

Shell Functions
how to – create, save, & re-use

Marty McGowan

This book is for sale at http://leanpub.com/shellfunctions

This version was published on 2013-10-19

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 Marty McGowan

http://leanpub.com/shellfunctions
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Marty McGowan by spreading the word about this book on Twitter!

The suggested hashtag for this book is #shell.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#shell

http://twitter.com
https://twitter.com/search?q=%23shell
https://twitter.com/search?q=%23shell

Contents

Acknowledgments . i

Preface . ii

Introduction . iii

1 Write a shell function . 1
1.1 Hello world . 2
1.2 Getting it right . 3
1.3 More interesting . 4
1.4 Activity . 5

2 Whats next? . 6
2.1 Looking ahead . 7
2.2 Further ahead . 8

Acknowledgments
• my friends on the itToolbox, shell forum
• helpers from the StackOverflow
• Nitin Chitniss, for the incentive to capture small shell functions
• Bill Anderson, with whom I collaborated on “The Software Assembly Line” and has provided
support over the decades

• Pat, for the first edit for “voice”
• my employers of the past decade:

– Benedictine Academy, Elizabeth NJ, who taught real challenges
– Fidessa, who re-invigorated my love for Unix® and the shell
– and Union Co College, Cranford NJ, who has eased me into retirement

Preface
In this book you will learn how to write, save, and re-use shell functions.

The shell concepts are introductory. You may be familiar with them all. But if you aren’t familiar
with shell functions, you will learn how simple and powerful they are to use. These exercises are for
you if you are the least bit curious about how to write and use shell functions.

Introduction
Each chapter is simple enough to require a quarter to a half an hour of your time. Each is meant to
be worked at a terminal window on a Unix®, Linux, or other *nix server.

When you’ve completed these exercises, you will be comfortable with creating, using, saving and
re-using shell functions.

As an introduction, this short book as is the first of similar books on the shell function. You can
explore the planned topics in the what’s next section.

To get started, here are the few assumptions we make. That you:

• have access to an open terminal window
• can open simultaneous mulitple terminal windows
• are running the bash shell
• have experience with one of the popular editors: vi, vim, … or emacs for command line editing.

If you need help getting started, you can contact me here¹ now, and at relevant places in the exercises.

¹mailto:mcgowan@alum.mit.edu?subject=introduction

mailto:mcgowan@alum.mit.edu?subject=introduction
mailto:mcgowan@alum.mit.edu?subject=introduction

1 Write a shell function
The simplest shell functions may be written on a single line at the command prompt.

In this chapter, you will write and use two simple shell functions: hello, and today.

Write a shell function 2

1.1 Hello world

In this book, you can assume your command prompt is the dollar sign:

1 $...

Here is the Programmers Birth Announcement’ – Hello World!. Type it at your command prompt:

1 $ hello () { echo 'Hello World!'; }

So, on the above line, you type everything from hello thru the closing curly brace, followed by a
carriage return.

You use the function by typing its name at the command line. Here is the function definition (on
line 1), followed by using it (line 2), and the shell’s response (line 3). The next shell prompt is line 4.

1 $ hello () { echo 'Hello World!' ; }

2 $ hello

3 Hello World!

4 $

You can see the definition of a function with the declare built-in:

1 $ declare -f hello

Type that command. Notice your function has been slightly reformatted. More on that later.

Here is a screenshot;

Write a shell function 3

1.2 Getting it right

The function syntax:

name () { command … ; }

has a name of your choosing, and a command or semi-colon-separated commands of your choosing.
While there are other ways to define a function, I’ve found the parenthesis-pair simplest to identify
the name. A pair of curly braces enclose the commands. And if the trailing curly brace is on the same
line as a command, you need a semi-colon separator. You can separate commands on separate lines.
The only mandatory space in the function definition is the space following the first curly brace.

questions:

• What does the declare command tell you about the function syntax?
• how might you write a function to capture that idea? a good answer requires you know how
to use function arguments. feel free to experiment.

• what would you name that function?

Write a shell function 4

1.3 More interesting

Arguments, like file names and options, make functions more useful. But before looking at how
arguments are used, whet your appetite with this one, called today:

1 $ today () { date +%Y%m%d; }

2 $ today

3 20131008

4 $

Type the definition and invoke your new function today. Since date takes almost any upper- or
lower-case letter, we’ll deal with those later as arguments.

Write a shell function 5

1.4 Activity

• investigate the options to the date command: search for unix manual date.

Mail me if you have questions¹

¹mailto:mcgowan@alum.mit.edu?subject=writeAshellFunction

mailto:mcgowan@alum.mit.edu?subject=writeAshellFunction
mailto:mcgowan@alum.mit.edu?subject=writeAshellFunction

2 Whats next?
Before taking a peek at what’s next, it’s time to assess where you are. First, you’ve used these
commands and shell built-ins, in more or less the order encountered in the text:

1 echo

2 date

3 declare

4 for

5 do

6 done

7 set

8 eval

9 local

10 shift

11 history

12 grep

13 awk

14 source

15 tee

16 chmod

17 cat

18 printf

If you have any questions about them, it’s quite simple to search for bash shell command-name.

You now possess the skills to begin crafting your own function library and make it available on later
terminal sessions. You are now able to collect and re-use functions as you come to need them. You’ll
collect them, store and re-use them as multiple instances of the one case you have worked in the
book.

As you do that, you’ll recognize other challenges:

• how do I use these functions as part of another library?
• can I repair a function quickly as the need arises and easily restore it to it’s proper library?
• it seems I’m getting a large collection of functions: how do I keep them straight?

Whats next? 7

2.1 Looking ahead

The very next subject I’m planning is that of library management. I’ve functions on hand to:

• capture a daily log of when functions were created.
• quickly update a function library with additions or changes
• deleting a function or moving a function from one library to another,

This all belongs to a practice I’ve established on the content and form of a function library:

• building a Quick-Reference, which may be part of
• more extensive documentation
• what you may,may not, and must do when sourceing a library.

This is all supported by what I’ve called: Then only backup system you’ll ever need. That said, in
the last two years, I’ve been an avid user of github¹. And not yet that experienced with git, so what
you’ll see in the backup system I offer might be called a crutch, but I use it as the routine check-point,
preserving files in a more accessible state than git offers: i.e, using ordinary commands, such as cp
to retrieve a backed-up version, which may be more than one edition old.

And to control versions, the subject of the cloud appears. At this moment, that includes git, and
Dropbox², so a practice and a function library to make that usage as concise as you need. In the last
month (Sept-Oct 2013) I’ve started using Dropbox as my virtual HOME directory.

At some point I will discuss the distinction between using shell function libraries and the more
common parlance of the shell script. If you haven’t noticed this yet, I hadn’t use the term before.
That’s conscious, since much of my practice is devoted to the command line. We will need to make
the connection between this view of the shell, and connecting to the business needs. A good place
to do that is constructing an appliction suitable for a cron job³

¹http://github.com/applemcg
²http://Dropbox.com
³http://en.wikipedia.org/wiki/Cron

http://github.com/applemcg
http://Dropbox.com
http://en.wikipedia.org/wiki/Cron
http://github.com/applemcg
http://Dropbox.com
http://en.wikipedia.org/wiki/Cron

Whats next? 8

2.2 Further ahead

I have shell functions for the major application areas of:

• make – the utility conventionally used to build programs, I’ve long held that make offers
much wider use than in application development, particualrly documentation, testing, and
management information.

• database – I’ve been carrying around a personal copy of the too-little-used RDB⁴.
Originally built on awk⁵ there are now perl-based implementations. I’ve stayed close to the
author’s original idea that the shell is the only 4GL you’ll ever need.

• documentation – I’m a more recent convert to markdown. This offers the prospect of
sharpening your tools to produce a properly indexed and referenced document. This is one of
my goals here.

Mail me if you have questions⁶

⁴http://www.amazon.com/Relational-Database-Management-Prentice-Hall-Software/dp/013938622X
⁵http://www.grymoire.com/Unix/Awk.html
⁶mailto:mcgowan@alum.mit.edu?subject=whatsNext

http://www.amazon.com/Relational-Database-Management-Prentice-Hall-Software/dp/013938622X
http://www.grymoire.com/Unix/Awk.html
mailto:mcgowan@alum.mit.edu?subject=whatsNext
http://www.amazon.com/Relational-Database-Management-Prentice-Hall-Software/dp/013938622X
http://www.grymoire.com/Unix/Awk.html
mailto:mcgowan@alum.mit.edu?subject=whatsNext

	Table of Contents
	Acknowledgments
	Preface
	Introduction
	Write a shell function
	Hello world
	Getting it right
	More interesting
	Activity

	Whats next?
	Looking ahead
	Further ahead

