

 SimPy: Simulation in Python

 Afonso C. Medina

 SimPy: Simulation in Python

 Afonso C. Medina

 This book is available at https://leanpub.com/simpy_en

 This version was published on 2025-12-01

 [image: publisher's logo]

 * * * * *

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

 © 2025 Afonso C. Medina

Table of Contents
	
		
	
	
	
	

		
	
	
	

		
	
	
	

		
	
	
	
	
	
	
	
	

		
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	

		
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	

		
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	

		
	
	
	
	

		
	

		
	

		

		
	
	
	
	
	
	
	
	

		

See me, Feel me, README

This book was conceived as an introduction to the SimPy library (Simulation in Python) for building discrete event simulation models in Python. It is the product of the work of someone who researches, teaches and professionally uses simulation tools in their daily work.

This is a work in development on the Leanpub platform. This means that the material is updated periodically, whether for corrections, improvements or additions of new content.

Intentionally, the book is divided into short sections, emphasizing one concept at a time, facilitating the learning process and quick reference material searches.

[image: “PsychedelicSimpy!”]
Figure 1. “PsychedelicSimpy!”

Before proceeding, a small notice:

The work assumes that the reader has knowledge of Discrete Event Modeling and Simulation, is taking a course on the subject, or is reading the prestigious book Modeling and Simulation of Discrete Events (Chwif & Medina).

Therefore, the book is not intended as a reference source on systems modeling methodologies, but rather, a book about one of the most fascinating languages available for building simulation models.

To the dear reader who begins their navigation here, a suggestion: visualize and reflect on a simulation project you would like to develop in SimPy and, with each section of the book completed, try to develop your own project in parallel in harmony with the learned content.

Bon voyage!

Afonso C. Medina

* * *

UPDATE

Current version: 02/2025

What’s new:

	
Text corrections

	
Machine and laundry figures

In development:

	
Optimization

	
Output statistics

To do:

	
AI applications

	
Communication with spreadsheets/txt

	
Final Code Review

	
Final Text Review

Preface

This book was written with compact sections in short texts, so that the reader, at each section, has a clear view of the content presented, building knowledge in a solid way and respecting their personal learning curve.

SimPy (Simulation in Python) is a framework for building discrete event simulation models in Python, distributed under the MIT license. It differs from commercial packages usually used in discrete event simulation, as it is not an application with ready-made objects that can be easily connected by simple mouse clicks. With SimPy, it is up to the user to build a Python computer program that represents their model. Essentially, SimPy is a command library that gives Python the power to build discrete event models.

With SimPy, you can build, in addition to discrete simulation models, real-time simulation models, agent-based models, and even continuous simulation models. In fact, as the reader will notice throughout this text, these possibilities are more associated with Python than with the resources provided by SimPy itself.

Why use SimPy?

Perhaps the correct question is: “why use Python?”

Python is today, perhaps, the most widely used language in the scientific community, and a brief search on the Internet will suggest articles, posts, and endless discussions about the reasons for all this success. I would summarize Python’s success in 3 major reasons:

	
Ease of coding. Engineers, mathematicians, and researchers in general want to think about the problem, not so much about the language, and Python delivers on its promise when it comes to ease. If it is easy to code, it is even easier to read and interpret code written in Python;

	
Libraries! Libraries! An unbelievable number of libraries (particularly for the scientific field) is available to the programmer (and researcher).

	
Scripts. The functionality of working with scripts1 or small pieces of interpreted code (basically, Python is a “scripting language”) drastically reduces development time and language learning.

Furthermore, SimPy, when compared to commercial packages, is free–which in itself is a great advantage in a market where software is priced starting from thousands of dollars–and quite flexible, in the sense that it is not limited only to existing modules.

From a functional standpoint, SimPy presents itself as a Python library, and this means that a simulation model developed with it will have at its disposal everything good that exists for those who program in Python: the code is easy to read (and develop), the model can be distributed as a package (without the need for the end user to install Python to run it), in addition to the various statistics and optimization libraries available in Python, which greatly expand the application horizon of the models.

This availability of libraries, as well as being free software, makes SimPy particularly interesting for those who are developing their academic research in the area of simulation. Your model will likely be better documented and therefore easier to understand, enhancing the dissemination of your research results in dissertations, conferences, and scientific articles.

Pros and cons

Pros:

	
Open source and free (MIT license);

	
Various optimization, mathematical, and statistical library functions can be incorporated into the model;

	
Allows programming of sophisticated logic, relying on Python (and its libraries);

	
Active community of developers and users that keeps the library up to date.

Cons:

	
Performance: although Python’s performance improvement with each new version is notable, SimPy is a simulation library, that is: it belongs to a class of applications that is quite demanding in computational terms. So, don’t count on processing times comparable to those of commercial packages, such as AnyLogic or Simul8, because it won’t be;

	
Lack of animation tools;

	
Need to program each process of the model;

	
Requires prior knowledge of Python;

	
Does not include a visual development environment.

A brief history of SimPy

SimPy emerged in 2002 based on the combination of ideas from Simscript and the Simula family of languages. In context, it combines SiPy, a package developed by Klaus Muller based on Simula, with SimPy, developed by Tony Vignaux and Chang Chui and based on another language, Simscript.

Perhaps what best symbolizes the genesis of SimPy is Prof. Klaus Muller’s decision to use generators or generator functions in building the SiPy package. When the two original projects were merged into SimPy as we know it today, the trio decided to follow the path of generators, until then a welcome novelty in Python 2.2 (we are still in 2002, folks!).

In its infancy, SimPy was used in introductory simulation courses and, gradually, it began to attract the interest of researchers and professionals around the world. Starting from version 3.0, SimPy, already counting with a larger number of developers, was completely rewritten and its importance in the simulation world can be measured by the countless papers published in specialized conferences and journals, as well as its reimplementation in other languages, such as: C# (Sim#), Julia (ConcurrentSim), and R (simmer).

Where to find help about SimPy

There is a variety of videos and tutorials available on the Internet, but three are the reference sources I use most:

	
The project’s own website http://simpy.readthedocs.io, with examples and a detailed description of the Application Programming Interface (API);

	
The user mailing list is quite active, with well-crafted answers;

	
Stack Overflow has a reasonable number of questions and examples, but be careful, as much of the material still refers to the old version 2 of SimPy, quite different from version 3, the basis of this work.

How to use this book

This text was planned in a compact section format, so that they are short and didactic–with the goal that each section does not go much beyond 500 words. Each chapter presents a new topic through one or more practical examples. Following that, complementary challenges are proposed so that the reader advances their knowledge by practicing on the proposed example itself.

Like every book that introduces a new programming language, the ideal is for the reader to practice the examples by rewriting the code. Copying and pasting ready-made code from the text will make you a Jedi master at using the keyboard and mouse for copying and pasting texts, but it won’t teach you to program in Python or SimPy. So, my suggestion is that the reader reads each example presented and rewrites it again. Typing errors, unexpected bugs, and doubts will arise that, if overcome in the code review, will indeed make the reader a Jedi master of simulation in Python.

This is the first edition of a book about a language that has been attracting increasing interest in recent years. Naturally, the increase in users–and it is hoped that this book will contribute to this–will also cause the emergence of more knowledge, more creative solutions that should be incorporated into this book in future revisions. In fact, this text is already an evolution of the material I made available for some years as a tutorial on gitBook.

Found an error or want to send a suggestion for improvement? Please send an email to: livrosimulacao@gmail.com.

The plan proposed by this text is to follow this sequence (under permanent revision):

	
Introduction to SimPy;

	
Package installation;

	
Basic concepts: entities, resources, queues, etc.;

	
Advanced concepts: resource priority, resource sharing, queue control, resource Store, etc.;

	
Experimentation (replications, warm-up time, confidence intervals, etc.);

	
Agent simulation and optimization;

	
AI applications.

From time to time, if it doesn’t rain and isn’t too sunny, the author commits to updating to new versions of SimPy and Python.

	A script is a sequence of commands executed inside some file through an interpreter. It is called a script because they are read and interpreted by Python, line by line.↩︎

Installing SimPy

Our journey begins with a brief installation tutorial for some programs and libraries useful for SimPy. We have selected the following packages to start the tutorial:

	
Python 3.4

	
Pip

	
SimPy 3.0.10

	
NumPy

A brief preamble on our choices: at the time this tutorial was written, Python was at version 3.5.0, but Anaconda (explained below) still provided version 3.4. If you already have an installation with Python 3.5 or later, you can install SimPy without problems, as it is compatible with the most recent versions of Python.

Pip is a library installer and makes the programmer’s life much easier.

SimPy 3.0.10 is the most current version at the time this tutorial is written and brings major changes compared to version 2.0.

	[image: An icon indicating this blurb contains a warning]	
There is vast material available on the Internet for SimPy. However, special care must be taken: much of this material refers to version 2, which has critical differences from the current version. This text refers to version 3 onwards.

As for NumPy, let’s take the opportunity to install it, as it will be very useful in our simulation models. Basically, NumPy adds a data type (n-dimensional array) that facilitates coding simulation models, particularly in analyzing output data from the model.

Step 1: Anaconda, the easy way

	[image: An icon indicating this blurb contains a warning]	

	
If you already have Python and Pip installed on your machine, skip directly to Step 3: “Installing SimPy”;

	
If you already have Python installed, but not Pip (those with Python +3.4 already have Pip installed), skip to Step 2: “Installing Pip”

If this is your first time with Python+SimPy, suggestion: don’t waste time and install the free Anaconda distribution.

[image:]

Through Anaconda, everything is easier, cleaner, and the process already installs more than 200 packages verified for all sorts of compatibility, so you don’t have any work. (Among the installed packages is NumPy which, as explained, will be very useful in developing your models).

At the time of writing this book, they provided Python versions 2.7, 3.4, and 3.5 (in 32 and 64 bit) on the downloads page.

Download the file with the desired version (once again: SimPy runs on both versions) and follow the installer instructions.

Step 2: Installing Pip (for those who did not install Anaconda)

	[image: An icon indicating this blurb contains a warning]	
If the installed Python version is +3.4 or you did the previous step, you can skip this step, as pip has already been installed on your computer.

	
Download the get-pip.py package
through this link, saving it to a convenient working folder.

	
Run python get-pip.py
in the chosen working folder (note the message at the end, confirming that pip was successfully installed).

[image:]

Step 3: Installing SimPy

Installing SimPy is easy!

Type in a cmd window:

1 pip install -U simpy

[image:]

The message “Successfully installed simpy-3.0.10” indicates that you are ready for SimPy. But before that, I have a suggestion for you:

Step 4: Installing an Integrated Development Environment (IDE)

IDEs, for those who don’t know, are true code editing interfaces that make the programmer’s life easier. They usually have an advanced text editor, error checking features, monitors for code variable states, step-by-step processing commands, etc.

If you installed Anaconda, then you already got a good one: Spyder, which is already configured and ready for use. Usually (depending on your Operating System version) it appears as an icon on the desktop. If you can’t find the icon, search for Spyder on your computer (notice the “y” trick) or type the command spyder in a cmd window.

Once open, Spyder looks like the following figure:

[image:]

Another very good IDE is Wing IDE 101 which is free (and also has a paid professional version):

[image:]

	[image: An icon indicating this blurb contains a warning]	
If you installed Anaconda and intend to use an IDE other than Spyder, follow the specific configuration instructions at this link: Using IDEs.

If you’ve made it this far and have everything installed, the next step is to really get started with SimPy!

In the next section, of course. We need a break for a cup of tea after so many installed bytes.

[image: “The Mad Hatter, a character from Alice’s Adventures in Wonderland (1865) by John Tenniel”]
Figure 2. “The Mad Hatter, a character from Alice’s Adventures in Wonderland (1865) by John Tenniel”

It All Depends on Python

Before we start with SimPy, we need to make sure you have some minimum knowledge of Python. If you feel your knowledge of the language is reasonable, the recommendation is that you skip to the next section, “Test Your Python Knowledge”.

If you have never had contact with the language, I warn you that I do not intend to build an “introduction” or “tutorial” for Python, simply because that is what is most available on the internet.

Look for a quick tutorial (there are tutorials of up to 10 minutes!) and get to work! Nothing easier than learning the basics of Python.

Suggestions:

	
Sololearn: one of the fastest and coolest ways to learn Python (and other languages). There are several courses, divided by levels, that can even be followed on your phone (yes, I learned Java traveling on the blue line of the SP subway).

	
An Introduction to Interactive Programming in Python (Part 1): Coursera has a course that will teach you to create programs that interact with the user, that is: little games 😂. I took it, it’s good!

	
Summerfield, Mark. Programming in Python 3: a complete introduction. Addison-Wesley Professional. 2012: I always have this excellent Python book on my desk. It can be found on Amazon.

After completing the tutorial, course, or even learning everything on your own, test your knowledge to verify if you know the basic necessary Python to start with SimPy.

Test Your Python Knowledge: the gambler’s ruin problem

The gambler’s ruin problem is a classic problem proposed by Pascal in a letter to Fermat in 1656. The version presented here is a simplification, aimed at evaluating your Python knowledge.

Challenges

	[image: An icon of a laptop-code]	
Challenge 1: two gamblers start a heads or tails game in which each of them always bets $1 on the same side of the coin. The winner takes the total bet ($2). Each player initially has $5 available to bet. The game ends when one of the players reaches ruin and has no more money to bet.

Build three functions:

	
transfer(winner, looser, bankroll, tossCount): transfers the value from the losing player to the winner and prints the winner’s name on the screen;

	
coinToss(bankroll, tossCount): draws the winner of heads or tails;

	
run2Ruin(bankroll): maintains a permanent loop until one of the players reaches ruin

Test the program with the suggested parameters (you can use the following code as a template for your program):

 1 import random # random number generator
 2
 3 names = ['Chewbacca', 'R2D2'] # players
 4
 5 def transfer(winner, looser, bankroll, tossCount):
 6 # function that transfers money from winner to looser
 7 # prints the toss winner and each player's bankroll
 8 pass
 9
10 def coinToss(bankroll, tossCount):
11 # function that tosses the coin and calls transfer
12 pass
13
14 def run2Ruin(bankroll):
15 # function that runs the game until one player's ruin
16 pass
17
18 bankroll = [5, 5] # money available for each player
19 run2Ruin(bankroll) # start the game

Now it’s up to you: complete the previous code and find out if you are ready to start with SimPy!
(The next section presents a possible answer to the challenge and, following that, everything finally begins.)

Solution to Challenge 1

Challenge 1: two gamblers start a heads or tails game in which each of them always bets $1 on the same side of the coin. The winner takes the total bet ($2). Each player initially has $5 available to bet. The game ends when one of the players reaches ruin and has no more money to bet.

The following code is a possible solution to challenge 1 from the previous section. Naturally, it is possible to make it clearer, more efficient, obscure, evil, elegant, faster or slower, like any programming code.
The important thing is that if you did something that works, I believe it is enough to start with SimPy.

 1 import random # random number generator
 2
 3 names = ['Chewbacca', 'R2D2'] # players
 4
 5 def transfer(winner, looser, bankroll, tossCount):
 6 # function that transfers money from winner to looser
 7 # prints the toss winner and each player's bankroll
 8 bankroll[winner] += 1
 9 bankroll[looser] -= 1
10 print("\nToss: %d\tWinner: %s" % (tossCount, names[winner]))
11 print("%s has: $%d and %s has: $%d"
12 % (names[0], bankroll[0], names[1], bankroll[1]))
13
14 def coinToss(bankroll, tossCount):
15 # function that tosses the coin and calls transfer
16 if random.uniform(0, 1) < 0.5:
17 transfer(1, 0, bankroll, tossCount)
18 else:
19 transfer(0, 1, bankroll, tossCount)
20
21 def run2Ruin(bankroll):
22 # function that runs the game until one player's ruin
23 tossCount = 0 # toss counter
24 while bankroll[0] > 0 and bankroll[1] > 0:
25 tossCount += 1
26 coinToss(bankroll,tossCount)
27 winner = bankroll[1] > bankroll[0]
28 print("\n%s won after %d tosses, game over!"
29 % (names[winner], tossCount))
30
31 bankroll = [5, 5] # money available for each player
32 run2Ruin(bankroll) # start the game

On my computer, the previous problem provides the following result:

 1 Toss: 1 Winner: Chewbacca
 2 Chewbacca has: $6 and R2D2 has: $4
 3
 4 Toss: 2 Winner: Chewbacca
 5 Chewbacca has: $7 and R2D2 has: $3
 6
 7 Toss: 3 Winner: Chewbacca
 8 Chewbacca has: $8 and R2D2 has: $2
 9
10 Toss: 4 Winner: Chewbacca
11 Chewbacca has: $9 and R2D2 has: $1
12
13 Toss: 5 Winner: Chewbacca
14 Chewbacca has: $10 and R2D2 has: $0
15
16 Chewbacca won after 5 tosses, game over!

Note that the result provided should be different on your computer, just as it changes with each new run of the program. For the results between my computer and yours to be similar, we need to ensure that the sequence of random numbers on both computers is the same. This is possible with the random.seed(seed) command, which establishes a fixed initial value for the seed of the generated random number sequence (see item 1 in the “Test Your Knowledge” section below).

Test Your Knowledge

	
Each time you run the program, the random.uniform(0,1) function draws a new random number between 0 and 1, making the program result unpredictable. Use the random.seed(seed) function to make the generated sequence of random numbers always the same.

	
Add a loop to the main program so that the game can be repeated up to a predefined number of times. Simulate 100 games and check how many games each player won.

	
The Gambler’s Ruin Problem is commonly applied in situations of gamblers playing against Casinos. In this situation, the gambler has a finite amount of money and plays against another gambler, the Casino, with a very large or infinite amount. Consider that R2D2 is a Casino and therefore has an infinite bankroll, while Chewbacca’s is limited to $5. How would you use the built simulator to demonstrate that the probability of ruin for gambler Chewbacca is equal to 1? (Note that the statement is true even considering that the game is fair and there is no fee charged by the Casino).

First Steps in SimPy: creating entities

Something elementary in any simulation package is a function to create entities within the model. It is the “Hello World!” of simulation packages.
Your first mission, should you choose to accept it, will be to build a function that generates entities with exponentially distributed inter-arrival times, with a mean of 2 min. Simulate the system for 10 minutes only.

Importing the random and simpy libraries

Initially, two Python libraries will be needed: random – the random number generation library – and simpy, which is SimPy itself.

Our first simulation model in SimPy begins with importing the respective libraries of interest:

1 import random # random number generator
2 import simpy # simulation library
3
4 random.seed(1000) # random number generator seed

Note the final line random.seed(1000). It ensures that the random number generation will always start from the same seed, so that the sequence of random numbers generated in each program execution will always be the same, facilitating the program verification process.

Creating a simulation environment

Everything in SimPy revolves around events generated by functions and all events must occur in an environment, or a simulation “environment” created from the simpy.Environment() function.

Thus, our program must contain at least one call to the simpy.Environment() function, creating an environment “env”:

1 import random # random number generator
2 import simpy # simulation library
3
4 random.seed(1000) # random number generator seed
5 env = simpy.Environment() # creates the model environment in the variable env

If you run the previous program, nothing happens. At the moment, you have only created an environment, but you have not created any process, therefore, there is no event yet to be simulated by SimPy.

Creating an arrival generator within the environment

Let’s write a function generateArrivals() that creates entities in the system for the duration of the simulation. Our first entity generator will have three input parameters: the environment, an attribute that will represent the entity name, and the desired rate of entity arrivals per unit of time. For SimPy, this is equivalent to saying that you will build an event generator function within the created environment. In this case, the generated events will be the arrivals of entities in the system.

Thus, our code begins to take shape:

1 import random # random number generator
2 import simpy # simulation library
3
4 def generateArrivals(env, name, rate):
5 # function that creates entity arrivals in the system
6 pass
7
8 random.seed(1000) # random number generator seed
9 env = simpy.Environment() # creates the model environment

We need to inform SimPy that the generateArrivals() function is, in fact, a process that should be executed throughout the entire simulation. A process is created within the environment by the command:

1 env.process(function_that_generates_the_process)

The process call is always made after creating the env, so just add a new line to our code:

 1 import random # random number generator
 2 import simpy # simulation library
 3
 4 def generateArrivals(env, name, rate):
 5 # function that creates entity arrivals in the system
 6 pass
 7
 8 random.seed(1000) # random number generator seed
 9 env = simpy.Environment() # creates the model environment
10 # creates the arrival process
11 env.process(generateArrivals(env, "Customer", 2)))

Creating time intervals with env.timeout(wait_time)

Initially, we need to generate random time intervals, exponentially distributed, to represent the times between successive entity arrivals. To generate arrivals with exponential intervals, we will use the random library, well detailed in its documentation, which has the function:

1 random.expovariate(lambd)

Where lambd is the rate of event occurrence or, mathematically, the inverse of the mean time between successive events. In this case, if we want arrivals to occur at mean intervals of 2 min, the function would be:

1 random.expovariate(lambd=1.0/2.0)

The previous line is basically our exponentially distributed random number generator. The next step will be to inform SimPy that we want our entities appearing in the system according to the defined distribution. This is done by calling the reserved word yield with the SimPy function env.timeout(interval), which is nothing more than a function that causes a time delay, a delay in time within the created environment env:

1 yield env.timeout(random.expovariate(1.0/2.0))

In the previous line of code we are executing yield env.timeout(0.5) so that the model delays the process by a random time generated by the random.expovariate(0.5) function.

In due time, we will discuss more deeply the role of the word yield (spoiler: it is not from SimPy, but originally from Python itself). For now, consider that it is just a way to create events within the env and that, if a function represents a process, it must necessarily contain the command yield *something*, as well as the respective environment of the process.

	[image: An icon indicating this blurb contains a warning]	
A function created in Python (with the def command) is only treated as a process or event generator for SimPy if it contains at least one line of code with the yield command. Later, the section “What are generator functions” explains in more detail how yield works.

Putting everything together in the generateArrivals() function, we have:

 1 import random # random number generator
 2 import simpy # simulation library
 3
 4 def generateArrivals(env, name, rate):
 5 # function that creates entity arrivals in the system
 6 arrivalCount = 0
 7 while True:
 8 yield env.timeout(random.expovariate(1.0/rate))
 9 arrivalCount += 1
10 print("%s %i arrives at: %.1f " % (name, arrivalCount, env.now))
11
12 random.seed(1000) # random number generator seed
13 env = simpy.Environment() # creates the model environment
14
15 # creates the arrival process
16 env.process(generateArrivals(env, "Customer", 2)))

The code should be self-explanatory: the while loop is infinite for the duration of the simulation; a counter, arrivalCount, stores the total number of generated entities and the print function prints the arrival time of each customer on the screen. Note that, within the print, there is a call to the current simulation time env.now.
Finally, a call to the random.seed() function ensures that the random numbers in each program execution will be the same.

Running the model for a determined time with env.run(until=simulation_time)

If you run the previous code, nothing happens again, because we still need to inform SimPy what the simulation duration time is. This is done by the command:

1 env.run(until=simulation_time)

In the proposed example, the simulation time should be 10 min, as represented in line 15 of the following code:

 1 import random # random number generator
 2 import simpy # simulation library
 3
 4 def generateArrivals(env, name, rate):
 5 # function that creates entity arrivals in the system
 6 arrivalCount = 0
 7 while True:
 8 yield env.timeout(random.expovariate(1/rate))
 9 arrivalCount += 1
10 print("%s %i arrives at: %.1f " % (name, arrivalCount, env.now))
11
12 random.seed(1000) # random number generator seed
13 env = simpy.Environment() # creates the model environment
14
15 # creates the arrival process
16 env.process(generateArrivals(env, "Customer", 2))
17
18 # runs the simulation for 10 time units
19 env.run(until=10)

When running the program, we get the output:

1 Customer 1 arrives at: 3.0
2 Customer 2 arrives at: 5.2
3 Customer 3 arrives at: 5.4
4 Customer 4 arrives at: 6.3
5 Customer 5 arrives at: 7.6
6 Customer 6 arrives at: 9.1

Now we’re talking!

Note that env.process(generateArrivals(env)) is a command that turns the generateArrivals() function into a process or an event generator within the Environment env. This process only starts being executed in the next line, when env.run(until=10) informs SimPy that every process belonging to env should be executed for a simulation time equal to 10 minutes.

[image: Representation of arrivals in the queue.]
Figure 3. Representation of arrivals in the queue.

Concepts from this section

	Content
	Description

	env = simpy.Environment()
	creates a simulation Environment

	random.expovariate(lambd)
	generates exponentially distributed random numbers, with occurrence rate (events/time unit) equal to lambd

	yield env.timeout(time)
	generates a delay given by time

	random.seed(seed)
	sets the random seed generator to the same value for each new simulation

	env.process(generateArrivals(env))
	starts the generateArrivals function as a process in env

	env.run(until=simTime)
	executes the simulation (executes all processes created in env) for time simTime

	env.now
	returns the current instant of the simulation

Challenges

	[image: An icon of a laptop-code]	
Challenge 2: it is common for entity creation commands in proprietary software to have the option to limit the maximum number of entities generated during the simulation.
Modify the generateArrivals function so that it receives maxArrivals as a parameter and limits the creation of entities to this number.

	[image: An icon of a laptop-code]	
Challenge 3: modify the generateArrivals function so that the inter-arrival times are distributed according to a triangular distribution with mode 1, minimum value 0.1 and maximum value 1.1.

Solution to Challenges 2 and 3

Challenge 2: it is common for entity creation commands in proprietary software to have the option to limit the maximum number of entities generated during the simulation.
Modify the generateArrivals function so that it receives maxArrivals as a parameter and limits the creation of entities to this number.

In this case, the Python script is self-explanatory, just note that I limited the number of arrivals to 5 and did this before calling the process generated by the generateArrivals() function:

 1 import random # random number generator
 2 import simpy # simulation library
 3
 4 def generateArrivals(env, name, rate, maxArrivals):
 5 # function that creates entity arrivals in the system
 6 arrivalCount = 0
 7 while (arrivalCount < maxArrivals):
 8 yield env.timeout(random.expovariate(1/rate))
 9 arrivalCount += 1
10 print("%s %i arrives at: %.1f " % (name, arrivalCount, env.now))
11
12 random.seed(1000) # random number generator seed
13 env = simpy.Environment() # creates the model environment
14 # creates the arrival process
15 env.process(generateArrivals(env, "Customer", 2, 5))
16 env.run(until=10) # runs the simulation for 10 time units

Challenge 3: modify the generateArrivals function so that the inter-arrival times are distributed according to a triangular distribution with mode 1, minimum value 0.1 and maximum value 1.1.

In this case, we need to check the random library documentation to see what our options are. The following table summarizes the available distributions:

	Function
	Distribution

	random.random()
	generates random numbers in the interval [0.0, 1.0)

	random.uniform(a, b)
	uniform in the interval [a, b]

	random.triangular(low, high, mode)
	triangular with minimum value low, maximum value high and mode mode

	random.betavariate(alpha, beta)
	beta with parameters alpha and beta

	random.expovariate(lambd)
	exponential with mean 1/lambd

	random.gammavariate(alpha, beta)
	gamma with parameters alpha and beta

	random.gauss(mu, sigma)
	normal with mean mu and standard deviation sigma

	random.lognormvariate(mu, sigma)
	lognormal with mean mu and standard deviation sigma

	random.normalvariate(mu, sigma)
	equivalent to random.gauss, but slightly slower

	random.vonmisesvariate(mu, kappa)
	von Mises distribution with parameters mu and kappa

	random.paretovariate(alpha)
	pareto with parameter alpha

	random.weibullvariate(alpha, beta)
	weibull with parameters alpha and beta

The NumPy library, which we will see in due time, has more options for statistical distributions. For now, challenge 3 can be solved literally:

 1 import random # random number generator
 2 import simpy # simulation library
 3
 4 def generateArrivals(env, name, maxArrivals):
 5 # function that creates entity arrivals in the system
 6 arrivalCount = 0
 7 while (arrivalCount < maxArrivals):
 8 yield env.timeout(random.triangular(0.1,1,1.1))
 9 arrivalCount += 1
10 print("%s %i arrives at: %.1f " % (name, arrivalCount, env.now))
11
12 random.seed(1000) # random number generator seed
13 env = simpy.Environment() # creates the model environment
14 # creates the arrival process
15 env.process(generateArrivals(env, "Customer", 5))
16 env.run(until=10)

	[image: An icon of a key]	
Tip: simulation models, with many arrival and service processes, tend to use several different probability distribution functions, making things a bit confusing for the programmer. A cool tip is to create a function that stores all the model’s distributions in a single place, like a distribution shelf.

For example, imagine a SimPy model that has 3 processes: one exponential with mean 10 min, one triangular with parameters (10, 20, 30) min, and one normal with mean 0 and standard deviation 1 minute. The following distribution() function stores all random number generators in a single location:

1 import random
2
3 def distributions(dtype):
4 return {
5 'arrival': random.expovariate(1/10.0),
6 'singing': random.triangular(10, 20, 30),
7 'applause': random.gauss(10, 1),
8 }.get(dtype, 0.0)

The next example tests how to call the function:

 1 import random
 2
 3 def distributions(dtype):
 4 return {
 5 'arrival': random.expovariate(1/10.0),
 6 'singing': random.triangular(10, 20, 30),
 7 'applause': random.gauss(10, 1),
 8 }.get(dtype, 0.0)
 9
10 dtype = 'arrival'
11 print(dtype, distributions(dtype))
12
13 dtype = 'singing'
14 print(dtype, distributions(dtype))
15
16 dtype = 'applause'
17 print(dtype, distributions(dtype))

Which produces the output:

1 arrival 6.231712146858156
2 singing 22.192356552471104
3 applause 10.411795571842426

That was our tip of the day!

Feel free to implement random number generation functions to your liking. Note, and this is important, that practically all your SimPy simulation models will need this type of function!

Test Your Knowledge

	
Add to the initial program a distribution function as proposed in the “Tip” section and make the time between successive entity arrivals call the function to get the correct value.

	
Consider that 50% of the entities generated during the simulation are female and 50% are male. Modify the program so that it randomly assigns the gender of customers. Do this assignment inside the distribution function already created.

Creating, occupying and releasing resources
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Creating
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Occupying
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Releasing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Resource status
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Putting it all together in an example: the M/M/1 queue
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Entity arrival generation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Performing service at the server
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

An alternative representation for occupying and releasing resources
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenges 4, 5 and 6
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Test Your Knowledge
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Attributes and variables: differences in SimPy
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Attributes in object-oriented models
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenges 7 and 8
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Test Your Knowledge
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Environments: controlling the simulation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Execution control with env.run(until=end_of_simulation)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Stop by execution of all scheduled processes
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Stop by end of specific process execution with env.run(until=process)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Step-by-step simulation: peek & step
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenges 9 and 10
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Other types of resources: with priority and preemptive
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Resources with priority: PriorityResource
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Resources that can be interrupted: PreemptiveResource
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenges 11 and 12
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Process interruptions: simpy.Interrupt
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Creating equipment breakdowns
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Interrupting a process without capture by try…except
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenges 13 and 14
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Test Your Knowledge
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Storage and selection of specific objects with Store, FilterStore and PriorityStore
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Building a set of objects with Store
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Selecting a specific object with FilterStore()
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Creating a Store with priority: PriorityStore
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenges 15 and 16
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Test Your Knowledge
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Filling or emptying boxes, tanks, stocks or objects with Container()
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Filling my container yield myContainer.put(quantity)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Emptying my container: yield myContainer.get(quantity)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Creating a sensor for the current container level
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenges 17 and 18
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Test Your Knowledge
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Creating batches (or grouping) entities during simulation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

A tactic for batch grouping using Container
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Grouping batches by entity attribute using FilterStore
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenges 19 and 20
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Test Your Knowledge
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Creating, manipulating and triggering events with event()
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Creating an isolated event with event()
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenges 21 and 22
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Test Your Knowledge
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Waiting for multiple events at the same time with AnyOf and AllOf
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Waiting until at least one event finishes with AnyOf
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Waiting for all events with AllOf
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Better understanding the outputs of AllOf and AnyOf commands
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenges 23 and 24
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Test Your Knowledge
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Useful properties of events
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenge 25
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Test Your Knowledge
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Adding callbacks to events
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Every process is an event
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenge 26
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Test Your Knowledge
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Event interruptions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Interrupting an event with the interrupt method
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Interruption control method 1: try…except exception logic
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Interruption control method 2: changing the defused attribute
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Interrupting an event with the fail method
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

What are generator functions? (or how SimPy works) - Part I
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Iterator
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Generator functions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

What are generator functions? (or how SimPy works?) - Part II
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

SimPy vs. generator functions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Agent-Based Simulation using SimPy
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

How to build an agent simulation model: basic steps
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Agent-based epidemic model: the SIR model1
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Modeling the problem in SimPy
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Library import
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Input parameters and global variables
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Agent constructor
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Initialization
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Sending and receiving messages
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Infection process
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Incubation process
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Monitoring and displaying graphs
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Execution (phew!)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Improving simulation code performance
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Creating a mesh of connections between nearest neighbors
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

How to proceed from here
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Concepts from this section
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Challenges
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Solution to Challenges 27 and 28
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Test Your Knowledge
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

	Based on: Borshchev, A. and Grigoryev, Ilya. The Big Book of Simulation Modeling. Multimethod modeling with AnyLogic 8. AnyLogic North America. 2020.↩︎

Data input and output via spreadsheet
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

Communication with the library
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/simpy_en.

EPUB/resources/geraChegadas.png
EXPONENTIAL

-

T=6.3$ T=54S T=5.2¢ T=3.0s

import random
import simpy

random number generator
simulation library

def generateArrivals(env, name, rate):
function that generates entity arrivals in the system
arrivalCount = ©
while True:

yield env.timeout(random.expovariate(l/rate))
arrivalCount += 1
print("%s %l arrives at %.1f

% (name, arrivalCount,

random. seed(1000) # random number generator seed
env = simpy.Environment() # creates the model environment

creates the arrivals process
env.process(generateArrivals(env, "Customer", 2))

runs the simulation for 10 time units
env.run(until=10)

env.now))

:

EPUB/resources/alice_tea.png

EPUB/styles/resources/leanpub_pencil.png

EPUB/styles/resources/leanpub_question-circle.png

EPUB/resources/wing800.png
Flle Edt Souce Debug Tools Window Help
EwEG - LR SNk
Prronioy

<«

v [oebugro | Fyvonshell |

o ot debug, Use o ey or sy, opsens +

] case sensvve [whole words (] in Selection 2.7.9 |Anaconda 2.2.0 (64-bit)| (default, Dec 18 2014, 1
provous| | 8 ot | | Replace | | Replace A Python Type “help”, “copyright”, “credits” or "license”
5>

< I

EPUB/styles/resources/leanpub_warning.png

EPUB/styles/resources/leanpub_comments.png

EPUB/styles/resources/leanpub_laptop-code.png

EPUB/resources/Anaconda_Logo180.png
®

Anhaconda

EPUB/styles/resources/leanpub_bug.png

EPUB/resources/logoSimPyBook282.jpg

EPUB/styles/resources/leanpub_info-circle.png

EPUB/resources/spyder800.png
File Edi Search Souce Run Debug Consoles Tooks View Help
kb oS bia %2 b 8 B A2 ¢ 3 [cusshmooanssybon scps

& | obect nspector
) Sow [cono =] obpa

Spyder - the Scientific PYthon Development EnviRonment [

3 Spyder Editor Soyderis an Tntegrated Development Enviranment (IDE) for scientfic computng using the Python
: S GO

5o ey st e e e e e
SThis s o teporary scrit il SRR

E T el uthored by Hans Fangoh fom the Unerstyof Soutvampron () (e hsorcl
ok or ot cetan.
8

» Outine

» First steps wih Spyder

Object npectr | Varthe rar | i ol
pypon s .
S @oomoeya@ | - E

52) (#SC v.1500 64 bit (WDSA)] A

Type “copyright”, “credits” or "license” for more information.

Ipython 3.0.0 - An enhanced Interactive Python.
Anaconda is brought to you by Continuum Analytics.

Please check out: https//continuum. o/ thanks and
https://binstar.org

: > Introduction and overview of Tython's features.
quickref - Quick reference.

help - Python's own hep systen.

object? _-» Details about 'object’, use ‘object??" for extra
Cansse | sonyies | _yhun cosle

Pemissions ™ End-oflines: G Encocing: -8 Lne: 1 Coumn: 1 Memory 77 %

EPUB/resources/get_pip.png
C: \Users\Public\Documents>python get-pip.py
Collecting pip
Dounloading pip-6.0.8-py2.py3-none-any.whl (1.3HB)
1007 |HHEHEHEHRHERHERRHERNUURNUNRNN | 1 3MB OTKB/s
Collecting setuptools
Downloading setuptools-15.0-py2.py3-none-any.uhl (501kB)
1007 |#HEHSHEHEHEURHURNERHERHENRNAN| SO3KB 201KB/s
Installing collected packages: setuptools, pip

Successfully installed pip-6.0.8 setuptools-15.0

IC:\Users\Public\Documents>_

EPUB/media/resources/publisher-logo.png
[

Leanpub

EPUB/styles/resources/leanpub_key.png

EPUB/resources/pip_install.png
Prompt de Comando

C: \Users\Public>pip install -U simpy
Collecting simpy
Downloading simpy-3.6.7-pu2.py3-none-any.uhl (47kB)
1007 |HHERSHEENEUENERHERHIRNNNANNN | 4OKB 121KB/s
Installing collected packages: simpy

Successfully installed simpy-3..7

C:\Users\Public>

