

[image: Shell Functions]

 Shell Functions

 how to -- create, save, & re-use

 Marty McGowan

 This book is for sale at http://leanpub.com/shellfunctions

 This version was published on 2013-10-19

 [image: publisher's logo]

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2013 Marty McGowan

Table of Contents

 	
 Acknowledgments

 	
 Preface

 	
 Introduction

 	
 1 Write a shell function

 	
 1.1 Hello world

 	
 1.2 Getting it right

 	
 1.3 More interesting

 	
 1.4 Activity

 	
 2 Whats next?

 	
 2.1 Looking ahead

 	
 2.2 Further ahead

Acknowledgments

	my friends on the itToolbox, shell forum

 	helpers from the StackOverflow

 	Nitin Chitniss, for the incentive to capture small shell functions

 	Bill Anderson, with whom I collaborated on “The Software Assembly
Line” and has provided support over the decades

 	Pat, for the first edit for “voice”

 	my employers of the past decade: 	Benedictine Academy, Elizabeth NJ, who taught real challenges

 	Fidessa, who re-invigorated my love for Unix® and the shell

 	and Union Co College, Cranford NJ, who has eased me into
retirement

Preface

In this book you will learn how to write, save, and re-use shell
functions.

The shell concepts are introductory. You may be familiar with them
all. But if you aren’t familiar with shell functions, you will learn
how simple and powerful they are to use. These exercises are for you
if you are the least bit curious about how to write and use shell
functions.

Introduction

Each chapter is simple enough to require a quarter to a half an hour
of your time. Each is meant to be worked at a terminal window on a
Unix®, Linux, or other *nix server.

When you’ve completed these exercises, you will be comfortable with
creating, using, saving and re-using shell functions.

As an introduction, this short book as is the first of similar books
on the shell function. You can explore the planned topics in the
what’s next section.

To get started, here are the few assumptions we make. That you:

	have access to an open terminal window

 	can open simultaneous mulitple terminal windows

 	are running the bash shell

 	have experience with one of the popular editors: vi, vim, … or
emacs for command line editing.

If you need help getting started, you can
contact me here
now, and at relevant places in the exercises.

1 Write a shell function

The simplest shell functions may be written on a single line at the
command prompt.

In this chapter, you will write and use two simple shell functions:
hello, and today.

1.1 Hello world

In this book, you can assume your command prompt is the dollar sign:

1 $...

Here is the Programmers Birth Announcement’
– Hello World!. Type it at your command prompt:

1 $ hello () { echo 'Hello World!'; }

So, on the above line, you type everything from hello thru
the closing curly brace, followed by a carriage return.

You use the function by typing its name at the command line.
Here is the function definition (on line 1), followed by using it
(line 2), and the shell’s response (line 3). The next shell prompt is
line 4.

1 $ hello () { echo 'Hello World!' ; }
2 $ hello
3 Hello World!
4 $

You can see the definition of a function with the declare
built-in:

1 $ declare -f hello

Type that command. Notice your function has been slightly
reformatted. More on that later.

Here is a screenshot;
[image: Hello World!]

1.2 Getting it right

The function syntax:

 name () { command … ; }

has a name of your choosing, and a command or
semi-colon-separated commands of your choosing. While there are other
ways to define a function, I’ve found the parenthesis-pair simplest to
identify the name. A pair of curly braces enclose the commands. And
if the trailing curly brace is on the same line as a command, you need
a semi-colon separator. You can separate
commands on separate lines. The only
mandatory space in the function definition is the space following the
first curly brace.

questions:

	What does the declare command tell you about the
function syntax?

 	how might you write a function to capture that idea? a good
answer requires you know how to use function arguments. feel free
to experiment.

 	what would you name that function?

1.3 More interesting

Arguments, like file names and options, make functions more useful.
But before looking at how arguments are used, whet your appetite with
this one, called today:

1 $ today () { date +%Y%m%d; }
2 $ today
3 20131008
4 $

Type the definition and invoke your new function today.
Since date takes almost any upper- or lower-case letter,
we’ll deal with those later as arguments.

1.4 Activity

	investigate the options to the date command: search for
unix manual date.

Mail me if you have questions

2 Whats next?

Before taking a peek at what’s next, it’s time to assess where you are.
First, you’ve used these commands and shell built-ins,
in more or less the order encountered in the text:

 1 echo
 2 date
 3 declare
 4 for
 5 do
 6 done
 7 set
 8 eval
 9 local
10 shift
11 history
12 grep
13 awk
14 source
15 tee
16 chmod
17 cat
18 printf

If you have any questions about them, it’s quite simple to search for
bash shell command-name.

You now possess the skills to begin crafting your own function library
and make it available on later terminal sessions. You are now able to
collect and re-use functions as you come to need them. You’ll collect
them, store and re-use them as multiple instances of the one case
you have worked in the book.

As you do that, you’ll recognize other challenges:

	how do I use these functions as part of another library?

 	can I repair a function quickly as the need arises and easily restore it
to it’s proper library?

 	it seems I’m getting a large collection of functions: how do I keep them
straight?

2.1 Looking ahead

The very next subject I’m planning is that of library management. I’ve
functions on hand to:

	capture a daily log of when functions were created.

 	quickly update a function library with additions or changes

 	deleting a function or moving a function from one library to another,

This all belongs to a practice I’ve established on the content and form
of a function library:

	building a Quick-Reference, which may be part of

 	more extensive documentation

 	what you may,may not, and must do when sourceing a library.

This is all supported by what I’ve called: Then only backup
system you’ll ever need. That said, in the last two years, I’ve been
an avid user of github. And not
yet that experienced with git, so what you’ll see in the
backup system I offer might be called a crutch, but I use it as the
routine check-point, preserving files in a more accessible state than
git offers: i.e, using ordinary commands, such as cp to
retrieve a backed-up version, which may be more than one edition old.

And to control versions, the subject of the cloud
appears. At this moment, that includes git, and
Dropbox, so a practice and a function
library to make that usage as concise as you need. In the last month
(Sept-Oct 2013) I’ve started using Dropbox as my virtual HOME
directory.

At some point I will discuss the distinction between using
shell function libraries and the more common parlance of the shell script. If you haven’t noticed this yet, I hadn’t use the term
before. That’s conscious, since much of my practice is devoted to the
command line. We will need to make the connection between this view
of the shell, and connecting to the business needs. A good place to
do that is constructing an appliction suitable for a
cron job

2.2 Further ahead

I have shell functions for the major application areas of:

	make – the utility conventionally used to build programs, I’ve long
held that make offers much wider use than in application
development, particualrly documentation, testing, and management
information.

 	database – I’ve been carrying around a personal copy of the
too-little-used
RDB.

Originally built on awk
there are now perl-based implementations. I’ve stayed close
to the author’s original idea that the shell is the only 4GL
you’ll ever need.

 	documentation – I’m a more recent convert to markdown.
This offers the prospect of sharpening your tools to produce a
properly indexed and referenced document. This is one of my goals
here.

Mail me if you have questions

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/leanpub_leanpub_logo.png
Leanpub

OEBPS/images/leanpub_information.png
1

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_error.png

OEBPS/images/helloWorld.jpg
S hello O { echo "Hello, World!
hello O { echo "Hello, World'
S hello

Hello, World

$ declare -f hello

hello O

{

3
sO

echo "Hello, World"

NS &)

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/title_page.jpg
Leanpub Sample
Technical Book

