SHELL OF

AN IDEA

Shell of an Idea
The untold history of PowerShell

Don Jones
This book is for sale at http://leanpub.com/shell-of-an-idea

This version was published on 2020-06-11

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2020 Don Gannon-Jones

http://leanpub.com/shell-of-an-idea
http://leanpub.com/
http://leanpub.com/manifesto

Also By Don Jones
The DSC Book

The PowerShell Scripting and Toolmaking Book
Become Hardcore Extreme Black Belt PowerShell Ninja Rockstar
Don Jones’ PowerShell 4N00bs

Instructional Design for Mortals

How to Find a Wolf in Siberia

Tales of the Icelandic Troll

PowerShell by Mistake

The Culture of Learning

Alabaster

Let’s Talk Business

Power Wave

The Never

Onyx

Be the Master: Special Edition

Be the Master

Sparks!

Superior Wave

http://leanpub.com/u/donjones
http://leanpub.com/the-dsc-book
http://leanpub.com/powershell-scripting-toolmaking
http://leanpub.com/become-powershell
http://leanpub.com/powershell-4n00bs
http://leanpub.com/id-for-mortals
http://leanpub.com/troubleshooting
http://leanpub.com/icelandic-troll
http://leanpub.com/powershell-by-mistake
http://leanpub.com/culture-of-learning
http://leanpub.com/alabaster
http://leanpub.com/letstalkbusiness
http://leanpub.com/powerwave
http://leanpub.com/the-never
http://leanpub.com/onyx
http://leanpub.com/bethemasterspecialedition
http://leanpub.com/bethemaster4
http://leanpub.com/sparks
http://leanpub.com/superiorwave

To the PowerShell team, past and present. For all you’ve done, and
for all you’ll do, thank you.

Contents

Foreword 1
Introduction 3
Castof Characters 7

HISTORY 8

A ShellofaProblem 9
Nlustrating the Problem 21
Let’sJust Copy Unix 27
Kermit 30
AManifesto 34
Culture 35
The .NET Framework Connection 36
Windows 37
Exchange 38

Windows, Again 39

CONTENTS

DESIGN 41

Design Decisions and Coding Stories 42
Decision-Making Principles 42
Usability Testing 42
Being Verbose oL 42
Providers 42
Ctrl+C e 43
Extensible Type System 43
How Parameters Became Cmdlets 43
Parameters: -vs./ L. 43
WHERE: The Elevation of the ScriptBlock 43
-Whatlf, -Confirm, and -Verbose 44
Punctuation Decisions 44
Snap-insvs. Modules 44
Namespaces 44
Verbs 44
COM . .. 45
What’sinaName? 45
Remoting and Buffering 45
UpdatableHelp 45
The Directed Graph 45
WhiteonBlue. oL 46

CreatingaLanguage. 47

The Security Story 48

Greatest Misses 49
MiniShells and AdminShells 49
Transactions 49
Workflow 49

DataStreams 49

CONTENTS

Tainted Data 50
COMMUNITY 51
The MVPs 52

Meetthe MVPs 52

Adopting PowerShell L. 52

The Role of the MVP Community 52

Whereare WeNow? 52

What Does the Community Look Like? 53

Changing MVPs’ Careers 53

Shout-Outs, 53

The MVP-Microsoft Relationship 53
My PowerShell Story 54
Impact 55
CONCLUSION 56
Acknowledgements 57
APPENDICES 58
“PowerShell Makes Us All Better at Our Games” 59
“We Can Leapfrog Linux!” 60
HulaMonkey 61

Personalities 62

Foreword

Nietzsche once said, “What we do is never understood, but only
praised or blamed.” There are people that praise PowerShell and
there are people that blame PowerShell, but few people understand
PowerShell. One of those few is Don Jones. It is hard to overstate
Don’s importance in the PowerShell story; he is the proverbial “First
Follower.” (Do yourself a favor and spend three minutes searching
for a video called “First Follower: Leadership Lessons from Dancing
Guy” and watch it now. No—I mean “now.” I'll wait.)

I met Don in a bar in Las Vegas. He told me he wrote books—“really
fast and really good.” He said he understood IT pros, that they
were going to love Monad, but that it would take 10 years before it
became mainstream. I told him he was wrong and explained all the
things we were doing to avoid the “crossing the chasm” problem.
As I recall, his response was “Ok. Sure.” If you’ve never talked with
Don, it is hard to convey his ability to politely tell you that you
are full of it, but it isn’t worth his time or effort to explain it to
you. If you hear “OK” or “Sure” you are really in the weeds, but
“Ok. Sure”” is a clue. You can guess where this story is going. In the
end, Don was right—about that and so many other things along the
way. It is a good thing I ignored him because if I had a clue about
the difficulty that was in store for us on the path to take the great
ideas in Monad and ship it as PowerShell, I would have ordered us
another round and moved on to something else.

In Shell of an Idea, Don tells some of the many stories behind
the creation of PowerShell and its design. It is a story of a group
of amazing engineers struggling to forge a whole suite of new
technologies into a coherent experience—all the while fighting a
multi-year game of internal politics whack-a-mole. In case it is
not clear—we were the moles. Microsoft’s embrace and mastery

Foreword 2

of GUIs brought it such overwhelming success that it was found to
be a monopoly. So when I came to the company talking about the
importance of command line interfaces and programmatic shells...
well you can imagine how well that went over. The only reason
we were funded to do a shell was to compete with Linux and even
then, it was deemed so unimportant that I had to take a demotion
to work on it full time.

The world has an unfortunate habit of giving all the credit to
a single hero. The reality is that big things happen because of
teams. So it is with PowerShell. I came up with several of the core
foundational concepts and architectural principles, but PowerShell
is unequivocally the product of a team of awesome engineers. Bill
Gates used to say that Microsoft was great at finding and hiring
the world’s best software talent but failed at getting their IQs to
add up. I am most proud I was able to create an environment that
allowed a group of some of the world’s best engineers to ship their
ideas in a way that their IQs added up. This book is the story of
those engineers, their ideas, and the messy path to adding it all up
and shipping in an environment actively trying to kill the project
at every step along the way.

Jeffrey Snover
May 2020

Introduction

My history with Windows administrative automation goes back
a long way, at least to my 2003 book, Managing Windows with
VBScript and WMI (Addison-Wesley). A bestseller of the time, it
put me on the map as someone who spoke about, taught, and wrote
about Windows automation. It helped drive my first Microsoft
MVP Award recognition in 2004 and made it natural for me to
jump into Windows PowerShell-then called Monad-when it hit
the scene in 2005.

I was honored to co-present with Jeffrey Snover at TechEd Europe
2006 in Barcelona, where Microsoft formally launched PowerShell
and introduced it to the world. I wrote the first published book on
PowerShell, Windows PowerShell: TFM (SAPIEN Press) and have
in total written or co-authored close to a dozen books on Power-
Shell. Learn Windows PowerShell in a Month of Lunches (Manning
Books) remains a go-to bestseller for newcomers, and PowerShell
In Depth (Manning) is still a top reference for PowerShell admins.
I co-founded PowerShell.org, launched the PowerShell + DevOps
Global Summit with my partner, and was named “PowerShell’s
First Follower” by Jeffrey Snover at the first Microsoft Ignite events
in Chicago. I coined the terms “Toolmaker” and “Toolmaking”
within the PowerShell world, and have been an advocate for strong
practices and patterns. I even substituted for Jeffrey Snover as a
speaker at the TechEd North America 2007 conference. Suffice to
say that PowerShell has been an enormous part of my life and
career.

Over the years, I've made a ton of good friends in the PowerShell
community, which is easily one of the friendliest and most down-
to-earth group of technologists I've ever met. My office has a small
collection of the thoughtful, tongue-in-cheek mementos they’ve

Introduction 4

given me: a CIA challenge coin, a Lego minifig of myself, a beer
stein with PowerShell and Disney’s Figment character etched into
it, and more. My career has taken me away from the day-to-
day engagements with both the technology and that audience, but
they’ve both been such a huge part of my life and career that I can
never step fully away.

In fact, that was the genesis for this book: I just can’t let PowerShell
go. It’s not only been important to me, but it’s also been hugely
important and impactful to so many people in the industry. And
yet PowerShell almost never happened. In fact, it almost never hap-
pened more than once. Were it not for a team of passionate visionar-
ies willing to make the occasional possibly-career-limiting moves,
PowerShell-and all the positive impact it’s created—wouldn’t have
existed. PowerShell might have just been a port of Unix’ KornShell,
or it might have just been a WMI querying tool. Or it might not
have been a thing at all.

There’s alot of untold story under the shell, and it’s a story I wanted
to tell. Much of PowerShell’s core team have moved on to other
teams or even to other companies. Nobody’s getting any younger.
I felt it was time to capture their stories and the shell’s story while
I could still track everyone down. Some bits of the story have been
told at conferences or in other venues, but it’s never been pulled
together into one place—and it’s never been told in its entirety.

If you've worked with PowerShell, then Shell of an Idea should
provide some fascinating backstory to it. If you haven’t worked
with PowerShell but you’re at least conversant with computers and
systems administration, then you’re in for a real treat. As much as
possible I've tried to wrap context around the stories so that you can
see where they fit into the world, and what PowerShell struggled
against and sought to solve.

I've also included a number of quotes, solicited through my blog at
DonJones.com®. These may seem out of context as I present them,

'http://donjones.com

http://donjones.com/
http://donjones.com/

Introduction 5

but they’re intended to provide some background for the people
that PowerShell has impacted the most. I've edited these as lightly
as possible for length and clarity because I feel that the effect of
the shell’s story is just as important as the story itself. Here’s one
example:

PowerShell changed my life... T realize that such a
statement may seem exaggerated, but every Powershell
enthusiast can relate in some way to the overwhelming
benefits and career opportunities that learning Power-
Shell has given them.

I had worked in an operations management position for
five years and dreaded going into work every day. The
stress was awful, but the monotony was worse. I was 30
years old, had a wife and two boys under two years old,
and living on my single income. [was afraid it was too
late to change careers and find work I actually enjoyed.
However, my older brother who worked as a system
administrator for a large tech company told me about
how he used PowerShell in his job and loved it. He was
a PowerShell enthusiast and thought I could learn it
and open up an opportunity to change into the IT field.
He actually gave me the book he used that helped him
learn, Learn PowerShell In a Month of Lunches.

That was about six months ago, and I was fortunate
that an opportunity opened up at my current company
in our IT department soon after I started learning. The
little T knew at the time allowed me to get my foot
in the door and gave me the opportunity to make an
immediate impact and learn in a practical way.

PowerShell is easy to learn, incredibly practical, and
useful in most every environment. Since I started, I've
scripted automated tasks that run daily, created GUI
tools for our Operations department and many more

Introduction 6

things like interacting with web APIs, and more.

I now love what I do, and I'm excited about the career
and financial opportunities this new path will help
provide for me and my family. I will forever be a
PowerShell evangelist and look forward to continuing
to gain a more in-depth knowledge, and hopefully
have the opportunity to teach and train others on how
Powershell can potentially change their lives as well.

—Aaron

How can you not want to read more of the story of a technology
that can generate that kind of feeling? “Easy to learn,” “incredibly
practical,” and “I now love what I do;” those aren’t statements we
often see all attached to a single technology, right? The journey to
create a product that engenders those remarks must be amazing.

It’s easy, as we sit in front of our monitors and tap away on our
phones, to forget that the story of technology is a story of people.
It’s about visionaries who see problems and try to solve them, who
take on some small piece of the world and try to make it at least a
little better. It can be difficult for us everyday folks to look at the
end result and be impressed by it. What I hope you take away from
this book, though, is that those amazing end results come in tiny,
often-difficult steps. If you're willing to take those little steps and
push through the hurdles, you can make just as big of a difference.
The people who brought PowerShell to life are just ordinary people
who shared a vision and worked hard to make it a reality.

This is their story, and I'm proud to share it. I hope you enjoy it.

Don Jones

Cast of Characters

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

HISTORY

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

A Shell of a Problem

5
\
)
%

[T “
P —_—
= el W= |0 = = B
E|S W o:¢ H =
e = 8
s e ng = N= B
. o\.g SRS .': g'ﬁ =
LGRS | e | B
GRS
A :5. : ~
SRR -
NN T
==

“All I have to do is push a button on each one...”

To understand the history of PowerShell and its subsequent impact,
you need to understand a bit of Microsoft history. At least, a
simplified version of a tiny piece of it.

Until 1993, Microsoft Windows was a desktop operating system,
meaning it ran on individual computers used by individual people.
Most of those computers were fairly large, beige boxes that sat on
or under a desk. Laptop computers at the time were pretty primitive

A Shell of a Problem 10

and bulky compared to what you might see today. The Windows
of the day was v3.1, and it couldn’t even participate fully in the
more primitive computer networks of the day. Home users tended
to rely on dial-up services like America Online rather than the
always-on Internet we take for granted these days. That Windows
was shortly succeeded by Windows for Workgroups, the first fully
network-capable Windows operating environment and the first
Windows arguably created with business scenarios specifically in
mind. But even then, Windows for Workgroups could really only
join a network; there was no version of Windows capable of hosting
a network. Networks of the time were hosted by a server, with the
most common servers running either a product called NetWare 3.1,
produced by a company called Novell, or a variant of the UNIX
operating system.

Unix (as it is more commonly styled nowadays) had been around
for a while by then, primarily at military research facilities and
large universities but also running on the enormously expensive
mainframe® and midrange computers used by the largest enterprise
companies. It featured robust networking, and in fact provided the
underpinnings of what would become today’s Internet. Unix at the
time was both incredibly complex to use (compared to Windows)
and incredibly expensive; a single Unix computer could easily
represent an investment in the tens of thousands of dollars, and
required specialized training to operate.

NetWare was common in small- and medium-sized businesses.
It was fairly complex to install and manage, and it included its
own protocols for network communications. NetWare could run
on smaller, cheaper computers, and it was somewhat simpler for
network administrators to learn to use.

Perhaps most importantly, many decent-sized companies didn’t
have a network at all; they had a midrange computer like an IBM

*To be fair, these were technically “minicomputers,” but the word “mini” in our modern
context completely understates the size and cost of the things. I'll incorrectly refer to them as
“mainframes” just to help set the right tone.

A Shell of a Problem 11

AS/400° that handled all of the business’s computing. Users con-
nected to these midrange computers through “terminal emulation”
cards that plugged into their bulky desktop computers, and by
using applications that ran on Windows. Essentially, these terminal
emulators turned each desktop into a “dumb monitor” (literally
not much more than a television hardwired to the midrange ma-
chine) capable of sending keystrokes and displaying whatever the
midrange sent back. Truly huge companies often had a mainframe
that was basically just a giant equivalent to a midrange, such as
the Digital Equipment VAX line of computers. Again, people often
connected to these via “dumb terminals” that were wired directly
to the computer.

The point is that in the early 1990s computer networking wasn’t a
big thing for most businesses, and you needed specialized personnel
to build and run a network if you did have one. It wasn’t like today,
where your smartphone can join a wireless network with a couple
of taps, and you can set up your own home WiFi network just by
plugging in a box and running a setup application on your phone.

So, the landscape of the time: big companies had a single enormous
computer, and perhaps a bunch of pricey Unix machines * to
supplement it. Smaller companies maybe had a few Windows
or MS-DOS desktop computers connected to a NetWare server.
Without networking, it was a pretty big pain to own more than a
handful of computers, and so nobody really bothered. Even a giant
tech university like MIT could probably have counted up all the
computers they owned without much effort-a marked contrast to
today’s world, where most of us have a pocket computer (called
a smartphone), maybe a laptop or tablet, maybe a wrist computer
(smart watch), a gaming machine, and more. In the early 1990s,
a single human being didn’t run around owning a half dozen
computers. Today, we probably can’t accurately count how many

*These are referred to as IBM’s System i computers now, after having briefly been
rebranded to iSeries.

“Unix workstations were sized more like a modern PC, but still cost thousands and
thousands of dollars.

A Shell of a Problem 12

of them are on the planet.

In 1993 Microsoft launched Windows NT, its first truly business-
grade edition of Windows. Most critically, it launched Windows
NT Server, which was their first operating system capable of
hosting a robust network. Windows NT wasn’t yet anywhere near
the class of a midrange or mainframe operating system, but it could
certainly compete with Novell NetWare as the centerpiece of a
small- or medium-sized business network. Even large companies
started buying Windows NT, but not to replace their AS/400
or VAX machine, mind you! In most cases, Windows NT snuck
into the environment, purchased by a single department that was
tired of not getting the computing resources they wanted from
their company’s midrange or mainframe. Compared to NetWare,
Windows NT was easy to set up and straightforward to operate. It
adopted the same graphical user interface that had made Windows
so popular on the desktop. It was an easy sell: “add a file or print
network as easily as opening up your word processor!”

This was a truly critical point in computing history: suddenly,
everyone could have a server capable of hosting shared files,
providing shared printing services, and other basic tasks. Servers
were cheaper, and Windows NT made it easy for almost anyone
to set up a network. Network computing had been democratized
and commoditized, and almost every business wanted in on it.
The number of servers installed in the world’s companies began
to proliferate markedly. Microsoft followed Windows NT (initially
versioned 3.1) with Windows NT 3.51 and then Windows NT 4.
Dropping the “NT,” they then followed with Windows 2000 Server
and then Windows Server 2003.

By 2003, Windows—and the many applications that ran on it-
had grown up a lot. It was fully capable of taking on numer-
ous enterprise-class workloads such as messaging, collaboration,
databases, and more. Microsoft—themselves an AS/400 company for
much of their history-committed to running their own company
on Windows Server, and had made the jump by the 2003-2005

A Shell of a Problem 13

timeframe.

Here’s the advantage of moving your computing from giant, million-
dollar AS/400 and VAX systems to smaller, commodity servers
running Windows Server: it’s cheaper. Sure, a single Windows
Server might not be able to do messaging and filing and printing
and databases and whatever else, but you could buy three dozen
Windows Server machines for far less than the price of a single
AS/400. In the late 1990s, as the public Internet and World Wide
Web came online and proliferated, people quickly realized that
having more, cheaper servers was often better than having one
expensive one. Want to stand up a website that can survive the
traffic when your company gets mentioned on Oprah? Have that
website served up by an entire building full of cheap web servers,
each taking a small part of the overall workload. Today’s cloud, in
the form of Amazon Web Services, Microsoft Azure, Google Cloud,
and others, exists entirely around the concept of “lots of cheap
computers.”

But here’s the downside of all those servers: someone has to manage
them. They need to be configured to work properly, and they need
to stay configured. They need periodic security updates and bug
patches. Patching one server back in 1994 was no big deal, but
patching a building containing thousands of servers in 2003 became
an entirely different thing.

And that’s where Windows Server ran into trouble.

Sure, Windows Server was “as easy to run as the desktop you
already know and love,” but the ability to click through a wizard
to install a patch didn’t scale well. Having to run through the
same wizard on ten computers—clicking Next, Next, Next, Next,
Finish on each one—might be acceptable, but doing it for a thousand
computers? Not so much. Even normal business processes like
bringing on a new employee became a massive chore. In the old
mainframe days, a new employee would get an account set up
on the mainframe and a phone extension assigned to their desk,

A Shell of a Problem 14

and that was pretty much it from a tech perspective. Now? New
employees needed a user account, an email mailbox, a folder to
store their documents in, access to the company applications, and
more. Completing all those provisioning tasks manually could take
hours, if not days, and organizations big and small started to feel
the pain.

Simply put, Windows started to bog down in terms of the labor it
required, and so computers running Linux started giving Microsoft
trouble in enterprise environments.

Linux, an open-source operating system that’s based on, and largely
compatible with, Unix was created mainly in response to the
high cost of Unix operating systems. Linux is free to use in most
cases, and it runs on the same cheaper commodity hardware that
Windows Server can run on. Linux is a lot harder to administer,
though. It favors cryptic commands typed into the computer, versus
Windows’ pretty icons and Next-Next-Finish wizards. The upside
of Linux is that once you do learn to manage it, it’s almost as easy
to manage a hundred computers as it is just one. Instead of typing
the commands into each computer yourself, you simply type them
into a text file not unlike a word-processing document, and tell
all of your computers to run that text file. The text file becomes
a “script,” like you might hand out to actors in Hollywood, with
each computer reading their lines so that you don’t have to.

Microsoft started struggling to close deals in large companies due
in part to the perception that managing large batches of Windows
Server machines took more labor than doing the same thing with
cheap Linux machines. Windows Server cost money too, and
organizations didn’t often see the point in spending a lot of money
on something that was painstaking to administer and maintain.

Nowhere was Microsoft’s problem more evident than in a leaked
white paper from August 2000. This was shortly after Microsoft
had acquired Hotmail, a free email service hosting more than 100
million accounts and running entirely on Unix servers running the

A Shell of a Problem 15

FreeBSD variant of Unix. Microsoft employees were tasked with
performing an analysis of what it would take to move from Unix
to Windows as the base of Hotmail, and the results weren’t rosy.

“It’s easy to look at a UNIX system,” the paper’s author says, “and
know what is running and why. Although its configuration files
may have arcane (and sometimes too-simple) syntax, they are easy
to find and change” But with Windows, “Some parameters that
control the system’s operation are hidden and difficult to fully
assess. The metabase is an obvious example. The problem here is
that it makes the administrator nervous; in a single-function system
he wants to be able to understand all of the configuration-related
choices that the system is making on his behalf” And then a real
strike against Windows, from a manageability perspective: “GUI
operations are essentially impossible to script. With large numbers
of servers, it is impractical to use the GUI to carry out installation
tasks or regular maintenance tasks.” For Unix? “Most configuration
setups, log files, and so on, are plain text files with reasonably
short line lengths. Although this may be marginally detrimental to
performance (usually in circumstances where it doesn’t matter) it is
a powerful approach because a small, familiar set of tools, adapted
to working with short text lines, can be used by the administrators
for most of their daily tasks. In particular, favorite tools can be used
to analyze all the system’s log files and error reports”

The paper goes on to really lay out why Unix’ approach was
better: “Over the years, UNIX versions have evolved a good set
of single-function commands and shell scripting languages that
work well for ad-hoc and automated administration. The shell
scripting languages fall just short of being a programming language
(they have less power than VBScript or JScript). This may seem
to be a disadvantage, but we must remember that operators are
not programmers; having to learn a block-structured programming
language is a resistance point.” Furthermore, “PERL... is more of a
programming than scripting language. It is popular for repeated,
automated tasks that can be developed and optimized by senior

A Shell of a Problem 16

administrative staff who do have the higher level of programming
expertise required”

In other words: Windows was horrible at administrative automa-
tion, and VBScript wasn’t helping. (As an aside, the Hotmail
migration to Windows actually went off really well, with nobody
realizing for months that the back-end migration had even hap-
pened.)

As the paper hints, Microsoft had first countered Unix’ robust
shell scripting history with Visual Basic Script, or VBScript. This
scripting language was intended to let you manage Windows Server
by typing commands into text files, just as Linux could do. But it
was a programming language, not a shell scripting language. The
barrier to entry for VBScript was high. You couldn’t just run a
command and then paste it into a script for long-term use; you had
to write code. And the fundamental architecture of Windows Server
wasn’t the same as that of Linux, and it impacted Windows’ ability
to have an effective scripting language.

Linux, as with Unix before it, is a “text-based operating system.”
That’s what the Hotmail white paper was alluding to: everything
that tells the server how to behave-its configuration-is basically
lines in text files. The operating system’s means of communicating
with other devices is similarly simplistic. Changing a text file
is easy. Most Linux administrators quickly figured out the small
number of tools that enabled them to change text files on hundreds
of computers at once, effectively reconfiguring those computers
with a single keystroke if needed. Sure, those tools were cryptic,
with incomprehensible names like “grep,” “sed,” “awk,” “cat,” and
more, but you only needed to learn them once. Once you did, the
world of Linux administration was open to you. Learn a little, and
you could do a lot.

Windows, on the other hand, is an API-based operating system.
Each component inside Windows defines a set of interfaces that
you use to tell it what to do. When you click an icon in Windows,

A Shell of a Problem 17

one bit of software uses those interfaces to tell another bit of
software to do something, like open a file, send a message, or
whatever. Automating Windows administration, then, is less about
changing text files and more about some pretty serious computer
programming. These interfaces are (for the most part) documented,
but that documentation presumes you're an experienced software
engineer. Sadly, the people hired to manage computer networks
tend not to be experienced software engineers. In the Windows
world, they were used to clicking icons, not coding programs of a
hundred lines or more. VBScript helped a bit, but VBScript couldn’t
access all of the APIs needed to make Windows do everything it
did. Eventually, someone using VBScript would run into a situation
they simply couldn’t handle, leaving them to go back to clicking
icons to make stuff happen.

Worse, Windows’ various APIs had all been created by developers
who never expected anyone but themselves to use those APIs.
Some APIs required you to use low-level programming languages
like C or C++, while others could use more accessible, higher-
level languages like VBScript. Still others were best used from
Microsoft’s NET Framework, a set of APIs released in the late 1990s
to make software development faster and more consistent. But
NET Framework didn’t cover everything a server administrator
might need. So this wasn’t just a matter of Windows being based
on APIs; it was also about Microsoft having changed their minds
over the years on how those APIs were created and used. You could
be a master in .NET Framework, for example, and still be unable
to deal with some of the deeper, C++-based interfaces in Windows’
core.

Lest you think Microsoft had been remiss in their architecture,
rest assured that’s not the case. Using APIs to wall off different
components from each other is not only a standard practice, it’s
a recommended practice. APIs let multiple teams of people work
on different subsystems without interference or dependencies on
other teams. One team can do whatever they like with their piece

A Shell of a Problem 18

of software, knowing that all they need to do is publish an interface
through which other teams could access whatever was needed. It’s
a bit like the radio in your car: you might not know how a radio
works, but you can use the interface provided to change stations
and adjust the volume. The back side of the radio sports another
interface that lets the car supply power, antenna signals, and so
on to the radio. If you buy a Ford truck, you’re welcome to swap
out the Ford radio for a Pioneer one, provided the Pioneer radio
can support the same interface that your truck expects of a radio
(which is why adapter cables exist).

A problem with interfaces, though, is that they can only give you
the things their developer anticipated you would need. If your
truck radio has no interface for taking a satellite radio signal, then
there’s nothing you can do about that, no matter how many adapter
cables you have. And that’s where Windows administrators often
found themselves: if the developers of some Windows subsystem
hadn’t anticipated an administrator needing to do something,
then the subsystem’s interfaces wouldn’t make it possible, and the
administrator was out of luck.

And here’s another problem Windows had: many of the teams
who built Windows’ various components assumed nobody would
ever do anything other than click the pretty icons they’d created.
For those components, it was essentially impossible to automate
their administration because they simply had no interfaces through
which to do so. It was, frankly, a bit of a mess, and it caused no
end of frustration to Windows administrators who were managing
a rapidly growing number of servers in their environments. This
wasn’t necessarily a bad decision on the part of those teams, be-
cause the whole point of Windows was its graphical user interface.
For many of them, suggesting that people might need to administer
using something other than icons and wizards approached heresy.
Teams were required to deliver a comprehensive and easy-to-use
graphical user interface. Anything else was often optional in terms
of Microsoft’s architecture standards, and optional things tend to

A Shell of a Problem 19

fall by the wayside when resources get tight and timelines get short.

Linux, to be clear, also technically relies on APIs. It’s just that
nearly every piece of Linux adopted “put stuff in text files” as their
interface. If you want to reconfigure a piece of Windows—-say, you
need to add a user account to the company directory—you have to
hope the directory subsystem’s APIs offer a way to do that, and
then you have to learn what data structure to pass them to make
them do it. With Linux, you often just add a line to a text file.
Notably, many recent Microsoft products have shifted to this text-
based approach. With Microsoft Azure, for example, a specially
formatted text file can be used to make Azure do almost anything.

But in the early- to mid-2000s, complex APIs still ruled Windows
Server. It seemed like all the bits were there to automate most
Windows administration, but they were scattered over a half dozen
largely difficult and sometimes-incompatible languages and tech-
nologies. It’s like going into an auto shop and realizing you need a
set of metric sockets for the frame of the vehicle, Imperial sockets
for the body, a torch welder for the roof, and a magic wand for
the engine. If you can master all of the different tools then maybe
you're fine, but it’s a lot to wrap your head around.

This problem would have been solvable: you just need your Win-
dows server administrators to be really broad in terms of the tech-
nologies they can support, and really fast at learning new things.
Basically, if your admins are capable of being ersatz developers,
you’re fine. Except that wasn’t the sales pitch Microsoft had been
making for a decade. “Administer your network as easily as you
use your own desktop!” had been the message, not “Learn four
programming languages and spend all your time writing code!” The
bulk of Microsoft’s administrator audience wasn’t up to speed on
software programming, and in a lot of cases they weren’t interested
in learning languages like C#, C++, VBScript, or whatever else.
Again, it’s as if Microsoft had attracted a large audience of com-
petent, intelligent, hardworking automotive mechanics, and then
carried a nuclear reactor into the shop and said, “You can do this

A Shell of a Problem 20

too, right?” The audience was used to a certain level of consistency
and abstraction that a graphical user interface affords, and they
simply hadn’t been prepared to have Windows’ underlying incon-
sistencies and ugliness dumped in their laps.

Understand, too, that in 2003, Windows administrators tended to
be paid markedly less than software developers with equivalent
seniority, and in many cases less than similarly situated Linux or
Unix administrators. The assumption that “managing Windows is
easy!” was baked into their salaries, and the idea of suddenly being
asked to take on a very different kind of role, without necessarily
being paid more, didn’t sit well.

This is the world that PowerShell (originally Windows PowerShell)
was born into: Windows Server struggling to compete with Linux
in large-scale companies, due in main part to the relative difficulty
in automating Windows administration at scale. Under the hood,
Windows was a hodgepodge of different interconnected systems,
each one optimized for whatever its task was, and each one difficult
to automate without knowing a half dozen or more different
technologies and approaches.

The thing is, Microsoft had known this was a problem for quite
a while, and their initial solution wasn’t even aimed at Windows
administrators.

lllustrating the Problem

&

o~

S =

Take the seemingly simple problem of adding a new user to a Mi-
crosoft Active Directory domain, a task that most large companies
must perform several times each day:.

Microsoft’s first-class citizen approach was to use the Active Direc-
tory Users and Computers graphical user interface, or GUI. ADUC,
as it’s often called, was created as a “snap-in,” or extension, to a
generic GUI administration tool called the Microsoft Management

lustrating the Problem 22

Console, or MMC. The idea with the MMC was to provide admin-
istrators with a single window-a “single pane of glass,” in industry
parlance—where they could do anything their jobs needed. Need to
administer your company’s Domain Name System? Add the DNS
snap-in to the MMC. Need to do something with the Microsoft SQL
Server? Add the right snap-in to the MMC. The MMC was part of
Microsoft’s “Common Engineering Criteria,” or CEC, of the day,
and it was an attempt to make all of the company’s various GUI
administration consoles more accessible and more consistent.

But you still had to click icons. A large company that brought on
a dozen new employees or more every day could easily wind up
with one or more human beings who literally did nothing but click
buttons and checkboxes in the ADUC GUI. Many organizations
rightfully saw that as a waste of human labor and looked for
automation solutions.

But as we’ve learned, Microsoft was leagues away from having
a cohesive automation story. In this instance, an administrator
looking to automate Active Directory user creation might have to
explore no less than eleven potential tools to see if any of them
could get the job done:

« The Active Directory Services Interface (ADSI) Windows NT
(WinNT), provider

« The ADSI Lightweight Directory Access Protocol (LDAP)
provider—similar to its WinNT sibling, but with distinct ca-
pabilities

+ Using a Csvde.exe command-line tool to import a comma-
separated values file containing the new user data

+ Running the Dsadd.exe command-line tool

« Using the LDAP Data Interchange Format (Ldifde.exe) tool

« Using a .NET Framework class—there were several potential
ones to choose from-in a program

+ Using Windows Management Instrumentation (WMI)

lustrating the Problem 23

None of these tools accomplished exactly the same thing, although
they all had overlap with each other. If you were creating a simple
user account—a name and a password, perhaps—any of them might
have done the trick. But companies also tend to log data like an
employee’s department, manager name, address, phone extension,
and so on, and only some of those tools could do all of those.
Still other attributes in Active Directory were accessible only from
the GUIL so many administrators would spend days or weeks
experimenting with various tools only to glumly return to the GUI
after failing to find an automation tool that could do everything
they needed.

The underlying reasons for all this were mainly political, and they
were legion.

Microsoft product teams are largely autonomous, and often smaller
than outsiders imagine. Although shipped as part of the Microsoft
Windows Server operating system, Active Directory is its own
product team, distinct from the base operating system. Teams-
at least back then—tended to operate as self-contained fiefdoms,
cooperating with other teams only at need, and typically only when
sufficient political capital existed to compel cooperation.

Within the Windows operating system universe, including its many
sub-components like Active Directory, the Common Engineering
Criteria was one of the few documents that provided cross-team
requirements. If the CEC said you had to provide administrative
capabilities by means of an MMC snap-in then you had to do it,
even if taking the time to do so meant sidelining some other features
you’d hoped to work into your next release. Notably, the CEC in
2003 didn’t touch on administrative automation at all, so it’s no
wonder so few Microsoft products of the time got automation right.
Even when the teams knew they had an automation problem, they
often didn’t have the time or budget to address it.

A team was welcome to provide capabilities above and beyond
the CEC, if they had the resources to do so. The automation tools

lustrating the Problem 24

produced by the Active Directory team tended to focus on bulk
import of users, because those bulk imports were a key scenario
in migrating large enterprise customers from a competing solution.
Enabling migration meant winning deals, which meant incoming
revenue, so it’s hardly surprising that those scenarios were the
ones prioritized over automating day-to-day administration. Few
technology executives of the time were sophisticated enough to
consider “how will we manage this thing day-to-day” in their
purchasing decisions, and—again, at the time-the ones who were
tended to avoid Windows when they could.

It’s worth noting that writing automation tooling isn’t easy, which
is another reason why few Microsoft teams committed to it. De-
veloping an MMC snap-in was relatively easy: the MMC itself
provided a lot of the code that was boring, such as presenting
different views for data, intercepting user clicks and interpreting
them as actions, and so on. The MMC was kind of a framework of
functionality that was common to GUI-based administration, and
so knocking out an MMC snap-in, while not trivial, wasn’t a huge
investment.

Nothing like the MMC existed for automation-enabled tools, though.
Teams looking to create command-line tools, which could be more
easily integrated into scripts, were entirely on their own. They
had to develop their own command structure, write code to accept
and interpret commands, develop output displays, and more. It’s
actually a lot of work, and given the competing priorities of the
day-and the fact that the MMC was a CEC requirement-many
teams simply couldn’t afford the investment.

To get really specific, imagine that you’re on a product team
that handles Windows’ Dynamic Host Configuration Protocol, or
DHCP. DHCP is designed to automatically issue, track, and manage
the addresses that computers need in order to participate on a
network (your home WiFi router, for example, usually includes
DHCP functionality so that your smart phone, laptop, and smart
TV can all get on the network). In enterprise environments, critical

lustrating the Problem 25

computers like servers often have a manually created reservation
for their address so they get the same one every time they connect to
the network. As a product team, let’s say you’ve been interviewing
customers and have figured out that the ability to bulk-manage
reservations is really important to them. So you sit down to design
a tool called “dhcpmanage.” You come up with a few use cases:

« Customers might create a comma-separated values, or CSV,
file in Excel that lists the reservations they want to create,
and then import it by running dhcpmanage -file reserva-
tions.csv.

« Customers might want the tool to create a CSV file of ex-
isting reservations, and they might run dnhcpmanage -export
current.csv.

« The tool might also need to add or remove existing reser-
vations one at a time, perhaps by running dhcpmanage -add
192.168.13.12 -for ©00:D3:32:EE:12:34:56:78, or dhcpman-
age -remove 00:D3:32:EE:12:34:56:78.

Let’s say that’s as far as you decide to go in your tool’s initial
release. Your team has a lot of work ahead of it! In addition to
coding the basic functionality to add or remove reservations, you
have to:

+ Code the ability to read files

+ Code the ability to write files

« Ensure your code can deal with an improperly formatted file
or other error condition

 Write a parser that looks at what the user types and figures
out which task they’re trying to do

+ Ensure any messages or errors your tool displays can be dis-
played in whatever language the computer is set to (Microsoft
is a global company, and almost all tools have some level of
localization)

lustrating the Problem 26

+ Run all of your code through testing to ensure it works

It’s a lot of work. Even a tool of that simplicity may require a few
hundred person-hours by the time it’s designed, coded, tested, and
made ready to ship. And the annoying part is that the work is more
or less one-off, meaning that if another team needed to write a tool
for their product, there’s very little work they can leverage from
other teams. Every tool is a new, start-from-scratch experience.
That gets expensive.

The go-it-on-your-own approach to Microsoft product teams didn’t
help, either. With no framework for command-line tools in place at
the operating system level, and with each team basically choosing
their own destiny when it came to what they produced, the tools
that did get produced were all but incompatible with each other.
One team might produce a great command-line tool that could
grab user information from a Human Resources database, but there
might not be any way to link that data to a tool that could create
new Active Directory user accounts. The walls between the tools
reflected the political boundaries between teams.

Those walls and inconsistencies often proved to be a disincentive
for Microsoft’s customers. When every tool was unique, might
not do everything the customer needed, might not play well with
the other tools the customer was already using... well, a lot of
customers just ignored what tools there were, because using them
was more effort than it was worth. When the tools didn’t get used,
the product teams had a disincentive to make more tools, and so
the problem just cycled and got worse.

As we’ve seen, it was a mess. But Unix wasn’t a mess, right? So
let’s just copy that!

Let's Just Copy Unix

A common refrain amongst Microsoft’s bigger critics was, “Why
don’t you just do what Unix does?” Unix, after all, was thriving
in enterprises, and offered a rich set of command-line tools that
enabled pretty much any kind of automation you could think of.
And of course the same applied to Unix’ open-source offspring,
Linux.

But as we’ve discussed, Unix and Windows are very different kinds

Let’s Just Copy Unix 28

of operating systems. What works for Unix won’t automatically
work for Windows; the two operating systems take radically dif-
ferent approaches to how they work, let alone how you administer
them.

And let’s be honest for a moment: Unix’ command-line administra-
tion isn’t exactly a piece of fine art. Yes, once you comprehend it,
you can get the job done, and done well, but coming to comprehend
it is a huge task.

Unix gets a lot of things right when it comes to the command-line:
most of its tools are fairly atomic, which means they tend to do one
thing and do that one thing well. You get one tool to change the
owner of a file and another to change the permissions on the file.
Atomicity is a good thing because it makes tools simpler to write
and use, and makes them usable in a broader set of scenarios when
an administrator is orchestrating several tools to act together.

But figuring out which Unix tool to use for a given task-heck,
even figuring out what tools exist from the thousands that are
out there—is really, really hard. Linux probably never would have
taken off the way it did if it hadn’t been for Google’s ability to help
new administrators figure out whether grep, sed, awk, or something
else was the right tool for the job at hand. Prior to Google, you
could walk by most Unix administrators’ desks and find thick books
containing command reference material.

And administrators needed that reference material, because learn-
ing to use one tool gave you almost no advantage when it came
to learning other tools. One tool might require you to type -m to
specify the name of a remote machine while another might want
you to use -Comp or -n or \c or --computer for the same purpose.
There was precious little consistency between the more than 3,300
command-line tools that existed in Red Hat Enterprise Linux, or
RHEL, circa 2003, making each tool a unique and challenging
experience for a new administrator.

Unix’ tools—like the operating system itself-were text-based. That

Let’s Just Copy Unix 29

means that when you ran a tool, whatever it produced was dis-
played on-screen as text. It’s entirely possible to pass that text
to another tool, which forms the foundation of automation, but
it took a lot of work. For example, suppose you had a tool that
could retrieve usernames from a database and another tool that
could set up email accounts for those users. The first tool might list
the username in the second on-screen column of data, occupying
character positions 10 through 20, say. You’d have to pass, or “pipe,’
that data to a middleman tool that could extract just columns 10-
20 before piping the result on to the email account tool. This kind
of text parsing was part and parcel of every Unix admin’s day-to-
day life. And it was brittle: if the first tool’s author revised it and
moved the name information to columns 12-22, then everything
you’d written would break and you’d have to go fix it all. As a
result, tools were rarely revised in that way. Instead, a tool’s author
might just add a switch to change the output to a different format,
giving you something more to learn and requiring that the author
continue to support decades-old ways of doing things, just because
changing it would probably break something else.

So Unix and Linux had some good things going for them, but they
also had a lot of inconsistent, difficult cruft that had built up over
the years, much of which it inherited from their decades-old Unix
predecessors.

But sometimes it’s actually easier just to reproduce the cruft that
already exists than to think of something entirely new and better.
Sometimes, “Just let us do what we’ve always been able to do,” is all
the mission calls for. Microsoft’s next-generation shell could have
simply been a faithful recreation of what had worked for so long
on Unix.

In fact, it almost was exactly that.

Kermit

In the early 2000s, Intel-the world’s largest producer of micropro-
cessors and the biggest player in the PC architecture that most
copies of Microsoft Windows ran on-had a bit of an embarrassing
secret. Although Intel was famous for their Complex Instruction
Set Computing, or CISC, processors, those chips were designed on a
competing technology. Intel owns thousands of Sun Microsystems
SPARC workstations that are based on Reduced Instruction Set

Kermit 31

Computing, or RISC, chips and running Sun’s Unix-variant operat-
ing system, Solaris. Intel wasn’t thrilled with the fact that their own
chips weren’t powerful enough to design their next generation, and
so CEO Craig Barrett started talking to Microsoft’s Bill Gates about
it.

The plan was to migrate Intel entirely to an Intel-based chip design
platform, but more powerful chips couldn’t provide the complete
solution. Computers need powerful hardware, but they also need
software, in the form of an operating system, that can fully leverage
that hardware. Gates agreed to make the changes necessary to Win-
dows to enable Intel’s migration, and started dedicating resources
inside Microsoft toward making it happen.

Nobody at Microsoft knew, of course, that Intel had already started
a parallel effort to migrate their workstations to Intel-based ma-
chines running a Linux variant. Ultimately, Microsoft’s efforts
wouldn’t achieve what they’d originally envisioned, but this is
where the seed of PowerShell came into existence.

Windows NT had been designed to run multiple “subsystems,”
each essentially a mini operating system. The theory—never fully
brought to reality, but a good theory nonetheless—was to enable
Windows as a kind of super-operating system to run applications
written for other operating systems. The Win32 subsystem would
run Windows-native applications, a POSIX subsystem would pro-
vide basic Unix compatibility, an OS/2 subsystem would run IBM
OS/2 applications, and so on. Windows integrated a “Services
for Unix” application suite, which provided key interoperability
mechanisms that let Windows play nicely on a Unix network.

Intel’s biggest concerns for Windows boiled down to one main
thing: a robust command-line shell, just as they had on their SPARC
workstations. Ideally, they wanted a Unix shell that could run all
the scripts and tools they’d already built for themselves. And so one
of the teams Gates had funded within Microsoft was tasked with
making it happen. Daryl Wray, a Program Manager in Microsoft at

Kermit 32

the time, proposed to create an implementation of a popular Unix
shell, KornShell, or ksh, to run on Windows, and he nicknamed his
project “Kermit.” Not after the famous frog Muppet, but after Kermit
the Hermit, a children’s book by Bill Peet about a crab. Crabs live
in shells, you see, and Wray and team were setting out to create a
new shell.

Wray’s team wasn’t trying to be overly ambitious, and they weren’t
trying to change the world. Implementing KornShell on Windows
would simply let Intel’s team run the command-line utilities that
they were used to running. It was an eminently practical solution to
the problem: “What is it you really need to do?” “Run these tools.”
“Okay, we’ll make that happen.”

Wray came from the Unix world and understood how Unix ad-
ministrators worked. He understood their hard-won expertise with
command-line stalwarts like grep, sed, and awk, and he understood
how brittle Unix scripts could be. Moving a Unix script from
one variant of Unix to another would almost always cause prob-
lems and require rewriting because the tools on different variants
weren’t always 100% consistent. The decision to port KornShell
was made primarily because it lined up with what Intel’s engineers
were already doing and would ensure the least amount of breakage
during a migration.

The Kermit effort lived within the Windows Client team in Mi-
crosoft. At the time, Windows Client and Server were considered
distinct operating systems with some shared components. Because
Kermit was intended to address a client-side issue, namely the
existence of a command-line shell on chip design workstations, it
was owned by the Client team. That would create some friction in
the future, but for right now Kermit had two things going for it.

First, Kermit was a funded project with a team of around a dozen
people. That’s important, because putting together a team within
Microsoft was always challenging, requiring business justifications,
funding, and more. Those things were now out of the way.

Kermit 33

Second, a Microsoft architect named Jeffrey Snover had caught
wind of Kermit, and had big ideas for it.

A Manifesto

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

Culture

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

The .NET Framework
Connection

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

Windows

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

Exchange

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

Windows, Again

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

V2

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

DESIGN

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

Design Decisions and
Coding Stories

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Decision-Making Principles

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Usability Testing

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Being Verbose

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Providers

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea

Design Decisions and Coding Stories 43

Ctrl+C

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Extensible Type System

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

How Parameters Became Cmdlets

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Parameters: - vs. /

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

WHERE: The Elevation of the
ScriptBlock

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea

Design Decisions and Coding Stories 44

-Whatlf, -Confirm, and -Verbose

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Punctuation Decisions

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Snap-ins vs. Modules

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Namespaces

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Verbs

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea

Design Decisions and Coding Stories 45

COM

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

What's in a Name?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Remoting and Buffering

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Updatable Help

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

The Directed Graph

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea

Design Decisions and Coding Stories 46

White on Blue

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

Creating a Language

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

The Security Story

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

Greatest Misses

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

MiniShells and AdminShells

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Transactions

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Workflow

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Data Streams

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea

Greatest Misses 50

Tainted Data

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

COMMUNITY

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

The MVPs

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Meet the MVPs

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Adopting PowerShell

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

The Role of the MVP Community

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Where are We Now?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea

The MVPs 53

What Does the Community Look
Like?

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Changing MVPs’ Careers

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

Shout-Outs

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

The MVP-Microsoft Relationship

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea
http://leanpub.com/shell-of-an-idea

My PowerShell Story

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

Impact

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

CONCLUSION

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

Acknowledgements

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

APPENDICES

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

“PowerShell Makes Us All
Better at Our Games”

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

“We Can Leapfrog Linux!”

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

Hula Monkey

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

Personalities

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/shell-of-an-idea.

http://leanpub.com/shell-of-an-idea

	Table of Contents
	Foreword
	Introduction
	Cast of Characters
	HISTORY
	A Shell of a Problem
	Illustrating the Problem
	Let's Just Copy Unix
	Kermit
	A Manifesto
	Culture
	The .NET Framework Connection
	Windows
	Exchange
	Windows, Again
	v2

	DESIGN
	Design Decisions and Coding Stories
	Decision-Making Principles
	Usability Testing
	Being Verbose
	Providers
	Ctrl+C
	Extensible Type System
	How Parameters Became Cmdlets
	Parameters: - vs. /
	WHERE: The Elevation of the ScriptBlock
	-WhatIf, -Confirm, and -Verbose
	Punctuation Decisions
	Snap-ins vs. Modules
	Namespaces
	Verbs
	COM
	What's in a Name?
	Remoting and Buffering
	Updatable Help
	The Directed Graph
	White on Blue

	Creating a Language
	The Security Story
	Greatest Misses
	MiniShells and AdminShells
	Transactions
	Workflow
	Data Streams
	Tainted Data

	COMMUNITY
	The MVPs
	Meet the MVPs
	Adopting PowerShell
	The Role of the MVP Community
	Where are We Now?
	What Does the Community Look Like?
	Changing MVPs' Careers
	Shout-Outs
	The MVP-Microsoft Relationship

	My PowerShell Story
	Impact

	CONCLUSION
	Acknowledgements

	APPENDICES
	``PowerShell Makes Us All Better at Our Games''
	``We Can Leapfrog Linux!''
	Hula Monkey
	Personalities

