
SimPy: Simulation in Python

Afonso C. Medina

SimPy: Simulation in Python

Afonso C. Medina

This book is available at https://leanpub.com/simpy_en

This version was published on 2025-12-01

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2025 Afonso C. Medina

https://leanpub.com/simpy_en
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Also By Afonso C. Medina
Modelagem e Simulação de Eventos Discretos 5ª ed.
SimPy: Simulação em Python

https://leanpub.com/u/afmedina
https://leanpub.com/msed
https://leanpub.com/simpy

Contents

See me, Feel me, README . 1

Preface . 3
Why use SimPy? . 3
Pros and cons . 4
A brief history of SimPy . 5
Where to find help about SimPy . 5
How to use this book . 6

Installing SimPy . 8
Step 1: Anaconda, the easy way . 8
Step 2: Installing Pip (for those who did not install Anaconda) 9
Step 3: Installing SimPy . 10
Step 4: Installing an Integrated Development Environment (IDE) 11

It All Depends on Python . 13
Test Your Python Knowledge: the gambler’s ruin problem 13
Challenges . 13
Solution to Challenge 1 . 15
Test Your Knowledge . 16

First Steps in SimPy: creating entities . 18
Importing the random and simpy libraries 18
Creating a simulation environment . 18
Creating an arrival generator within the environment 19
Creating time intervals with env.timeout(wait_time) 20
Running themodel for a determined timewith env.run(until=simulation_-

time) . 21
Concepts from this section . 24
Challenges . 24
Solution to Challenges 2 and 3 . 25

CONTENTS

Test Your Knowledge . 28

Creating, occupying and releasing resources 29
Creating . 29
Occupying . 29
Releasing . 29
Resource status . 29
Concepts from this section . 30

Putting it all together in an example: the M/M/1 queue 31
Entity arrival generation . 31
Performing service at the server . 31
An alternative representation for occupying and releasing resources . 31
Concepts from this section . 31
Challenges . 31
Solution to Challenges 4, 5 and 6 . 32
Test Your Knowledge . 32

Attributes and variables: differences in SimPy 33
Attributes in object-oriented models . 33
Concepts from this section . 33
Challenges . 33
Solution to Challenges 7 and 8 . 34
Test Your Knowledge . 34

Environments: controlling the simulation 35
Execution control with env.run(until=end_of_simulation) 35
Stop by execution of all scheduled processes 35
Stop by end of specific process execution with env.run(until=process) 35
Step-by-step simulation: peek & step . 35
Concepts from this section . 35
Challenges . 35
Solution to Challenges 9 and 10 . 37

Other types of resources: with priority and preemptive 38
Resources with priority: PriorityResource 38
Resources that can be interrupted: PreemptiveResource 38
Concepts from this section . 38
Challenges . 38
Solution to Challenges 11 and 12 . 39

CONTENTS

Process interruptions: simpy.Interrupt . 40
Creating equipment breakdowns . 40
Interrupting a process without capture by try…except 40
Concepts from this section . 40
Challenges . 40
Solution to Challenges 13 and 14 . 41
Test Your Knowledge . 41

Storage and selection of specific objects with Store, FilterStore and
PriorityStore . 42
Building a set of objects with Store . 42
Selecting a specific object with FilterStore() 42
Creating a Store with priority: PriorityStore 42
Concepts from this section . 42
Challenges . 42
Solution to Challenges 15 and 16 . 43
Test Your Knowledge . 43

Filling or emptying boxes, tanks, stocks or objects with Container() . . 44
Filling my container yield myContainer.put(quantity) 44
Emptying my container: yield myContainer.get(quantity) 44
Creating a sensor for the current container level 44
Concepts from this section . 44
Challenges . 44
Solution to Challenges 17 and 18 . 45
Test Your Knowledge . 45

Creating batches (or grouping) entities during simulation 46
A tactic for batch grouping using Container 46
Grouping batches by entity attribute using FilterStore 46
Challenges . 46
Solution to Challenges 19 and 20 . 47
Test Your Knowledge . 47

Creating, manipulating and triggering events with event() 48
Creating an isolated event with event() . 48
Concepts from this section . 48
Challenges . 48
Solution to Challenges 21 and 22 . 49
Test Your Knowledge . 49

CONTENTS

Waiting for multiple events at the same time with AnyOf and AllOf . . . 50
Waiting until at least one event finishes with AnyOf 50
Waiting for all events with AllOf . 50
Better understanding the outputs of AllOf and AnyOf commands . . . 50
Concepts from this section . 50
Challenges . 50
Solution to Challenges 23 and 24 . 51
Test Your Knowledge . 51

Useful properties of events . 52
Concepts from this section . 52
Challenges . 52
Solution to Challenge 25 . 53
Test Your Knowledge . 53

Adding callbacks to events . 54
Every process is an event . 54
Concepts from this section . 54
Challenges . 54
Solution to Challenge 26 . 55
Test Your Knowledge . 55

Event interruptions . 56
Interrupting an event with the interrupt method 56
Interrupting an event with the fail method 56

What are generator functions? (or how SimPy works) - Part I 57
Iterator . 57
Generator functions . 57

What are generator functions? (or how SimPy works?) - Part II 58
SimPy vs. generator functions . 58

Agent-Based Simulation using SimPy . 59
How to build an agent simulation model: basic steps 59
Agent-based epidemic model: the SIR model 59
Modeling the problem in SimPy . 59
Improving simulation code performance 60
How to proceed from here . 61
Concepts from this section . 62

Challenges . 62
Solution to Challenges 27 and 28 . 63
Test Your Knowledge . 63

Data input and output via spreadsheet . 64
Communication with the library . 64

See me, Feel me, README
This book was conceived as an introduction to the SimPy library (Simulation
in Python) for building discrete event simulation models in Python. It is the
product of the work of someone who researches, teaches and professionally
uses simulation tools in their daily work.

This is a work in development on the Leanpub platform. This means that
the material is updated periodically, whether for corrections, improvements or
additions of new content.

Intentionally, the book is divided into short sections, emphasizing one
concept at a time, facilitating the learning process and quick referencematerial
searches.

Figure 1. “PsychedelicSimpy!”

Before proceeding, a small notice:

The work assumes that the reader has knowledge of Discrete Event
Modeling and Simulation, is taking a course on the subject, or is
reading the prestigious book Modeling and Simulation of Discrete
Events (Chwif & Medina).

Therefore, the book is not intended as a reference source on systems
modeling methodologies, but rather, a book about one of the most fascinating
languages available for building simulation models.

https://www.youtube.com/watch?v=RC_MS-tG5vw
https://leanpub.com/msed
https://leanpub.com/msed

See me, Feel me, README 2

To the dear reader who begins their navigation here, a suggestion: visualize
and reflect on a simulation project youwould like to develop in SimPy and, with
each section of the book completed, try to develop your own project in parallel
in harmony with the learned content.

Bon voyage!

Afonso C. Medina

* * *

UPDATE

Current version: 02/2025

What’s new:

• Text corrections
• Machine and laundry figures

In development:

• Optimization
• Output statistics

To do:

• AI applications
• Communication with spreadsheets/txt
• Final Code Review
• Final Text Review

Preface
This book was written with compact sections in short texts, so that the reader,
at each section, has a clear view of the content presented, building knowledge
in a solid way and respecting their personal learning curve.

SimPy (Simulation in Python) is a framework for building discrete event
simulation models in Python, distributed under the MIT license. It differs from
commercial packages usually used in discrete event simulation, as it is not an
application with ready-made objects that can be easily connected by simple
mouse clicks. With SimPy, it is up to the user to build a Python computer
program that represents their model. Essentially, SimPy is a command library
that gives Python the power to build discrete event models.

With SimPy, you can build, in addition to discrete simulation models, real-
time simulation models, agent-based models, and even continuous simulation
models. In fact, as the readerwill notice throughout this text, these possibilities
are more associated with Python than with the resources provided by SimPy
itself.

Why use SimPy?

Perhaps the correct question is: “why use Python?”

Python is today, perhaps, the most widely used language in the scientific
community, and a brief search on the Internet will suggest articles, posts, and
endless discussions about the reasons for all this success. I would summarize
Python’s success in 3 major reasons:

• Ease of coding. Engineers, mathematicians, and researchers in general
want to think about the problem, not so much about the language, and
Python delivers on its promise when it comes to ease. If it is easy to code,
it is even easier to read and interpret code written in Python;

• Libraries! Libraries! An unbelievable number of libraries (particularly for
the scientific field) is available to the programmer (and researcher).

• Scripts. The functionality of working with scripts1 or small pieces of
1A script is a sequence of commands executed inside some file through an interpreter. It is

called a script because they are read and interpreted by Python, line by line.

https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/Scripting_language

Preface 4

interpreted code (basically, Python is a “scripting language”) drastically
reduces development time and language learning.

Furthermore, SimPy, when compared to commercial packages, is free–
which in itself is a great advantage in amarket where software is priced starting
from thousands of dollars–and quite flexible, in the sense that it is not limited
only to existing modules.

From a functional standpoint, SimPy presents itself as a Python library, and
this means that a simulation model developed with it will have at its disposal
everything good that exists for those who program in Python: the code is easy
to read (and develop), the model can be distributed as a package (without the
need for the end user to install Python to run it), in addition to the various
statistics and optimization libraries available in Python, which greatly expand
the application horizon of the models.

This availability of libraries, as well as being free software, makes SimPy
particularly interesting for those who are developing their academic research
in the area of simulation. Your model will likely be better documented and
therefore easier to understand, enhancing the dissemination of your research
results in dissertations, conferences, and scientific articles.

Pros and cons

Pros:

• Open source and free (MIT license);
• Various optimization, mathematical, and statistical library functions can
be incorporated into the model;

• Allows programming of sophisticated logic, relying on Python (and its
libraries);

• Active community of developers and users that keeps the library up to
date.

Cons:

• Performance: although Python’s performance improvement with each
new version is notable, SimPy is a simulation library, that is: it belongs

https://en.wikipedia.org/wiki/MIT_License

Preface 5

to a class of applications that is quite demanding in computational terms.
So, don’t count on processing times comparable to those of commercial
packages, such as AnyLogic or Simul8, because it won’t be;

• Lack of animation tools;
• Need to program each process of the model;
• Requires prior knowledge of Python;
• Does not include a visual development environment.

A brief history of SimPy

SimPy emerged in 2002 based on the combination of ideas from Simscript
and the Simula family of languages. In context, it combines SiPy, a package
developed by Klaus Muller based on Simula, with SimPy, developed by Tony
Vignaux and Chang Chui and based on another language, Simscript.

Perhaps what best symbolizes the genesis of SimPy is Prof. Klaus Muller’s
decision to use generators or generator functions in building the SiPy package.
When the two original projects were merged into SimPy as we know it today,
the trio decided to follow the path of generators, until then a welcome novelty
in Python 2.2 (we are still in 2002, folks!).

In its infancy, SimPy was used in introductory simulation courses and,
gradually, it began to attract the interest of researchers and professionals
around the world. Starting from version 3.0, SimPy, already counting with a
larger number of developers, was completely rewritten and its importance in
the simulation world can be measured by the countless papers published in
specialized conferences and journals, as well as its reimplementation in other
languages, such as: C# (Sim#), Julia (ConcurrentSim), and R (simmer).

Where to find help about SimPy

There is a variety of videos and tutorials available on the Internet, but three are
the reference sources I use most:

• The project’s own website http://simpy.readthedocs.io, with examples
and a detailed description of the Application Programming Interface (API);

• The user mailing list is quite active, with well-crafted answers;

https://gnosis.cx/publish/programming/charming_python_b1.txt
https://github.com/heal-research/SimSharp
https://github.com/JuliaDynamics/ConcurrentSim.jl
https://github.com/r-simmer/simmer
http://simpy.readthedocs.io
https://groups.google.com/forum/#!forum/python-simpy

Preface 6

• Stack Overflow has a reasonable number of questions and examples, but
be careful, asmuch of thematerial still refers to the old version 2 of SimPy,
quite different from version 3, the basis of this work.

How to use this book

This text was planned in a compact section format, so that they are short and
didactic–with the goal that each section does not go much beyond 500 words.
Each chapter presents a new topic through one or more practical examples.
Following that, complementary challenges are proposed so that the reader
advances their knowledge by practicing on the proposed example itself.

Like every book that introduces a new programming language, the ideal
is for the reader to practice the examples by rewriting the code. Copying and
pasting ready-made code from the text will make you a Jedi master at using
the keyboard and mouse for copying and pasting texts, but it won’t teach you
to program in Python or SimPy. So, my suggestion is that the reader reads each
example presented and rewrites it again. Typing errors, unexpected bugs, and
doubts will arise that, if overcome in the code review, will indeed make the
reader a Jedi master of simulation in Python.

This is the first edition of a book about a language that has been attracting
increasing interest in recent years. Naturally, the increase in users–and it is
hoped that this book will contribute to this–will also cause the emergence of
more knowledge, more creative solutions that should be incorporated into this
book in future revisions. In fact, this text is already an evolution of the material
I made available for some years as a tutorial on gitBook.

Found an error or want to send a suggestion for improvement? Please send
an email to: livrosimulacao@gmail.com.

The plan proposed by this text is to follow this sequence (under permanent
revision):

• Introduction to SimPy;
• Package installation;
• Basic concepts: entities, resources, queues, etc.;
• Advanced concepts: resource priority, resource sharing, queue control,
resource Store, etc.;

http://stackoverflow.com/questions/tagged/simpy

Preface 7

• Experimentation (replications, warm-up time, confidence intervals, etc.);
• Agent simulation and optimization;
• AI applications.

From time to time, if it doesn’t rain and isn’t too sunny, the author commits
to updating to new versions of SimPy and Python.

Installing SimPy
Our journey begins with a brief installation tutorial for some programs and
libraries useful for SimPy. We have selected the following packages to start the
tutorial:

1. Python 3.4
2. Pip
3. SimPy 3.0.10
4. NumPy

A brief preamble on our choices: at the time this tutorial was written,
Python was at version 3.5.0, but Anaconda (explained below) still provided
version 3.4. If you already have an installation with Python 3.5 or later, you
can install SimPy without problems, as it is compatible with the most recent
versions of Python.

Pip is a library installer and makes the programmer’s life much easier.

SimPy 3.0.10 is the most current version at the time this tutorial is written
and brings major changes compared to version 2.0.

There is vast material available on the Internet for SimPy. However,
special care must be taken: much of this material refers to version
2, which has critical differences from the current version. This text
refers to version 3 onwards.

As for NumPy, let’s take the opportunity to install it, as it will be very
useful in our simulation models. Basically, NumPy adds a data type (n-
dimensional array) that facilitates coding simulation models, particularly in
analyzing output data from the model.

Installing SimPy 9

Step 1: Anaconda, the easy way

• If you already have Python and Pip installed on your machine,
skip directly to Step 3: “Installing SimPy”;

• If you already have Python installed, but not Pip (those with
Python +3.4 already have Pip installed), skip to Step 2: “Installing
Pip”

If this is your first time with Python+SimPy, suggestion: don’t waste time
and install the free Anaconda distribution.

Through Anaconda, everything is easier, cleaner, and the process already
installs more than 200 packages verified for all sorts of compatibility, so you
don’t have any work. (Among the installed packages is NumPy which, as
explained, will be very useful in developing your models).

At the time of writing this book, they provided Python versions 2.7, 3.4, and
3.5 (in 32 and 64 bit) on the downloads page.

Download the file with the desired version (once again: SimPy runs on both
versions) and follow the installer instructions.

Step 2: Installing Pip (for those who did not install
Anaconda)

If the installed Python version is +3.4 or you did the previous step, you
can skip this step, as pip has already been installed on your computer.

http://continuum.io/downloads
http://www.numpy.org
http://continuum.io/downloads

Installing SimPy 10

1. Download the get-pip.py package through this link, saving it to a
convenient working folder.

2. Run python get-pip.py in the chosen working folder (note the message
at the end, confirming that pip was successfully installed).

Step 3: Installing SimPy

Installing SimPy is easy!

Type in a cmd window:

1 pip install -U simpy

https://bootstrap.pypa.io/get-pip.py

Installing SimPy 11

The message “Successfully installed simpy-3.0.10” indicates that you are
ready for SimPy. But before that, I have a suggestion for you:

Step 4: Installing an Integrated Development
Environment (IDE)

IDEs, for those who don’t know, are true code editing interfaces that make
the programmer’s life easier. They usually have an advanced text editor, error
checking features, monitors for code variable states, step-by-step processing
commands, etc.

If you installed Anaconda, then you already got a good one: Spyder, which
is already configured and ready for use. Usually (depending on your Operating
System version) it appears as an icon on the desktop. If you can’t find the icon,
search for Spyder on your computer (notice the “y” trick) or type the command
spyder in a cmd window.

Once open, Spyder looks like the following figure:

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Spyder_(software)

Installing SimPy 12

Another very good IDE is Wing IDE 101 which is free (and also has a paid
professional version):

If you installed Anaconda and intend to use an IDE other than Spyder,
follow the specific configuration instructions at this link: Using IDEs.

If you’ve made it this far and have everything installed, the next step is to
really get started with SimPy!

In the next section, of course. We need a break for a cup of tea after so
many installed bytes.

Figure 2. “The Mad Hatter, a character from Alice’s Adventures in Wonderland (1865) by John
Tenniel”

http://wingware.com/downloads/wingide-101
https://docs.anaconda.com/working-with-conda/ide-tutorials/

It All Depends on Python
Before we start with SimPy, we need to make sure you have some minimum
knowledge of Python. If you feel your knowledge of the language is reasonable,
the recommendation is that you skip to the next section, “Test Your Python
Knowledge”.

If you have never had contact with the language, I warn you that I do not
intend to build an “introduction” or “tutorial” for Python, simply because that
is what is most available on the internet.

Look for a quick tutorial (there are tutorials of up to 10 minutes!) and get to
work! Nothing easier than learning the basics of Python.

Suggestions:

1. Sololearn: one of the fastest and coolest ways to learn Python (and other
languages). There are several courses, divided by levels, that can even be
followed on your phone (yes, I learned Java traveling on the blue line of
the SP subway).

2. An Introduction to Interactive Programming in Python (Part 1): Coursera
has a course that will teach you to create programs that interact with the
user, that is: little games . I took it, it’s good!

3. Summerfield, Mark. Programming in Python 3: a complete introduction.
Addison-Wesley Professional. 2012: I always have this excellent Python
book on my desk. It can be found on Amazon.

After completing the tutorial, course, or even learning everything on your
own, test your knowledge to verify if you know the basic necessary Python to
start with SimPy.

Test Your Python Knowledge: the gambler’s ruin
problem

The gambler’s ruin problem is a classic problem proposed by Pascal in a letter
to Fermat in 1656. The version presented here is a simplification, aimed at
evaluating your Python knowledge.

https://www.sololearn.com
https://www.coursera.org/learn/interactive-python-1
https://www.amazon.com/Programming-Python-Complete-Introduction-Language/dp/0321680561
http://en.wikipedia.org/wiki/Gambler%27s_ruin

It All Depends on Python 14

Challenges

Challenge 1: two gamblers start a heads or tails game in which each
of them always bets $1 on the same side of the coin. The winner takes
the total bet ($2). Each player initially has $5 available to bet. The
game ends when one of the players reaches ruin and has no more
money to bet.

Build three functions:

1. transfer(winner, looser, bankroll, tossCount): transfers the
value from the losing player to the winner and prints the winner’s name
on the screen;

2. coinToss(bankroll, tossCount): draws the winner of heads or tails;
3. run2Ruin(bankroll): maintains a permanent loop until one of the

players reaches ruin

Test the programwith the suggested parameters (you can use the following
code as a template for your program):

1 import random # random number generator
2
3 names = ['Chewbacca', 'R2D2'] # players
4
5 def transfer(winner, looser, bankroll, tossCount):
6 # function that transfers money from winner to looser
7 # prints the toss winner and each player's bankroll
8 pass
9
10 def coinToss(bankroll, tossCount):
11 # function that tosses the coin and calls transfer
12 pass
13
14 def run2Ruin(bankroll):
15 # function that runs the game until one player's ruin
16 pass
17
18 bankroll = [5, 5] # money available for each player
19 run2Ruin(bankroll) # start the game

Now it’s up to you: complete the previous code and find out if you are
ready to start with SimPy! (The next section presents a possible answer to
the challenge and, following that, everything finally begins.)

It All Depends on Python 15

Solution to Challenge 1

Challenge 1: two gamblers start a heads or tails game in which each
of them always bets $1 on the same side of the coin. Thewinner takes
the total bet ($2). Each player initially has $5 available to bet. The
game ends when one of the players reaches ruin and has no more
money to bet.

The following code is a possible solution to challenge 1 from the previous
section. Naturally, it is possible to make it clearer, more efficient, obscure, evil,
elegant, faster or slower, like any programming code. The important thing is
that if you did something that works, I believe it is enough to start with SimPy.

1 import random # random number generator
2
3 names = ['Chewbacca', 'R2D2'] # players
4
5 def transfer(winner, looser, bankroll, tossCount):
6 # function that transfers money from winner to looser
7 # prints the toss winner and each player's bankroll
8 bankroll[winner] += 1
9 bankroll[looser] -= 1
10 print("\nToss: %d\tWinner: %s" % (tossCount, names[winner]))
11 print("%s has: $%d and %s has: $%d"
12 % (names[0], bankroll[0], names[1], bankroll[1]))
13
14 def coinToss(bankroll, tossCount):
15 # function that tosses the coin and calls transfer
16 if random.uniform(0, 1) < 0.5:
17 transfer(1, 0, bankroll, tossCount)
18 else:
19 transfer(0, 1, bankroll, tossCount)
20
21 def run2Ruin(bankroll):
22 # function that runs the game until one player's ruin
23 tossCount = 0 # toss counter
24 while bankroll[0] > 0 and bankroll[1] > 0:
25 tossCount += 1
26 coinToss(bankroll,tossCount)
27 winner = bankroll[1] > bankroll[0]
28 print("\n%s won after %d tosses, game over!"
29 % (names[winner], tossCount))
30
31 bankroll = [5, 5] # money available for each player
32 run2Ruin(bankroll) # start the game

It All Depends on Python 16

On my computer, the previous problem provides the following result:

1 Toss: 1 Winner: Chewbacca
2 Chewbacca has: $6 and R2D2 has: $4
3
4 Toss: 2 Winner: Chewbacca
5 Chewbacca has: $7 and R2D2 has: $3
6
7 Toss: 3 Winner: Chewbacca
8 Chewbacca has: $8 and R2D2 has: $2
9
10 Toss: 4 Winner: Chewbacca
11 Chewbacca has: $9 and R2D2 has: $1
12
13 Toss: 5 Winner: Chewbacca
14 Chewbacca has: $10 and R2D2 has: $0
15
16 Chewbacca won after 5 tosses, game over!

Note that the result provided should be different on your computer, just as
it changes with each new run of the program. For the results between my
computer and yours to be similar, we need to ensure that the sequence of
random numbers on both computers is the same. This is possible with the
random.seed(seed) command, which establishes a fixed initial value for the
seed of the generated random number sequence (see item 1 in the “Test Your
Knowledge” section below).

Test Your Knowledge

1. Each time you run the program, the random.uniform(0,1) function
draws a new random number between 0 and 1, making the program
result unpredictable. Use the random.seed(seed) function to make the
generated sequence of random numbers always the same.

2. Add a loop to the main program so that the game can be repeated up to
a predefined number of times. Simulate 100 games and check how many
games each player won.

3. The Gambler’s Ruin Problem is commonly applied in situations of gam-
blers playing against Casinos. In this situation, the gambler has a finite
amount of money and plays against another gambler, the Casino, with
a very large or infinite amount. Consider that R2D2 is a Casino and
therefore has an infinite bankroll, while Chewbacca’s is limited to $5. How

It All Depends on Python 17

would you use the built simulator to demonstrate that the probability of
ruin for gambler Chewbacca is equal to 1? (Note that the statement is true
even considering that the game is fair and there is no fee charged by the
Casino).

First Steps in SimPy: creating entities
Something elementary in any simulation package is a function to create entities
within the model. It is the “Hello World!” of simulation packages. Your
first mission, should you choose to accept it, will be to build a function that
generates entities with exponentially distributed inter-arrival times, with a
mean of 2 min. Simulate the system for 10 minutes only.

Importing the random and simpy libraries

Initially, two Python libraries will be needed: random – the random number
generation library – and simpy, which is SimPy itself.

Our first simulation model in SimPy begins with importing the respective
libraries of interest:

1 import random # random number generator
2 import simpy # simulation library
3
4 random.seed(1000) # random number generator seed

Note the final line random.seed(1000). It ensures that the randomnumber
generation will always start from the same seed, so that the sequence of
randomnumbers generated in each programexecutionwill always be the same,
facilitating the program verification process.

Creating a simulation environment

Everything in SimPy revolves around events generated by functions and all
events must occur in an environment, or a simulation “environment” created
from the simpy.Environment() function.

Thus, our program must contain at least one call to the
simpy.Environment() function, creating an environment “env”:

http://en.wikipedia.org/wiki/Hello_world_program

First Steps in SimPy: creating entities 19

1 import random # random number generator
2 import simpy # simulation library
3
4 random.seed(1000) # random number generator seed
5 env = simpy.Environment() # creates the model environment in the variable env

If you run the previous program, nothing happens. At themoment, you have
only created an environment, but you have not created any process, therefore,
there is no event yet to be simulated by SimPy.

Creating an arrival generator within the environment

Let’s write a function generateArrivals() that creates entities in the system
for the duration of the simulation. Our first entity generator will have three
input parameters: the environment, an attribute that will represent the entity
name, and the desired rate of entity arrivals per unit of time. For SimPy, this is
equivalent to saying that you will build an event generator function within the
created environment. In this case, the generated events will be the arrivals of
entities in the system.

Thus, our code begins to take shape:

1 import random # random number generator
2 import simpy # simulation library
3
4 def generateArrivals(env, name, rate):
5 # function that creates entity arrivals in the system
6 pass
7
8 random.seed(1000) # random number generator seed
9 env = simpy.Environment() # creates the model environment

We need to inform SimPy that the generateArrivals() function is, in fact,
a process that should be executed throughout the entire simulation. A process
is created within the environment by the command:

1 env.process(function_that_generates_the_process)

The process call is always made after creating the env, so just add a new
line to our code:

First Steps in SimPy: creating entities 20

1 import random # random number generator
2 import simpy # simulation library
3
4 def generateArrivals(env, name, rate):
5 # function that creates entity arrivals in the system
6 pass
7
8 random.seed(1000) # random number generator seed
9 env = simpy.Environment() # creates the model environment
10 # creates the arrival process
11 env.process(generateArrivals(env, "Customer", 2)))

Creating time intervals with env.timeout(wait_time)

Initially, we need to generate random time intervals, exponentially distributed,
to represent the times between successive entity arrivals. To generate arrivals
with exponential intervals, we will use the random library, well detailed in its
documentation, which has the function:

1 random.expovariate(lambd)

Where lambd is the rate of event occurrence or, mathematically, the inverse
of the mean time between successive events. In this case, if we want arrivals
to occur at mean intervals of 2 min, the function would be:

1 random.expovariate(lambd=1.0/2.0)

The previous line is basically our exponentially distributed random
number generator. The next step will be to inform SimPy that we want
our entities appearing in the system according to the defined distribution.
This is done by calling the reserved word yield with the SimPy function
env.timeout(interval), which is nothing more than a function that causes
a time delay, a delay in time within the created environment env:

1 yield env.timeout(random.expovariate(1.0/2.0))

In the previous line of code we are executing yield env.timeout(0.5)
so that the model delays the process by a random time generated by the
random.expovariate(0.5) function.

https://docs.python.org/3/library/random.html

First Steps in SimPy: creating entities 21

In due time, we will discuss more deeply the role of the word yield (spoiler:
it is not from SimPy, but originally from Python itself). For now, consider that
it is just a way to create eventswithin the env and that, if a function represents
a process, it must necessarily contain the command yield *something*, as
well as the respective environment of the process.

A function created in Python (with the def command) is only treated
as a process or event generator for SimPy if it contains at least one
line of code with the yield command. Later, the section “What are
generator functions” explains in more detail how yield works.

Putting everything together in the generateArrivals() function, we have:

1 import random # random number generator
2 import simpy # simulation library
3
4 def generateArrivals(env, name, rate):
5 # function that creates entity arrivals in the system
6 arrivalCount = 0
7 while True:
8 yield env.timeout(random.expovariate(1.0/rate))
9 arrivalCount += 1
10 print("%s %i arrives at: %.1f " % (name, arrivalCount, env.now))
11
12 random.seed(1000) # random number generator seed
13 env = simpy.Environment() # creates the model environment
14
15 # creates the arrival process
16 env.process(generateArrivals(env, "Customer", 2)))

The code should be self-explanatory: the while loop is infinite for the
duration of the simulation; a counter, arrivalCount, stores the total number
of generated entities and the print function prints the arrival time of each
customer on the screen. Note that, within the print, there is a call to
the current simulation time env.now. Finally, a call to the random.seed()
function ensures that the random numbers in each program execution will be
the same.

First Steps in SimPy: creating entities 22

Running the model for a determined time with
env.run(until=simulation_time)

If you run the previous code, nothing happens again, because we still need
to inform SimPy what the simulation duration time is. This is done by the
command:

1 env.run(until=simulation_time)

In the proposed example, the simulation time should be 10 min, as repre-
sented in line 15 of the following code:

1 import random # random number generator
2 import simpy # simulation library
3
4 def generateArrivals(env, name, rate):
5 # function that creates entity arrivals in the system
6 arrivalCount = 0
7 while True:
8 yield env.timeout(random.expovariate(1/rate))
9 arrivalCount += 1
10 print("%s %i arrives at: %.1f " % (name, arrivalCount, env.now))
11
12 random.seed(1000) # random number generator seed
13 env = simpy.Environment() # creates the model environment
14
15 # creates the arrival process
16 env.process(generateArrivals(env, "Customer", 2))
17
18 # runs the simulation for 10 time units
19 env.run(until=10)

When running the program, we get the output:

First Steps in SimPy: creating entities 23

1 Customer 1 arrives at: 3.0
2 Customer 2 arrives at: 5.2
3 Customer 3 arrives at: 5.4
4 Customer 4 arrives at: 6.3
5 Customer 5 arrives at: 7.6
6 Customer 6 arrives at: 9.1

Now we’re talking!

Note that env.process(generateArrivals(env)) is a command that
turns the generateArrivals() function into a process or an event generator
within the Environment env. This process only starts being executed in
the next line, when env.run(until=10) informs SimPy that every process
belonging to env should be executed for a simulation time equal to 10minutes.

Figure 3. Representation of arrivals in the queue.

First Steps in SimPy: creating entities 24

Concepts from this section

env = simpy.Environment() creates a simulation Environment
random.expovariate(lambd) generates exponentially distributed

random numbers, with occurrence
rate (events/time unit) equal to
lambd

yield env.timeout(time) generates a delay given by time
random.seed(seed) sets the random seed generator to

the same value for each new
simulation

env.process(generateArrivals(env))starts the generateArrivals
function as a process in env

env.run(until=simTime) executes the simulation (executes
all processes created in env) for
time simTime

env.now returns the current instant of the
simulation

Content Description

Challenges

Challenge 2: it is common for entity creation commands in pro-
prietary software to have the option to limit the maximum num-
ber of entities generated during the simulation. Modify the
generateArrivals function so that it receives maxArrivals as a
parameter and limits the creation of entities to this number.

Challenge 3: modify the generateArrivals function so that the
inter-arrival times are distributed according to a triangular distribu-
tion with mode 1, minimum value 0.1 and maximum value 1.1.

https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Proprietary_software

First Steps in SimPy: creating entities 25

Solution to Challenges 2 and 3

Challenge 2: it is common for entity creation commands in propri-
etary software to have the option to limit the maximum number of
entities generated during the simulation. Modify the generateAr-
rivals function so that it receives maxArrivals as a parameter and
limits the creation of entities to this number.

In this case, the Python script is self-explanatory, just note that I limited the
number of arrivals to 5 and did this before calling the process generated by the
generateArrivals() function:

1 import random # random number generator
2 import simpy # simulation library
3
4 def generateArrivals(env, name, rate, maxArrivals):
5 # function that creates entity arrivals in the system
6 arrivalCount = 0
7 while (arrivalCount < maxArrivals):
8 yield env.timeout(random.expovariate(1/rate))
9 arrivalCount += 1
10 print("%s %i arrives at: %.1f " % (name, arrivalCount, env.now))
11
12 random.seed(1000) # random number generator seed
13 env = simpy.Environment() # creates the model environment
14 # creates the arrival process
15 env.process(generateArrivals(env, "Customer", 2, 5))
16 env.run(until=10) # runs the simulation for 10 time units

Challenge 3: modify the generateArrivals function so that the
inter-arrival times are distributed according to a triangular distri-
bution with mode 1, minimum value 0.1 and maximum value 1.1.

In this case, we need to check the random library documentation to seewhat
our options are. The following table summarizes the available distributions:

First Steps in SimPy: creating entities 26

random.random() generates random numbers in
the interval [0.0, 1.0)

random.uniform(a, b) uniform in the interval [a, b]

random.triangular(low,
high, mode)

triangular with minimum value
low, maximum value high and
mode mode

random.betavariate(alpha,
beta)

beta with parameters alpha and
beta

random.expovariate(lambd) exponential with mean 1/lambd

random.gammavariate(alpha,
beta)

gamma with parameters alpha
and beta

random.gauss(mu, sigma) normal with mean mu and
standard deviation sigma

random.lognormvariate(mu,
sigma)

lognormal with mean mu and
standard deviation sigma

random.normalvariate(mu,
sigma)

equivalent to random.gauss,
but slightly slower

random.vonmisesvariate(mu,
kappa)

von Mises distribution with
parameters mu and kappa

random.paretovariate(alpha) pareto with parameter alpha

random.weibullvariate(alpha,
beta)

weibull with parameters alpha
and beta

Function Distribution

The NumPy library, which we will see in due time, has more options for
statistical distributions. For now, challenge 3 can be solved literally:

1 import random # random number generator
2 import simpy # simulation library
3
4 def generateArrivals(env, name, maxArrivals):
5 # function that creates entity arrivals in the system
6 arrivalCount = 0
7 while (arrivalCount < maxArrivals):
8 yield env.timeout(random.triangular(0.1,1,1.1))
9 arrivalCount += 1
10 print("%s %i arrives at: %.1f " % (name, arrivalCount, env.now))
11
12 random.seed(1000) # random number generator seed
13 env = simpy.Environment() # creates the model environment
14 # creates the arrival process

http://en.wikipedia.org/wiki/Von_Mises_distribution

First Steps in SimPy: creating entities 27

15 env.process(generateArrivals(env, "Customer", 5))
16 env.run(until=10)

Tip: simulationmodels, withmany arrival and service processes, tend
to use several different probability distribution functions, making
things a bit confusing for the programmer. A cool tip is to create
a function that stores all the model’s distributions in a single place,
like a distribution shelf.

For example, imagine a SimPy model that has 3 processes: one exponential
with mean 10 min, one triangular with parameters (10, 20, 30) min, and
one normal with mean 0 and standard deviation 1 minute. The following
distribution() function stores all random number generators in a single
location:

1 import random
2
3 def distributions(dtype):
4 return {
5 'arrival': random.expovariate(1/10.0),
6 'singing': random.triangular(10, 20, 30),
7 'applause': random.gauss(10, 1),
8 }.get(dtype, 0.0)

The next example tests how to call the function:

1 import random
2
3 def distributions(dtype):
4 return {
5 'arrival': random.expovariate(1/10.0),
6 'singing': random.triangular(10, 20, 30),
7 'applause': random.gauss(10, 1),
8 }.get(dtype, 0.0)
9
10 dtype = 'arrival'
11 print(dtype, distributions(dtype))
12
13 dtype = 'singing'
14 print(dtype, distributions(dtype))
15
16 dtype = 'applause'
17 print(dtype, distributions(dtype))

First Steps in SimPy: creating entities 28

Which produces the output:

1 arrival 6.231712146858156
2 singing 22.192356552471104
3 applause 10.411795571842426

That was our tip of the day!

Feel free to implement random number generation functions to your liking.
Note, and this is important, that practically all your SimPy simulation models
will need this type of function!

Test Your Knowledge

1. Add to the initial program a distribution function as proposed in the
“Tip” section and make the time between successive entity arrivals call
the function to get the correct value.

2. Consider that 50% of the entities generated during the simulation are
female and 50% are male. Modify the program so that it randomly assigns
the gender of customers. Do this assignment inside the distribution
function already created.

Creating, occupying and releasing
resources
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Creating

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Occupying

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Releasing

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Resource status

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Creating, occupying and releasing resources 30

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en

Putting it all together in an example:
the M/M/1 queue
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Entity arrival generation

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Performing service at the server

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

An alternative representation for occupying and
releasing resources

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Putting it all together in an example: the M/M/1 queue 32

Solution to Challenges 4, 5 and 6

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Test Your Knowledge

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Attributes and variables: differences in
SimPy
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Attributes in object‐oriented models

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Attributes and variables: differences in SimPy 34

Solution to Challenges 7 and 8

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Test Your Knowledge

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Environments: controlling the
simulation
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Execution control with env.run(until=end_of_simulation)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Stop by execution of all scheduled processes

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Stop by end of specific process execution with
env.run(until=process)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Step‐by‐step simulation: peek & step

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Environments: controlling the simulation 36

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en

Environments: controlling the simulation 37

Solution to Challenges 9 and 10

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en

Other types of resources: with priority
and preemptive
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Resources with priority: PriorityResource

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Resources that can be interrupted: PreemptiveResource

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Other types of resources: with priority and preemptive 39

Solution to Challenges 11 and 12

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en

Process interruptions: simpy.Interrupt
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Creating equipment breakdowns

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Interrupting a process without capture by try…except

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Process interruptions: simpy.Interrupt 41

Solution to Challenges 13 and 14

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Test Your Knowledge

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Storage and selection of specific
objects with Store, FilterStore and
PriorityStore
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Building a set of objects with Store

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Selecting a specific object with FilterStore()

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Creating a Store with priority: PriorityStore

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Storage and selection of specific objects with Store, FilterStore and PriorityS-
tore

43

Solution to Challenges 15 and 16

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Test Your Knowledge

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Filling or emptying boxes, tanks, stocks
or objects with Container()
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Filling my container yield myContainer.put(quantity)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Emptying my container: yield myContainer.get(quantity)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Creating a sensor for the current container level

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Filling or emptying boxes, tanks, stocks or objects with Container() 45

Solution to Challenges 17 and 18

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Test Your Knowledge

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Creating batches (or grouping) entities
during simulation
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

A tactic for batch grouping using Container

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Grouping batches by entity attribute using FilterStore

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Creating batches (or grouping) entities during simulation 47

Solution to Challenges 19 and 20

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Test Your Knowledge

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Creating, manipulating and triggering
events with event()
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Creating an isolated event with event()

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Creating, manipulating and triggering events with event() 49

Solution to Challenges 21 and 22

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Test Your Knowledge

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Waiting for multiple events at the same
time with AnyOf and AllOf
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Waiting until at least one event finishes with AnyOf

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Waiting for all events with AllOf

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Better understanding the outputs of AllOf and AnyOf
commands

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Waiting for multiple events at the same time with AnyOf and AllOf 51

Solution to Challenges 23 and 24

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Test Your Knowledge

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Useful properties of events
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Useful properties of events 53

Solution to Challenge 25

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Test Your Knowledge

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Adding callbacks to events
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Every process is an event

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Adding callbacks to events 55

Solution to Challenge 26

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Test Your Knowledge

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Event interruptions
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Interrupting an event with the interrupt method

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Interruption control method 1: try…except exception logic

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Interruption control method 2: changing the defused attribute

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Interrupting an event with the fail method

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

What are generator functions? (or how
SimPy works) ‐ Part I
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Iterator

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Generator functions

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

What are generator functions? (or how
SimPy works?) ‐ Part II
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

SimPy vs. generator functions

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Agent‐Based Simulation using SimPy
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

How to build an agent simulation model: basic steps

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Agent‐based epidemic model: the SIR model1

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Modeling the problem in SimPy

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Library import

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Input parameters and global variables

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

1Based on: Borshchev, A. and Grigoryev, Ilya. The Big Book of Simulation Modeling. Multi-
method modeling with AnyLogic 8. AnyLogic North America. 2020.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Agent-Based Simulation using SimPy 60

Agent constructor

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Initialization

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Sending and receiving messages

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Infection process

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Incubation process

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Monitoring and displaying graphs

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Execution (phew!)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Agent-Based Simulation using SimPy 61

Improving simulation code performance

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Creating a mesh of connections between nearest neighbors

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

How to proceed from here

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Agent-Based Simulation using SimPy 62

Concepts from this section

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Challenges

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Agent-Based Simulation using SimPy 63

Solution to Challenges 27 and 28

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Test Your Knowledge

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

Data input and output via spreadsheet
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

Communication with the library

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/simpy_en.

https://leanpub.com/simpy_en
https://leanpub.com/simpy_en

	Table of Contents
	See me, Feel me, README
	Preface
	Why use SimPy?
	Pros and cons
	A brief history of SimPy
	Where to find help about SimPy
	How to use this book

	Installing SimPy
	Step 1: Anaconda, the easy way
	Step 2: Installing Pip (for those who did not install Anaconda)
	Step 3: Installing SimPy
	Step 4: Installing an Integrated Development Environment (IDE)

	It All Depends on Python
	Test Your Python Knowledge: the gambler's ruin problem
	Challenges
	Solution to Challenge 1
	Test Your Knowledge

	First Steps in SimPy: creating entities
	Importing the random and simpy libraries
	Creating a simulation environment
	Creating an arrival generator within the environment
	Creating time intervals with env.timeout(wait_time)
	Running the model for a determined time with env.run(until=simulation_time)
	Concepts from this section
	Challenges
	Solution to Challenges 2 and 3
	Test Your Knowledge

	Creating, occupying and releasing resources
	Creating
	Occupying
	Releasing
	Resource status
	Concepts from this section

	Putting it all together in an example: the M/M/1 queue
	Entity arrival generation
	Performing service at the server
	An alternative representation for occupying and releasing resources
	Concepts from this section
	Challenges
	Solution to Challenges 4, 5 and 6
	Test Your Knowledge

	Attributes and variables: differences in SimPy
	Attributes in object-oriented models
	Concepts from this section
	Challenges
	Solution to Challenges 7 and 8
	Test Your Knowledge

	Environments: controlling the simulation
	Execution control with env.run(until=end_of_simulation)
	Stop by execution of all scheduled processes
	Stop by end of specific process execution with env.run(until=process)
	Step-by-step simulation: peek & step
	Concepts from this section
	Challenges
	Solution to Challenges 9 and 10

	Other types of resources: with priority and preemptive
	Resources with priority: PriorityResource
	Resources that can be interrupted: PreemptiveResource
	Concepts from this section
	Challenges
	Solution to Challenges 11 and 12

	Process interruptions: simpy.Interrupt
	Creating equipment breakdowns
	Interrupting a process without capture by try…except
	Concepts from this section
	Challenges
	Solution to Challenges 13 and 14
	Test Your Knowledge

	Storage and selection of specific objects with Store, FilterStore and PriorityStore
	Building a set of objects with Store
	Selecting a specific object with FilterStore()
	Creating a Store with priority: PriorityStore
	Concepts from this section
	Challenges
	Solution to Challenges 15 and 16
	Test Your Knowledge

	Filling or emptying boxes, tanks, stocks or objects with Container()
	Filling my container yield myContainer.put(quantity)
	Emptying my container: yield myContainer.get(quantity)
	Creating a sensor for the current container level
	Concepts from this section
	Challenges
	Solution to Challenges 17 and 18
	Test Your Knowledge

	Creating batches (or grouping) entities during simulation
	A tactic for batch grouping using Container
	Grouping batches by entity attribute using FilterStore
	Challenges
	Solution to Challenges 19 and 20
	Test Your Knowledge

	Creating, manipulating and triggering events with event()
	Creating an isolated event with event()
	Concepts from this section
	Challenges
	Solution to Challenges 21 and 22
	Test Your Knowledge

	Waiting for multiple events at the same time with AnyOf and AllOf
	Waiting until at least one event finishes with AnyOf
	Waiting for all events with AllOf
	Better understanding the outputs of AllOf and AnyOf commands
	Concepts from this section
	Challenges
	Solution to Challenges 23 and 24
	Test Your Knowledge

	Useful properties of events
	Concepts from this section
	Challenges
	Solution to Challenge 25
	Test Your Knowledge

	Adding callbacks to events
	Every process is an event
	Concepts from this section
	Challenges
	Solution to Challenge 26
	Test Your Knowledge

	Event interruptions
	Interrupting an event with the interrupt method
	Interrupting an event with the fail method

	What are generator functions? (or how SimPy works) - Part I
	Iterator
	Generator functions

	What are generator functions? (or how SimPy works?) - Part II
	SimPy vs. generator functions

	Agent-Based Simulation using SimPy
	How to build an agent simulation model: basic steps
	Agent-based epidemic model: the SIR model
	Modeling the problem in SimPy
	Improving simulation code performance
	How to proceed from here
	Concepts from this section
	Challenges
	Solution to Challenges 27 and 28
	Test Your Knowledge

	Data input and output via spreadsheet
	Communication with the library

