

[image: Building Web Applications with Silex 2]

 Building Web Applications with Silex 2

 … and other useful PHP libraries, too.

 Kevin Boyd

 This book is for sale at http://leanpub.com/silexwebapps

 This version was published on 2017-02-08

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2014 - 2017 Kevin Boyd

 For Kieran & Declan

Go Forth And Code

 Table of Contents

 	
 Introduction

 	
 Baseline Assumptions

 	
 Our Application: The Image Gallery

 	
 Chapter One: Getting Started

 	
 What is a Microframework?

 	
 The Anatomy of Silex

 	
 Installing PHP and Composer

 	
 Composing the Project (composer.json)

 	
 Bootstrapping (bootstrap.php)

 	
 Controlling the Front (web/index.php)

 	
 Running Our Application

 Guide

 	
 Begin Reading

Introduction

Building web applications is easier than ever these days - or is it? A growing
number of technologies are involved in creating even a simple web application.
The choices can be overwhelming, and that’s before considering popular
methodologies like Test-Driven Development (TDD), Continuous Integration, and
Cloud Computing.

This book introduces you to Silex 2, a PHP-based microframework. You will be
taken on a fabulous journey of amazing wonderment, guiding you through the
creation of an image gallery application.

Silex-related topics will be covered, such as Front Controllers, Routing,
Dependency Injection, Lazy Loading, Service Providers, and Middleware.

Supporting libraries and technologies will be introduced one chapter at a time.
Here and there, we will backtrack and refactor code to make it cleaner and more
maintainable.

Unit and Functional Testing will be used to help create a solid and reliable
test suite, which will verify that refactoring hasn’t unintentionally broken the
site or caused features to stop working as expected.

By exploring these technologies one-by-one, you’ll learn how to combine them
into a complete web application. This will give you valuable insight when it
comes time to research and apply the up-and-coming web technologies of tomorrow.

Baseline Assumptions

Every book has to make assumptions about the reader, and you know what they say
about assumptions: They’re fun!

Assumption One: You, the reader, are an amazing human being or benevolent
machine intelligence. You are open-minded and eager to learn as much as
possible.

Assumption Two: You have dabbled a bit in programming or scripting. You know
your way around programming concepts like loops (while, for, do..while) and
conditionals (if/else, switch), and have some knowledge of functions and
classes/objects. You might be a junior or intermediate Wordpress developer who
wants to explore more of what PHP has to offer.

Assumption Three: You want to make web applications and need a foothold to
get started.

Our Application: The Image Gallery

Before we begin coding our application, we should decide what we want it to do.
It’s helpful to have a basic outline of what features you want to have, and what
problems you aim to solve.

Initial Goal

 A simple and attractive photo gallery that can receive image uploads,
generate thumbnails, and display albums.

Feature Outline

 	Homepage

 	View the Full Gallery

 	Upload an Image

 	View an Individual Image

As we explore each chapter, we’ll come closer to the initial goal. We’ll have to
make some compromises in the beginning in order to get more comfortable with
Silex.

In the first few chapters, the application will be very primitive. It will look
awful, and it will be built in an insecure way - but DON’T PANIC. Things
will fall into place nicely, and we’ll explore some technologies that help you
build safe and pretty web applications.

Now that we’ve got a basic idea of what we want to build, let’s get started!

Chapter One: Getting Started

As you might have guessed from the title of the book, we’re going to use Silex
as the starting point for our application.

Silex is a PHP microframework derived from the Symfony framework, built by
Sensio Labs.

What is a Microframework?

Every microframework seems to have a different bone to pick with the full-stack
framework philosophy. This makes the definition of “microframework” tough to
nail down.

In a full-stack framework, virtually everything you would want to do in an
application of any size or scale is available somewhere in the framework - it’s
just a matter of knowing where to find it. This often results in bulky, clunky,
or slow applications. The framework constantly expands to include more
functionality and more code. All of that expansion worms its way into your
application, and if you’re not careful it can lock you into the framework.

Microframeworks try to combat this progression of bloat and lock-in. Some set a
goal to only deliver the minimum lines of code necessary for basic
functionality. Others are built to only expose a basic level of functionality,
but have a great deal of flexibility under the hood to draw from.

Silex 2 reuses the components of the Symfony Framework to expose a basic
but flexible set of features. Instead of making every decision for you, it
allows you to build your application the way you want. While it won’t beat other
microframeworks for line-of-code minimalism, the actual amount of code being
executed at any given time is surprisingly lightweight.

Because Silex lets you choose your own path, it can be easy to get tangled in
spaghetti code in larger web applications. It often takes a skillful and
experienced architect to reign things in and engineer a scalable codebase.
Hopefully, the guidance in this book will help you avoid those pitfalls.

The Anatomy of Silex

Silex is, at its core, a layer of glue on top of pre-existing components.

 	
Pimple
 Pimple is a simple PHP Dependency Injection Container. It is an array object
that can contain your entire application, including many of the objects (called
Services) you’ll use when running your application. When you need to access
those Services, Silex will tell Pimple to locate the object itself - or, if the
object hasn’t been created yet, Pimple will locate and run the code for creating
the object, and then remember the object for later.

 	
Symfony Event Dispatcher
 Silex uses the event dispatcher to control the flow of execution for
Request/Response handling. As the user’s request flows through the application,
various events are triggered, eventually resulting in a response that can be
sent to the user. This also gives you an event “bus” you can extend in your
application, by listening for and triggering your own custom events.

 	
Symfony HTTP Foundation
 The foundation component maps the HTTP specification to objects in PHP. This
saves you from having to directly call $_GET, $_POST, $_SESSION, etc., by
providing a set of common interfaces to work with.

 	
Symfony HTTP Kernel
 The kernel component accepts Request objects and uses the Event Dispatcher to
ferry things along until a Request is ready to be sent to the browser.

 	
Symfony Routing Component
 The routing component examines incoming requests and compares them against the
Route Collection to determine which controller action should be executed.
Essentially, this component decides which code to run when the browser requests
a specific web page URL.

The Silex Application class extends the Pimple container class, inheriting all
of Pimple’s functionality, and also implements the HttpKernel interface, giving
it the ability to coexist with the Symfony components. When first instantiated,
it also prepares a bunch of services and parameters in the Pimple container
related to Routes, Controllers, Events, Exception Handlers, etc.

All of these components work together to deliver the Silex experience.

Installing PHP and Composer

Depending on your operating system, it can be a challenge to get a PHP
development environment up and running.

On Ubuntu and Debian Linux, it’s generally pretty easy:

1 $ sudo apt-get install php php-cli

Same goes for the RedHat and CentOS Linux:

1 $ sudo yum install php php-cli

OS X conveniently ships with PHP pre-installed. For our initial needs, this
should be sufficient. More advanced applications may require custom PHP builds
and extensions, and that’s where things get challenging. Developers who need
these custom extensions generally have to install utilities like “Homebrew” or
“MacPorts” in order to get easy access to PHP customizations.

Installing PHP on Windows is a bit of a tricky process. The PHP website has a
page that is intended to help with the process, but it’s a fairly complex set of
steps:

1 http://php.net/manual/en/install.windows.php

More recent releases can be found on the dedicated Windows section of the PHP
website:

1 http://windows.php.net/download/

For the purposes of this book, it is preferable (although not mandatory) to use
Linux instead of Windows. Luckily, the technology exists to run Linux inside of
Windows, so you can have the best of both worlds.

By installing an application called VirtualBox, you can create a virtual machine
inside of Windows that is capable of running other operating systems. Then, you
can download a version of the Ubuntu operating system, such as Ubuntu 16.04
Xenial Xerus, to use as the OS for your virtual machine. Once installed, you can
just use the same instructions as above to install PHP:

1 $ sudo apt-get install php php-cli

Composing the Project (composer.json)

The next step for building a Silex application is initializing the project using
Composer, a dependency management utility for PHP projects. Composer is a great
tool for including open source libraries in your projects, and we’ll be using it
to include Silex as one of those open source libraries.

Let’s begin with the basic setup and a slightly different approach to the
standard “Hello World” application.

Install Composer by following the instructions at
http://getcomposer.org/download/. I prefer
to install it globally on my systems (Linux and OS X), so I can invoke it easily
and keep it up to date - this simply means that I put the file in my system
path, usually storing it as /usr/local/bin/composer. If you use services like
PuPHPet or Phansible to generate virtual machine configurations, you will most
likely have composer pre-installed inside the resulting virtual machine.

Once composer is installed, let’s begin by creating a folder for the project:

1 $> mkdir the-image-gallery
2 $> cd the-image-gallery

Once inside the project folder, run this command:

1 $> composer init

This kicks off the interactive initialization process. Give the project a name
(my-username/the-image-gallery), a quick description (Simple photo gallery
application), add your contact info in the format “Firstname Lastname
<email@domain.com>”, set minimum stability to “dev”, and choose a license.

I tend to release my software under the “MIT” open-source license, so I would
usually type “MIT” here and hit enter. There are many other licenses you could
choose from, or you could build it with no license. Pressing enter here without
selecting a license essentially means the project would be an
All-Rights-Reserved closed-source project. Either “MIT” or a
blank/all-rights-reserved license would be fine for this sample project.

The next stage is choosing dependencies. While some projects can start out with
dozens of dependencies, we’ll stick to just one for this chapter:

1 Search term: silex/silex
2 Version: ~2

Then, after saying “no” to dev requirements and “yes” to confirm generation, run
the install command to download the initial dependencies:

1 $> composer install

The libraries will be downloaded into the-image-gallery/vendors/, and Composer
will automatically create an autoload.php file for making it easy to work with
each dependency.

Now that the composition is finished, we can begin getting things wired up.

 The Easy Button

 Sample code for each chapter is available on GitHub. You can obtain the code
by cloning the repository:

1 git clone https://github.com/beryllium/the-image-gallery.git

 This will automatically pull down the samples into a directory called
the-image-gallery. Each chapter has its own folder inside this directory,
and you can run “composer install” in each of the chapter folders to get it
ready to play with.

Bootstrapping (bootstrap.php)

Next, we create a Bootstrap file called bootstrap.php. This file will
eventually control most of the internal wiring of your application, but for now
it will only be a few lines long:

 Chapter One: bootstrap.php

1 <?php
2
3 require __DIR__ . '/vendor/autoload.php';
4
5 $app = new Silex\Application();
6
7 $app['debug'] = true;
8
9 return $app;

This includes the composer autoloader, and initializes the Silex core in Debug
mode.

The return $app line allows us to store our entire application in a single
variable, which will become very useful when we explore ways of testing our
code.

Controlling the Front (web/index.php)

You may have heard of the “Model-View-Controller” design pattern for
applications. Many web frameworks use this concept to guide developers toward
creating maintainable applications. Silex, inspired by the Symfony philosophy,
strives to make that concept even more web-friendly by advocating a more
complete Separation of Concerns. It’s often called the “Request/Response” design
pattern.

HTTP requests come in from the web server and are handed to a controller action,
which then returns a response. Any juggling of views and models happens as a
separate concern elsewhere in the code, often in magical places like service
providers. We’ll explore those magical lands in later chapters.

Naturally, for our initial implementation, we’re going to get down and dirty and
forget about separated concerns.

One thing we do need to learn about is the “Front Controller”. In our project,
the front controller will be the main publicly-accessible script that exposes
our application to the world. It will define the routes (sometimes called pages,
or “endpoints” if they don’t return pages) that give our application its
functionality.

Go ahead and create a subfolder in our project called web/, and create an
index.php file inside there. It should look like this:

 Chapter One: web/index.php

 1 <?php
 2
 3 require __DIR__ . '/../bootstrap.php';
 4
 5 use Symfony\Component\HttpFoundation\Request;
 6 use Symfony\Component\HttpFoundation\Response;
 7
 8 // Declare our primary action
 9 $app->get('/', function() use ($app) {
10 return new Response('Mr Watson, come here, I want to see you.', 200);
11 });
12
13 $app->run();

The first parameter is the path or pattern of the route. Incoming requests
are compared against this string to see which part of the application they
belong to.

You might not recognize the function () use ($app) {} syntax used in this
example. That’s OK. We’re using something called an anonymous function
(otherwise known as a closure or lambda function), which lets us create a
reusable chunk of logic without a name. This kind of callable/passable function
is common in Javascript and other languages, and was added to PHP in version
5.3.0.

In this case, we pass the anonymous function as the second parameter to our
application’s “get” method. The function gets added to Silex’s internal
collection of routes, where incoming requests that match the path will cause it
to be executed.

A typical small web application could have a few dozen registered routes like
our '/' example. This could include standard webpage routes (“GET
/contact-us”), and it can also include dynamic routes or routes that fetch
specific data items by ID (“POST /comments” or “GET /comment/{id}”).

As you might imagine, the index.php file on these sorts of applications could
get rather long - later in the book, we’ll explore ways to simplify routes by
handling the business logic in Services and the display logic in Templates.
Silex also allows us to bundle our routes into organized collections, further
streamlining the index.php file.

Running Our Application

At this point, if you load index.php from your web server, it should respond
in plain text:

1 Mr Watson, come here, I want to see you.

To try it out in the PHP development web server included in PHP 5.4+, run php
-S 0.0.0.0:8080 web/index.php and then load http://localhost:8080/ in your
browser.

 [image: Chapter 1 (in Chrome)]
 Chapter 1 (in Chrome)

As the script executes, the bootstrap.php file is included - this initializes
the application and gets it ready to run.

The code then adds our first route to the collection. This tells the application
that HTTP GET requests to the URL '/' (the base of the site) should be sent to
the provided anonymous function.

When $app->run() is called, Silex takes the server environment (including the
user’s requested URL) and creates a Request object. This object contains all
kinds of information about the incoming request, including the user’s IP address
and their web browser’s User Agent. This Request object is then sent to Silex’s
EventDispatcher. The routing.listener service, which is subscribed to the
EventDispatcher, receives the event, and matches it to our route’s lambda
function. Then, our route returns a Response object that contains the output
string and an HTTP status of “200”.

Congratulations, we’ve built a tiny web app! In the next chapter, we will make
it more useful by adding the ability to upload and view photos.

 Version Everything!

 Version Control is an important part of any modern development process. Tools
like git make it easy to keep track of the entire development history of a
project.

 By tracking all the changes in a project, maintainers can ensure that all the
code is reviewed and tested before being put “live”.

 Starting a git repository is fairly easy.

1 $ git init

 That will initialize a blank repository. At this point, you can begin adding
files to be tracked.

1 $ git add bootstrap.php composer.json web/index.php

 Now that git is tracking these files, you have to tell it that you’re ready
to store your progress on the tracked files. This will be your first commit.

1 $ git commit -m "Make it so."

 Each chapter will conclude with the git commands to record your progress.

OEBPS/images/leanpub_info-circle.png

OEBPS/images/leanpub_code-fork.png

OEBPS/images/Chapter1.png
[} localhost:8080

€« > C {D localhost:8080

Mr Watson, come here, I want to see you.

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
by KEVIN BOYD

98 s008, ¢

