

[image: Simply RethinkDB]



  Simply RethinkDB


  A database with a query language for human

   


  Vinh Quốc Nguyễn

   

  This book is for sale at http://leanpub.com/simplyrethinkdb

  This version was published on 2015-10-12

  [image: publisher's logo]

    *   *   *   *   *

  This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

  *   *   *   *   *


  

© 2014 - 2015 Vinh Quốc Nguyễn


  
    This books was written as an effort to learn more about RethinkDB. At some points, I almost abandon it because it is lots of work. 


A long the way, I started to write Relang, a RethinkDB driver for Erlang which gives me more deep understanding of RethinkDB and make me want to finish this book.


All of this will not be published without my wife supporting. An awesome girl who without her support I won’t be able to finish this. 


I also thank so much for your purchase. If you happen to live in San Jose, please visit and see us in person. I want to say thank to you in person.


This books mark an important period in my life when I married. The “Rethink” word also reminds me to rethink when we have trouble in our relationship in the future. Rethinking and understanding.

  

      
         
            Table of Contents

         

         
           
  	
    1. Welcome
    
      	
        Introduction
      

      	
        Why learn RethinkDB?
      

      	
        Feedback
      

      	
        Credit
      

    

  

  	
    2. Getting to know RethinkDB
    
      	
        Getting Started
        
          	
            The Ports
          

          	
            The dashboard
          

        

      

      	
        RethinkDB object
      

      	
        Durability
      

      	
        Atomicity
      

      	
        Command line tool
        
          	
            import
          

          	
            export
          

          	
            dump
          

          	
            restore
          

        

      

      	
        Import sample data
      

    

  

  	
    3. Reading Data Basic
    
      	
        Getting to Know ReQL
      

      	
        Drivers
        
          	
            Using drivers
          

          	
            Default database
          

          	
            Repl
          

        

      

      	
        Data Type
        
          	
            Basic data type
          

          	
            Composite data type
          

          	
            Sorting data
          

        

      

      	
        Selecting data
        
          	
            Select the whole table
          

          	
            Select a single document by its primary key
          

          	
            Select many documents by value of fields
          

          	
            r.row
          

          	
            Pagination data
          

          	
            Access Nested field
          

        

      

      	
        Wrap Up
      

    

  




         

         
            Guide

            
               	
                  Begin Reading
               

            

         



1. Welcome







Introduction


Welcome to my readers. I appreciate your purchase. This will help me continue
improving the book content.


Before we go into the technical details, I have something to say.


Firstly, I’m not a RethinkDB expert at all. I’m just an average guy who loves
programming and new technologies. To me, RethinkDB is a pleasure to use.
However, due to its age, there are not many books and documents about it comparing to other
database systems. While the RethinkDB cocumentation and API is very good, it can be hard to know 
where to start. So this guide is for all those in mind who are unsure about taking the plunge into
RethinkDB as something totally new. I hope this helps them ease into the learning process.


The purpose of this book is to organize the concepts of RethinkDB in order to help you to
read and understand the RethinkDB API directly. Upon finishing the book, you will have a foundational
knowledge in which to extend your knowledge with many other RethinkDB videos and blog posts out on the 
Internet.


Secondly, I’m a fan of Mixu’s1 writing style2. I won’t cover
deeply things like installing RethinkDB, fine-tuning, extra function parameters, and so on. 
Those topics are covered very well on RethinkDB’s documention itself. What I want you to take away from this book
is a good grasp on RethinkDB usage in practice. and how to apply commands in real scenarios. 


Third, I’m not fluent in English. If you find any mistakes, you can report the
issue on repository or email me directly.


Fourth, RethinkDB is changing so fast that things in this book may not reflect
its current state. Once again, I’d be very grateful for any errata you may point out, via my email or Github. 
Since this is a LeanPub book, once I update you may download it again free of charge.


And finally, due to my limited knowledge with RethinkDB, I want to keep this book short and straight to the point. 
Expect a book of around 200 pages. My goal is for this to be a book that you can pick up, read on the train while riding to work and after a week you can sit down and actually start your first RethinkDB project without hesitation.



  
    	http://blog.mixu.net/↩


    	http://blog.mixu.net/2012/07/26/writing-about-technical-topics-like-its-2012/↩


  










Why learn RethinkDB?


RethinkDB is mind-blowing to me. I like the beauty and nature of ReQL which is
built into the language. It is also very developer friendly with its own
administrator UI. RethinkDB is very easy to learn, because its query language is
natural to how we think when constructing a query. We can easily tell what ReQL will do
and what is the execution order of the query.


Take this SQL query:



1 SELECT * FROM users WHERE name="Vinh" ORDER BY id DESC LIMIT 10,100






This query is passed as a string and occaisionally you may sometimes forget the ordering or syntax. 
Will we put **ORDER** before or after **LIMIT**? Where the WHERE clause should appear?
We also can’t be certain if an index will be used. Because SQL is a string, the order
of execution is defined by the syntax. Memorizing that syntax is essential.


Compare this with ReQL (RethinkDB Query Language):



1 r.table('users').getAll('vinh', {index: 'name'}).order_by(r.desc(id)).limit(10)






We can easily ascertain (or ‘grok’) immediately what will result from this query, 
and the order of execution is clear to us. This is because the methods are chained, one after another,
from left too right. ReQL was designed with the intention of a very clear API but without the
ambiguity that comes with an ORM.


We can also see that it will use an index **name** when finding data. The way
the query is constructed, feels similiar to jQuery if you are a front-end
developer who never works with databases. Or if you are a functional programming person,
you probably see the similarity immediately.


If the above example hasn’t convinced you, then check this out:



1 SELECT *
2 FROM foods as f
3 INNER JOIN compounds_foods as c ON c.food_id=f.id
4 WHERE f.id IN (10, 20)
5 ORDER By f.id DESC, c.id ASC






The same query represented as ReQL would look like this:



1 r.db("food")
2   .table("foodbase")
3   .filter(function (food) {
4     return r.expr([10, 20]).contains(food("id"))
5   })
6   .eqJoin("id", r.db("foodbase").table("compound_foods"), {index: "food_id"})






Even if you are not completely familar with the syntax, you can guess what is going to happen. 
In ReQL, we are taking the foodbase database, and table foods, and filtering them and 
filtering the result with another table called compound_foods. Within the filter, we pass 
an anonymous function which determines if the “id” field of document is contained in the array 
[10, 20]. If it is either 10 or 20 then we join the results with the compound_foods 
table based on the id field and use an index to efficiently search. 
The query looks like a chain of API call and the order of execution is clear to the reader.


RethinkDB really makes me rethink how we work with database. I don’t
have to write a query in a language that I don’t like. As well, I’m no longer forced
to use a syntax that I don’t like because I have no choice. And further, if something does
go wrong, I don’t have to slowly tear apart the entire string to find out which clause has
the issue. The resulting error from a ReQL query allows me to more precisely determine the cause of 
error. 


Furthermore, RethinkDB is explicit. Later on, you will also learn that in RethinkDB you
have to explicitly tell it to do some not-very-safe operations. Such as when a
non-atomic update is required, you clearly set a flag to do it. RethinkDB by default has sensible
and conservative settings as a database should to help you avoid shooting yourself in the foot.


In my opinion, RethinkDB forces us to understand what we are doing. Everything is
exposed on the query. No magic, no “why did this query fail on production but
work as expected on my local machine”, no hidden surprises. 


In Vietnamese culture, we usually follow a rule of three in demonstrations before we conclude. 
Being Vietnamese, let me end by showing you this third example.


Do you understand the query below? 



1 r
2   .db('foodbase')
3   .table('foods')
4   .filter(r.row('created_at').year().eq(2011))






This query finds all foods which were inserted in the year 2011. I
cannot even provide an equivalent SQL example, because it just cannot be as beautiful
and concise as the above query.







Feedback


I appreciate all of your feedbacks to improve this book. Below is my handle on internet:



  	twitter: http://twitter.com/kureikain


  	email: kurei@axcoto.com


  	twitter book hashtag: #simplyrethinkdb









Credit



  	Sample dataset: foodb.ca/foods


  	Book cover: Design by my friend, aresta.co helps to create the cover for this book









2. Getting to know RethinkDB


Let’s warm up with some RethinkDB concepts, ideas and tools. In this chapter, thing
may a bit confuse because sometime to understand concept A, you need to
understand B. To understand B, you need C, which is based on A. So plese
use your feeling and don’t hestitate to do some quick lookup on offical
docs to clear thing out a bit.


From now on, we will use term ReQL to mean anything related to RethinkDB
query language, or query API.







Getting Started


It’s not uncommon to see someone write an interactive shell in browser for
evaluation purpose such as mongly, tryRedis. This isn’t applied for RethinkDB
because it comes with an excellent editor where you can type code and run it.


Install RethinkDB by downloading package for your platform http://rethinkdb.com/docs/install/.
Run it after installing.


The Ports


By default, RethinkDB runs on 3 ports



  	8080

  	this is the web user interface of RethinkDB or the dashboard. You can query
the data, check performance and server status on that UI.

  	28015

  	this is the client drive port. All client drive will connect to RethinkDB
through this port. If you remember in previous chapter, we used a tcpdump
command to listen on this port to capture data send over it.

  	29015

  	this is intracluster port; different RethinkDB node in a cluster communicates
with eath others via this port




The dashboard


Open your browser at http://127.0.0.1:8080 and welcome RethinkDB. You can play
around to see what you have:


Navigate to the Explorer tab, you can type the command from there. Let’s start
with



1 r.dbList()






Run it and you can see a list of database.







RethinkDB object


Similar to traditonal database system, we also have database in RethinkDB. A
database contains many tables. Each table contains your JSON document. Those
JSON document can contains any fields. A table doesn’t force a schema for those
fields.


A JSON document is similar to a row in MySQL. Each of field in the document is
similar to column in MySQL. When I say JSON document, I mean an JSON object
with fields, not a single number, an array or a string. However, each field
can content whatever JSON data type.


More than that, the same field can accept whatever data type. On same table,
two document can contains diferent data type for same field.







Durability


You will see an option/argument call durability *durability appear a lot
in many option of ReQL. Because it’s so common and it’s very important, I
want to address it here. Durability accepts value of ‘soft’ or ‘hard’.



  	soft

  	means the writes will be acknowledge by server immdediately and data will be flushed to disk in
background.

  	hard

  	The opposite of soft. The default behaviour is to acknowledge after data is written to disk.
Therefore, when you don’t need the data to be consitent, such as
writing a cache, or an important log, you should set durability to soft in order to
increase speed









Atomicity


According to RethinkDB docs [^atomic], write atomicity is supported on a per-document basis. So when you write to a single document, it’s either succesfully or nothing orrcur instead of updating a couple field and leaving your data in a bad shape. Furthermore, RethinkDB guarantees that any combination of operation can be executed in a single document will be write atomically. 


However, it does comes with a limit. To quote RethinkDB doc, Operations that cannot be proven deterministic cannot update the document in an atomic way. That being said, the unpredictable value won’t be atomic. Eg, randome value, operation run by using JavaScript expression other than ReQL, or values which are fetched from somewhere else. RethinkDB will throw an error instead of silently do it or ignore. You can choose to set a flag for writing data in non-atomic way.


Multiple document writing isn’t atomic.


[^atomic] http://www.rethinkdb.com/docs/architecture/#how-does-the-atomicity-model-work







Command line tool


Besides the dashboard, RethinkDB gives us some command line utility to
interactive with it. Some of them are:



  	import

  	export

  	dump

  	restore




import


In the spirit of giving users the dashboard, RethinkDB also gives us some sample data.
You can download the data in file input_polls and country_stats at 
https://github.com/rethinkdb/rethinkdb/tree/next/demos/election and import them into
test database



1 rethinkdb import -c localhost:28015 --table test.input_polls --pkey uuid -f inpu\
2 t_polls.json --format json
3 rethinkdb import -c localhost:28015 --table test.county_stats --pkey uuid -f cou\
4 nty_stats.json --format json






Notice the --table argument, we are passing the table name in format of
database_name.*table_name”. In our case, we import the data into two tables:
input_polls and county_stats inside database test.


Basically you can easily import any file contains a valid JSON document.


export


export exports your database into many JSON files, each file is a table. The
JSON file can be import using above import command.


dump


dump will just export whole of data of a cluster, it’s similar to an export
command, then follow by gzip to compress all JSON output file. Syntax is as
easy as.



1 rethinkdb dump -c 127.0.0.1:28015






Here is an example output when I run this command:



 1 rethinkdb dump -c 127.0.0.1:28015
 2 NOTE: 'rethinkdb-dump' saves data and secondary indexes, but does *not* save
 3  cluster metadata.  You will need to recreate your cluster setup yourself after
 4  you run 'rethinkdb-restore'.
 5 Exporting to directory...
 6 [========================================] 100%
 7 764509 rows exported from 9 tables, with 21 secondary indexes
 8   Done (157 seconds)
 9 Zipping export directory...
10   Done (5 seconds)






The dump result is a gzip file whose name is in format rethinkdb_dump_{timestamp}.tar.gz
It’s very useful when you want to try out something and get back your original data. 
Note it here because you will need it later.


restore


Once we got the dump file with dump command. We can restore with:



1 rethinkdb restore -c 127.0.0.1:28015 rethinkdb_dump_DATE_TIME.tar.gz











Import sample data


It’s much nicer to work with real and fun data than boring data. I found a very
useful dataset call FooDB1. It’s a data about food constituents,
chemistry and biolog. To quote their about page:



  What is FooDB
FooDB is the worldâ€™s largest and most comprehensive resource on food constituents, chemistry and biology. 
It provides information on both macronutrients and micronutrients, including many of the constituents that give foods their flavor, color, taste, texture and aroma




I import their data into RethinkDB, and generate some sample tables such as
users table. At the end, I used the dump command to generate sample data
which you can download using below links2


https://www.dropbox.com/s/dy48el02j9p4b2g/simplyrethink_dump_2015-08-11T22%3A15%3A51.tar.gz?dl=0.
Once you download it, you can import this sample dataset:



1 rethinkdb restore -c 127.0.0.1:28015 simplyrethink_dump_2015-08-11T22:15:51.tar.\
2 gz






The output looks like this:



 1 Unzipping archive file...
 2   Done (1 seconds)
 3 Importing from directory...
 4 [                                        ]   0%
 5 [                                        ]   0%
 6 [                                        ]   0%
 7 [                                        ]   0%
 8 [========================================] 100%
 9 764509 rows imported in 9 tables
10   Done (2166 seconds)






Once this processing is done, you should have a database call foodb which
contains the data we play throught the book. At any point, if you messed up
data, you can always restore from this sample data. Also, I encourage to back
up data if you build many interesting data to experiment yourself.



  
    	http://foodb.ca/about↩


    	https://www.dropbox.com/s/dy48el02j9p4b2g/simplyrethink_dump_2015-08-11T22%3A15%3A51.tar.gz?dl=0↩


  










3. Reading Data Basic


If you are lazy(just like me) and skip straigh to this chapter, please go back to
the end of previous chapter to import sample dataset. Once you did it, let’s start.
Oh, before we start, let me tell you this, sometime if you see an ... it
means, we have more data returning, but I cannot paste them all into the book. I
used ... to denote for more data available.







Getting to Know ReQL


RethinkDB uses a special syntax call ReQL to interact with the data. ReQL is
chainable. You start with a database, chain to table, and chain to other API to
get what you want, in a way very natural. Type this into data explorer:



1 r.db("foodb").table('flavors').filter({'flavor_group': 'fruity'})






You should see some interesting data now.




  [image: Result of filter command by flavor_group]
  Result of filter command by flavor_group



Don’t worry about the syntax, just look at it again and even without any
knowledge you know what it does and easily remember it. A way, for me, to
understand ReQL is that every command return an object which share some API
which we can call those API as if method of an object.


ReQL is particular binding to your language. Though, of course, they will look 
familiar between different language to maintain consitent look and feel. But, 
they are different. Those querie are constructed by making function call of your
language, not by concat SQL String, or not by special JSON object like MongoDB.
Therefore, it feel very natualy to write ReQL, as if the data we manipulate
is an object or data type in our language. But everything comes with a trade
off. On the downside, we have to accept differences of ReQL betweens many
language. No matter how hard we try, different language has different syntax,
especially when it comes to anonymous function.


What is r? r is like a special namespace which is all RethinkDB is exposed 
via it. It’s just a normal variable in your language, or a namespace, a package
name, a module. Think of r like $ of jQuery. If you don’t like r, assign
another variable to it is possible.


We will call all method of r, or of any method of return resulted from other
method are command for now. Think of it like a method in jQuery world.


Here is example, with this HTML structure:



1 <div class="db">
2   <div class="table" data-type="anime">Haru River</div>
3   <div class="table" data-type="anime">Bakasara</div>
4   <div class="table" data-type="movie">James Bond</div>
5 </div>






To filter only anime movie, we can use this jQuery:



1 $('.db').find('.table').filter('[data-type="anime"]')






If we have a database call db, and a table call table, with 3 records:



1 {type: 'anime', title: 'Haru River'}
2 {type: 'anime', title: 'Bakasara'}
3 {type: 'movie', title: 'James Bond'}






The equavilent ReQL use to find only anime is:



1 r.db('db').table('table').filter({type: 'anime'})






Notice how similar the structure between them? Because of those concept, I find
ReQL is easy to learn. If you can write jQuery, you can write ReQL.


Another way to understand is considering ReQL like the pipe on Linux, you select the data, 
passing into another command:



1 $ cd db; ls -la table/* | grep 'type: anime'











Drivers


This section deep down a bit on how the drivers work, you can skip if you are
not interested in how RethinkDB driver works at low level. But I really hope you keep reading it.
Let’s start.


ReQL is binded to your language. Therefore, the API is implemented totally by
the driver itself. You won’t work directly with RethinkDB server. You write the
query using the API of driver, the driver will built it into a real query to send
to server, receive data, parse it to return data as a native data of your
language.


Internaly, all client driver will turn the query that you write in driver language
into an AST tree, then serialize them as JSON and send to server.


If you curious, you can fire up tcpdump and watch the raw query in JSON



1 tcpdump -nl -w - -i lo0 -c 500 port 28015|strings






An example of what above tcpdump return when I run those command(in Ruby):



1 r.db("foodb").table("users").with_fields("address").run






Once I ran this command, I see this via tcpdump:


[1,[96,[[15,[[14,[“foodb”]],”users”]],”address”]],{}]


So basically, the whole query is turned into a special JSON object by client
driver. If you would like to dig deeper, the above query is actually translate
in to this:


[QUERY_START, [WITH_FIELDS, [[TABLE, [[DB, [“foodb”]],”users”]],”address”]],{}]


Each of numbers is equivalent to a command in RethinkDB. Those number is
predefined in RethinkDB. So basically, whatever you write using client driver
API will be turn into an JSON array. Each of element often takes this form:



1 COMMAND, [Argument Array], {Option object}






It’s similar to a function call when we have function name, follow by its argument and the last is an option object.


You can quickly sense a downside is that each of driver have different API to
construct query. When you come to another language, you may feel very strange.
The driver hide the real query behinds its API. It’s kind of similar to how you
use an ORM in SQL world to avoid writing raw SQL string. But it’s different
because the ORM usually has its own API to turn query into raw query string,
which in turns send to server using another driver with that database protocol.
Here, we are having power of an ORM, but happen at driver level, because
RethinkDB protocol is a powerful JSON protocol to help model query
like function call, with argument and follow by parameter. In fact, ReQL is
modeled after functional languages like Lisp or Hashkell.


If you would like to know more about ReQL at lower level, you should read more
in official documents


Using drivers


RethinkDB supports 3 official drives:



  	Ruby

  	NodeJS

  	Python




These support all driver specifications.
The community drives such as Go, PHP probably won’t support them all, if you
used a different language and find something isn’t right, it is probably not
your fault.


All ReQL starts with r, its top level module to expose its public API. In
NodeJS, we can use



1 var r = require('rethinkdb')






or Ruby



1 require 'rethinkdb'
2 include RethinkDB::Shortcuts
3 puts r.inspect






or in Go Lang



1 import (
2   r "github.com/dancannon/gorethink"
3 )






Once we constructed ReQL with r, we have to call run method to execute it. The
command will be submit to an active database connection. The database connection
can be establish with connect.



1 var r = require('rethinkdb')
2 var connection = r.connect({
3   host: '127.0.0.1', 
4   port: '28015', 
5   db: 'test'
6 }, function (err, conn) {
7   r.db('db').table('table').filter({type: 'anime'})
8 })






When creating the connection with r.connect, you can pass an db parameter to
specify a default database to work on once connecting succesfully. It’s similar
to the current database of MySQL. Without setting this parameter, RethinkDB
assumes test as default database. 


To understand more about difference of API in different language, let looks at
Go Lang driver1


Notice that we don’t have any host, or database parameter now. They are
Addressand Database in Go Lang driver. Therefore, by using an un-official
language, the API will be totally different with official API.


That’s how beautiful it is because each language has its own design philosophy.
Such as in Go lang, we cannot have a lower case field of a struct and expect it 
publicly available to outside. Using names such as host or db for connection
option is impossible in Go lang.


Default database


Similar to MySQL, when you can issue use database_name to switch to another
database. We can do that in RethinkDB by calling use command on a connection
object.



1 connection.use('another_db')






In this small book, most of the time, we will use Data Exploer. Therefore 
we can use r without initialization and calling run method. Data Exploer
will do that for us. Just keep in mind when you write code, you have to connect,
and explicitly call run to, obviously, run the query.


Note that you don’t have to switch to another database to access its table, you
can just call r.db('another_db') before building query.


Repl


Repl means read-eval-print loop. To avoid burden of manually call run and passing
connection object. Some driver offers a repl to help call run without any parameter.


Such as in Ruby:



1 r.connect(:db => 'marvel').repl
2 r.table("test").run






JavaScript doesn’t have a repl. I think because we can already used the Data Explorer.



  
    	
https://github.com/dancannon/gorethink
      var connection *r.Session


      connection, err := r.Connect(r.ConnectOpts{
    Address:  “localhost:28015”,
    Database: “test”,
})


      if err != nil {
    log.Fatalln(err.Error())
}↩

    

  










Data Type


Why do we have to discuss about data type? We use dynamic language and we almost dicuss about
Ruby and JavaScript most of time. But understanding data type allow us to read API document better.
It helps us to understand why we can can r.table.insert but we cannot call like r.table.filter().insert.
Aren’t we still selecting data from table, so we should be able to insert data to it?


Data type helps us know that we can only call some method on some of data type


Each ReQL method can be call on one or many above data types. Take update command, when you browser the API
document, you see



1 table.update(json | expr[, {durability: "hard", returnVals: false, nonAtomic: fa\
2 lse}]) → object
3 
4 selection.update(json | expr[, {durability: "hard", returnVals: false, nonAtomic\
5 : false}]) → object
6 
7 singleSelection.update(json | expr[, {durability: "hard", returnVals: false, non\
8 Atomic: false}]) → object






It means the command can be invoked on a table, or selection (eg: first 30
element of tables), or a single selection - a document is an example of single
selection. The behaviour maybe different based on data type, even the
command is same.


In RethinkDB, we have several data types. We will focus into those 2 kind for
now:



  	Basic data type

  	Composite data type




Basic data type


These are usually the native data type in your language too:



 1 * Number: any real numbers. RethinkDB uses double precision (64-bit) floating po\
 2 int numbers internally
 3 * String
 4 * Time: This is native RethinkDB date time type. However, they will be converted\
 5  automatically to your native data type in your language by the driver.
 6 * Boolean: True/False 
 7 * Null: Depend on your language, it can be nil, null,..    
 8 * Object: any valid JSON object. In JavaScript, it will be a normal object. In R\
 9 uby, it can be a hash.
10 * Array: any valid JSON array.






The data type of a field or column can be change. If you assign a number to a
field, you can still assign an value with different data type to that same
field. So we don’t have a static schema for tables.


We have a very useful command to get the type of any vaue. It’s typeOf.
Example:



 1 r.db('foodb').table('foods')
 2   .typeOf()
 3 //=>
 4 "TABLE"
 5 
 6 r.db('foodb').table('foods')
 7   .filter(r.row("name").match('A^'))
 8   .typeOf()
 9 //=>
10 "SELECTION<STREAM>"






It’s seems not very important to understand about data type at first. I really
hope you should invest some time to use it frequently to understand the data
type of a value.


To give a story. In MariaDB10.0/MySQL5.6, when data type doesn’t match, an index may not be used.
Let’s say you have a field name with type VARCHAR(255) when you define it,
then you create an index on that column. Query on that column with exact data
type will make index kicked in. Let’s come back MySQL a bit.


First I insert below records.



1 INSERT INTO foods(name) VALUES("100");
2 Query OK, 1 row affected, 1 warning (0.00 sec)






Below query will use index:



 1 MariaDB [food]> EXPLAIN SELECT * FROM foods WHERE name="100";
 2 +------+-------------+-------+-------+---------------------+--------------------\
 3 -+---------+-------+------+-------+
 4 | id   | select_type | table | type  | possible_keys       | key                \
 5  | key_len | ref   | rows | Extra |
 6 +------+-------------+-------+-------+---------------------+--------------------\
 7 -+---------+-------+------+-------+
 8 |    1 | SIMPLE      | foods | const | index_foods_on_name | index_foods_on_name\
 9  | 257     | const |    1 |       |
10 +------+-------------+-------+-------+---------------------+--------------------\
11 -+---------+-------+------+-------+






But this query won’t:



 1 EXPLAIN select * from foods where name = 9;
 2 MariaDB [food]> EXPLAIN SELECT * FROM foods WHERE name=100;
 3 +------+-------------+-------+------+---------------------+------+---------+----\
 4 --+------+-------------+
 5 | id   | select_type | table | type | possible_keys       | key  | key_len | ref\
 6  | rows | Extra       |
 7 +------+-------------+-------+------+---------------------+------+---------+----\
 8 --+------+-------------+
 9 |    1 | SIMPLE      | foods | ALL  | index_foods_on_name | NULL | NULL    | NUL\
10 L |  890 | Using where |
11 +------+-------------+-------+------+---------------------+------+---------+----\
12 --+------+-------------+
13 1 row in set (0.00 sec)






When we pass string ‘9’, the index is used. When we pass number 9, the index
isn’t used.


Of if you have a date time column and you passing time as string, the index
won’t kicked in either.


The lesson here is we aboslutely should understand about data type.


Composite data type


We have 3 composite data types.



  	Streams




:are list or array, but they’re loaded in a lazy fashion. Instead of returning
a whole array at once, meaning all data are read into memory, a cursor is return.
A cursor is a pointer into the result set. We can loop over cursor to read data
when we need. Imagine instead of an array, and loop over it, you know iterate
over the cursor to get next value. It allows you to iterator over a data set
without building an entire array in memory. It’s equivalent to PHP iterator, or
Ruby iterator, or JavaScript iterator. Stream allows us access current element
and keep track of current position so
that we can, ideally
call next() on a cursor to move to next element, until we reach to the end
of array, it returns nil and iterator can stop. Because of that, we can work
with large data set because RethinkDB doesn’t need to load all of data and
return to client. The nature of stream make it read-only, you cannot change
the data while iterating over it.



  	Selections




:represent subsets of tables, for example, the return values of filter or get.
There are two kinds of selections, **Selection<object>** and **Selection<stream>**,
which behave like objects or streams respectively. The difference between
selections and objects/streams are that selections are writable --their return values
can be passed as inputs to ReQL commands that modify the database. For instance, the
get command will return a Selection<object> that could then be passed to an
**update** or **delete** command. We can think of selection like an array
where each element keeps an reference back to real document so that we can modify
them.</object></stream></object>



  	Tables




:are RethinkDB database tables. They behave like selections. However, they’re writable,
as you can insert and delete documents in them. ReQL methods that use an index, like getAll,
are only available on tables. Because index are created on table level.


In short, you cannot modify streams, you can update or change value of selection
but you cannot remove existed document, or insert new one. Tables allows you
insert new document or remove existed one.



    Sequence


  RethinkDB document use sequence in lots of places. It’s a particular data
type. You can think of it as an shortwords for all: streams, table, seletion




Remember data types seems not much important but you should understand them
well because it helps us understand the efficient of a query. If a query
returns an array, it consumes lot of memory to hold the array.


Sorting data


When talking about data type, let think of how we sort them. It really doesn’t
matter in the order, what is important is the definition of sorting data.


Understanding sorting is important in RethinkDB because of its schemaless. The primary key may not
be a numeric field, it can be a string. Moreover than that, a field can have
whatever data type, how are we going to compare an object to a string when
sorting.


Here is sorting order:


Arrays (and strings) sort lexicographically. Objects are coerced to arrays before sorting. Strings are sorted by UTF-8 codepoint and do not support Unicode collations.


Mixed sequences of data sort in the following order:



  	arrays

  	booleans

  	null

  	numbers

  	objects

  	binary objects

  	geometry objects

  	times

  	strings




That mean array < booleans < null < numbers < objects < binary objects < geometry objects < times < strings.







Selecting data


In this section, we will learn how to get data out of RethinkDB. Most of the
time, we will choose a db to work with, and chain into command table. 


Select the whole table


Let’s find all foods. This is same as SELECT * FROM foods in SQL.



 1 r.db('foodb').table('foods')
 2 //=>
 3 
 4 [{
 5     "created_at": Wed Feb 09 2011 00: 37: 17 GMT - 08: 00,
 6     "creator_id": null,
 7     "description": null,
 8     "food_group": "Herbs and Spices",
 9     "food_subgroup": "Spices",
10     "food_type": "Type 1",
11     "id": 43,
12     "itis_id": "29610",
13     "legacy_id": 46,
14     "name": "Caraway",
15     "name_scientific": "Carum carvi",
16     "picture_content_type": "image/jpeg",
17     "picture_file_name": "43.jpg",
18     "picture_file_size": 59897,
19     "picture_updated_at": Fri Apr 20 2012 09: 38: 36 GMT - 07: 00,
20     "updated_at": Fri Apr 20 2012 16: 38: 37 GMT - 07: 00,
21     "updater_id": null,
22     "wikipedia_id": null
23 }, {
24     "created_at": Wed Feb 09 2011 00: 37: 18 GMT - 08: 00,
25     "creator_id": null,
26     "description": null,
27     "food_group": "Herbs and Spices",
28     "food_subgroup": "Spices",
29     "food_type": "Type 1",
30     "id": 67,
31     "itis_id": "501839",
32     "legacy_id": 73,
33     "name": "Cumin",
34     "name_scientific": "Cuminum cyminum",
35     "picture_content_type": "image/jpeg",
36     "picture_file_name": "67.jpg",
37     "picture_file_size": 73485,
38     "picture_updated_at": Fri Apr 20 2012 09: 32: 32 GMT - 07: 00,
39     "updated_at": Fri Apr 20 2012 16: 32: 33 GMT - 07: 00,
40     "updater_id": null,
41     "wikipedia_id": null
42 },
43 ...
44 ]






You should get back an array of JSON object. By default, the data explorer will
automatically paginate it and display a part of data.


Typing r.db(db_name) all the time is insane. We can drop it to use r.table()
without calling r.db() if the table is in current selected database. Without 
any indication, the default database is test. On Data Exploer, without a 
r.db command, RethinkDB will use test as default database. Unfortunately we
cannot set a default database with data exploer1


Counting


We can also count the table or any sequence by calling count command.



1 r.db('foodb').table('foods').count()
2 //=>
3 863






Select a single document by its primary key


To select a single element, we call get on a table, and passing its primary
key value.



 1 r.db('foodb').table('foods')
 2   .get(108)
 3 //=>
 4 {
 5     "created_at": Wed Feb 09 2011 00: 37: 20 GMT - 08: 00,
 6     "creator_id": null,
 7     "description": null,
 8     "food_group": "Herbs and Spices",
 9     "food_subgroup": "Herbs",
10     "food_type": "Type 1",
11     "id": 108,
12     "itis_id": "32565",
13     "legacy_id": 115,
14     "name": "Lemon balm",
15     "name_scientific": "Melissa officinalis",
16     "picture_content_type": "image/jpeg",
17     "picture_file_name": "108.jpg",
18     "picture_file_size": 30057,
19     "picture_updated_at": Fri Apr 20 2012 09: 33: 54 GMT - 07: 00,
20     "updated_at": Fri Apr 20 2012 16: 33: 54 GMT - 07: 00,
21     "updater_id": null,
22     "wikipedia_id": null
23 }






Every document in RethinkDB includes a primary key field, its value is
unique across cluster and is used to identify the document. The name of primary 
field is id by default. However, when you create a table, you have an option 
to change name of primary field. We will learn more about it later. Just keep a
note here.


In RethinkDB, using of incremental primary key isn’t recommended because that’s
hard in a cluster environment. To make sure
the uniqueness of the new value, We have to check in every clusters
somehow. RethinkDB team decides2 to use an universal unique3 id instead of an
incremental value.


get command returns the whole document. What if we get a single field? Such
as we only care about name? RethinkDB has a command call bracket for that
purpose. In Ruby it’s [], and in JavaScript it’s ().


We can do this in JavaScript:



1 r.db('foodb').table('foods')
2   .get(108)("name")
3 //=>
4 "Lemon balm"






Or in Ruby



1 r.connect.repl
2 r.db('foodb').table('foods').get(108)[:name].run






What special about bracket is that it return a single value of the field.
The type of value is same type of value, not a subset of document. We can verify
that with typeOf command:



1 r.db('foodb').table('foods')
2   .get(108)
3   ("name")
4   .typeOf()
5 //=>
6 "STRING"






You can even get nested field with bracket:



1 r.db('foodb').table('test')
2   .get(108)("address")("country")






with assumption that the document has address field is an object contains a
field name country.


If you don’t like the using of bracket, you can use getField(JavaScript) or
get_field(Ruby) which have same effect:



1 r.db('foodb').table('foods')
2   .get(108)
3   .getField('name')
4 //=>
5 "Lemon balm"






How about getting a sub set of document, we can use pluck like this:



1 r.db('foodb').table('foods')
2   .get(108)
3   .pluck(get"name", "id")
4 //=>
5 {
6   "id": 108 ,
7   "name":  "Lemon balm"
8 }






pluck probably existed in many standard library of your favourite language.
This example shows you how friendly ReQL is.


Select many documents by value of fields


To select many document based on value of field, We used filter method, and
passing an object with expected value.


Let’s find all food that were inserted into database on 2011, the year I come
to the US.



 1 r.db('foodb').table('foods')
 2   .filter(r.row('created_at').year().eq(2011))
 3 //=>Executed in 59ms. 40 rows returned, 40 displayed, more available
 4 [{
 5     "created_at": Wed Feb 09 2011 00: 37: 17 GMT - 08: 00,
 6     "creator_id": null,
 7     "description": null,
 8     "food_group": "Herbs and Spices",
 9     "food_subgroup": "Spices",
10     "food_type": "Type 1",
11     "id": 43,
12     "itis_id": "29610",
13     "legacy_id": 46,
14     "name": "Caraway",
15     "name_scientific": "Carum carvi",
16     "picture_content_type": "image/jpeg",
17     "picture_file_name": "43.jpg",
18     "picture_file_size": 59897,
19     "picture_updated_at": Fri Apr 20 2012 09: 38: 36 GMT - 07: 00,
20     "updated_at": Fri Apr 20 2012 16: 38: 37 GMT - 07: 00,
21     "updater_id": null,
22     "wikipedia_id": null
23 }
24 ...
25 ]






r.row is new to you, but no worry, it just means current document. We used
r.row('created_at') to get value of created_at field, similar with how we
use bracket on get command to get a single value. Because created_at
is a datetime value, I get its year with, well, year command, then using eq
to do an equal compare with 2011. Sound a lot, but above query is really simple
and exlain itself. Sometimes I feel redundant to explain query but I have to
write this book anyway.


We can also pass an filter object to do matching filter:



 1 r.db('foodb').table('foods')
 2   .filter({
 3     food_type: 'Type 1',
 4     food_group: 'Fruits'
 5   })
 6 //=>
 7 [
 8 {
 9   "created_at": Wed Feb 09 2011 00:37:15 GMT-08:00 ,
10   "creator_id": null ,
11   "description": null ,
12   "food_group":  "Fruits" ,
13   "food_subgroup":  "Tropical fruits" ,
14   "food_type":  "Type 1" ,
15   "id": 14 ,
16   "itis_id":  "18099" ,
17   "legacy_id": 14 ,
18   "name":  "Custard apple" ,
19   "name_scientific":  "Annona reticulata" ,
20   "picture_content_type":  "image/jpeg" ,
21   "picture_file_name":  "14.jpg" ,
22   "picture_file_size": 29242 ,
23   "picture_updated_at": Fri Apr 20 2012 09:30:49 GMT-07:00 ,
24   "updated_at": Fri Apr 20 2012 16:30:49 GMT-07:00 ,
25   "updater_id": null ,
26   "wikipedia_id": null
27 },...
28 ]






Passing an object will match exactly document with those field and value. In
other words, passing an object is equal to passing multiple eq command and and
command. Above query can re-write using expression:



1 r.db('foodb').table('foods')
2   .filter(
3     r.and(
4       r.row('food_type').eq('Type 1'),
5       r.row('food_group').eq('Fruits')
6     )
7   )






The object notation is much cleaner in this case.


From a selection of document, We can use pluck to get a subset of documents’s
field instead of returning the whole document. Similarly to how we use bracket
to get a particular field



 1 r.db('foodb').table('foods')
 2   .filter({
 3     food_type: 'Type 1',
 4     food_group: 'Fruits'
 5   })
 6   .pluck('id', 'name', 'food_subgroup')
 7 //=>Executed in 70ms. 40 rows returned, 40 displayed, more available
 8 [
 9   {
10   "food_subgroup":  "Berries" ,
11   "id": 75 ,
12   "name":  "Black crowberry"
13   }, {
14   "food_subgroup":  "Tropical fruits" ,
15   "id": 150 ,
16   "name":  "Guava"
17   }, {
18   "food_subgroup":  "Tropical fruits" ,
19   "id": 151 ,
20   "name":  "Pomegranate"
21   }, ...
22 ]






By passing a list of field to pluck, we can get only those field.


Opposite of pluck is without. We passed a list of fields, and it removes
those fiels from document.



 1 r.db('foodb').table('foods')
 2   .filter({
 3     food_type: 'Type 1',
 4     food_group: 'Fruits'
 5   })
 6   .without("created_at", "picture_content_type", 'picture_file_name', 'picture_f\
 7 ile_size', 'picture_updated_at')
 8 //=> Executed in 52ms. 40 rows returned, 40 displayed, more available
 9 [
10 {
11   "creator_id": null ,
12   "description": null ,
13   "food_group":  "Fruits" ,
14   "food_subgroup":  "Berries" ,
15   "food_type":  "Type 1" ,
16   "id": 75 ,
17   "itis_id":  "23743" ,
18   "legacy_id": 81 ,
19   "name":  "Black crowberry" ,
20   "name_scientific":  "Empetrum nigrum" ,
21   "updated_at": Fri Apr 20 2012 16:29:43 GMT-07:00 ,
22   "updater_id": null ,
23   "wikipedia_id": null
24 },...
25 ]






With simple filterting, we can easily pass an filter object as above. But what
up with complex searching? Such as finding all foods whose name starts with
character N. As you see at the beginning, we used r.row command to do a
bit complex query.



1 r.db('foodb').table('foods')
2   .filter(r.row('created_at').year().eq(2011))






Let’s dive more into it.



    Counting filter result


  By calling count at the end of filter, we can count the result set of
sequence
    r.db(‘foodb’).table(‘foods’)
        .filter({food_type: ‘Type 1’,food_group: ‘Fruits’})
        .count()
    //⇒
    122




r.row


r.row is our swiss army knife. It refers to current visited document.
Literally, it’s the document at which RethinkDB is accessing. You can think of
it like this in a JavScript callback/iterator. Or think of it like current
element in an iterator loop. It’s very handy because we can call other ReQL
command on it to achieve our filtering.


It somehow feel like jQuery filtering command. For an instance, we write this 
in JavaScript to filter all DOM element whose data-type value is anime.



1 $('.db').find('.table').filter(function() {
2   return $(this).data('type')=='anime'
3 })






In ReQL, using filter with filter object:



1 r.db('foodb').table('foods').filter({food_group: 'Fruits'})






We can re-write it with r.row



1 r.db('foodb').table('foods').filter(r.row('food_group').eq('Fruits'))






Breaking it down we have:



  	r.row        ⇒ current document

  	(‘type’)     ⇒ get value of field type


  	.eq(‘anime’) ⇒ return true if the value is equal to the argument, anime in this case




r.row a RethinkDB object, which we can continue call many method to filter or
manipulation it. The expression that we pass into filter is a normal ReQL
expression but evaluate to a boolean result. RethinkDB runs it and if the returned value is true, the
document is included into result set. Ideally, any function that returns boolean
result can used with filter. Note that the evaluation of filter expression run
on RethinkDB server, therefore they has to be a valid ReQL expression, they
cannot be any arbitrary language expression. You cannot write:



1 r.db('db').table('table').filter(r.row('type') == 'anime')






In manner of filter action, we usually execute comparison or some condition to
be matched, RethinkDB gives us some kind of those method. You should refer to
its API for extensive command. Usually, we can use r.row in combine with
pluck or without or bracket command to narrow down data before
comparing. Below are some function for that purpose:



  	
eq(value) check equal to value. similar to ==.

  	
ne(value) check not equal to value. similar to !=.

  	
ge(value) check greater than or equal value. similar to >=.

  	
gt(value) check greater than value. similar to >.

  	
le(value) check less than or equal value. similar to <=.

  	
lt(value) check less than value. similar to <.

  	
add(value) Sum two numbers, concatenate two strings, or concatenate 2 arrays.

  	
sub() Subtract two numbers.




Each of above command can be call on different data type. Eg, when you call add
on an array, it will append the element to array. when you call on a string, it
concat parameter to the original string. Or calling on a number and they just 
do arithmetic operation.


Run those command in data explorer:



 1 r.expr(["foo", "bar"]).add(['forbar'])
 2 //=>
 3 [
 4   "foo" ,
 5   "bar" ,
 6   "forbar"
 7 ]
 8 
 9 r.expr(2).add(10)
10 //=>
11 12
12 
13 r.expr('foo').add("bar")
14 //=>
15 "foobar"







    Note that the reason we use r.expr is that we have to turn the native
object(array, number, string in our language) into RethinkDB data type, so that
we can call command on those.


  However, in Ruby it can be even shorter with
r(r([‘foo’, ‘bar’]) + [‘foorbar’])


  Basically, you have to remember that everything is evaluated on server, and
RethinkDB command only callable on RethinkDB data type




You can find more about those document in RethinkDB doc, in group Math and
logic4.


Let’s apply what we learn, by finding al food where its name starts with
character R and is a tropical fruits.



 1 r.db("foodb").table("foods")
 2   .filter(
 3       r.row("name").match("^R")
 4       .and(
 5         r.row("food_subgroup").eq('Tropical fruits')
 6       )
 7   )
 8 //=>
 9 {
10   "created_at": Wed Feb 09 2011 00:37:27 GMT-08:00 ,
11   "creator_id": null ,
12   "description": null ,
13   "food_group":  "Fruits" ,
14   "food_subgroup":  "Tropical fruits" ,
15   "food_type":  "Type 1" ,
16   "id": 234 ,
17   "itis_id":  "506073" ,
18   "legacy_id": 249 ,
19   "name":  "Rambutan" ,
20   "name_scientific":  "Nephelium lappaceum" ,
21   "picture_content_type":  "image/jpeg" ,
22   "picture_file_name":  "234.jpg" ,
23   "picture_file_size": 71055 ,
24   "picture_updated_at": Fri Apr 20 2012 09:43:04 GMT-07:00 ,
25   "updated_at": Fri Apr 20 2012 16:43:05 GMT-07:00 ,
26   "updater_id": null ,
27   "wikipedia_id": null
28 }






Here we are usinbg match with an regular expression ^R means any name starts
with R, and using and to do an and operator with other boolean. Other
boolean is result of getting field food_subgroup and compare with tropical
fruits.


filter seems handy but it’s actually limited. filter didn’t leverage index.
It scan and hold all data in memory. Of course, this isn’t scale infinite. Only
100,000 records can be filter. For anything large than that, we have to use
getAll or between which we will learn in chapter 5.


Now, let’s try to find all foods which has more than 10 foods document in its
group. We probably think of a simple solution like this: for each of document,
we get its food_group and count how many items has that same food group, if
the result is greater than 10, we return true, so that it will be included in
filter result. We may have duplicate result but let’s try this naieve
soltuion:



1 r.db('foodb').table('foods')
2   .filter(
3     r.db('foodb').table('foods')
4       .filter(
5         {food_group: r.row("food_group")}
6       )
7       .count()
8       .gt(10)
9   )






Query looks good but when we run, we get this:



1 RqlCompileError: Cannot use r.row in nested queries.  Use functions instead in:
2 r.db("foodb").table("foods").filter(r.db("foodb").table("foods").filter({food_gr\
3 oup:
4 r.row("food_group")}).count().gt(10))






Basically, we have nested query here, and RethinkDB doesn’t know which query
r.row should belong to, is it parent query, or the sub query? In those case,
we have to use filter with function. Let’s move to next chapter.


Filter with function


Beside passing an ReQL expression, we can also use a function which return true
or false to filter.


Let’s try previous example.



1 r.db('foodb').table('foods')
2   .filter(function (food) {
3    return r.db('foodb').table('foods').filter({food_group: food("food_group")}).\
4 count().gt(10)
5   })






Now, we no longer using r.row, we pass an anonymous function with a single
parameter(which we can name whatever), when itereating over the table, RethinkDB
call this function, and passing current document as its first argument. By using
function, we can still access current document, without using r.row, and
clearly bind current document to a variable, so that we can access its value and
avoid conflicting. Here, we name our argument food, instead of writing:



1 filter({food_group: r.row("food_group")})






We will write:



1 filter({filter_group: food("food_group")})






And we using boolean value, count().gt(10) here, as result of function.
Filter with function helps us write query with complex logic.


Pagination data


We rarely want a whole sequence of document, usually we care about a subset of
data such as pagination data. In this section, we go over commands: order, limit
and skip.


Order data


So far, we only select data and accept default ordering. Let’s control how they
appear:



1 r.db('foodb').table('foods')
2   .filter(function (food) {
3    return r.db('foodb').table('foods').filter({food_group:





food(“food_group”)}).count().gt(10)
      })
      .orderBy(“name”)
    //⇒Executed in 5.69s. 821 rows returned
    [
    {
        “created_at”: {
            “$reql_type$”: “TIME”,
            “epoch_time”: 1297240650,
            “timezone”: “-08:00”
        },
        “creator_id”: null,
        “description”: null,
        “food_group”: “Aquatic foods”,
        “food_subgroup”: “Mollusks”,
        “food_type”: “Type 1”,
        “id”: 280,
        “itis_id”: “69493”,
        “legacy_id”: 307,
        “name”: “Abalone”,
        “name_scientific”: “Haliotis”,
        “picture_content_type”: “image/jpeg”,
        “picture_file_name”: “280.jpg”,
        “picture_file_size”: 99231,
        “picture_updated_at”: {
            “$reql_type$”: “TIME”,
            “epoch_time”: 1334940073,
            “timezone”: “-07:00”
        },
        “updated_at”: {
            “$reql_type$”: “TIME”,
            “epoch_time”: 1334965273,
            “timezone”: “-07:00”
        },
        “updater_id”: null,
        “wikipedia_id”: null
    },
    …
    ]


We re-used above filter query, but append orderBy("name"). If you notice,
the above command run quite long Executed in 5.56s. 821 rows returned and
all rows are returned instead of a streams as usual. When we are calling
orderBy without specifing an index, it load all data into memory to sort,
which is both of slow and in-efficient. We will learn more about ordering with
index in chapter 5. For now, let’s continue with this method because, well, they
are easy to use, at first :D


We can reverse order by applying r.desc command:



1 r.db('foodb').table('foods')
2   .filter(function (food) {
3     return r.db('foodb').table('foods').filter({food_group: food("food_group")})\
4 .count().gt(10)
5   })
6   .orderBy(r.desc("name"))






We can order on table too, not just filter:



1 r.db('foodb').table('foods')
2   .orderBy(r.desc("name"))






We can order by multiple field, at a time



1 r.db('foodb').table('foods')
2   .orderBy(r.desc("name"), r.asc("created_at"))






We order by descending order on field name and ascending on field
created_at.



    One more thing to note is that RethinkDB doesn’t order document based on time 
they are inserted by default. The order seems in an unpredicted way without
explicitly setting an order . In MySQL, for
example, even without any index, the default order will be exactly same as you
insrted the document. However, in RethinkDB it doesn’t. I guess this is because
it’s distributed.




We can combine some document commands with orderBy too. Such as pluck only
an useful set of fields:



 1 r.db('foodb').table('foods')
 2   .pluck("id", "name", "food_group")
 3   .orderBy(r.desc("name"), r.asc("created_at"))
 4 //=>Executed in 122ms. 863 rows returned
 5 [
 6   {
 7       "food_group": "Milk and milk products",
 8       "id": 634,
 9       "name": "Yogurt"
10   },
11   {
12       "food_group": "Milk and milk products",
13       "id": 656,
14       "name": "Ymer"
15   },
16   {
17       "food_group": "Aquatic foods",
18       "id": 523,
19       "name": "Yellowtail amberjack"
20   },
21   ...
22 ]






Limiting data


Once we have an ordering sequence, we usually want to select a limit number of
document instead of the whole sequence. We use command limit(n) for this
purpose. It get n elements from the sequence or array.



 1 r.db('foodb').table('foods')
 2   .pluck("id", "name", "food_group")
 3   .orderBy(r.desc("name"), r.asc("created_at"))
 4   .limit(4)
 5 //=>Executed in 107ms. 2 rows returned
 6 [{
 7     "food_group": "Milk and milk products",
 8     "id": 634,
 9     "name": "Yogurt"
10 }, {
11     "food_group": "Milk and milk products",
12     "id": 656,
13     "name": "Ymer"
14 }, {
15     "food_group": "Aquatic foods",
16     "id": 523,
17     "name": "Yellowtail amberjack"
18 }, {
19     "food_group": "Aquatic foods",
20     "id": 522,
21     "name": "Yellowfin tuna"
22 }]






limit get us a number of document that we want, but it always start from the
beginning of sequence. To start selecting data starts from a position, we used
skip.


Skip


As its name, skip(n) ignore a number of element from the head of sequence. 



 1 r.db('foodb').table('foods')
 2   .pluck("id", "name", "food_group")
 3   .orderBy(r.desc("name"), r.asc("created_at"))
 4   .skip(2)
 5   .limit(2)
 6 //=> Executed in 97ms. 2 rows returned
 7 [{
 8     "food_group": "Aquatic foods",
 9     "id": 523,
10     "name": "Yellowtail amberjack"
11 }, {
12     "food_group": "Aquatic foods",
13     "id": 522,
14     "name": "Yellowfin tuna"
15 }]






Access Nested field


As you know, RethinkDB document is a JSON object. Very likely we have two or
more level of data structure. So how we can access those nested field, or to
drill down the fields. 


Let’s beging this chapter by creating some sample data. Just copy and paste,
ignore the syntax for now because we save them for chapter 4.


First, create table on test db. 



1 r.tableCreate("books")






Then, insert sample data:



 1 r.table("books")
 2   .insert([
 3         {
 4             id: 1,
 5             name: "Simply RethinkDB",
 6             address: {
 7                 country: {
 8                     code: "USA",
 9                     name: "The United State of America"
10                 }
11             },
12             contact: {
13                 phone: {
14                     work: "408-555-1212",
15                     home: "408-555-1213",
16                     cell: "408-555-1214"
17                 },
18                 email: {
19                     work: "bob@smith.com",
20                     home: "bobsmith@gmail.com",
21                     other: "bobbys@moosecall.net"
22                 },
23                 im: {
24                     skype: "Bob Smith",
25                     aim: "bobmoose",
26                     icq: "nobodyremembersicqnumbers"
27                 }
28             }
29         },
30         {
31             id: 2,
32             name: "TKKG",
33             address: {
34                 country: {
35                     code: "GER",
36                     name: "Germany"
37                 }
38             },
39             contact: {
40                 phone: {
41                     work: "408-111-1212",
42                     home: "408-111-1213",
43                     cell: "408-111-1214"
44                 },
45                 email: {
46                     work: "bob@gmail.com",
47                     home: "bobsmith@axcoto.com",
48                     other: "bobbys@axcoto.com"
49                 },
50                 im: {
51                     skype: "Jon",
52                     aim: "Jon",
53                     icq: "nooneremembersicqnumbers"
54                 }
55             }
56         }
57   ])






Depend on your language, you will usually have some way to access nested field,
by following the nested path. In above example, let’s say we want to access
*skype im, the path is:


contact -> im -> skype


Using JavaScript driver, we will use bracket to access field and sub field.



1 r.table('books').get(1)('contact')('im')('skype')
2 //=>
3 "Bob Smith"






While as, in Ruby driver, bracket notation is [field]



1 r.table('books').get(1)['contact']['im']['skype']






We can keep calling bracket to get the final nested field follow the path.
Not just a single document, we can use bracket on table level too:



 1 r.table('books')('address')('country')
 2 [
 3 {
 4   "code":  "GER" ,
 5   "name":  "Germany"
 6 }, {
 7   "code":  "USA" ,
 8   "name":  "The United State of America"
 9 }
10 ]






Or using in combination with filter, on selection:



1 r.table('books')
2   .filter({id: 1})('address')('country')('name')
3 //=>
4 "The United State of America"






Beside using bracket command, we can also using getField if that feel more
nature:



 1 r.table('books')
 2   .getField('contact')('email')
 3 //=>
 4 [
 5 {
 6   "home": bobsmith@axcoto.com, »
 7   "other": bobbys@axcoto.com, »
 8   "work": bob@gmail.com, »
 9 }, {
10   "home": bobsmith@gmail.com, »
11   "other": bobbys@moosecall.net, »
12   "work": bob@smith.com, »
13 }]






At the end of the day all you have to remember is to drill down the path with a
chain of bracket command.



  
    	https://github.com/rethinkdb/rethinkdb/issues/829↩


    	
http://stackoverflow.com/questions/21020823/unique-integer-counter-in-rethinkdb↩


    	
http://en.wikipedia.org/wiki/Universally_unique_identifier↩


    	
http://rethinkdb.com/api/javascript/#mod↩


  










Wrap Up


We now have some basic understanding:



1 1. ReQL always starts with `r`.
2 2. ReQL is tie to your language depend on language driver.
3 3. Default database
4 3. Find an document by its primary
5 4. Access table data and filter data by some condition
6 5. Access nested field






We will learn more about advanced query in other chapter. For now, let’s move on
and try to write some data into RethinkDB.





OEBPS/images/leanpub_key.png





OEBPS/images/chapter3----filter_falvor_group.png
Data Explorer History

1 r.db("foodb").table('flavors').filter({'flavor_group': 'fruity'})
2

Clear Run

Executed in 73ms. 24 rows returned, 24 displayed Tree view Table view Raw view Query profile

{
"category": .
"created_at": Sun Oct 02 2011 06:10:14 GMT-07:00 ,
“creator_id": null
"flavor_group": " .
*id": 74,
“name": “cherry" ,
"updated_at": Sun Oct 02 2011 06:10:14 GMT-07:00 ,
“updater_id": null
}
{
“category”: "odor" ,
"created_at": Sun Oct 02 2011 06:10:15 GMT-07:00 ,
“creator_id": null ,
"flavor_group": "fruity" ,
"id": 86
“name”: “plum’ ,
"updated_at": Sun Oct 02 2011 06:10:15 GMT-07 v
“updater_id": null
}
{

"cateaorv': "ador" .





OEBPS/images/leanpub-logo.png
[

Leanpub





OEBPS/images/title_page.jpg
S

Simpl
RethinkDB

A Database with a query language for human

Vinh Quéc Nguydn





