicht gehen”, sondern
es wird moglicherweise etwas durchbrennen. Und zwar etwas im Inneren des Chips, was
man nicht reparieren kann. Daher: Wenn Sie nicht genau wissen, was Sie tun (und wie man
es berechnet), betrachten sie alle Ausgangspins als praktisch “leistungslos” und hingen sie
niemals etwas Stirkeres als etwa eine LED an. Alles, was mehr Leistung braucht, braucht
einen Verstarker.

« Input Voltage (Eingangsspannung) - Manche der gebrauchlichen Chips wollen 5 Volt,
manche 3.3 Volt. Wenn Sie 3.3 Volt statt 5 Volt liefern, wird es oft klappen. Wenn Sie aber
5 Volt statt 3.3 Volt anschliessen, wird meist etwas kaputt gehen. Also schliefen Sie, wenn
es sein muss, 5 Volt Peripherie an 3.3 Volt Ausgange an, aber niemals umgekehrt. Oder nur
iber einen Spannungswandler.

« serial Port/serielle Schnittstelle - ein altehrwiirdiger asynchroner Kommunikationsstan-
dard, der urspriinglich als RS 232 mit 25 Leitungen definiert wurde, spater als 9-poliger
Anschluss am PC Einzug hielt, und bei Mikrokontrollern auf 3 Leitungen (Rx,Tx, Gnd)
reduziert wurde. Da bei einer asynchronen Kommunikation kein gemeinsamer Takt vor-
gegeben wird, miissen sich die beteiligen Partner im Voraus auf bestimmte Eckwerte
einigen (Baudrate, Zahl der Start- Daten- und Stopbits, Paritét), sonst kommt es zu keiner
Verstandigung. Diese Daten sind im Standard nicht fest integriert, sondern miissen fiir jede
Verbindung individuell festgelegt werden. Oft ist man mit 9600,8,n,1 auf der sicheren Seite,
aber im Zweifel muss man das Datenblatt studieren. Es geht aber nichts kaputt, wenn man

Kapitel 6: Bastelstunde 73

falsche Parameter einsetzt, sondern es kommt lediglich kein Kontakt zustande. Man darf
also ruhig ausprobieren.

« 12C (I square C: Inter-integrated circuit) - Ein synchroner Kommunikationsstandard, der
mit zwei Drihten auskommt (Daher wird es manchmal auch TWI - Two Wire Interface
genannt). An diesen zwei Drahten konnen bis zu 1024 Peripheriegerite hiangen. Es wird
haufig verwendet, um Peripheriebausteine mit Steuergerdten zu verbinden. (Synchron
bedeutet: Der Master gibt an einem Draht (SCL) den Takt vor, der fiir alle Gerite gilt).
Es gibt daher bei diesen Bus viel weniger Raum fiir Missverstandnisse, als bei RS232&Co.

« SPI (Serial Peripheral Interface) - Ein weiterer synchroner Kommunikationsstandard, der
allerdings drei gemeinsame Drahte und einen weiteren Draht je Peripheriegerat benotigt.

+ 1 Wire - Ein asynchroner Kommunikationsstandard, der sogar mit nur einem Draht (und
Masse) auskommt. Sogar die Stromversorgung erfolgt dabei tiber den Signaldraht. Das
Peripheriegerat braucht daher keine eigene Energiequelle, muss aber fiir die Dauer, in denen
das Steuergerat das Signal auf “Low” zieht, ausreichend Energie speichern kénnen (z.B. mit
einem Kondensator).

« Breakout-Board: Damit ist eine Platine gemeint, die einen fiir Hobbyisten kaum hand-
habbaren winzigen SMB-Chip mit Anschlissen versieht, die der durchschnittlich begabte
Bastler mit seinen Projekten verléten kann, oder die man mit entsprechenden Stiftleisten
in eine Platine oder ein Breadboard stecken kann. Ausserdem enthélt ein Breakout oft
auch vom Chip benoétigte Peripherie wie Widerstande und Kondensatoren, manchmal auch
Schutzschaltungen gegen Uberspannung etc.

« Firmware: Eine Software-Schicht, die zwischen Hardware und Anwendungsprogrammen
vermittelt, und oft fest in einen nichtfliichtigen Speicher “gebrannt” wird. Bei PCs wird
die Firmware meist BIOS genannt, und als Anwender hat man selten damit zu tun. Bei
Mikrokontrollern dagegen muss man je nach gewiinschter Entwicklungs- und Ablaufum-
gebung unterschiedliche Firmwares verwenden. Den Prozess, Firmware zum Controller zu
tbertragen, nennt man meist “flashen” oder “brennen”, und er erfolgt fast immer tiber eine
serielle Schnittstelle, die bei “besseren” Boards in einen USB Anschluss konvertiert wird.

« SOC (System on a Chip) - Ein nicht ganz scharfer Begriff, der Gerite meint, die im
Prinzip aus einem einzigen Chip bestehen, welcher dann eben Mikroprozessor, Speicher und
Steuerlogik beinhaltet. in der Realitit brauchen solche SOCs trotzdem noch eine gewisse
periphere Beschaltung mit geregelter Stromversorgung, Pufferschaltungen etc., aber diese
ist vergleichsweise einfach und preisgiinstig machbar.

Endkomponenten

Sensoren oder steuerbare Schalter, wie zum Beispiel Licht-, Warme-, Druck-, Tast-Sensoren,
LEDs, LCD-Anzeigen, Lautsprecher, Relais, Optokoppler usw. Es gibt eine Reihe von online-
Shops, bei denen man solche Dinge beziehen kann. Nebst alteingesessenen Betrieben wie Conrad
oder ELV gibt es auch eine Menge kleinerer Firmen, die zum Teil giinstigere Preise und gerade in
diesem Bereich auch eine grossere Auswahl bieten. Als Beispiele seien Mikroshop (https://www.
mikroshop.ch), Funduino (https://www.funduinoshop.com/) oder DIY-Shop (https://www.diy-
shop.ch/de/) genannt Googlen Sie am besten einfach nach dem Namen bzw. der Produktnummer
der Komponente die Sie benétigen, und Sie werden fiindig werden.

Viele der ersten Suchtreffer werden von Aliexpress sein. Das ist eine Sammelfirma fiir tausende
von winzigen bis riesigen chinesischen Herstellern. Wenn Sie einige Wochen warten kénnen, und

https://www.mikroshop.ch
https://www.mikroshop.ch
https://www.funduinoshop.com/
https://www.diy-shop.ch/de/
https://www.diy-shop.ch/de/

Kapitel 6: Bastelstunde 74

auch damit umgehen konnen, wenn die Produkte manchmal etwas anders sind, als erwartet und
ohne jede Dokumentation kommen, dann kann das ein gute Option sein. Die Produkte kosten
oft weniger als ein Fiinftel der hiesigen Preise.

In der Regel ist es aber meines Erachtens verniinftig, hiesige Geschéfte zu beriicksichtigen: Die
Lieferung erfolgt schneller, bei Problemen bekommt man rascher Hilfe, die Garantiebedingungen
sind klar und durchsetzbar, und man ist auch nie in Gefahr, unwissentlich gegen irgendwelche
Zoll- oder Einfuhrbestimmungen zu verstoflen.

Steuergerate

Natirlich benotigen wir irgendein “intelligentes” Gerét, das die Endkomponente ansteuern kann.
Dieses Gerit ist der Vermittler zwischen dem Endgerét und unserer Heimautomations-Zentrale.
Hier gibt es zwei grundsatzlich verschiedene Herangehensweisen: Das Programm kann direkt auf
diesem Gerét laufen, Steueraufgaben mit einer gewissen eigenen Intelligenz erledigen, oder aber
es beschrankt sich darauf, Sensordaten weiterzuleiten und Steuerbefehle entgegenzunehmen und
den Aktor entsprechend anzusteuern.

Welchen Weg man wahlt, hdangt von der Aufgabe, von den zur Verfiigung stehenden Mikrocon-
trollern/SOCs und natiirlich den individuellen Praferenzen ab. Auf einem Raspberry wird man
auch komplexere Programme direkt ablaufen lassen konnen, wihrend man auf einem Arduino
nur vergleichsweise einfache Aufgaben direkt erledigen kann. Fiir komplexere Aufgaben wird
man ihn eher fernsteuern - zum Beispiel mit einem Raspberry.

Raspberry Pi

Zur Steuerung von Komponenten kann man den uns schon bestens bekannten Raspberry Pi
einsetzen. Auch wenn wir sie bisher noch nicht benutzt haben, sind Thnen die GPIO-Pins
mit Sicherheit schon aufgefallen. Diese Anschliisse kann man zum Lesen oder Schreiben von
Schaltimpulsen verwenden. Da Steueraufgaben nicht viel Rechenleistung brauchen, ist es im
Grunde egal, welchen Raspberry Sie verwenden. Fiir kleine Peripheriegerdte empfiehlt sich
meines Erachtens der Zero W, den es fir knapp 10 Euro gibt, und der bereits per WLAN
angebunden werden kann. Oder vielleicht haben Sie von Ihren ersten Raspberry-Gehversuchen
noch einen alten, langsamen Model B im Keller. Auch der tut es, braucht allerdings ein
Netzwerkkabel oder einen Wifi-Stick fiir die Einbindung ins Netz.

Die Pin-Nummerierung der Raspberries ist leider reichlich verwirrend: es gibt verschiedene
Systeme (Broadcom-Pin, Header-Nummer, GPIO, Wiring-Pi usw.), die beziiglich Nummernfolge
keiner Logik zu folgen scheinen. Leider sind auf dem Pi selbst auch keine Pin-Nummern
aufgedruckt. Schauen Sie im Zweifelsfall auf einem entsprechenden Schaubild, z.B. http://pi4j.
com/pins/model-3b-rev1.html oder http://pinout.xyz wie es bei Ihrem Pi ist. Priifen Sie zweimal,
ob Sie jeden Draht richtig gesteckt haben, bevor Sie einschalten. Wenn Sie falsche Verbindungen
ziehen, und dann Strom darauf geben, geht hochstwahrscheinlich etwas kaputt. Oft leider der
Pi.

http://pi4j.com/pins/model-3b-rev1.html
http://pi4j.com/pins/model-3b-rev1.html
http://pinout.xyz

Kapitel 6: Bastelstunde

Raspberry Pi Rev 2 (A/B)

75

Raspberry PiB+

Fin Mummer Fin Mummer
1 2
- 3 4
5 6 5 6
GPIO4 7 8 GPIO4 7 8 ”:ﬁtr—]
9 10 [GRIOL 9 10 [GRIOIS)
GPIOI7 11 12 GPIOIR GPIOIT 11 GPIO18
GPIO2T 13 14 [efle GPIO27 13 GHD
GPIO22 15 16 GPIO23 GPIO22 15 16 GPIO23
17 18 GPlIO24 RN 7 1c GRIo24
GPIOLD 19 20 GPIO10 19 20
GPIOS 21 22 GPIO25 GPIOS 21 22 GPIOZS
GPIOLL 23 24 GPIOB GPIO11 23 24 GPIOB
ENB] 25 25 GPIO7 25 26 GPIO7

DMC 27 28 DHC

GPIO5 20 30

Spannung GRIOE 31 32 GFIOLZ
Erdung GPIO13 33 34

; GEPIC19 35 iE GPIOLE

GPIO26 37 1| GPIO20

GO et o GPIO21

Abb. 6.1: Raspberry Pin layout

Raspberries konnen iiber 12C, SPI und die serielle Schnittstelle mit Peripheriegerdaten kommuni-
zieren. Man muss dabei aber beachten, dass der Raspi keine Spannungen iiber 3.3 Volt vertragt,
viele andere Gerate aber hemmungslos mit 5 Volt kommunizieren.

Arduino

Der Arduino ist klar der Platzhirsch unter den Mikrocontrollern im Hobbybereich. Er steht hier
nur deshalb erst an zweiter Stelle, weil in diesem Buch der Raspberry schon in Verwendung und
darum beim Leser vermutlich schon vorhanden ist. Arduino ist eine urspriinglich fiir italienische
Schulen entwickelte OpenSource-Plattform®. Wegen Lizenzquerelen entstanden verschiedene
Markennamen (Arduino, Genuino), und es gibt inzwischen eine uniibersehbare Zahl von
Varianten und Nachahmerprodukten. Dazu sollte man noch wissen, dass es bei vielen Clones,
die einen billigeren Chip zur USB Anbindung verwenden, manchmal knifflig sein kann, sie mit
dem Computer zu verbinden. Anfangern wiirde ich in jedem Fall zu Original Arduino/Genuino
Modellen raten. Im Folgenden meine ich jeweils den Arduino/Genuino Uno R3, aber alle
Varianten sind dhnlich genug, dass das keine grosse Rolle spielt.

Arduinos sind vergleichsweise schwachbriistig: Der Uno hat ganze 32 kB Speicher und lauft mit
16 Mhz. Ihr Handy hat vermutlich mehr als hunderttausendmal so viel Speicher und die hun-
dertfache Taktfrequenz. Das darf aber keinen falschen Eindruck erwecken: Ein Mikrocontroller

*OpenSource Plattform heisst, dass auch die Hardware OpenSource ist - Im Gegensatz etwa zum Raspberry Pi darf somit jeder den
Arduino nachbauen. Allerdings darf man so einen Nachbau dann nicht Arduino nennen - eine Regel, die viele Nachahmer leider nicht
beriicksichtigen.

Kapitel 6: Bastelstunde 76

muss keine Videos abspielen, sondern er soll nur Mess- und Schaltaufgaben erledigen. Dafiir ist
die Leistung absolut ausreichend. Da er kein Betriebssystem laden muss, beginnt ein Arduino
(bzw. dessen Firmware) sofort nach dem Einschalten, sein Programm abzuarbeiten. Man muss
ihn am Ende auch nicht irgendwie “herunterfahren” sondern kann einfach den Stecker ziehen.
Programme fiir den Arduino kann man komfortabel auf dem PC in der “Arduino IDE” (https:
//www.arduino.cc/en/main/software) entwickeln und dann iiber den USB Anschluss auf den
Arduino iibertragen. Die Programmiersprache ist im Prinzip C++ mit einigen Einschrankungen
und dafiir einigen systemspezifischen Erweiterungen, etwa Befehle, um GPIOs zu schalten. Fiir
viele Standardaufgaben existiert ein riesiger Fundus an vorgefertigten Libraries, so dass das
Programmieren sich oft darauf beschrankt, die richtige Library zu finden und diese mit ein paar
wenigen Programmzeilen anzubinden.

Das Programm wird in einem nichtfliichtigen Speicher gehalten und startet bei jedem Ein-
schalten sofort, bis es von einem anderen Programm tberschrieben wird. Beim Arduino sind
nie mehrere Programme gleichzeitig im Speicher. Arduinos brauchen relativ wenig Strom und
konnen daher, speziell in der “Arduino Nano”-Variante auch gut mit Batterien betrieben werden.

Der Arduino Uno ist einsteigerfreundlich, denn er kommt mit verschiedenen Stromquellen
zwischen 5 und 15 Volt zurecht und verzeiht auch schonmal eine falsche Verschaltung ohne
kapitalen Schaden.

Eine weitergehende Einfithrung wiirde den Rahmen dieses Buches sprengen; bei Interesse
empfehle ich, Google mit “Arduino” zu fiittern oder direkt auf der Seite http://arduino.cc
vorbeizuschauen.

Fir uns interessant: Auch Arduinos kénnen via I2C, SPI und serielle Schnittstelle kommunizie-
ren.

https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
http://arduino.cc

Kapitel 6: Bastelstunde 77

Vrlage 15MMHE ATrmugal B2
- rmhraccrbicilar [CAMD comfroller

F5B-E peatt
A EAPLITE

T to 129D Input
2.1mm » 5.5mm
Make cenbe posiLiv

Rezet button

IC5P fer
LEH inberface

(L2CY BEL - Seriad glaek
(12C) 5D = Surlal data

______ Pin-13 LED
T S EnE 1A [GF1) SCK = Senal sk
10 Heterence veltapgs (SF1} MIS0 = Mashersn, oot
e 2 (5PT) HOSI - Master-out, slave-n
BB Cultput o (5P} 55 = Slave se'ect
SV Qutcut =
Greuns H
Grming E

hiabe: Fing denoted with ~~"

Immis velrags are PFA'M supported

[e G e LA T

Analeg pin = -

Griakey pin 1

Enalog i & Irterropr 1
Gnadey pn = Irderear 3

[l E EE
P siiicte |

¥

e S

5 3 wv=Hid) TVLIDID

ATmagalle
([N TES i T R

ICSP for o
ATmwaal2ld HMIED

Abb. 6.2: Arduino Pin Layout

Ein grofler Vorteil fiir Bastler gegeniiber dem Raspberry: Die Pins sind beschriftet, die Verwechs-
lungsgefahr daher deutlich geringer.

Zur Anschauung hier ein kurzes Arduino-Programm, welches eine LED an GPIO 3 blinken lasst:

#define LED 3

void setup() {
pinMode(LED, OUTPUT);

}

void loop() {
digitalWrite(LED, HIGH);
delay(500);
digitalWrite(LED, LOW);
delay(1000);

ESP8266 und ESP32

Diese Chips des chinesischen Herstellers Espressif sind vielleicht wegen des etwas sperrigeren
Namens im Hobby-Bereich weniger bekannt, als die Arduinos, sind aber gleichwohl in den

Kapitel 6: Bastelstunde 78

letzten Jahren mit iber 100 Millionen verkauften Exemplaren inzwischen zu den meistverkauften
IoT-Geraten geworden. Viele WiFi-fahige loT-Geréte haben einen dieser Chips an Bord.

Das ist an sich kein Wunder: Ein ESP8266-Board kostet weniger als ein Arduino, hat aber einen
mit bis zu 160 Mhz deutlich schneller getakteten Prozessor und je nach Version auch mehr
Speicher und ebenso frei programmierbare GPIOs. Und als wichtigstes Merkmal haben diese
Chips integriertes WLAN und, im Fall des ESP32, auch Bluetooth an Bord. Beides braucht beim
Arduino relativ teure Zusatzhardware.

Der ESP8266 kam 2014 auf den Markt, der leistungsfahigere ESP32 folgte 2016. Fiir den é<eren,
aber fiir die meisten Zwecke ausreichenden ESP8266 findet man generell mehr Unterstiitzung im
Internet und mehr kompatible Software, so dass ich mich im Folgenden auf diesen beschranke.

Man kann den ESP8266 (ebenso den ESP32) entweder direkt als “nackten” Chip oder in einer
minimalen Breakout-Package kaufen. Beides ist nicht empfehlenswert. Stattdessen sollte man
sich als Amateur eher fiir ein “Development Board” entscheiden. Ein solches Board ist immer
noch recht klein, enthilt aber alles, was man braucht, um den ESP8266 direkt an den USB
Port eines Computers anzuschliessen und dort zu programmieren. Auch bei den Development
Boards hat man allerdings die Qual der Wahl zwischen einer Vielzahl von Herstellern. Als
besonders empfehlenswert wiirde ich derzeit die NodeMCU, die Wemos D1 Mini und die
Adafruit Feather-Boards hervorheben. Diese Gerate kosten bei europaischen Héndlern um 5-
15€, aus China 1-2€, sind also fiir Smarthome Projekte ohne Weiteres erschwinglich. Der Markt
entwickelt sich allerdings so schnell, dass Sie besser eigene Recherchen machen, als sich auf
meine moglicherweise bereits veralteten Empfehlungen hier abzustiitzen. Das, was ich Thnen
im Weiteren zeigen mochte, sollte mit jedem beliebigen ESP8266-Board mdglich sein, das Sie
erfolgreich mit Threm Computer verbinden konnen.

Hier als Beispiel eine NodeMCU:

Kapitel 6: Bastelstunde 79

([

ADCO

GPIO16— USER | WAKE |
|GPIOS |
| GPI04 |
GPIOO [~ FLASH |

GP102 - TXD1 |
3.3V

©

ARRARRAAR*®

| SDD3
5DDb2
5DD1
SDCMD : . GND

SDDOD B B {GP1014)
SDCLK - = N (GFioic)

HHHHHHHY

1
1
T
I - '_.-.'.
1
1

[HSCLK

GPIO13}~ RXD2 }-{HMOSI|

belepelelbebeefeeelll il G710 15} TXD2 J-{HCS]
GPI03 |- RXDO |
GPIO1 | TxDO |

Abb. 6.3: NodeMCU Pin Layout

Zum Programmieren kann man eine Vielzahl von Tools und IDEs verwenden, die meisten
Programmiersprachen von JavaScript tiber C/C++ bis Python haben ihren Platz. NodeMCU etwa
ist nicht nur eine Platine, sondern auch ein ganzes Okosystem aus Firmware und Programmier-
philosophie, basierend auf der Skriptsprache Lua. Viele Hobbyisten nutzen jedoch die Tatsache,
dass man die ESP-Familie auch ganz einfach in die Arduino IDE einbinden und Arduino-
Programme ohne grosse Anderungen verwenden kann. Das macht nicht nur die Lernkurve
flacher, sondern hat auch den Vorteil, dass man die existierende riesige Zahl von Bibliotheken
fiir den Arduino mit allenfalls minimalen Anderungen verwenden kann, und somit das Rad nicht
immer wieder neu erfinden muss.

Wenn das Verbinden des NodeMCU mit dem Computer nicht klappt, miissen Sie eventuell einen
USB-Treiber laden: https://www.silabs.com/products/development-tools/software/usb-to-uart-
bridge-vcp-drivers

Wenn Sie sich allerdings bisher noch nicht an die Arduino IDE “gewohnt” haben, sollten Sie sich
vielleicht zunachst auch andere SDKs anschauen, an vorderster Front fur den NodeMCU na-
tiirlich dessen eigene firmware und SDK: https://github.com/nodemcu/nodemcu-firmware, er-
wahnenswert aber auch PlatformIO https://platformio.org und MongooseOS https://mongoose-
os.com/software.html

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://github.com/nodemcu/nodemcu-firmware
https://platformio.org
https://mongoose-os.com/software.html
https://mongoose-os.com/software.html

Kapitel 6: Bastelstunde 80

Und, last but not least, eine sehr interessante Alternative ist ESPEasy (https://www .letscontrolit.
com/wiki/index.php/ESPEasy). Hier enthalt die Firmware einen kompletten Webserver, der sich
bequem per Web-Interface programmieren lasst. Zu diesem Zweck sind eine ganze Reihe von
Sensoren vorinstalliert. Ich werde etwas spéter ein Projekt auf einem NodeMCU via ESPEasy
erstellen.

Breadboards und Jumperkabel

Fast nie 16tet man ein Projekt sofort zusammen. Stattdessen baut man es zunachst auf einem
Experimentierbrett auf und priift, ob es sich tatsachlich so verhélt, wie es soll. Als Standard hat
sich ein bestimmtes Layout ebenso wie der Name Breadboard® etabliert.

- - - - = - = - - 9w - = - - =
& & - - = - e = e = C - e e = - - e e & =
S S SR e g e i B ol 4 B e R
T 4 W W @ @ B @ & & @ B B A & B A N N N F B B & F P 8 8 @ &
- @ 4 W@ W @ & @ & B @ A mE A B B A N W N ®F B B P BE B B R B B "™
= i i @ W W @ @ % & W 8 & @ @ B & = F B F B F P B @ B o =
L=} Fl a W & @ @4 & W & & & 4 B 4 B F A N B B EF EF WP ll'l'uil
- i W W d @ @ 4 SN & 4 @ 4 B R §F B BEE B BB BN H B~
@ 4 4 &4 4 4 4 4 &4 4 @A & A 4 A B B B A A AN N B N¥ BEF ¥ NPF D
T 4 @ 4 4 4 4 4 4 4 & 4 A4 A A B A B B A BN ER S FENFEVEFFP}RS
Q 4 W @ M W 4 8 4 E A M8 4 E AN E S AN ESsSFSENENYN¥Y:©Q
= I I I I I I R R R T T TR U IO U
o] o 0 @ W4 4 W @ 4 & 4 4 @ A M A M B m & E s NS NEFa @
-~ no~ee2 N ES S ONASEERERS
l £ & & a & - & & & = LI - = e e = B e B |
_i_llll-n- E & & & & - & B & = E E E e = - @ " B = +

Abb. 6.4: Breadboard

Meist (nicht immer) befinden sich auf beiden Langsseiten Kontaktreihen fiir die Stromversor-
gung, wobei alle Anschliisse derselben Seite und derselben Polung miteinander verbunden sind.
In der Mitte des Bretts finden sich zwei oder mehrere Reihen von Fiinferblocken, die jeweils
miteinander verbunden sind. Zur besseren Beschreibbarkeit eines Versuchsaufbaus sind die
Reihen und Spalten oft auch beschriftet, wie hier. Hier sind also beispielsweise 3 a-e und 3 f-
j jeweils miteinander verbunden, nicht aber 3e und 3f oder 2e und 3e.

Die Locher sind in einem bestimmten Rastermass (2.54 mm bzw. 1/10 Zoll) angeordnet, das nicht
ganz zufillig exakt zu den Beinchen vieler Elektronik-Komponenten passt. Zur Verdrahtung
verwendet man am besten vorgefertigte “Jumper Wires”, die es in verschiedenen Langen zu

*Der Name kommt angeblich daher, dass Elektroniker friiher ihre Prototypen tatséchlich auf Brotbrettchen aufgebaut haben. Und
falls das nicht stimmen sollte, so ist es doch gut erfunden: http://www.instructables.com/id/Use-a-real-Bread-Board-for-prototyping-
your-circui/

https://www.letscontrolit.com/wiki/index.php/ESPEasy)
https://www.letscontrolit.com/wiki/index.php/ESPEasy)
http://www.instructables.com/id/Use-a-real-Bread-Board-for-prototyping-your-circui/
http://www.instructables.com/id/Use-a-real-Bread-Board-for-prototyping-your-circui/

Kapitel 6: Bastelstunde 81

kaufen gibt. Zur Uberbriickung kurzer Distanzen kann man sich auch mit Heftklammern

behelfen.

Platinen etc. fiir definitiven Aufbau

Wenn das selbst gebaute IoT Gerét tut, was es soll, sollte man es allerdings nicht als Steckbrett-
Aufbau in den harten Alltag entlassen. Die Kontakte sind etwas wacklig, das Ganze ist nicht
stabil, und die Lieblings-Katze konnte in einer destruktiven Phase die Arbeit von vielen Tagen
zerstoren.

Es hilft nichts: Fiir den definitiven Aufbau sollten Sie sich an den Gedanken gewdhnen, einen
Lotkolben in die Hand zu nehmen. Das ist nicht so schwierig, wie man es sich als Einsteiger
oft vorstellt. Am besten schauen Sie sich dazu ein Lehrvideo an, wie zum Beispiel dieses:
https://www.youtube.com/watch?v=4DWUZp1t7Ls. Am Lotkolben wiirde ich nicht unbedingt
sparen - mit einem 10-Euro-Gerat werden Sie vermutlich bald ein Mehrfaches der Einsparung
fiir kaputte Bauteile und Magentabletten ausgeben. Der Létkolben soll gut in der Hand liegen
und in niitzlicher Frist 300-350°C erreichen konnen.

Als Trager fir die Elektronik bieten sich Lochrasterplatinen an (wenn Sie nicht gleich Leiter-
platten selber dtzen wollen). Da gibt es verschiedene Varianten mit Lotstreifen, Lotpunkten,
Lotdoppelpunkten etc. und verschiedene Materialien von Glasfaser bis Hartpappe, getrankt
mi Epoxydharz, Melamin oder Polyester. Ich bevorzuge nach einigem Experimentieren simple
Lotpunkte auf Hartpappe. Letzteres, weil es sich einfacher auf Mass schneiden lasst. Auch
die Hartpappe ist iibrigens mit Kunststoff getrankt und ausgehértet, so dass sie wesentlich
bestandiger ist, als der Begrift suggeriert. Aber sie lasst sich trotzdem leichter bearbeiten, als
eine Glasfaser-Basis.

Bonus: 3D Drucker fiirs Gehause

Um die Katze noch weiter zu desavouieren, sollte man seinen Elektronikbauwerken ein schiit-
zendes Gehause spendieren. Gehause gibt es in allen moglichen Formen und Grossen zu kaufen,
aber natiirlich ist just gerade diese spezielle Form mit dieser speziellen Befestigungsart, die wir
jetzt gerade brauchen, entweder nicht vorrétig oder iiberhaupt nicht zu bekommen. Dann hilft
nur selber machen. 3D Drucker sind absolut erschwinglich geworden. Wenn Sie nicht gerade
sehr grosse Stiicke bauen wollen, und mit einer Genauigkeit im Fiinftelmillimeterbereich leben
konnen, kommen Sie mit 200 bis 300 Euro zu einem brauchbaren Gerit, das Ihnen robuste und
formschone Gehause, Verankerungen, Schienen und Klammern herstellen kann. Falls Sie Inspi-
ration brauchen, konnen sie sich zum Beispiel auf Thingiverse umsehen. Hier einige Beispiele fiir
NodeMCU Gehause: https://www.thingiverse.com/search?q=nodemcu. Diese Entwiirfe konnen
Sie direkt ausdrucken, ausgedruckt kaufen, verdndern, oder einfach nur als Anregung fiir eigene
Projekte verwenden.

Der Entwurf solcher 3D-Stiicke braucht entweder ein gewisses gestalterisches Talent, oder
mathematisches Verstindnis. Wenn Sie eher zu Ersterem tendieren, hilft Thnen ein visuelles
3D Programm, wie zum Beispiel das sehr einsteigerfreundliche kostenlose Tinkercad https:
/Iwww .tinkercad.com/. Fir fortgeschrittene Designer gibt es eine Vielzahl von Alternativen,
aber fortgeschrittene Designer haben bestimmt schon ihr Lieblingsprogramm gefunden, und

https://www.youtube.com/watch?v=4DWUZp1t7Ls
https://www.thingiverse.com/search?q=nodemcu
https://www.tinkercad.com/
https://www.tinkercad.com/

Kapitel 6: Bastelstunde 82

brauchen hier keine Hinweise. Wenn Sie hingegen eher mathematisches, als kiinstlerisches
Geschick haben, sei Ihnen OpenScad (http://www.openscad.org) ans Herz gelegt. Mit OpenScad
erstellen Sie dreidimensionale Objekte mit einer Programmiersprache.

Beispielsweise konstruiert das hier:

translate([10,0,0])
cube([10,10,10]);

Einen Wiirfel mit 10 Millimetern Kantenldnge an der Position 10,0,0.

Und dieses Programm:

// Diameter of the fan
blade_length=60; // [20:100]
// Width of a blade
blade_width=7; //[5:10]

// Diameter of the axe
axe_diameter=2; // [2:10]

// Diameter of the center hub
hub_diameter=18; // [10:30]
// Angle of the blades
angle=45; // [30:60]

// Height of the center hub
height=blade_width*2.5%cos(angle);

// compensate shrink for axe hole
shrink=1.1;

propeller();

module propeller(){
difference(){
cylinder (d=hub_diameter,h=height, $fn=100);
for(i=[0:60:360])
rotate([0,0,1])
blade();
cylinder(d=axe_diameter*shrink,h= 8,$fn=40);

module blade(){
translate([0,0,height/2])
rotate([90,angle,0])
linear_extrude(height=blade_length/2)
scale([0.2,2.5])
circle(d=blade_width,$fn=50);

http://www.openscad.org

Kapitel 6: Bastelstunde 83

erzeugt das hier:

E—"ﬂ#}

Abb. 6.5: Propeller

Sie konnen sich vorstellen, dass so ein “technisches” Objekt mit Freihandzeichnen, kiinstlerische
Begabung hin oder her, eher schwierig herzustellen und zu variieren wire. In diesem Programm
dagegen ist es ein Klacks, die Rotorblatter etwas langer und in einem anderen Anstellwinkel
zu fertigen. Also wiahlen Sie Ihr Werkzeug je nach Talent und Anforderung, und probieren Sie
anfangs auch unterschiedliche Werkzeuge aus.

Egal, mit welchem Programm Sie das Objekt erstellt haben, im Anschluss miissen Sie es als
*stl-Datei (oder ein anderes Format, das der Slicer versteht) exportieren, und ein weiteres
Programm, eben diesen Slicer bemiihen. Ein Slicer schneidet, wie der Name sagt, das 3D
Objekt in hauchdiinne horizontale Scheiben (Wobei “hauchdiinn” je nach Druckermodell und
Einstellungen etwas wie 0.2 oder 0.4 Millimeter bedeutet.) Bekannte Slicer-Programme sind etwa
“cura” oder “slic3r”, wobei letzteres mein Favorit ist.

Diese Scheiben werden dann in eine Reihe von Aktionsbefehlen fiir den Drucker in einer
Sprache namens “Gcode” umgesetzt. Keine Angst, das geht vollautomatisch. Diese .gcode-Datei
wiederum kann man dann dem 3D-Drucker zum Frass vorwerfen, und dieser wird, falls er
mit ausreichend Filament versehen ist, in etlichen Minuten bis Stunden Druckzeit Scheibe um
Scheibe das Objekt aufbauen. Und dieses wird eine verbliiffend hohe Stabilitit haben. Ein echtes
Kunststoff-Objekt, allerdings mit dem Vorteil, dass dieser Kunststoff (Wenn Sie PLA verwenden)
aus nachwachsenden Rohstoffen hergestellt und biologisch abbaubar ist.

Kapitel 6: Bastelstunde 84

Es wird eine Weile dauern, bis Sie brauchbare Resultate bekommen, und noch langer, bis Sie
richtig gute Resultate bekommen. Man braucht eine gewisse Erfahrung, um sofort zu erkennen,
welche Strukturen druckbar sind, und welche nicht (z.B. Uberhange nur bis zu einem gewissen
Winkel, Briicken nur bis zu einer gewissen Lénge). Und zu viele Parameter kann und muss man
beim 3D-Druck variieren und zu viel kann schief gehen. Aber es macht auch viel Freude, “echte”
Objekte herzustellen, die einzigartige Unikate sind (zumindest so lange, bis Sie sie ein zweites
Mal ausdrucken oder auf Thingiverse publizieren).

Gehéause fiir einige der in diesem Kapitel diskutierten Basteleien finden Sie im Quellcode
Verzeichnis, das Sie wie im Anhang gezeigt clonen konnen, und dann:

git checkout -f origin/master
git clean -f

Und zwar im Unterverzeichnis “Bastelstunde”, jeweils als *.stl, *.scad und *.png Datei.

Genug der Theorie, jetzt bauen wir ein richtiges IoT-Gerét, und das mit einem Aufwand von
wenigen Euro.

Kapitel 6: Bastelstunde 85

Barometer

Einleitung

Ein Heimautomationssystem braucht zweifellos auch ein Monitoring des Luftdrucks. Schlieflich
wollen wir den Boiler und das Auto nur dann mit Nachtstrom laden, wenn die Wetteraussichten
fir den nachsten Tag wenig Sonne versprechen, und die Kaffeemaschine fiir extra starken
Kaffee vorbereiten, wenn die Wetteraussichten triibe sind. Sicher, es gibt Wettervorhersage-
Apps, aber wir erhalten genauere Prognosen, wenn wir deren Angaben mit eigenen Luftdruck-
und Temperaturmessungen kombinieren.

Fir den Luftdruck fand ich keine Homematic Komponente. Wir miissen uns da also selbst
behelfen. Von Bosch gibt es Barometer-Thermometer-Chips fiir kleines Geld, die sich fir
derartige Zwecke ausgezeichnet eignen. Die Chips tragen je nach Version die Bezeichnungen
BMP-180, BMP-280 oder BME-280 (Mit Hygrometer). Es handelt sich allerdings um winzige
Dinger, die man als Hobbyist unmoéglich direkt irgendwo einsetzen kann. Die Létstellen sind
mikroskopisch klein, und es ist periphere Beschaltung notwendig. Gliicklicherweise gibt es von
verschiedenen Herstellern Breakout Boards, die die periphere Beschaltung erledigen und nur die
interessierenden Anschliisse in Hobbylot-freundlicher Grosse nach Aussen fithren. Von Adafruit
und Grove gibt es derartige Boards fiir unter 20 Euro; wenn man ein paar Wochen warten und
damit leben kann, dass man im Voraus nicht ganz sicher weiss, welche Chip-Variante dann
tatsdchlich verbaut ist, kann man BMP280/BME280/BMP180-Breakouts auch bei AliExpress fiir
unter 4 Euro bekommen.

Ich habe diesen hier verwendet:

Kapitel 6: Bastelstunde 86

p !

A Ey

Abb. 6.6: BMP280 breakout

Wie Sie sehen, muss man die Pins selber anloten. Aber das sollte Sie ja nun nicht mehr schrecken.
Eine solche Platine ist nicht so empfindlich, wie man vielleicht glaubt, Man kann den Lotkolben
durchaus einige Sekunden lang an die Pins halten, ohne dass etwas durchbrennt. Der eigentliche
Chip ist ja auch ein ganzes Stiick weit von den Lo6tdsen entfernt.

Machen Sie aber bitte nicht denselben Fehler wie ich beim ersten Mal, die Platine “richtig herum”,
also mit dem Chip nach oben, zu 16ten. Dann sehen Sie namlich die Beschriftung der Anschliisse
nicht mehr, wenn sie im Breadboard sitzt... Setzen Sie die Header stattdessen so ein, wie hier
gezeigt:

Kapitel 6: Bastelstunde 87

Abb. 6.7: BMP280 Lotempfehlung

Dem Chip ist es vollig egal, ob er auf dem Kopf steht, und so sehen Sie jederzeit, welcher Pin
woflr ist. Das gilt natiirlich nur fiir den Versuchsaufbau. Im definitiven Aufbau spéter sollten
Sie der Messgenauigkeit wegen darauf achten, dass der Chip méglichst frei und moglichst weit
von anderen Komponenten entfernt platziert wird.

Wie liest man die Messwerte aus, die ein solches Bauteil liefert? Dafiir gibt es, wie nicht anders
zu erwarten, mehrere Standards, die ich in der Einleitung kurz angesprochen hatte. Bosch hat
diesem Chip gleich zwei davon spendiert: 12C und SPI. Die Implementationsdetails brauchen
uns jetzt nicht zu interessieren und wiirden auch zu weit fithren, denn wir werden ohnehin eine
Library benutzen, die uns das mithsame Einsammeln der Bits abnimmt. Wir miissen nur genug
wissen, damit wir fiir Gerat und Software den richtigen Standard auswahlen kénnen.

Zunachst steht die Entscheidung an, wie wir die Daten iiberhaupt ins Netz holen. Da wir ohnehin
einen Raspberry Pi als Heimserver verwenden, bietet es sich an, diesem gleich noch den Nebenjob
aufzuhalsen, den BMP-280 auszulesen und dessen Messwerte im ioBroker bereitzustellen. Und
wie der gliickliche Zufall so spielt, hat der Raspberry schon alles an Bord, was es braucht, um mit
einem Peripheriegerét tiber I2C und SPI zu kommunizieren. Es fehlt nur noch die Software. Weil
wir uns inzwischen mit JavaScript und dem Node]S Okosystem recht gut auskennen, suchen wir
eine NodeJS-Losung.

Auftritt Johnny-Five (http://johnny-five.io). Fragen Sie mich nicht, warum das so heisst. Johnny-
Five ist viel mehr, als nur eine Moglichkeit, den BMP 280 auszulesen. Es ist ein universelles
Konzept, Hardware mit verschiedensten Geréten zu steuern. Der Raspberry Pi als Host ist

http://johnny-five.io

Kapitel 6: Bastelstunde 88

eigentlich nur zweite Wahl. Sein eigentliches Milieu hat Johnny im Land der Arduinos, Espruinos
und wie sie alle heissen: Kleinen Mikrocontrollern mit vielen Ein- und Ausgédngen. Man kann
ein Johnny-Five Programm mit minimalen Anderungen (Im Wesentlichen die Nummern der
Pins) fiir jede der unterstiitzen Plattformen verwenden. Wenn Sie den Barometer spéter an einen
ferngesteuerten Arduino hiangen wollen, kein Problem!

Aber damit wir den BMP 280 nicht gleich durch falsches Anschlielen grillen, geht es zunachst
ans Datenblatt: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-
DS001-19.pdf. Ich habe es bereits fiir Sie studiert, und das Wesentliche ist:

« Johnny-Five kommuniziert via [2C mit einem BMP 280.

« Der BMP 280 wird mit 3.3 Volt betrieben, was just exakt die Spannung unserer Raspberry-
I2C Pins ist.

« Wenn wir wollen, dass der BMP 280 den 12C Bus benutzt, miissen wir vor oder spatestes
mit Anlegen der Betriebsspannung dafiir sorgen, dass der CSB Pin auf HIGH ist. Wenn CSB
irgendwann nach dem Anlegen der Spannung nicht mehr HIGH ist, wird der Chip sich fiir
I2C tot stellen. Wir fixieren diesen Pin also auf 3.3 Volt.

« Der BMP 280 kann zwei I2C Adressen benutzen (das ist niitzlich, wenn man zwei BMP280
am selben Bus héngen hat). Welche Adresse das ist, entscheidet der Zustand des Pins SDO.
Zieht man ihn auf LOW, ist die Adresse 0x76, zieht man ihn auf HIGH, hort er auf 0x77
(und das erwartet Johnny-Five standardmaéssig). Wenn man SDO gar nicht beschaltet, ist
die Adresse undefiniert, was dazu fithrt, dass der Chip mal erreichbar ist und mal nicht. Kein
erwiinschtes Verhalten, darum verbinden wir auch SDO fix mit 3.3 Volt. Es gibt allerdings
auch Breakout-Boards, die die Adresse bereits fix eingestellt haben, und den SDO-Pin gar
nicht nach aussen fithren.

Mit diesem Vorwissen geht es weiter auf dem Raspi. Ich wiirde vorschlagen, zunachst zur
Ubung, und zum schauen, ob tiberhaupt alles funktioniert, zunéchst ein kleines Testprogramm
zu erstellen. Gehen Sie per SSH auf den Raspberry (oder schliessen Sie ihn an Tastatur und
Bildschirm an) und erstellen Sie ein Verzeichnis “barometer”. Geben Sie dann Folgendes ein:

cd barometer
npm init -y
npm install --save johnny-five raspi-io

Dies wird eine Weile dauern. Eventuell (je nach bereits vorhandener Software) meckert der
Installer, dass pigpio noch nicht installiert sei, und wird versuchen, es zu installieren, was
mangels Admin-Rechten scheitern wird. Brechen Sie in diesem Fall ab und geben Sie zunachst
ein:

sudo npm install pigpio

Und starten Sie dann erneut die Installation von johnny-five und raspi-io

Danach missen Sie den Raspberry neu starten, damit der 12C Bus aktiviert wird. Ich wiirde
vorschlagen, Sie fahren ihn zunéchst herunter, stecken ihn dann aus, erledigen die Verkabelung

https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-19.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-19.pdf

Kapitel 6: Bastelstunde 89

zum BMP280 und stecken ihn dann wieder ein. Auf diese Weise ist die Gefahr versehentlicher
Beschadigungen am geringsten.

Da der Raspi je nach Version nur einen oder zwei 3.3 Volt Anschliisse hat, wir aber drei Pins
(CSB, SDO und VCC) mit 3.3 Volt verbinden wollen, miissen Sie z.B. drei Kabel zusammenléten,
mit einem Verbinder zusammenfassen oder tiber ein Steckbrett auf drei Pins verteilen. Achtung:
Hier ist Sorgfalt gefragt, Wenn Sie den Sensor versehentlich mit 5 Volt verbinden, konnen Sie ihn
anschliefend hochstwahrscheinlich wegwerfen (Ausser, Sie haben eines jener Breakout-Boards
erwischt, die auch einen Spannungsregler beinhalten).

Wir verbinden also:

« SDA mit Pin 3/GPIO 8 des Raspberry (Das ist, wenn Sie den Raspberry so vor sich halten,
dass er mit der Schmalseite mit den USB-Anschliissen zu Ihnen zeigt und die GPIO Stiftleise
rechts ist, der zweite Pin von oben der linken Stiftleiste).

« SCL mit Pin 5/GPIO 9 (das ist der dritte Pin links von oben)

+ GND mit PIN 6 / GROUND (das ist der dritte Pin rechts, gegeniiber von SCL)

« CSB,SDO und VCC mit Pin 1 (das ist der oberste Pin links).

Kontrollieren Sie noch einmal, ob alle Kabel richtig verbunden sind und starten Sie dann denn
Raspi neu. Offnen Sie dann wieder die ssh-Konsole und geben Sie ein:

cd barometer
nano bmp280. js

Dann geben Sie bitte folgendes Programmchen ein:

const five=require('johnny-five')
const Raspi=require('raspi-io');
const board=new five.Board({

io: new Raspi()

1))

board.on('ready"', ()=>{
const bmp280=new five.Multi({

controller: 'BMP280', // Bei Verbindungsproblemen versuchen Sie 'BME280' oder

BMP180'
freq: 1000 // Abfragehaufigkeit in ms.
b
bmp280.on('data', ()=>{
let temperature=bmp280@.thermometer.celsius.toFixed(1);
let pressure=bmp280.barometer .pressure.toFixed(1);
let humidity=bmp280.hygrometer.relativeHumidity
console.log(${temperature}®°C, ${pressure} kPa, ${humidity}%rH>);
)
b

Kapitel 6: Bastelstunde 90

Beenden Sie den Editor mit CTRL-O und CTRL-X und starten Sie das Programm mit sudo node
bmp28@. js. Vermutlich werden noch ein paar Fehlermeldungen wegen Tippfehlern kommen,
aber dann werden Sie mit einer Ausgabe wie dieser belohnt:

27.7°C, 96.5 kPa, O%rH
27.7°C, 96.5 kPa, O%rH
27.7°C, 96.5 kPa, 0%rH
27.7°C, 96.5 kPa, O%rH
27.7°C, 96.5 kPa, O%rH
27.7°C, 96.5 kPa, O%rH

(Da verschiedene Chipversionen im Umlauf'sind, die nicht alle dieselben Messwerte liefern, habe
ich hier Code fiir alles eingegeben. Wenn Sie z.B. wie hier fiir humidity unsinnige Werte erhalten,
bedeutet das, dass der eingesetzte Chip die Luftfeuchtemessung nicht unterstiitzt. Alle Varianten
unterstiitzen aber pressure und temperature.)

Da unterschiedliche Chips im Handel sind, kann es auch sein, dass ein als BMP-280 verkauftes
Board einen BME-280 enthalt und daher im Skript nur als “BME280” korrekt angesprochen
werden kann. Sie miissen eventuell ein wenig experimentieren. Wenn es mit keinem der
ahnlichen Chips funktioniert, oder wenn es nur instabil lauft, ist vielleicht die Baudrate des
[2C Bus fiir Ihren vielbeschéftigten Raspi zu schnell eingestellt. Das konnen Sie direkt auf dem
Raspi so andern:

sudo nano /boot/config.txt

Suchen Sie dort die Zeile dtparam=i2c_arm_baudrate=100000 und andern Sie den Wert in
10000. Speichern Sie config.txt mit CTRL-O und verlassen Sie den Editor mit CTRL-X. Starten
Sie dann denn Raspi mit sudo reboot neu. Dann sollte es klappen.

Wenn Sie an korrektem Wert fiir die Temperatur interessiert sind, sollten Sie den Chip weit genug
vom Raspberry weg montieren, sonst messen Sie (wie hier) eher dessen Temperatur, als die der
Umgebung.

An dieser Stelle mochte ich darauf hinweisen, dass man ein auf dem RaspberryPi laufendes
Node]JS Programm auch vom Arbeitscomputer aus debuggen kann, was bei komplizierteren
Programmen oft einfacher ist, als einem Fehler mit verstreuten console.log() Anweisungen auf
die Spur zu kommen. Sie finden die Anleitung zum Remote-Debugging im Anhang.

Anbindung an ioBroker

Nachdem unser Barometer grundsétzlich funktioniert, muss es an ioBroker angebunden werden.
Die erste Idee ist: Wir bendtigen einen ioBroker Adapter. Eine schnelle Websuche liefert
allerdings keine Ergebnisse fiir BMP/BME-280, wir miissten somit selber einen schreiben.

Das kann man natiirlich tun; wie es geht, habe ich ja im Kapitel 5 gezeigt. Allerdings gibt es
einen viel einfacheren Weg, und den mochte ich Thnen hier vorstellen.

Kapitel 6: Bastelstunde 91

Dazu hole ich erst mal ganz weit aus und benutze einen NodeMCU zum Anbinden des
BMP280. Sie erinnern sich, NodeMCU ist ein Development Board rund um den ESP8266, einen
Mikrocontroller mit WLAN.

Wenn Sie eine NodeMCU zur Hand haben, kénnen Sie das Folgende gleich mitmachen, wenn
nicht, tiberfliegen Sie Sie diesen Abschnitt nur; ich werde spater das Vorgehen mit dem Raspberry
Pi zeigen.

« Besorgen Sie zunachst die Arduino IDE von der Originalquelle https://www.arduino.cc/en/
Main/Software.

« Installieren Sie dann die ESP8266 Tools in die Arduino IDE wie hier beschrieben: http://
blog.opendatalab.de/codeforbuga/2016/07/02/arduino-ide-mit-nodemcu-esp8266. (Falls Sie
die NodeMCU bisher noch nie an den Computer angeschlossen hatten, beachten Sie bitte,
dass Sie meist zunéchst den Treiber von SiliconLabs (https://www.silabs.com/products/
development-tools/software/usb-to-uart-bridge-vcp-drivers) installieren miissen, damit das
Board erkannt wird.)

« Besorgen Sie sich dann die ESPEasy Firmware von der Originalseite: https://www letscontrolit.
com/wiki/index.php/ESPEasy. Folgen Sie den Installationsanweisungen fiir Thr System.

Das Einbinden des NodeMCU mit ESPEasy ist ein zwei-Schritt-Prozess, dhnlich dem, den Sie
vielleicht von der Einrichtung der Osram Lightify Bridge in Erinnerung haben: Zunichst spannt
der Chip einen Accesspoint auf, mit dem man sich verbinden kann, um die Zugangsdaten zum
“Echten” Netzwerk einzugeben. Danach kann man ihn tiber dieses Netzwerk erreichen. Also:

« Nach erfolgreichem Hochladen der Firmware driicken Sie auf den “RST” Knopf des
NodeMCU und suchen mit IThrem Computer nach dem Wifi AccessPoint ESP_Easy_0 (oder
so dhnlich) und verbinden Sie sich mit dem Password configesp mit diesem WLAN. Sie
gelangen auf eine Seite, auf der Sie die Zugangsdaten fiir Ihr richtiges WLAN eintragen
konnen.

« Verbinden Sie Thren Computer wieder mit dem richtigen WLAN und rufen Sie mit dem
Browser die Adresse auf, die Thnen beim Einrichten gezeigt wurde. Wenn alles geklappt
hat, sollten Sie jetzt von der Steuerseite des ESPEasy begriisst werden. Ziehen Sie jetzt
vor dem Verkabeln bitte wieder den Stecker (Herunterfahren ist bei Mikrocontrollern nicht
notig), damit wir das Gerat nicht kaputt machen.

« Nehmen Sie das BMP280 Board und Verbinden Sie:

— VCC, SDO und CSB mit 3.3 Volt
— GND mit GND
— SCL mit D1

— SDA mit D2

Die fliegende Verkabelung konnte etwa so aussehen:

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
http://blog.opendatalab.de/codeforbuga/2016/07/02/arduino-ide-mit-nodemcu-esp8266
http://blog.opendatalab.de/codeforbuga/2016/07/02/arduino-ide-mit-nodemcu-esp8266
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.letscontrolit.com/wiki/index.php/ESPEasy
https://www.letscontrolit.com/wiki/index.php/ESPEasy

Kapitel 6: Bastelstunde 92

Abb. 6.8: BMP280 Nodemcu

Da die NodeMCU mebhr 3.3 Volt-Anschliisse hat, als der Raspberry, brauchen wir hier nichts zu
basteln, um VCC, SDO und CSB auf “HIGH” Level zu legen.

Stecken Sie dann die NodeMCU wieder an ein USB Ladegerat oder den USB Port des Computers
(direkte Verbindung ist jetzt nicht mehr zwingend nétig, da wir von nun an nur noch per WiFi
mit der NodeMCU kommunizieren). Gehen Sie mit dem Webbrowser wieder auf dieselbe Seite
wie vorhin und gehen Sie zum Tab “Hardware”. Vergewissern Sie sich, dass dort bei [2C Interface
dieselben Pins angegeben sind, wo wir SLC und SDA eingesteckt hatten.

Kapitel 6: Bastelstunde 93

ESP Easy Mega: ESP_Easy

Main Config Controllers Hardware Devices Motifications Tools

Hardwara 3
Settings :

Wifi Status LED

GPIO — LED: - None -

|~'1 L3

Inversed LED:
Note: Use 'GFIO-2 (D4)" with Tnversed’ checked for onboard LED

Resat Pin

GPIO « Switch: | - Mone - 3
MNote: Press about 10s for factory resat

12C Interface

GPIO «+ SDA: | GPIO-4 (D2) i

GPIO - SCL: | GPIO-5 (D1) d

5Pl Interface

Init SPI: i

Abb. 6.9: ESPEasy I12C Konfiguration

Auf der Seite “Devices” erstellen Sie ein neues Device und suchen den Eintrag fiir BMP280 in
der Liste:

Kapitel 6: Bastelstunde

94

ESP Easy Mega: ESP_Easy

Task Settings

Device:
Mame:

Enabled;
12C Addrass:

Altitude:

Data Acquisition

Send to Contraller
1]

IDX:
Send to Contraller

Environment - BMP280 a
| Barometer

| 077

|4

Nota: SDO Low=0x76, High=0x77
(440 | (m)

|10 | [sec

Geben Sie die korrekten Daten ein, wie hier gezeigt.

Wenn alles stimmt, werden Sie sofort von den ersten Messwerten belohnt:

ESP Easy Mega: ESP_Easy

Man Canlig Cormollam HMardwira Dorwicoa MNotfcniors Tocin

Task Enablsd

| L

LRI R]

Dardlcn 1] Pt Car (B0} Mo Waluas
(1] Ta ; i
GEK-g | Tomperatera: 2878
Envaonmenl - BMFIE0 Bansmbsd {00 & =

GFJ-5 | Prassuro:
o | 1020.58

Abb. 6.11: ESPEasy BMP280

Wenn das der Fall ist, wollen wir nun diese Messwerte an unseren ioBroker iibertragen.
Installieren Sie zunachst auf der Adapter-Seite http://homeview.local:8081/#adapters den “MQTT
Broker/Client”. MQTT hatte ich im Theorieteil schon kurz beschrieben. Als “Typ” bei der

http://homeview.local:8081/#adapters

Kapitel 6: Bastelstunde 95

Konfiguration geben Sie bitte ein “Server/Broker”, Port belassen Sie auf 1883. Den Rest lassen
Sie am besten auf den Vorgaben. Nach dem Speichern wird der MQTT Broker starten, aber
“gelb” bleiben. Das ist eine etwas ungliickliche Art, anzuzeigen, dass er noch keine Clients hat.
Lassen Sie sich davon also nicht irritieren. Gehen Sie stattdessen wieder auf die Kontroll-Seite des
ESPEasy, und wihlen Sie den Reiter “Controllers”. Klicken Sie bei 1 auf “Edit”, dort als Protokoll:
OpenHAB MQTT. Die restlichen Angaben wie hier gezeigt:

ESP Easy Mega: ESP_Easy

Main Config Controllers Hardware Dravices Motifications Taols

Controller
Settings

Pratocal: | OpenHAB MOTT ﬁ &
Locate Controller: | Use Hostname 3
Canirallar [

Hostname: | homeview.local

Controller Port: | 1888 - |

Cantralber Lisers:

Controller

Passwaord:

Controliar

Subscribe: | Fesysnamedel¥

Confroller Publish: | Pisysnameditsknamedtvalname’s

Controlier b topic: t barometer

LWT Connect

Message: | Barometer akliv

LWT Disconnect : ;

Message: ! Bgmr_n?_l:ar !n;_k!!v
Enablad:

Coso | Submi

Pawered by www.letscontrolit.com
Abb. 6.12: ESPEasy MQTT Konfiguration

Beenden Sie mit “Submit” und schauen Sie wieder auf die ioBroker Seite. Unter “Instanzen”
sollte mqtt.0 jetzt “griin” geworden sein oder bald werden. Wenn Sie unter “Objekte” den mqtt.0
Eintrag 6ffnen, sollten Sie jetzt ungefahr das hier sehen:

Kapitel 6: Bastelstunde 96

I'resous nism wahaia AT
CETRE TR iiws wELACE B
e [LEn

ETrineT P CER- Flsrcimanar it

Ty et -a e 1 L]
P T Lo I=

Abb. 6.13: ESPEasy MQTT States

Dieses mqtt Objekt in ioBroker kdnnen Sie genau so auslesen, wie alle anderen Objekte auch. Sie
konnen auch irgendeinen MQTT Client, zum Beispiel MQTT Dash auf IThrem Android Handy,
oder Mqtt Buddy auf dem iPad oder iPhone installieren, das entsprechende Topic abonnieren
und die Werte sehen. (Sofern das Smartphone im selben Netz wie der ioBroker eingebucht ist,
natiirlich).

Fazit: Wir haben mit minimalem Aufwand ein “intelligentes” Barometer an unsere Heimauto-
mation angeschlossen. Dies war so einfach, weil ESPEasy von Haus aus Unterstiitzung sowohl
fiir den BMP280, als auch fiir MQTT mitbringt. Kénnen wir dhnlich einfach die Daten auch nach
ioBroker bringen, wenn der Sensor direkt am Raspberry angeschlossen ist?

Ja, konnen wir. Allerdings ist ein wenig mehr “Handarbeit” nétig, daher wollte ich mit obigem
Beispiel zunéchst das Prinzip zeigen.

Anbindung Raspberry mit MQTT an ioBroker

Kehren wir also wieder zuriick zu unserem Johnny-five Programm im Raspberry Pi. Um die
Messwerte des BMP280 via MQTT zu veréffentlichen, brauchen wir eine MQTT Client library.
Davon gibt es (natiirlich) einige auf npmjs.org. Wir wahlen die MQTT client library von Matteo
Collina. Zunachst miissen wir die Library in unser Projekt einbinden. Gehen Sie ins Verzeichnis
des Johnny-Five Programs mit dem BMP280 Adapter und geben Sie ein*:

npm install --save mqtt

Die Verwendung im Programm selbst ist dann geradezu trivial:

“Wenn Sie wollen, kénnen Sie das Programm natiirlich auch auf Threm Entwicklungscomputer schreiben, und am Ende mit scp
bmp280. js pi@homeview.local:/home/pi/homeview/ auf den Raspi kopieren.

Kapitel 6: Bastelstunde 97

const five=require(' johnny-five')

const Raspi=require('raspi-io');

// MQTT einbinden und mit dem MQTT Broker auf dem Raspberry verbinden.
const mgtt=require('mgtt').connect('mgtt://homeview.local")
const MQTT_TOPIC="/Wetter/Wohnzimmer/"

const board=new five.Board({
io: new Raspi(),
repl: false

1))

board.on('ready', ()=>{
const bmp280=new five.Multi({
controller: 'BME280',

b

bmp280.on('data’', ()=>{
let temperature=bmp280@.thermometer.celsius.toFixed(1);
let pressure=bmp280@.barometer.pressure.toFixed(1);

// Statt Loggen auf die Konsole schicken wir die Resultate nun zum MQTT Broke\

mgtt.publish(MQTT_TOPIC+"Temperatur", temperature)
mgtt.publish(MQTT_TOPIC+"Luftdruck", pressure*10)
)
b

Da MQTT keine bestimmte Form der Nachrichten vorschreibt, hétten wir auch Temperatur und
Druck in eine einzelne Nachricht packen und versenden konnen. Da wir die REPL nicht mehr
brauchen, initialisieren wir das Board mit repl: false.

Kaum zu glauben, aber das ist (fast) alles! Sie konnen das Programm im “homeview” Verzeichnis
auf dem Raspberry mit sudo node bmp280.js laufen lassen, und werden die Messwerte im
ioBroker oder irgendeinem anderen MQTT Client sehen konnen.

Okay, aber wie bringen wir unseren Raspi nun dazu, das Barometer zusammen mit dem
Homeview-Server laufen zu lassen? Einen separaten node-Prozess fiir dieses Programmchen zu
starten, wire ja overkill.

Glucklicherweise ist das sehr einfach:

Editieren Sie app.js (im homeview-Verzeichnis auf dem Raspi) mit nano app.js. Geben Sie
ganz am Anfang ein: require('./bmp280') und verlassen Sie den Editor wieder mit CTRL-
O,EINGABETASTE,CTRL-X.

Starten Sie dann den Server neu mit sudo service homeview restart.

Jetzt haben Sie das Barometer so eingebunden, dass es gleichzeitig mit dem Homeview-Server
startet. In der ioBroker-Admin-Oberflache (http://homeview.local:8081) finden Sie im Reiter
“Objekte” nun eintrage fir “mqtt.0. WetterWohnzimmer.Temperatur” und “mqtt.0. Wetter Wohnzimmer.Luftdrucl
Falls Sie nicht auf Meereshohe leben, werden Sie allerdings hochstwahrscheinlich feststellen,

Kapitel 6: Bastelstunde 98

dass der Luftdruck nicht stimmt. Das liegt nicht daran. dass der BMP280 kaputt wére, sondern
daran, dass er den tatsachlichen Luftdruck liefert. Wir sind vom Wetterbericht aber gewohnt,
den normalisierten, also auf Meeresh6he umgerechneten, Luftdruck angezeigt zu bekommen.

Man kann den normalisierten Luftdruck vereinfacht so errechnen:
korrigiert = gemessen / ((1-hoehe_ueber_meer)/44330)"5.255)

Oder, in JavaScript formuliert:

korrigiert = gemessen / Math.pow(1 - hoehe_ueber_meer /44330, 5.255)

Falls Sie noch genauere Werte benétigen, konnen Sie auf die Dokumentation des Herstellers zum
Kalibrieren und Auslesen des Sensors zuriickgreifen. Bosch stellt auch einen einen Treiber® zur
Verfiigung, der alle Moglichkeiten des Chips zeigt und nutzt.

Eine einfacher verstdndliche Erlduterung sehen Sie hier: http://www.netzmafia.de/skripten/
hardware/RasPi/Projekt-BMP280/index.html

Die endgiiltige Version des Programms sieht dann so aus:
const five=require(' johnny-five')

const Raspi=require('raspi-io');
const altitude = 440; // unsere Hohe in MiM.

// MQTT einbinden und mit dem MQTT Broker auf dem Raspberry verbinden.
const mgtt=require('mgtt').connect('mgtt://localhost’,{

‘clientId': 'wohnzimmer-barometer',
'will': {
"topic': 'info/connection/barometer’,

'payload': 'getrennt'

}
P

mgtt.on("connect™, ()=>{

mgtt.publish("info/connection/barometer", "verbunden");

});

const MQTT_TOPIC="/Wetter/Wohnzimmer/"

const board=new five.Board({
io: new Raspi(),
repl: false

P

*https://github.com/BoschSensortec/BMP280_driver

https://github.com/BoschSensortec/BMP280_driver
http://www.netzmafia.de/skripten/hardware/RasPi/Projekt-BMP280/index.html
http://www.netzmafia.de/skripten/hardware/RasPi/Projekt-BMP280/index.html
https://github.com/BoschSensortec/BMP280_driver

Kapitel 6: Bastelstunde 99

// Korrektur auf aktuelle Hbhe liber Meeresspiegel, in mbar
const corr=(raw)=>{
const corrected=raw/Math.pow((1-altitude/44330),5.255)
return (10*corrected).toFixed(1)

board.on('ready"', ()=>{
const bmp280=new five.Multi({
controller: 'BME280',
freq: 30000
b
bmp280.on('data', ()=>{
let temperature=bmp280@.thermometer.celsius.toFixed(1);
let pressure=corr(bmp280.barometer.pressure);
mgtt.publish(MQTT_TOPIC+"Temperatur", temperature)
matt.publish(MQTT_TOPIC+"Luftdruck", pressure)

P
)

Nicht viel Neues: Bei der Initialisierung haben wir mit dem Attribut “will” ein “Testament”
iibergeben, also eine letzte Nachricht, die der Broker bei einem Verbindungsabbruch noch
tibermitteln soll. In corr () rechnen wir lokale Messwerte in kPa in normalisierte Werte in mbar
um. Wir fragen alle 30 Sekunden die Werte ab und publizieren diese via MQTT.

Jetzt haben wir alles zusammen, um auch den Luftdruck in unserer WebApp anzuzeigen. Die
notigen Ergédnzungen sollten Sie nun nicht mehr vor unlésbare Probleme stellen:

// In aurelia_project/environments/dev.ts und aurelia_project/environments/prod.t\
s:

V7
devices:{

barometer: "mqtt.0.Wetter.Wohnzimmer.Luftdruck",

aussen_temp: "hm-rpc.0.0EQV088064 .1 . TEMPERATURE",

Y/

// in config.ts:
VI
barometer_cfg:{
devices: env.devices.barometer,
size: gauge_size,
min:970,
max:1045,
message: "luftdruck",
bands: [{"from":970,"to":995,color: "#42d4f4"},
{from:995,t0:1020,color: "green"},
{from:1020,t0:1045,color: "#42d4f4"}]

Kapitel 6: Bastelstunde 100

}
YZ2ns

// in app.ts:

Y/

private gauges = [configs.wohnzimmertemp_cfg, configs.aussentemp_cfg,
configs.bad_oben_cfg,configs.dusche_cfg, configs.dachstock_cfg,
configs.barometer_cfg,configs.powermeter_cfg]

s
Und in app.html:
R

<div class="gauge">

<eircular-gauge cfg.bind="conf.barometer_cfg"></circular-gauge>
</div>
<l-- 00 ==

Danach sollte es ungefihr so aussehen:

(8} MomeViow £ (2]
“ = | (i locathasta000 W
Aussen Wohnzimmer

Abb. 6.14: Barometer Anzeige

Kapitel 6: Bastelstunde 101

Motor

Natiirlich kann man nicht nur Sensoren auslesen, sondern wir konnen mit IoT Geraten auch
etwas fun. Zur Demonstration hier eine Schrittmotorsteuerung. Wir werden etwas Ahnliches
spater zur Regulierung des Boilers bendtigen. Hier aber erst mal nur das Grundprinzip.

Zunichst der fliegend verdrahtete Versuchsaufbau:

Abb. 6.15: Schrittmotor fliegend verdrahtet

Fiir erste Experimente verwende ich immer den Arduino, weil er schnell und einfach aufzusetzen
ist, und weil er Fehler eher verzeiht, als Raspberry oder ESP8266. Wenn der Aufbau auf dem
Arduino funktioniert, kann man ihn leicht auf eines der anderen Geréte portieren.

Oben rechts im Bild sehen Sie zwei Drahte aus einer Liisterklemme kommen, das ist die externe
Stromversorgung fiir den Motor. Der Arduino (und erst recht der Raspberry) ist zu schwach,
um den Motor direkt anzutreiben. Auf dem Breadboard sitzt ein ULN2083 IC, welches folgende
Anchlussbelegung hat:

Kapitel 6: Bastelstunde 102

1B
2B
3B
4B
5B
6B
7B
8B
GND

18 | 1C
17 | 2C
16 | 3C
15 | 4C
ULN2803A [4!5C
13 | 6C
12 | 7C
11 | 8C
10 | COM

W] (0] || || O] | & W] |N] |=

Abb. 6.16: ULN 2803 Verstirker IC

Wie es innerlich aussieht, braucht uns nicht zu interessieren (es ist ein 8-fach Darlington
Array, falls Sie es doch wissen wollen). Wichtiger ist, was es tut: Es macht einen schwachen
Eingangsstrom zu einem viel stiarkeren Ausgangsstrom. Und das an 8 unabhéngigen Leitungen.
Die Beschaltung ist sehr einfach: Der Eingang 1B wird auf den Ausgang 1C umgesetzt und so
weiter. bei GND steckt man den gemeinsamen Minuspol ein (und der muss auch zum Arduino
geleitet werden), bei COM kommt der Pluspol fiir die Leistungsseite, das kann je nach Motor eine
Spannung von 3 bis 20 Volt sein und sollte die vom Motor bendtigte Leistung liefern konnen, also
mindestens 500mA. Man kann dieses IC durchaus nicht nur fiir Motorsteuerungen verwenden,
sondern immer dann, wenn man einen Stromverstarker braucht. Allerdings muss man beachten,
dass die Darlington Schaltung bei positivem Eingangssignal eine Emitter-Schaltung 6ffnet. Oder
andersherum ausgedriickt: Wenn man “1” an den Eingang anlegt, dann kann man den Ausgang
als Minuspol des geschalteten Stroms benutzen, nicht als Pluspol. Das passt hier gliicklicherweise
ganz gut, wie Sie gleich sehen werden.

Als Motor verwenden wir einen der meist gebauten (und darum billigen) Schrittmotoren
tiberhaupt, den 28BYJ-48. Den gibt es in 5 Volt und 12 Volt Ausfithrungen. Ich habe hier 5
Volt genommen. Dieser Motor ist in einer Vielzahl von Geréten verbaut. Vielleicht miissen Sie
ihn gar nicht kaufen, sondern konnen ihn aus einem alten Drucker, Scanner, CD-Laufwerk,
Klimaanlage, Liifter etc. ausbauen. Wenn Sie ihn kaufen, wird er auch kein allzu tiefes Loch
in die Haushaltskasse reiflen, mit 5-10 Euro sind Sie dabei. Das Verstiarker IC wird noch rund

Kapitel 6: Bastelstunde 103

20-40 Cent zusatzlich kosten.

Der 28BY]J-48 ist ein sogenannter unipolarer Schrittmotor. Das bedeutet, dass der Strom immer
in dieselbe Richtung flieft. Die Drehrichtung legt man nicht durch Umpolen, sondern durch
geeignete Reihenfolge der Aktivierung der Spulen fest. Daher braucht man auch keine spezielle
Motorsteuerung (H-Bridge), sondern ein simples Universal-Verstarker-IC gentgt.

Ein Schrittmotor unterscheidet sich von einen “gewdhnlichen” Elektromotor dadurch, dass er
nicht einfach ein- oder ausgeschaltet wird, sondern dass man ihn schrittweise (sic!) um einen
bestimmten Betrag drehen kann. Das erreicht man, indem man die Spulen in geeigneter Weise
und Reihenfolge mit Strom versorgt. Der 28BY]-48 hat 5 Dréhte. Einer davon (idR der Rote)
ist der gemeinsame Pluspol, der ins Zentrum jeder der beiden Spulen geht, die anderen 4 sind
Minuspole fiir jedes Ende der Spulen. Sie sehen, das passt wunderbar zu unserem Darlington-IC,
das diese Minuspole durchschalten oder sperren kann.

Bewaffnet mit diesem Wissen konnen wir den Motor nun verschalten: Der rote Draht kommt
zum Pluspol der externen Stromversorgung, die auch zu Pin 10 des IC geht.

Den orangen Draht verbinden wir mit Pin 18 des IC, und dessen Steuerleitung auf Pin 1 des IC
geht zu GPIO 3 des Arduino. In analoger Weise verbinden wir den gelben Draht mit GPIO 4,
den pinken mit GPIO 5 und den blauen mit GPIO 5. Zu guter Letzt verbinden wir noch einen
der GND Pins des Arduino mit Pin 9 des IC, den wir auch mit dem Minuspol der externen
Stromversorgung verbinden. Fertig.

Nun zum Programm fiir den Arduino. Wihlen Sie in der Arduino IDE den richtigen Chip (bei
mir Arduino/Genuino Uno) und den richtigen Port aus, und geben Sie das Programm ein:

J Rk
* Steuerung eines 28BYJ-48 Stepper Motors mit einem 2803APG Darlington Array.
* Die rote Leitung ist gemeinsamer Pluspol und kommt an (externe) 5V Leitung.
* Die anderen Pins sind nach der Farbe der Anschlliisse des Motors benannt.

*/

#define orange 2

#define yellow 3

#define pink 4

#define blue 5

// Wieviele Schritte flr eine ganze Umdrehung (Nicht bei allen Modellen gleich)
const int steps360=512;

// Dauer der Pause zwischen zwel Schritten in Mikrosekunden. Nicht zu klein wdhle\
n.

const int pause = 10000;

// Reihenfolge der Spulen. Wir wdhlen hier das 8-Schritt Verfahren.
String steps[] = {"0111", "o011", "1011", "1001", "1101", "1100", "1110", "0110"}\

14

void setup() {
pinMode(orange, OUTPUT);

Kapitel 6: Bastelstunde 104

pinMode(yellow, OUTPUT);
pinMode(pink, OUTPUT);
pinMode(blue, OUTPUT);

Vess
* Drehung im Gegenuhrzeigersinn (Counterclockwise) um "count" Schritte.
*/

void ccw(int count) {

for (int i = 0; i < count; i++) {
for (int j = 0; j < 8; j++) {
setPins(steps[j]);
delayMicroseconds(pause);

/**
* Drehung im Uhrzeigersinn (clockwise) um "count" Schritte.
*/
void cw(int count) {
for (int i = 0; i < count; i++) {
for (int j =7, j >=0; j--) {
setPins(steps[j]);
delayMicroseconds(pause);

}
}
}
void setPins(String step) {
digitalWrite(orange, step[@] == '1' ? HIGH : LOW);
digitalWrite(yellow, step[1] == '1' ? HIGH : LOW);
digitalWrite(pink, step[2] == '1' ? HIGH : LOW);
digitalWrite(blue, step[3] == '1' ? HIGH : LOW);
}
void loop() {
cw(steps360) ;
delay(100);
cew(steps360) ;
delay(1000);

Das Programm sollte selbsterklarend sein. Die Pause (delayMicroseconds()) dient dazu, der
Achse des Motors Zeit zu geben, in die eingestellte Position zu kommen. Wenn diese Zeit zu klein

Kapitel 6: Bastelstunde 105

gewdahlt ist, wird der Motor einzelne Schritte “verlieren” oder sich gar nicht mehr bewegen. Je
weniger Strom die Spannungsquelle liefert, desto langer muss diese Zeit sein. Fiir ein Standard-
USB Netzteil sind Werte um die 1000 Mikrosekunden okay. Es spricht aber natiirlich nichts
dagegen, den Motor z.B. mit 20000 langsamer und dafiir sicherer zu bewegen.

Dieses Programm macht firr jeden Schritt 8 Teilschritte. Das Array steps[] gibt fiir jeden
Teilschritt an, durch welche Spulen Strom fliesst (“1”), und welche nicht (“0”). Etwas weiter
hinten werde ich noch ein Verfahren mit 4 Schritten vorstellen.

Es scheint verschiedene Getriebevarianten bei diesem Motor zu geben; jedenfalls ist die Zahl der
Schritte fiir eine Umdrehung nicht bei jedem gleich. Bei meinem sind es 512(*8) Schritte, was in
der Konstanten steps360 festgehalten wird.

Wenn Sie dieses Programm hochladen und die Stromversorgung anschliessen, sollte der Motor
immer eine Umdrehung im Uhrzeigersinn und dann wieder eine Umdrehung im Gegenuhrzei-
gersinn machen (von der Achse aus gesehen).

Wenn das klappt, konnen Sie als Fingeriibung den Motor an die NodeMCU anschliessen.

Wir machen jetzt aber weiter mit einer mechanischen Steuerung fiir den Boiler:

Kapitel 6: Bastelstunde 106

Elektroboiler mechanisch steuern

Es gibt eine eiserne Grundregel fiir Hobby-Maker: Finger weg vom Stromnetz. Wenn wir am
Raspberry ein Kabel falsch stecken, kostet es schlimmstenfalls den Raspberry. Wenn wir an der
Hauselektrik etwas falsch machen, gibt es schlimmstenfalls ein Feuer oder einen lebensgefihr-
lichen Stromschlag. Arbeiten an Spannungen von mehr als 50 Volt bei eine Stirke von mehr als
500mA sind dem Elektriker vorbehalten.

Aber wir wollen trotzdem den Elektroboiler steuern. Warmwasser ist ein hervorragender und
vergleichsweise billiger Energiespeicher. Uberschlagig gilt folgende Rechnung: Um ein Gramm
Wasser um ein Grad aufzuheizen, braucht man 1 Kalorie. Oder andersherum ausgedriickt:
Warmwasser enthalt pro Liter und Grad eine Kilokalorie an Energie. Wenn wir unseren 400-
Liter-Boiler mit Sonnenstrom von 50 auf 70 Grad aufheizen, dann stecken wir 8000 Kilokalorien
hinein, das sind fast 10 kWh. Diese 10 kWh sparen wir an Netzstrom, wenn wir Heisswasser
entnehmen, bis der Boiler wieder abgekiihlt ist. Und diese gespeicherte Energie steht auch nachts
zur Verfiigung, wenn die Sonne nicht scheint, Ganz ohne teuren Akku.

Wir wollen also den Boiler je nach Sonnenkraft unterschiedlich weit aufheizen. In einer realen
Anwendung sollten Sie aber darauf achten, dass er mindestens einmal pro Woche mindestens
65°C erreicht, um Legionellen abzutéten, die sonst sehr ernste Erkrankungen auslosen konnten!
Und natiirlich sollten Sie ihn nicht zu nah an 100° bringen, um keinen Warmeverlust oder gar Ge-
fahr durch Uberdruck zu provozieren. Last but not least gilt auch: Je hoher die Wassertemperatur,
desto aggressiver die Korrosion. Am besten sehen Sie zu, dass die Temperatur sich zwischen 45
und 75°C bewegt. Natiirlich kann man eine solche Steuerung automatisieren. Wir haben langst
das Riistzeug, um das zu programmieren.

Schwieriger ist die Hardware-Seite: Wenn wir die Stromanschliisse nicht berithren diirfen, wie
konnen wir den Boiler dann regeln?

« Wir konnen einen modernen Boiler kaufen, der von Haus aus Smarthome-fihig ist. Ich
finde es aber schade, einen funktionierenden Boiler zu entsorgen. Zumal, seien wir ehrlich,
die Investition sich erst nach mehreren Jahren rentieren wiirde. Strom ist einfach noch zu
billig.

« Wir konnen einen Elektriker beauftragen, uns ein fernsteuerbares Relais in die Stromzulei-
tung zum Boiler einzubauen. Hier gilt Ahnliches: Ein Elektriker musste herkommen und
die Installation machen. Das wiirde leicht mehrere hundert Euro kosten.

« Wir konnen den Boiler pseudo-manuell schalten. Also quasi eine Hand simulieren. Spa-
testens seit der Useless box® ist das Bedienen von Schaltern durch Robot-Bauteile ins
allgemeine Bewusstsein gelangt. Und da dies ein Buch tibers Selbermachen ist, wahlen wir
nattrlich diesen Weg.

Der Boiler hat einen Knopf zum Temperaturregeln:

°https://www.youtube.com/watch?v=agAUmgE3WyM

https://www.youtube.com/watch?v=aqAUmgE3WyM
https://www.youtube.com/watch?v=aqAUmgE3WyM

Kapitel 6: Bastelstunde 107

Abb.6.17: Originalknopf

Wenn man den abzieht, kommt die Achse eines Potentiometers zum Vorschein:

Kapitel 6: Bastelstunde 108

Abb. 6.18: Potentiometer-Achse

Dort konnen wir eine mit dem 3D-Drucker auf Mass angefertigte Halterung anbringen:

Kapitel 6: Bastelstunde 109

Abb. 6.19: Motor-Halterung

Und an dieser wiederum unseren Schrittmotor aus dem letzten Kapitel montieren.

Kapitel 6: Bastelstunde 110

Abb. 6.20: Motor montiert

Auf diese Weise berithren wir keine stromfithrenden Teile und sind stets auf der sicheren Seite.

Der Rest ist Software. Die eigentliche Steuerung haben wir ja schon im vorherigen Kapitel
abgehandelt. Die Frage, auf welchem Gerit die Steuersoftware laufen soll, ist eigentlich nur
eine Frage der ortlichen Begebenheiten und der personlichen Préaferenzen. Bei uns sollte die
Anbindung per WLAN erfolgen, daher fiel der Arduino weg. Der ESP8266 hatte vom Keller aus
Probleme, sich mit dem WLAN zu verbinden, daher entschied ich mich fiir einen Pi Zero W als
Boilersteuerung. Damit kehren wir zuriick zu Johnny-Five.

J/RRAK AR A A A A A A A A A KA A A A A A A A AN AN AN A A A A A K

* Johnny Five driver for unipolar stepper motor (e.g. 28BYJ-48)

A A AAAHAAAAAFAAFAAFAAFAAFAAFAAFAAFAAAAAAAAAAAAAAAAAAAAAAAFAAAAAIFAAIKK |
const five = require(' johnny-five')

// Dismal nur 4 Schritte

const seq = ["0011", "0110", "1100", "1001"]

J R

* Constructor arguments: 4 Pins for motor coils, delay in milliseconds to wait a\

Kapitel 6: Bastelstunde

fter

* each step (allow the motor to reach new position).
*/

class Stepper ({

constructor(orange, yellow, pink, blue, motor_power, delay) {
this.in1 = new five.Pin(orange, { mode: five.Pin.OUTPUT });
this.in2 = new five.Pin(yellow, { mode: five.Pin.OQUTPUT });
this.in3 = new five.Pin(pink, { mode: five.Pin.OUTPUT });
this.in4 = new five.Pin(blue, { mode: five.Pin.OUTPUT });

this.speed = delay;
this.coils=[this.in1,this.in2,this.in3,this.in4]

set_step(step, dir) {
let lcoils=dir ? this.coils : this.coils.reverse()
for(let i=0;i<step.length;i++){
lcoils[i] .write(parselnt(step[i]))

/**
* rotate clockwise
*/
async cw(steps) {
for (let i = 0; i < steps; i++) {
for (let j = seqg.length - 1; j >=0; j--) {
let step = seq[j]
this.set_step(step, false);
await this.sleep(this.speed);

JHk
* rotate counterclockwise
*/
async ccw(steps) {
for (let i = 0; i < steps; i++) {
for (let j = 0; j < seq.length; j++) {
let step = seqlj]
this.set_step(step, true);
await this.sleep(this.speed);

111

Kapitel 6: Bastelstunde

sleep(ms) {
return new Promise(resolve => {
setTimeout(resolve, ms)

1))

exports.Stepper = Stepper

112

Man sieht sofort, dass dieses Node-Modul sehr &hnlich ist, wie das Arduino-Programm im
vorherigen Kapitel. Nur habe ich diesmal nur vier Teilschritte pro Step definiert, die dafiir etwas

weiter sind.

Es wird recht simpel in ein Node-Programm eingebunden:

const Raspi = require('raspi-io')
const five = require('johnny-five")
const Stepper=require('./stepper').Stepper
const board = five.Board({
io: new Raspi()

}
);
const orange = "GPIO26"
const yellow = "GPIO19"
const pink = "GPIO13"
const blue = "GPIOG"
let speed = 6;

let stepper;

board.on('ready', async () => {

stepper = new Stepper(orange, yellow, pink, blue, speed)

await stepper. forward(50);
await stepper.backward(50);

board.repl.inject({
stp:stepper

)

function setSpeed(sp) {

stepper.speed = sp;

1))

Kapitel 6: Bastelstunde 113

Die Pin-Nummern entsprechen dem Setup in meiner experimentellen Pi-Zero Verbidung:

Kapitel 6: Bastelstunde

114

rrrrrrrrrrr
]

® & = & mF

- e hiEk o

R N = EEE

-, - m - = 0

® e el

= | s eeda 1

- - == oo

L] * & m & =¥ -
™ - e w o | e
- s mw T R
L] & B = m @ -
i bpraqgone

Abb. 6.21: Frei fliegende Raspi-Motor Verdrahtung

Kapitel 6: Bastelstunde 115

Nach dem Start mit sudo node index.jswird der Motor zuerst 50 Schritte im Uhrzeigersinn,
dann 50 Schritte im Gegenuhrzeigersinn drehen, und dann auf Befehle warten.

Die Bedeutung des board.repl.inject Ausdrucks ist, den Stepper fiir interaktive Bedienung
in der REPL freizugeben. Sie konnen nach dem Start des Programms in der Kommandozeile
zum Beispiel eingeben: stp.cw(100), um den Motor “manuell” 100 Schritte im Uhrzeigersinn
drehen zu lassen. Wenn Sie das nicht mehr benétigen, konnen Sie den Programmteil einfach
auskommentieren und das Board mitrepl: false initialiseren, wie wir es schon heim Barometer
gemacht haben.

Doch wie geben wir dem Raspi Kommandos iibers Netz? Wir werden ihn ja nicht immer
an der Konsole haben. Da Node]S ohnehin schon lduft, konnten wir einen REST-Service mit
Express aufbauen, um Kommandos entgegenzunehmen und Riickmeldungen zu liefern. Ich habe
mich aber fiir eine einfachere und flexiblere Lésung entschieden: Wir werden den Raspi tiber
MQTT steuern, da wir ohnehin schon eine MQTT Infrastruktur fiirs Barometer aufgebaut haben.
Wie wir dort gesehen haben, ist MQTT sehr einfach einzurichten, und MQTT wird unseren
schwachen Pi Zero auch weniger ans Limit bringen, als ein REST Server.

Spétestens an diesem Punkt miissen wir uns allerdings noch einmal ernsthafte Gedanken iiber
die Absicherung unserer Hausautomation machen. Wenn jemand unerlaubt ein paar Lichter ein-
und ausschaltet, ist das eine Sache. Wenn jemand mit dem Boiler herumspielt, ist das schon etwas
ganz anderes. Das Heimnetz soll nicht von aussen erreichbar sein; eine Firewall ist Pflicht. Aber
auch Géste oder Freunde des Nachwuchses, die ganz legal ins Gaste-WLAN diirfen, sollen nicht
an der Boilersteuerung herumspielen konnen. Der Zugang zum MQTT Broker muss somit mit
einem Passwort gesichert sein, und der Datenverkehr muss verschliisselt erfolgen. Fiir beides hat
der MQTT-Adapter des ioBroker gliicklicherweise schon Vorkehrungen; sie miissen es auf der
Einstellungsseite der MQTT Instanz nur noch aktivieren.

Folgende MQTT Topics sollen unterstiitzt werden:
« Boiler/setTemp - Boiler auf x Grad einstellen

« Boiler/calibrate - Motor Kalibrieren
« Boiler/temp -Temperatur auslesen

Komponente zur Temperaturregelung

Als erstes implementieren wir eine Komponente, mit der wir manuell von unserer Web-
Oberflache aus die Temperatur einstellen kénnen.

_Bollertemperatur

."'H._-"

60 [

Abb. 6.22: Boilersteuerungs-Instrument

Das Programm dazu wird Thnen inzwischen trivial vorkommen; dank der schon geleisteten
Vorarbeiten sind nur recht wenige Codezeilen nétig:

Kapitel 6: Bastelstunde 116

components/setpoint.ts

import {sliderHorizontal} from 'd3-simple-slider’
import { bindable, noView, autoinject } from 'aurelia-framework'
import {Helper, Component, eaMessage} from './helper'

@autoinject

@noView

export class Setpoint implements Component{
@bindable cfg
body: any;
component_name="Setpoint";

private slider

constructor(private hlp:Helper, public element:Element){}

attached(){
this.hlp.initialize(this, {
minValue: 0O,
maxValue: 100,

step: 1,
width: 250,
height: 50,

displayValue: true,
message: "setpoint"
)
}
configure() {}
render() {
let dim=this.hlp.defaultFrame(this)
let debounced=Util.debounce((val)=>{ /7 (1)
this.hlp.ea.publish(this.cfg.message,val)
},500, this)

this.slider=sliderHorizontal() /7 (2)
.min(this.cfg.minValue)
.max(this.cfg.maxValue)
.step(this.cfg.step)
.width(dim.w-2*Helper .BORDER-2*this.cfg.offset)
.displayValue(this.cfg.displayValue)
.on('onchange',debounced) // (3)

this.body.append("g") /7 (4)
.attr("width",dim.w)
.attr("height",this.cfg.height)
.attr("transform", “translate(${dim.x+Helper .BORDER+this.cfg.offset},${dim.y\
+Helper .BORDER+this.cfg.offset})”)

Kapitel 6: Bastelstunde 117

.call(this.slider)

update(value:eaMessage){
this.slider.value(value.data)

Wir verwenden eine Fertigkomponente (d3-simple-slider von John Walley), die wir in unsere
Standard-Komponentenhiille einzubauen. Bei (2) konfigurieren wir den Slider, bei (4) wird
er eingebunden. Neu ist vielleicht die Funktion bei (1). Hier lassen wir uns von der Util -
Komponente eine Funktion erstellen, die eine “entprellte” Version unserer gewohnten ea.publish-
Routine darstellt. Diese Funktion tibergeben wir bei (3) dem onChange-Event des Sliders. Die
Bedeutung dieses etwas umstindlich erscheinenden Vorgehens ist: Wenn der Anwender am
Schieber zieht, dann liefert dieser fiir jede kleine Anderung einen “onchange” Event. Wir wiirden
also in kiirzester Zeit von Hunderten von Events iiberschiittet. Unser “debounce” fiihrt dazu,
dass this.hlp.ea.publish erst dann stattfindet, wenn fiir mindestens 500 Millisekunden kein neuer
Event eintraf. Dann wird der letzte Wert (und nur dieser) weitergeleitet.

Der dazugehorige Eintrag in config.ts ist:

config.ts

"boiler_cfg":{
"minValue": 30,
"maxValue": 80,
"step": 5,
"width": gauge_size,
"height": switch_size ,
"caption": "Boilertemperatur",
"offset": 5

und in app.html:

app.html

<require from="components/setpoint"></require>
<l-- .00 ==
<div class="gauge">

<setpoint cfg.bind="conf.boiler_cfg"></setpoint>
</div>

Das geniigt, um den Slider anzuzeigen und bedienbar zu machen. Allerdings tut er noch nichts.
Wie iiblich haben wir die Aurelia-Komponente so allgemein formuliert, dass sie keine spezifische
Aufgabe iibernehmen kann. Dadurch konnen wir diesen Slider bei Befarf auch fiir andere

Kapitel 6: Bastelstunde 118

Aufgaben ensetzen. Den Boiler-spezifischen Code konnten wir wie bei den Thermometern und
den Schaltern in app.ts unterbringen, allerdings ist diese Klasse mittlerweile recht grof3 und damit
uniibersichtlich geworden. Jede Klasse sollte eine einzige Aufgabe erledigen, und diese Regel
haben wir hier verletzt - was in der Experimentierphase verzeihlich ist. Aber die endgiiltige
Anwendung sollte robuster und leichter wartbar sein. Es kann gut sein, dass man nach einem Jahr
etwas verandern muss, und glauben Sie mir: Nach einem Jahr werden Sie sich in Spaghetticode
nicht mehr zurechtfinden.

Zeit fur ein Refactoring.

Sie erhalten diesen Stand des Projekts mit

git checkout -f origin/teil_20
git clean -f

npm install

Unser Projekt geht in eine neue Versionsstufe, das sollten wir auch an der Versionsnummer
deutlich machen. Geben Sie ein:

npm version minor

Damit setzt npm die Versionsnummer von 0.1.0 auf 0.2.0. npm version major wiirde die erste
Ziffer hochzahlen und npm version rev die letzte.

Beim Aufbau des bisherigen Codes haben wir ja gesehen, dass es drei verschiedene Typen von
Instrumenten gibt:

« “Gauges”, die Werte anzeigen konnen
« “Switches”, die Zustinde anzeigen und modifizieren konnen
« “Charts”, die Charts anzeigen kénnen.

Der Plan ist nun, die Steuerung jedes Typs in eine eigene Klasse auszulagern und in app.js nur
noch diese Klassen einzubinden.

Erstellen Sie also ein neues Unterverzeichnis devices in src.

Dort beginnen wir mit der Steuerklasse fiir die Gauges:

devices/gauges.ts

import { autoinject } from "aurelia-framework";

n

import { FetchService } from "../services/fetchservice";

import { EventAggregator } from "aurelia-event-aggregator";

export type ScaleDef = {
from: number,
to: number,

color: string

Kapitel 6: Bastelstunde 119

export interface GaugeDef {

devices: Array<string>
size: number

upper: [ScaleDef]

lower: [ScaleDef]
message: [string]
caption?: string
visible?: boolean

interval?: number

@autoinject
export class Gauges ({
private gauges: Array<GaugeDef> = []

constructor(private fetcher: FetchService, private ea: EventAggregator) { }

run(gaugelist: Array<any>) {
this.gauges = gaugelist
this.gauges. forEach(gauge => {
this.getValue(gauge)
const interval = Math.round((gauge.interval || 1000) + 5000 * Math.random())
setInterval(() => { this.getValue(gauge) }, interval)
)

getValue(gauge: GaugeDef) {
gauge.devices. forEach(async (device, index) => {
try {
const result = await this.fetcher.getlobrokerValue(device)

this.ea.publish(gauge.message[index], parseFloat(result))
} catch (err) {

console.log("An error occured: " + err)

this.ea.publish(gauge.message[index], "?"

1))

Neu ist hier zuerst mal die Definition eines “types” namens ScaleDef. Types sind gewissermassen
das, was TypeScript ausmacht: Definierbare Typen. Hier sagen wir, dass ein Objekt, dass sich
“ScaleDef” nennen will genau die Variablen from, to und color haben muss, wobei from und to
Zahlen sein miissen, und color eine Zeichenkette. Der Compiler wird sich beschweren, wenn wir

© 00 N O O b W N =

N
[y

Kapitel 6: Bastelstunde 120

irgendwo etwas tibergeben, wo ein ScaleDef erwartet wird, das diese Kriterien nicht erfiillt.

Gleich darunter folgt ein “interface”, das ist eine weitere Moglichkeit, definierbare Typen
darzustellen, die Sie vielleicht schon aus anderen Programmiersprachen kennen. Interfaces sind
ein wenig machtiger, als types, funktionieren aber ganz dhnlich. Sie sehen, dass das Interface
GaugeDef unter anderem auch auf unsere vorhin definierte ScaleDef zuriickgreift. Ein ? am
Ende des Attributnamens erklart dieses Attribut fiir optional.

Diese beiden Definitionen sind streng genommen nicht notwendig. Sie werden bei Ubersetzen in
JavaScript sowieso wegtranspiliert. Aber sie bewahren uns vor einer ganzen Klasse von Program-
mierfehlern: Vergessene Attribute oder Tippfehler in Attributnamen. TypeScript kann bereits
beim Transpilieren testen, ob die Typen korrekt sind, so dass nicht erst beim Programmlauf eine
Exception geworfen wird, wie das bei reinem JavaScript bei solchen Fehlern der Fall wére.

Dann folgt die eigentliche Klassendefinition, die wohl nichts Uberraschendes enthilt: Es ge-
schieht ungefahr dasselbe, wie in der entsprechenden Funktion in app.ts. Nur eines habe ich noch
gedndert: Man kann das Intervall zwischen zwei Updates optional in der Konfiguration jedes
Instruments separat einstellen. Es ist ja nicht bei allen Anzeigen gleich sinnvoll, jede Sekunde
einen neuen Wert abzulesen. Es wird also fiir jedes Instrument ein eigener setlnterval() Aufruf
abgesetzt. Mit Random() sorgen wir dafiir, dass die Aufrufe ein wenig tiber die Zeit verteilt
werden, auch wenn das Interval auf denselben Wert gesetzt ist.

Vielleicht wundern Sie sich tiber den Aufruf von this.getValue(gauge) in run(), kurz bevor
this.getValue() sowieso im setInterval aufgerufen wird. Das mache ich deswegen weil setValue
sonst erst nach erstem Ablauf des Inervalls aufgerufen wiirde. So lange wiirde man nur einen
Null-Wert sehen. Auf diese Weise erhalt die Anzeige gleich von Anfang an einen korrekten Wert.

Damit verwandt die Frage: Wieso setzt man die Abfrage fiir den Startwert nicht gleich im
constructor ab, sondern macht dafiir eine spezielle run() Funktion? Nun, zum Zeitpunkt des
Konstruktors existiert die visuelle Komponente noch nicht. Der Versuch, den Zeiger zu verstellen,
wiirde darum zu diesem Zeitpunkt ins Leere laufen und mit einer Fehlermeldung enden. Die
run() Funktion rufen wir im Rahmen von attached() in app.ts auf (s. etwas weiter unten), und
das findet ja nach der Konstruktion des DOM statt.

In gleicher Weise habe ich Klassen fiir Switches und Charts erstellt und im devices-Ordner
abgelegt. Ich spare mir jetzt hier das Listing, Sie sehen die Klassen ja im Quellcode-Archiv.

Jetzt wird app.ts sehr viel ibersichtlicher:

src/app.ts

import { autoinject } from 'aurelia-framework'
import configs from './config'

import { Boiler } from "./routes/boiler";
import { Gauges } from './devices/gauges';
import { Switches } from './devices/switches';

import { Charts } from './devices/charts';

@autoinject
export class App {

conf = configs

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Kapitel 6: Bastelstunde 121

constructor (
private gauges: Gauges, private switches: Switches,
private charts: Charts) { }

attached() {
this.gauges.run([configs.wohnzimmertemp_cfg, configs.aussentemp_cfg,
configs.bad_oben_cfg, configs.dusche_cfg, configs.dachstock_cfg,
configs.barometer_cfg, configs.powermeter_cfg])

this.switches.run([configs. fernsehlicht_cfg, configs.carloader_cfg,
configs.mediacenter_cfg, configs.extender_cfg, configs.el4_cfg,

configs.aussenlicht_cfg])

this.charts.run([configs.aussen_chart_cfg, configs.barometer_chart_cfg])

switchGauge(hide, show) {

this.conf[hide].visible = false

this.conf[show].visible = true

Im constructor() werden die Klassen instanziiert (Falls Thnen das nicht mehr klar ist, lesen
Sie bitte noch einmal im Kapitel iber das Aurelia Modulkonzept nach), und in attached()
wird die jeweilge run() Funktion aufgerufen, die die Intervalle erstellt und die Aufrufe des
EventAggregators regelt. Mehr bendtigen wir nicht mehr in app.ts.

Nun bauen wir auch fiir den Boiler eine eigene Steuerklasse in “devices”. Hier gibt es nur einen.

devices/boiler.ts

import { FetchService } from '../services/fetchservice'
import { autoinject } from 'aurelia-framework'
import { EventAggregator } from 'aurelia-event-aggregator'

import configs from '../config'
@autoinject

export class Boiler {

constructor(private fetcher: FetchService,
private ea: EventAggregator) ({
this.ea.subscribe(configs.boiler_cfg.message, (msg => {
this. fetcher.setIoBrokerValue("mgtt.9.Boiler.setTemp", msg)

)

Kapitel 6: Bastelstunde 122

run() {
this.getValue()

setInterval(() => this.getValue(), 10000)
}
getValue() {
this. fetcher.getIobrokerValue("mgtt.@.Boiler.setTemp", undefined)
.then(temp => {
this.ea.publish(configs.boiler_cfg.message, temp)

1))

Sie sehen, dass auch das nicht mehr schwierig ist: Ich setze eine EventAggregator-Subscription
auf die message des Boilers und mache daraus einen Schreibzugriff auf den entsprechenden
state des mqtt Brokers, der wiederum daraus eine MQTT Nachricht macht. Allerdings missen
wir noch dafiir sorgen, dass dieses Teilprogramm zusammen mit dem Hauptprogramm gestartet
wird. Wir erginzen also den constructor von app.ts:

constructor(
private gauges: Gauges, private switches: Switches,

private charts: Charts private boiler:Boiler) { }

Durch das Injizieren des Boilers wird dieser instanziiert. Jetzt konnen Sie das Programm starten,
und es sollte funktionieren.

Wenn Sie einen MQTT Cient, zum Beispiel MQTT Dash auf dem Android-Handy, oder MQTT
Tool auf iOS Geriten, auf Thren ioBroker richten und “/Boiler/setTemp” abonnieren, werden Sie
jede Anderung am Schieber sofort auch auf den Handy sehen. Falls der MQTT Server auf dem
ioBroker noch keinen entsprechenden State hat, geniigt es, von irgendeinem MQTT Client, der
mit dem ioBroker verbunden ist, eine entsprechende Nachricht abzusetzen. Der Broker akzeptiert
ja alle topics und erstellt fiir jedes neue Topic umgehend einen ioBroker-State, den wir wiederum
wie gewohnt programatisch oder auch tiber das Admin-UI unter “Objekte” lesen und verédndern
konnen.

Die andere Richtung funktioniert allerdings noch nicht: Wenn von woanders her eine Nachricht
an /Boiler/setTemp geschickt wird, lasst das den Slider kalt. Wir miissen ihn noch lauschen lassen.

Ergédnzen Sie Boiler.ts so:

Kapitel 6: Bastelstunde 123

routes/boiler.ts

// constructor...{}

run() {
this.getValue()

setInterval(() => this.getValue(), 10000)
}
getValue() {
this. fetcher.getlobrokerValue("mgtt.9.Boiler.setTemp", undefined)
.then(temp => {
this.ea.publish(configs.boiler_cfg.message, temp)

)

und app.ts so:

src/app.ts

attached() {
this.gauges.run([configs.wohnzimmertemp_cfg, configs.aussentemp_cfg,
configs.powermeter_cfg])

this.switches.run([configs. fernsehlicht_cfg, configs.carloader_cfg,
configs.aussenlicht_cfg])

this.charts.run([configs.aussen_chart_cfg, configs.barometer_chart_cfg])
this.boiler.run()

Wir starten also auch in boiler.ts eine run() Funktion. Diese liest alle 10 Sekunden den aktuellen
Wert des ioBroker States fiir das MQTT Topic /Boiler/setTemp aus und sendet eine entsprechende
Nachricht an die setpoint - Komponente (oder an wen auch immer, der die entsprechende
Nachricht abonniert hat). Wenn Sie das Programm erneut starten, werden Sie sehen, dass der
Slider sofort auf den aktuellen Wert geht. Wenn Sie den Slider verstellen, konnen Sie am
Handy den neuen Wert sehen. Wenn Sie am Handy einen neuen Wert eingeben, wird der
Slider nach einigen Sekunden ebenfalls auf diesen neuen Wert gehen. Wir haben jetzt also einen
bidirektionalen Informationsfluss. Da die Boilerregelung keine Komponente ist, bei der es auf
Geschwindigkeit ankommt, ist die kleine Verzégerung nicht schlimm.

Motorsteuerung

Bisher haben wir virtuelle Messwerte vom PC iiber den ioBroker auf ein Handy geschickt
und zuriick, aber noch keine wirkliche Funktionalitat. Wir miissen die Software mit unserem
Motor verbinden. Wir hatten dort ja schon eine Motorsteuerung mit Johnny-Five gebaut, die auf
Kommando im Uhrzeiger- oder Gegenuhrzeigersinn drehen kann. Alles was noch fehlt, ist ein

Kapitel 6: Bastelstunde 124

MQTT Client in diesem Programm, und eine Moglichkeit, als °C formulierte MQTT Nachrichten
in Steps fiir den Motor umzusetzen.

Dazu bohren wir stepper.js ein wenig auf:

stepper.js

class Stepper(

/)

setScale(steps, start, end, domainFrom, domainTo, setOrigin) { // (1)
this.steps360
this.position = start;

steps;

this.calc = val => {
return five.Fn.map(val, domainFrom, domainTo, start, end)
}
this.actPos = 0
if (setOrigin) {
this.ccw(steps)

async goto(pos) { /7 (2)
if (!this.running) {

this.running = true

let actPos = this.actPos

let newPos = this.calc(pos) // (3)

this.actPos = newPos

this.set_step("1001",true) /7 (4)

tis.sleep(10)

this.run(newPos - actPos).then(() => { // (5)
this.sleep(10)
this.set_step("0000",true) // (6)
this.running = false

1))

async run(steps) { /7 (7)
if (steps < 0) {
return this.ccw(steps * -1)
} else {
return this.cw(steps)

s

Kapitel 6: Bastelstunde 125

Bei (1) tun wir etwas, was wir so dhnlich schon bei unseren allerersten Anzeigeinstrumenten
getan haben: Wir setzen einen Wertebereich (domain) auf einen Drehwinkel (range) um. Nur
benutzen wir diesmal fiir die Rechenarbeit keine d3js-Scale (wir haben hier auf dem Boiler-
Controller ja kein D3js installiert und wollen das auch nicht unbedingt), sondern die Funktion
Fn.map fon Johnny-Five, die ungefiahr dasselbe tut. Unsere Domain sind die Boilertemperaturen
von 30-100°C, die Range ist der Drehwinkel des Potentiometers von 0-240°. Zu jeder Boilertempe-
ratur gehort ein bestimmter Winkel, und den kénnen wir errechnen, wenn wir wissen, wieviele
Schritte fiir eine 360° Drehung nétig sind.

Bei (2) wenden wir das Wissen an: Zunachst schauen wir nach, ob der Motor gerade am Drehen
ist. Wenn ja, akzeptieren wir keine neuen Kommandos. Dann setzen wir das Flag, welches
anzeigt, dass er nun beschéftigt ist. Bei (3) errechnen wir die neue Winkelposition. Dann kommt
etwas Seltsames bei (4), auf das ich in wenigen Sekunden zuriickkommen werde, bei (5) drehen
wir den Motor um die Differenz zwischen alter und neuer Position. Danach warten wir einige
Millisekunden, um die Drehachse und die Zahnrader zur Ruhe kommen zu lassen, dann schalten
wir bei (6) alle Spulen aus. Der Motor hat nédmlich ein recht hohes Haltemoment und saugt
rund 300mA, nur um seine momentane Position zu halten. Das ist hier aber gar nicht notig
(Das Potentiometer wird sich sowieso nicht von allein bewegen), und es fiihrt zu einer starken
Erwarmung des Motors und zu erhdhtem Stromverbrauch. Daher schalten wir am Ende jeder
Einstellungsbedwegung alle Spulen aus. Sie werden feststellen, dass der Motor jetzt vollig kithl
bleibt. Allerdings sind die Spulen jetzt nicht mehr in dem Zustand, in dem sie am End des Schritts
sein sollten. Daher setzen wir sie am Anfang der Drehfunktion bei (4) auf die Konstellation, die
sie natiirlicherweise am Ende des vorherigen Schrittes hatten.

(7) ist lediglich eine gewisse Vereinfachung. Wenn die Differenz aus neuer und alter Temperatur
positiv ist, wird im Uhrzeigersinn gedreht, sonst im Gegenuhrzeigersinn.

Auch index.js des Motortreibers wurde ein wenig geandert und mit MQTT verbunden:

const Raspi = require('raspi-io')
const five = require('johnny-five")
const Stepper=require('./stepper').Stepper
const mgtt=require('mgtt').connect('mgtt://homepi.local’, {
clientId: "Boiler-Motor",
will:{
topic: "/Boiler/ackn",
payload: "motor disconnected"
}
1)

const board = five.Board({
io: new Raspi(),
repl: false
}
);
const range=240
const stepsPer360=512

Kapitel 6: Bastelstunde 126

const orange = "GPIO26"
const yellow = "GPIO19"
const pink = "GPIO13"
const blue = "GPIOG"
let speed = 15;

let stepper;
mqtt.on("connect", ()=>{

mgtt.subscribe("/Boiler/setTemp")
mgtt.publish("/Boiler/ackn", "motor ready")

P
mgtt.on('message', (topic,message)=>{ /7 (1)
if(topic==="/Boiler/setTemp"){
stepper.goto(parselnt(message)).then(()=>{
H
}
1)
board.on('ready', async () => { /7 (2)
stepper = new Stepper(orange, yellow, pink, blue, speed)
stepper.setScale(stepsPer360,0,240,20,100, true)
function setSpeed(sp) {
stepper.speed = sp;
}
1}

Neu ist bei (1), dass wir “setTemp”-Nachrichten von MQTT abfangen, un diese an die eben
diskutierte goto-Funktion des Steppers weiterleiten. Bei (2) initialisieren wir den Controller,
indem wir die Verbindungen deklarieren und die Scale setzen. Der letzte Parameter “true”
bewirkt, wenn Sie nochmal kurz bei stepper.js nachsehen, das der Motor um eine volle Drehung
im Gegenuhrzeigersinn bewegt wird. Das heisst, er wird ziemlich sicher am linken Anschlag
“anstossen”. Nun, das schadet einem Schrittmotor nichts. Er dreht einfach nicht mehr weiter,
wenn er am Anschlag ist. Aber auf diese Weise haben wir einen definierten Ausgangspunkt: Wir
wissen jetzt mit Sicherheit, dass das Potentiometer ganz nach links gedreht ist.

	Inhaltsverzeichnis
	Kapitel 3: IoBroker Scripting
	Einrichtung des Script-Hosts
	Einfache Skripte
	Skripte sichern

	Kapitel 4: Standalone Front-End
	Teil 3: DoubleGauge
	Teil 4: Druckknopf
	Teil 5: Tri-State Button
	Teil 6: Lineare Anzeigegeräte

	Kapitel 6: Bastelstunde
	Grundätzliches und was man zum Basteln braucht
	Barometer
	Motor
	Elektroboiler mechanisch steuern

