

 [image: SimPy: Simulação em Python]

 SimPy: Simulação em Python

 Um guia prático

 Afonso C. Medina

 Este livro está disponível em https://leanpub.com/simpy

 Esta versão foi publicada em 2025-07-18

 [image: publisher's logo]

 * * * * *

Dados Internacionais de Catalogação na Publicação (CIP)

(Câmara Brasileira do Livro, SP, Brasil)

Medina, Afonso C.

SimPy [livro eletrônico] : simulação em Python :

um guia prático / Afonso C. Medina.–São Paulo :

Ed. do Autor, 2024.

PDF

ISBN 978-65-01-19235-2

	
Python (Linguagem de programação para

computadores) 2. Simulação computacional I. Título.

24-233532 CDD-005.133

Índices para catálogo sistemático:

	
Python : Desenvolvimento de aplicações Web :

Programação : Processamento de dados 005.133

Eliete Marques da Silva - Bibliotecária - CRB-8/9380

 * * * * *

 © 2025 Afonso C. Medina

 ISBN para versão EPUB: 978-65-01-19235-2

Índice
	
		
	
	
	
	

		
	
	
	

		
	
	
	

		
	
	
	
	
	
	
	
	

		
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	

		
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	

		
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	

		
	
	
	
	

		
	

		
	

		

		
	
	
	
	
	
	
	
	

 Guide

 	
 Cover

1 See me, Fell me, README
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

2 Apresentação
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

2.1 Por que utilizar o SimPy?
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

2.2 Prós e contras
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

2.3 Um breve histórico do SimPy
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

2.4 Onde procurar ajuda sobre o SimPy
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

2.5 Como utilizar este livro
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

3 Instalando o SimPy
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

3.1 Passo 1: Anaconda, the easy way
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

3.2 Passo 2: Instalando o Pip (para quem não instalou o Anaconda)
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

3.3 Passo 3: Instalando o SimPy
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

3.4 Passo 4: Instalando algum Ambiente Integrado de Desenvolvimento (IDE)
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

4 Tudo depende do Python
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

4.1 Teste seus conhecimentos em Python: o problema da ruína do apostador
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

4.2 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

4.3 Solução do desafio 1

Desafio 1: dois apostadores iniciam um jogo de cara ou coroa em que cada um deles aposta $1 sempre em um mesmo lado da moeda. O vencedor leva a aposta total ($2). Cada jogador tem inicialmente $5 disponíveis para apostar. O jogo termina quando um dos jogadores atinge a ruína e não tem mais dinheiro para apostar.

O código a seguir é uma possível solução para o desafio 1 da seção anterior. Naturalmente é possível deixá-lo mais claro, eficiente, obscuro, maligno, elegante, rápido ou lento, como todo código de programação.
O importante é que se você fez alguma que coisa que funcione, acredito que é o suficiente para começar com o SimPy.

 1 import random # gerador de números aleatórios
 2
 3 names = ['Chewbacca', 'R2D2'] # jogadores
 4
 5 def transfer(winner, looser, bankroll, tossCount):
 6 # função que transfere o dinheiro do winner para o looser
 7 # imprime o vencedor do lançamento e o bankroll de cada jogador
 8 bankroll[winner] += 1
 9 bankroll[looser] -= 1
10 print("\nLançamento: %d\tVencedor: %s" % (tossCount, names[winner]))
11 print("%s possui: $%d e %s possui: $%d"
12 % (names[0], bankroll[0], names[1], bankroll[1]))
13
14 def coinToss(bankroll, tossCount):
15 # função que sorteia a moeda e chama a transfer
16 if random.uniform(0, 1) < 0.5:
17 transfer(1, 0, bankroll, tossCount)
18 else:
19 transfer(0, 1, bankroll, tossCount)
20
21 def run2Ruin(bankroll):
22 # função que executa o jogo até a ruina de um dos jogadores
23 tossCount = 0 # contador de lançamentos
24 while bankroll[0] > 0 and bankroll[1] > 0:
25 tossCount += 1
26 coinToss(bankroll,tossCount)
27 winner = bankroll[1] > bankroll[0]
28 print("\n%s venceu depois de %d lançamentos, fim de jogo!"
29 % (names[winner], tossCount))
30
31 bankroll = [5, 5] # dinheiro disponível para cada jogador
32 run2Ruin(bankroll) # inicia o jogo

No meu computador, o problema anterior fornece o seguinte resultado:

 1 Lançamento: 1 Vencedor: Chewbacca
 2 Chewbacca possui: $6 e R2D2 possui: $4
 3
 4 Lançamento: 2 Vencedor: Chewbacca
 5 Chewbacca possui: $7 e R2D2 possui: $3
 6
 7 Lançamento: 3 Vencedor: Chewbacca
 8 Chewbacca possui: $8 e R2D2 possui: $2
 9
10 Lançamento: 4 Vencedor: Chewbacca
11 Chewbacca possui: $9 e R2D2 possui: $1
12
13 Lançamento: 5 Vencedor: Chewbacca
14 Chewbacca possui: $10 e R2D2 possui: $0
15
16 Chewbacca venceu depois de 5 lançamentos, fim de jogo!

Note que o resultado fornecido deve ser diferente em seu computador, assim como ele se modifica a cada nova rodada no programa. Para que os resultados entre o meu computador e o seu sejam semelhantes, precisamos garantir que a sequência de números aleatórios nos dois computadores sejam as mesmas. Isso é possível com o comando random.seed(semente), que estabelece um valor inicial fixo para a semente da sequência de números aleatórios gerada (veja o item 1 na seção “Teste seus conhecimentos”, na seção a seguir).

4.4 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

5 Primeiros passos em SimPy: criando entidades

Algo elementar em qualquer pacote de simulação é uma função para criar entidades dentro do modelo. É o “Alô mundo!” dos pacotes de simulação.
Sua primeira missão, caso decida aceitá-la, será construir uma função que gere entidades com intervalos entre chegadas sucessivas exponencialmente distribuídos, com média de 2 min. Simule o sistema por 10 minutos apenas.

5.1 Chamada das bibliotecas random e simpy

Inicialmente, serão necessárias duas bibliotecas do Python: a random – biblioteca de geração de números aleatórios – e a simpy, que é o próprio SimPy.

Nosso primeiro modelo de simulação em SimPy começa com as chamadas das respectivas bibliotecas de interesse:

1 import random # gerador de números aleatórios
2 import simpy # biblioteca de simulação
3
4 random.seed(1000) # semente do gerador de números aleatórios

Note a linha final random.seed(1000). Ela garante que a geração de números aleatórios sempre começará pela mesma semente, de modo que a sequência de números aleatórios gerados a cada execução programa será sempre a mesma, facilitando o processo de verificação do programa.

5.2 Criando um environment de simulação

Tudo no SimPy gira em torno de eventos gerados por funções e todos os eventos devem ocorrer em um environment, ou um “ambiente” de simulação criado a partir da função simpy.Environment().

Assim, nosso programa deve conter ao menos uma chamada à função simpy.Environment(), criando um environment “env”:

1 import random # gerador de números aleatórios
2 import simpy # biblioteca de simulação
3
4 random.seed(1000) # semente do gerador de números aleatórios
5 env = simpy.Environment() # cria o environment do modelo na variável env

Se você executar o programa anterior, nada acontece. No momento, você apenas criou um environment, mas não criou nenhum processo, portanto, não existe ainda nenhum evento a ser simulado pelo SimPy.

5.3 Criando um gerador de chegadas dentro do environment

Vamos escrever uma função geraChegadas() que cria entidades no sistema enquanto durar a simulação. Nosso primeiro gerador de entidades terá três parâmetros de entrada: o environment, um atributo que representará o nome da entidade e a taxa desejada de chegadas de entidades por unidade de tempo. Para o SimPy, equivale dizer que você vai construir uma função geradora de eventos dentro do environment criado. No caso, os eventos gerados serão as chegadas de entidades no sistema.

Assim, nosso código começa a ganhar corpo:

1 import random # gerador de números aleatórios
2 import simpy # biblioteca de simulação
3
4 def geraChegadas(env, nome, taxa):
5 # função que cria chegadas de entidades no sistema
6 pass
7
8 random.seed(1000) # semente do gerador de números aleatórios
9 env = simpy.Environment() # cria o environment do modelo

Precisamos informar ao SimPy que a função geraChegadas() é, de fato, um processo que deve ser executado ao longo de toda a simulação. Um processo é criado dentro do environment, pelo comando:

1 env.process(função_que_gera_o_processo)

A chamada ao processo é sempre feita após a criação do env, então basta acrescentar uma nova linha ao nosso código:

 1 import random # gerador de números aleatórios
 2 import simpy # biblioteca de simulação
 3
 4 def geraChegadas(env, nome, taxa):
 5 # função que cria chegadas de entidades no sistema
 6 pass
 7
 8 random.seed(1000) # semente do gerador de números aleatórios
 9 env = simpy.Environment() # cria o environment do modelo
10 # cria o processo de chegadas
11 env.process(geraChegadas(env, "Cliente", 2)))

5.4 Criando intervalos de tempo de espera com env.timeout(tempo_de_espera)

Inicialmente, precisamos gerar intervalos de tempos aleatórios, exponencialmente distribuídos, para representar os tempos entre chegadas sucessivas das entidades. Para gerar chegadas com intervalos exponenciais, utilizaremos a biblioteca random, bem detalhada na sua documentação, e que possui a função:

1 random.expovariate(lambd)

Onde lambd é a taxa de ocorrência dos eventos ou, matematicamente, o inverso do tempo médio entre eventos sucessivos. No caso, se queremos que as chegadas ocorram entre intervalos médios de 2 min, a função ficaria:

1 random.expovariate(lambd=1.0/2.0)

A linha anterior é basicamente nosso gerador de números aleatórios exponencialmente distribuídos. O passo seguinte será informar ao SimPy que queremos nossas entidades surgindo no sistema segundo a distribuição definida. Isso é feito pela chamada da palavra reservada yield com a função do SimPy env.timeout(intervalo), que nada mais é do que uma função que causa um atraso de tempo, um delay no tempo dentro do enviroment env criado:

1 yield env.timeout(random.expovariate(1.0/2.0))

Na linha de código anterior estamos executando yield env.timeout(0.5) para que o modelo retarde o processo num tempo aleatório gerado pela função random.expovariate(0.5).

Oportunamente, discutiremos mais a fundo qual o papel do palavra yield (spoiler: ela não é do SimPy, mas originalmente do próprio Python). Por hora, considere que ela é apenas uma maneira de criar eventos dentro do env e que, caso uma função represente um processo, obrigatoriamente ela precisará conter o comando yield *alguma coisa*, bem como o respectivo environment do processo.

	[image: An icon indicating this blurb contains a warning]	
Uma função criada no Python (com o comando def) só é tratada como um processo ou gerador de eventos para o SimPy, caso ela contenha ao menos uma linha de código com o comando yield. Mais adiante, a seção “O que são funções geradoras”, explica em mais detalhe o funcionamento do yield.

Colocando tudo junto na função geraChegadas(), temos:

 1 import random # gerador de números aleatórios
 2 import simpy # biblioteca de simulação
 3
 4 def geraChegadas(env, nome, taxa):
 5 # função que cria chegadas de entidades no sistema
 6 contaChegada = 0
 7 while True:
 8 yield env.timeout(random.expovariate(1.0/taxa))
 9 contaChegada += 1
10 print("%s %i chega em: %.1f " % (nome, contaChegada, env.now))
11
12 random.seed(1000) # semente do gerador de números aleatórios
13 env = simpy.Environment() # cria o environment do modelo
14
15 # cria o processo de chegadas
16 env.process(geraChegadas(env, "Cliente", 2)))

O código deve ser autoexplicativo: o laço while é infinito enquanto dure a simulação; um contador, contaChegada, armazena o total de entidades geradas e a função print, imprime na tela o instante de chegada de cada cliente. Note que, dentro do print, existe uma chamada para a hora atual de simulação env.now.

Por fim, uma chamada a função random.seed() garante que os números aleatórios a cada execução do programa serão os mesmos.

5.5 Executando o modelo por um tempo determinado com env.run(until=tempo_de_simulacao)

Se você executar o código anterior, nada acontece novamente, pois ainda falta informarmos ao SimPy qual o tempo de duração da simulação. Isto é feito pelo comando:

1 env.run(until=tempo_de_simulação)

No exemplo proposto, o tempo de simulação deve ser de 10 min, como representado na linha 15 do código a seguir:

 1 import random # gerador de números aleatórios
 2 import simpy # biblioteca de simulação
 3
 4 def geraChegadas(env, nome, taxa):
 5 # função que cria chegadas de entidades no sistema
 6 contaChegada = 0
 7 while True:
 8 yield env.timeout(random.expovariate(1/taxa))
 9 contaChegada += 1
10 print("%s %i chega em: %.1f " % (nome, contaChegada, env.now))
11
12 random.seed(1000) # semente do gerador de números aleatórios
13 env = simpy.Environment() # cria o environment do modelo
14
15 # cria o processo de chegadas
16 env.process(geraChegadas(env, "Cliente", 2))
17
18 # roda a simulação por 10 unidades de tempo
19 env.run(until=10)

Ao executar o programa, temos a saída:

1 Cliente 1 chega em: 3.0
2 Cliente 2 chega em: 5.2
3 Cliente 3 chega em: 5.4
4 Cliente 4 chega em: 6.3
5 Cliente 5 chega em: 7.6
6 Cliente 6 chega em: 9.1

Agora sim!

Note que env.process(geraChegadas(env)) é um comando que torna a função geraChegadas() um processo ou um gerador de eventos dentro do Environment env. Esse processo só começa a ser executado na linha seguinte, quando env.run(until=10) informa ao SimPy que todo processo pertencente ao env deve ser executado por um tempo de simulação igual a 10 minutos.

[image: Representação das chegadas na fila.]Figura 5.1. Representação das chegadas na fila.

5.6 Conceitos desta seção

	Conteúdo
	Descrição

	env = simpy.Environment()
	cria um Environment de simulação

	random.expovariate(lambd)
	gera números aleatórios exponencialmente distribuídos, com taxa de ocorrência (eventos/unidade de tempo) igual a lambd

	yield env.timeout(time)
	gera um atraso dado por time

	random.seed(seed)
	define o gerador de sementes aleatórias para um mesmo valor a cada nova simulação

	env.process(geraChegadas(env))
	inicia a função geraChegadas como um processo em env

	env.run(until=tempoSim)
	executa a simulação (executa todos os processos criados em env) pelo tempo tempoSim

	env.now
	retorna o instante atual da simulação

5.7 Desafios

	[image: An icon of a laptop-code]	
Desafio 2: é comum que os comandos de criação de entidades nos softwares proprietários tenham a opção de limitar o número máximo de entidades geradas durante a simulação.

Modifique a função geraChegadas de modo que ela receba como parâmetro numeroMaxChegadas e limite a criação de entidades a este número.

	[image: An icon of a laptop-code]	
Desafio 3: modifique a função geraChegadas de modo que as chegadas entre entidades sejam distribuídas segundo uma distribuição triangular de moda 1, menor valor 0,1 e maior valor 1,1.

5.8 Solução dos desafios 2 e 3

Desafio 2: é comum que os comandos de criação de entidades nos softwares proprietários tenham a opção de limitar o número máximo de entidades geradas durante a simulação.

Modifique a função geraChegadas de modo que ela receba como parâmetro o numeroMaxChegadas e limite a criação de entidades a este número.

Neste caso, o script em Python é autoexplicativo, apenas note que limitei o número de chegadas em 5 e fiz isso antes da chamada do processo gerado pela função geraChegadas():

 1 import random # gerador de números aleatórios
 2 import simpy # biblioteca de simulação
 3
 4 def geraChegadas(env, nome, taxa, numeroMaxChegadas):
 5 # função que cria chegadas de entidades no sistema
 6 contaChegada = 0
 7 while (contaChegada < numeroMaxChegadas):
 8 yield env.timeout(random.expovariate(1/taxa))
 9 contaChegada += 1
10 print("%s %i chega em: %.1f " % (nome, contaChegada, env.now))
11
12 random.seed(1000) # semente do gerador de números aleatórios
13 env = simpy.Environment() # cria o environment do modelo
14 # cria o processo de chegadas
15 env.process(geraChegadas(env, "Cliente", 2, 5))
16 env.run(until=10) # executa a simulação por 10 unidades de tempo

Desafio 3: modifique a função geraChegadasde modo que as chegadas entre entidades sejam distribuídas segundo uma distribuição triangular de moda 1, menor valor 0,1 e maior valor 1,1.

Neste caso, precisamos verificar na documentação da biblioteca random, quais são nossas opções. A tabela a seguir, resume as distribuições disponíveis:

	Função
	Distribuição

	random.random()
	gera números aleatórios no intervalo [0.0, 1.0)

	random.uniform(a, b)
	uniforme no intervalo [a, b]

	random.triangular(low, high, mode)
	triangular com menor valor low, maior valor high e moda mode

	random.betavariate(alpha, beta)
	beta com parâmetros alpha e beta

	random.expovariate(lambd)
	exponencial com média 1/lambd

	random.gammavariate(alpha, beta)
	gamma com parâmetros alpha e beta

	random.gauss(mu, sigma)
	normal com média mu e desvio padrão sigma

	random.lognormvariate(mu, sigma)
	lognormal com média mu e desvio padrão sigma

	random.normalvariate(mu, sigma)
	equivalente à random.gauss, mas um pouco mais lenta

	random.vonmisesvariate(mu, kappa)
	distribuição de von Mises com parâmetros mu e kappa

	random.paretovariate(alpha)
	pareto com parâmetro alpha

	random.weibullvariate(alpha, beta)
	weibull com parâmetros alpha e beta

A biblioteca NumPy, que veremos oportunamente, possui mais opções para distribuições estatísticas. Por enquanto, o desafio 3 pode ser solucionado de maneira literal:

 1 import random # gerador de números aleatórios
 2 import simpy # biblioteca de simulação
 3
 4 def geraChegadas(env, nome, numeroMaxChegadas):
 5 # função que cria chegadas de entidades no sistema
 6 contaChegada = 0
 7 while (contaChegada < numeroMaxChegadas):
 8 yield env.timeout(random.triangular(0.1,1,1.1))
 9 contaChegada += 1
10 print("%s %i chega em: %.1f " % (nome, contaChegada, env.now))
11
12 random.seed(1000) # semente do gerador de números aleatórios
13 env = simpy.Environment() # cria o environment do modelo
14 # cria o processo de chegadas
15 env.process(geraChegadas(env, "Cliente", 5))
16 env.run(until=10)

	[image: An icon of a key]	
Dica: os modelos de simulação, com muitos processos de chegadas e atendimento, tendem a utilizar diversas funções diferentes de distribuição de probabilidades, deixando as coisas meio confusas para o programador. Uma dica bacana é criar uma função que armazene todas as distribuições do modelo em um único lugar, como uma prateleira de distribuições.

Por exemplo, imagine um modelo em SimPy que possui 3 processos: um exponencial com média 10 min, um triangular com parâmetros (10, 20, 30) min e um normal com média 0 e desvio 1 minuto. A função distribution() a seguir, armazena todos os geradores de números aleatórios em um único local:

1 import random
2
3 def distributions(tipo):
4 return {
5 'arrival': random.expovariate(1/10.0),
6 'singing': random.triangular(10, 20, 30),
7 'applause': random.gauss(10, 1),
8 }.get(tipo, 0.0)

O próximo exemplo testa como chamar a função:

 1 import random
 2
 3 def distributions(tipo):
 4 return {
 5 'arrival': random.expovariate(1/10.0),
 6 'singing': random.triangular(10, 20, 30),
 7 'applause': random.gauss(10, 1),
 8 }.get(tipo, 0.0)
 9
10 tipo = 'arrival'
11 print(tipo, distributions(tipo))
12
13 tipo = 'singing'
14 print(tipo, distributions(tipo))
15
16 tipo = 'applause'
17 print(tipo, distributions(tipo))

O qual produz a saída:

1 arrival 6.231712146858156
2 singing 22.192356552471104
3 applause 10.411795571842426

Essa foi a nossa dica do dia!

Fique a vontade para implementar funções de geração de números aleatórios ao seu gosto. Note, e isso é importante, que praticamente todos os seus modelos de simulação em SimPy precisarão deste tipo de função!

5.9 Teste seus conhecimentos

	
Acrescente ao programa inicial, uma função distribution como a proposta na seção “Dica” e faça o tempo entre chegadas sucessivas de entidades chamar a função para obter o valor correto.

	
Considere que 50% das entidades geradas durante a simulação são do sexo feminino e 50% do sexo masculino. Modifique o programa para que ele sorteie o gênero dos clientes. Faça esse sorteio dentro da função distribution já criada.

6 Criando, ocupando e desocupando recursos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

6.1 Criando
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

6.2 Ocupando
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

6.3 Desocupando
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

6.4 Status do recurso
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

6.5 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

7 Juntando tudo em um exemplo: a fila M/M/1
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

7.1 Geração de chegadas de entidades
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

7.2 Realizando o atendimento no servidor
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

7.3 Uma representação alternativa para a ocupação e desocupação de recursos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

7.4 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

7.5 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

7.6 Solução dos desafios 4, 5 e 6
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

7.7 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

8 Atributos e variáveis: diferenças em SimPy
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

8.1 Atributos em modelos orientados ao objeto
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

8.2 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

8.3 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

8.4 Solução dos desafios 7 e 8
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

8.5 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

9 Environments: controlando a simulação
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

9.1 Controle de execução com env.run(until=fim_da_simulação)
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

9.2 Parada por execução de todos os processos programados
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

9.3 Parada por fim de execução de processo específico por env.run(until=processo)
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

9.4 Simulação passo a passo: peek & step
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

9.5 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

9.6 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

9.7 Solução dos desafios 9 e 10
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

10 Outros tipos de recursos: com prioridade e preemptivos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

10.1 Recursos com prioridade: PriorityResource
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

10.2 Recursos que podem ser interrompidos: PreemptiveResource
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

10.3 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

10.4 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

10.5 Solução dos desafios 11 e 12
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

11 Interrupções de processos: simpy.Interrupt
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

11.1 Criando quebras de equipamento
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

11.2 Interrompendo um processo sem captura por try…except
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

11.3 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

11.4 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

11.5 Solução dos desafios 13 e 14
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

11.6 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

12 Armazenagem e seleção de objetos específicos com Store, FilterStore e PriorityStore
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

12.1 Construindo um conjunto de objetos com Store
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

12.2 Selecionando um objeto específico com FilterStore()
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

12.3 Criando um Store com prioridade: PriorityStore
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

12.4 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

12.5 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

12.6 Solução dos desafios 15 e 16
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

12.7 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

13 Enchendo ou esvaziando caixas, tanques, estoques ou objetos com Container()
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

13.1 Enchendo o meu container yield meuContainer.put(quantidade)
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

13.2 Esvaziando o meu container: yield meuContainer.get(quantidade)
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

13.3 Criando um sensor para o nível atual do container
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

13.4 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

13.5 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

13.6 Solução dos desafios 17 e 18
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

13.7 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

14 Criando lotes (ou agrupando) entidades durante a simulação
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

14.1 Uma tática para agrupamento de lotes utilizando o Container
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

14.2 Agrupando lotes por atributo da entidade utilizando o FilterStore
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

14.3 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

14.4 Solução dos desafios 19 e 20
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

14.5 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

15 Criando, manipulando e disparando eventos com event()
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

15.1 Criando um evento isolado com event()
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

15.2 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

15.3 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

15.4 Solução dos desafios 21 e 22
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

15.5 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

16 Aguardando múltiplos eventos ao mesmo tempo com AnyOf e AllOf
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

16.1 Aguardando até que, ao menos, um evento termine com AnyOf
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

16.2 Aguardando todos os eventos com AllOf
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

16.3 Comprendendo melhor as saídas dos comandos AllOf e AnyOf
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

16.4 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

16.5 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

16.6 Solução dos desafios 23 e 24
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

16.7 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

17 Propriedades úteis dos eventos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

17.1 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

17.2 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

17.3 Solução do desafio 25
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

17.4 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

18 Adicionando callbacks aos eventos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

18.1 Todo processo é um evento
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

18.2 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

18.3 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

18.4 Solução do desafio 26
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

18.5 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

19 Interrupções de eventos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

19.1 Interrompendo um evento com o método interrupt
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

19.1.1 Método de controle de interrupção 1: lógica de exceção try…except
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

19.1.2 Método de controle de interrupção 2: alterando o atributo defused
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

19.2 Interrompendo um evento com o método fail
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

20 O que são funções geradoras? (ou como funciona o SimPy) - Parte I
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

20.1 Iterador
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

20.2 Funções geradoras
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

21 O que são funções geradoras? (ou como funciona o SimPy?) - Parte II
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

21.1 SimPy vs. funções geradoras
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22 Simulação Baseada em Agentes usando o SimPy
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.1 Como construir um modelo de simulação de agentes: passos básicos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.2 Modelo epidêmico baseado em agentes: o modelo SIR1
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.3 Modelagem do problema no SimPy
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.3.1 Importação de bibliotecas
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.3.2 Parâmetros de entrada e variáveis globais
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.3.3 Construtor de agentes
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.3.4 Inicialização
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.3.5 Envio e recebimento de mensagens
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.3.6 Processo de infecção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.3.7 Processo de incubação
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.3.8 Monitoramento e exibição de gráficos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.3.9 Execução (ufa!)
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.4 Melhorando o desempenho do código de simulação
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.4.1 Criando uma malha de conexões entre vizinhos mais próximos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.5 Como seguir a partir daqui
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.6 Conceitos desta seção
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.7 Desafios
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.8 Solução dos Desafios 27 e 28
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

22.9 Teste seus conhecimentos
Este conteúdo não está disponível na amostra do livro. O livro pode ser adquirido no Leanpub em http://leanpub.com/simpy.

	Baseado em: Borshchev, A. e Grigoryev, IIlya. The Big Book of Simulation Modeling. Multimethod modeling with AnyLogic 8. AnyLogic North America. 2020.↩︎

 EPUB/styles/resources/leanpub_warning.png

EPUB/styles/resources/leanpub_comments.png

EPUB/styles/resources/leanpub_laptop-code.png

EPUB/resources/geraChegadas.png
EXPONENCIAL

-

T=6.3$ T=54S T=5.2¢ T=3.0s

(2
9

LA IR~

LA

import random # gerador de numeros aleatérios
import simpy # biblioteca de simulagdo

def geraChegadas(env, nome, taxa):
fun¢do que cria chegadas de entidades no sistema
contaChegada = ©
while True:
yield env.timeout(random.expovariate(l/taxa))
contaChegada += 1
print("%s %l chega em: %.1f " % (nome, contaChegada, env.now))

random. seed(1000) # semente do gerador de numeros aleatérios
env = simpy.Environment() # cria o environment do modelo

cria o processo de chegadas
env.process(geraChegadas(env, "Cliente", 2))

roda a simulacdo por 10 unidades de tempo
env.run(until=10)

EPUB/styles/resources/leanpub_bug.png

EPUB/styles/resources/leanpub_info-circle.png

EPUB/styles/resources/leanpub_pencil.png

EPUB/media/resources/title_page.png
SIMPY:
SIMULACAO EM
PYTHON

um guia pratico

0@l

AFONSOC)NEIMNA

ssssssssssss

EPUB/styles/resources/leanpub_question-circle.png

EPUB/media/resources/publisher-logo.png
[

Leanpub

EPUB/styles/resources/leanpub_key.png

