Shape Script

maage

Drawing individual element shapes
with Enterprise Architect

By Thomas Kilian

Shape Script made easy

Drawing individual element shapes with Enterprise
Architect

Thomas Kilian
This book is for sale at http://leanpub.com/shapescript

This version was published on 2021-04-06

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

© 2014 - 2021 Thomas Kilian

http://leanpub.com/shapescript
http://leanpub.com/
http://leanpub.com/manifesto

Contents

1. Preface 1
2. Copyrightand Disclaimer. 2
3. BasicConcept 3
3.1 Control Structures L 5
3.2 Query Methods 5
4. Shaping Elements
4.1 The Main Shape 7
5. Shaping Connectors 9
5.1 The Connector 9
6. Properties 11
6.1 Element properties 11
7. Advanced Usage 12
7.1 Shape Script in MDG 12
7.2 Add-in. e 12
8. Advanced Patterns 14
8.1 Different Actor 14
8.2 Composite Symbol 15
8.3 Non-/Rectangular Notation 15

9. Shape ScriptSyntax. 17

1. Preface

Sometimes — or even often — you need different shapes than those from standard UML. That
is something resembling a technical device rather than a rectangle or a stickman. In that case
Enterprise Architect' offers a nice feature which is called Shape Script. As the name suggest
you will find a scripting language which allows you to define the shape of elements and even
connectors.

This book is intended as tutorial and reference for the Shape Script language. It offers a step by
step introduction, a lot of examples and quite some tricks you need to know when using Shape
Scripts.

While assembling this book I took a tour through a lot of corners which seemingly had
not been visited by other adventurers. I do not dare to ask whether Sparx has a testing
team at all. I marked those strange places with YAEAB (Yet Another EA Bug).

g Although Shape Script allows for quite complex graphic caprioles you are strongly
encouraged to stick to the simplest possible minimum. If possible do not use it at all
(sic!), since standard UML is understood by more people than individual characteristics
possibly produced by Shape Script. Dadaism like that on the cover page is possible but
in most cases non-sense. However, if you are forced to write your own shapes I hope

this book will help you to get it done quickly.

g And one warning on top: Shape Scripts are interpreted while EA renders a diagram.
So for every shape that needs to be drawn EA will look into the script and do some
magic. Depending on the number of elements and the comlexity of the Shape Scripts
the rendering time for a diagram might increase significantly. The only ways out are to
either use less or no Shape Scripts or to reduce the number of elements that appear on a

single diagram.

Anyhow, a common use of Shape Script is in combination with MDG Technology files. Any
stereotypes defined therein come along with a number of stereotype properties (aka. tagged
values). These can be used to show different shapes and/or text in the element. Quite some
MDGs being delivered with Enterprise Architect use this technique.

“The EA version used to create this book was actually 10.0 (build 1009). However, most of the references are also valid for earlier
versions of EA. And of course all this still works with version 13.5 when the latest edit was made on this book. Though I have not cross
checked which bugs were fixed until 13.5. Honestly, V14 itself was so buggy I never used it. I might cross check with V15.2 but I'm not to
keen installing newer EA versions.

2. Copyright and Disclaimer

Also all of the information in this book has been tested by me in many circumstances I can not
hold any liability for use of the here presented information'. However, I'd be glad to receive any
kind of feedback to correct future updates of this book which you will receive for free in turn.
Having said this, all information presented here is subject to change without notice.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

' really loathe writing such legal blurb since it should be obvious. By the way: German Law applies! (Does that change anything?)

3. Basic Concept

Shape Scripts in Enterprise Architect are a way to assign individual shapes to stereotyped
elements and connectors. The language is somewhat C-like but is limited to quite a small subset
of control structures and it offers a number of build-in graphic drawing methods. The advantage
is that you can learn it rather fast. The drawback is that you soon reach limits when trying to do
more advanced graphics. This however should be acceptable as elements should not be complex
graphic art but meaningful symbols.

We will start with shapes for elements before explaining connectors. An element shape has a
size of 100 units in width and height. The top left (X|Y) coordinate is (0|0) and the bottom right
coordinate is (100|100). These coordinates will be scaled to whatever you size the element on a
diagram.

Before going into details of the language itself let us try a simple example. Open Settings/UML
Types/Stereotypes in any temporary Enterprise Architect repository you would like to use as
sandbox.

[IF=T—— i i
Stereotypes| Tagged Value Type: Cardinality W alues

Stereotype: | | Stereotype Applies To Mates -
Biyau e AcCess dependency F'ublic_ cnntents_of target are ..
- analyziz syst.. model Containg analyzis clazses - e,
Baze Clazs a || asp page clazs A Microzoft active server page
E T | become MEessaqe Target iz zame a3 source but...
Mates: bind dependency Source instantiates target te.
) baundary clazs Specifiez an element that is ..
button quielernent A buttan GUI element
call dependency Source invokes the target
case worker busingss cl.. A warker whao directly interac..
P . cdram node A class that reprezents a CD..
Hew cio-rom niode & class that represents a CD..
check optable A Check constraint to enforc....
checkbox quielernent A checkbox GUI element
. client page clazs A clazs that reprezents a clie...
Dﬂgerrlde Appeatancs clientzcript clazs A collection of clent-zside scri...
() None calumn attribtable A& column attribute for a table
) Metafile combiobos guielement & combo bos GUI element
— - communicate uzes Communication between act...
() Shape Script computer node & class that represents a co...
control clagz Specifies an element that co...
Default Colars Preview copy meszage Target !s exact but independ...
i create meszage Target iz created by event or...
Fil: I - date guiclement & Gl element for date entry
derive dependency Source may be computed fro...
Border: [N ~ design spstem model Contains design elements
destroyp meszage Target iz destroped by event...
. dialog guielement A GUI screen
oz . - digk array node A clags that represents a dis...
document component The component reprezents a...
dropdown guielement A GUI element that forces us...
entity clagz Specifies a persiztent eleme...
entity buzinesz ol... Passive clasz accemsed and... v

Then create a new stereotype by entering ae' in the Stereotype field and choosing <al1>? from

“This name will appear on top of the existing list of stereotypes so you can edit your test cases faster than with one named test. I use
ae as prefix for element stereotypes and ac for connector shapes in this book. You are asked to use meaningful names for you stereotypes
instead.

*For a real case you should limit it it the base element where you want to appear the stereotype.

Basic Concept 4

the Base Class drop down. That will allow to assign the stereotype to all elements and see what
the shape will look like for them.

Now the important part: check the Shape Script radio button and click Assign®. This will open
the Shape Script editor where you can type the script in the left pane. By clicking Refresh you
will see the resulting image in the right one*.

N "\ -~ - -~ S
Format EAShapeScrit 1.0 = Import ~ Export ok) ~ Cancel) [Help

Preview of main
1 shape main {

2 nmoveto (0,0) Ol O -
] lineto (100, 100) ;
4 lineto (90, 100)

) lineto (100,920)
lineto {100, 100)

100{100

Text Shape) (Refreshd)

While typing the opening bracket after the moveto and 1ineto you will notice that the parameter
list for the method is shown as balloon help.

2 mMoveto [l

|MD\-‘BTD(int =, int) |

Further when hitting Ctrl-Space at any time the editor will open a drop down with possible
methods starting with the characters already typed for the current word (top of the list if at new
line or at a space):

3 1i

» HasProperty i
2 HasTag

» Image

@ layoutType

@ leftanchorOffset
/ECIEN
2 MovaTo

@ noShadow

@ orientation

» Polygon

@ preferredHeight

@ preferredwidth v

Once you have saved the script in the editor and the <ae> stereotype as such you may apply
the stereotype to see how it looks like on a real diagram. This may differ from the preview in
certain cases. Also you can test scaling and later then conditional drawings.

*Once a script is assigned the button will appear as Edit and the Preview below will contain what it says.

“The Next Shape button will only be relevant if there are more than one shapes defined in a script. The preview will simply loop
through the shapes and display one after the other.

°I highlighted the top left and bottom right coordinates in the screen shot.

Basic Concept 5

yixX @
MEtEE R B 1S
B g Model Package Class Maote
= |E] =abce Stereotyped
Bf Stereotyped
«abcs Stereatyped Tt 2 e aoa s TR D e s This is @ < < ahcs »
@ (Bl Aan stereotyped package stereoty ped class stereatyped Mate
Plain

Plain

+ Plain Plain::Plain
1=

The result looks a bit dull. But it shows the basic principle how to assign and test Shape Scripts.
3.1 Control Structures

As already mentioned Shape Script is very limited in its capabilities. So are control structures.
You only have if and else to control the flow of statements. There are no loops at all.

The format for that is:

if (<query>) <block-or-statement>
where <query> is one of the methods described below. <block-or-statement> is either a
sequence of the graphic methods described above enclosed in { and }-braces or a single
statement . And of course any if-construct counts as statement as well.

0 Yes. There is no comparison or boolean expression. Just those methods.

if (<query>) <block-or-statement> else <block-or-statement>
is hopefully obvious. Syntactically you can abbreviate i f-cascades by using if (<query>)
<block-or-statement> else if (<query>) <block-or-statement>

return
is a single statement that may appear at any position. It will stop further processing of the
Shape Script immediately. You can use this statement to mimic a case statement instead of
using an i f-cascade.

3.2 Query Methods

The use of queries is a more advanced® feature and will be used later in chapter Advanced Usage.
So here’s just a general overview of the operations.

“Not so say “the most advanced feature in Shape Script”.

Basic Concept 6

HasTag(tagName)
will evaluate true if the tagged value named tagName exists at all.

HasTag(tagName, tagValue)
will evaluate true if the tagged value named tagName exists and has a value equal to
tagValue.

If you have multiple tagged values with the same name (or even mixed case) this method
will take an arbitrary tagged value for evaluation.

The values for property in the two operations below are explained in chapter Properties. This
and the parameter value must be supplied as string, i.e. enclosed in either single or double quotes.

HasProperty(<property>)
will evaluate true if the property named property exists at all. E.g. HasProperty("alias");
will evaluate true only of a alias has been defined in the properties.
HasProperty(<property>, <value>)
is the same as the previous method except that it checks for equivalence of value and the
result of property. So you could check if an element is named specifically (which only
makes limited sense).

0 The comparison is case insensitive. That is true for both property and value.

4. Shaping Elements

As already mentioned the Shape Script language is a bit C-like. So probably most people will not
have much trouble to learn the syntax. Anyway it’s very limited. An EBNF syntax description
can be found in the appendix.

Generally all keywords and even strings are case insensitive. So it does not matter whether you
write LineTo rather than lineto in the above example. The auto-completion suggests the first
variant in camel case which is definitely better to read.

4.1 The Main Shape

Or to talk Sparxian: shape main. As you already have seen, these two keywords introduce the
body wrapped in curly brackets. The instructions inside will be executed each time a stereotyped
element is shown on a diagram. As already mentioned each element has 100 units in width and
depth (as opposed to height since the units increase downwards). Even shapes which appear oval
(like Use Case) have that rectangular 100* units frame.

Connectors always attach to that drawing frame and not to something which is drawn
inside. You will probably have seen that already with Use Case elements.

Now let’s see what can be done to actually draw something. Let’s start with the two methods
LineTo and MoveTo used in the introductory example.

Simple Lines

There is not much to say:

MoveTo(x,y)
moves the graphic cursor to the specified coordinate. Initially in the script the cursor is
located at (00).

LineTo(x,y)
draws a line from the current coordinate to the new (x|y) and sets the current cursor to
that position.

Actually you can not only draw inside the drawing frame. You can extend it at your wish
as the following example shows. Results might be funny as the Preview pane shows. Just
try what happens if you extend the coordinates even more.

Shaping Elements

Prewview ot main
1 shape wain {

moveto (0, 0) ;

lineto(100,100) ;
lineto(90,100) ;
lineto (100,920 ;
linetor100,100) ;
moveto (—-10,-10)
linetor-10,110) ;
lineto(110,110) ;
linetor110,-10) ;
lineto(-10,-10) ;

W m =1 m o

Juy
o

[y
[y

1z %

,[\Jext Shape‘\ E‘R‘ETE?!‘I“

... omitted ...

g b W N~

5. Shaping Connectors

Basically the shape for connectors will be defined similarly to that for elements. So most
of the previously explained methods can be used for connectors too (of course some — like
compartments — do not make sense).

A major difference between both shapes is that elements all have that 100? unit frame. Connectors
are not that easy. Shape Script distinguishes between different parts of a connector: source, target,
the main connector line and the six labels. For each of them you can define a shape routine:

shape main { <block> }
will define what appears for the connector line.

shape source { <block> }
will define an extra shape at the source end of the connector.

shape target { <block> }
will define an extra shape at the target end of the connector.

shape <labeltype> { <block> }
will draw the <1abeltype> labels according to the statements in <block>. Here <labeltype>
isorKEOfLeftTopLabel,MiddleTopLabel,RightTopLabel,LeftBottomLabel,MiddleBottom—
Label and RightBottomLabel.

Now let’s see what happens when we put some code in these shapes.

5.1 The Connector

We will start with a simple example: using a dash-dotted line which - if my memory does
not deceive me — is not used in UML. The following Shape Script is assigned to the base class
dependency.

shape main {
SetLineStyle("dashdot");
MoveTo(0,0);
LineTo(100,0);

When used it will produce the following:

%'—'—.;c—_aa;ﬁda;—'%’(

That was easy. But what happens when you actually draw something else? Well, let’s try by
using the whole 100 units.

Bw N e

Shaping Connectors

shape main {
MoveTo(0,0);
LineTo(100,100);

... omitted ...

10

6. Properties

As mentioned earlied, Shape Script makes use of a number of properties which can either be
used in Print statements enclosed in # (see chapter Strings) or as parameter in the HasProperty
operations (see chapter Query Methods).

EA’s documentation of the possible properties leaves some room for improvements - or specula-
tions. So I went through the list and looked for the results found in diagrams when applied.

Basically the properties are strings - and most of them work as expected. While all (well almost)
of the strings can be used in a Print statement, their use in HasPropertyis partially restricted to
either element or connector shapes.

6.1 Element properties

Trivial

These properties just relate to the ones matching the element properties dialog: alias, author,
complexity, datecreated, datemodified, keywords, language, metatype (like defined in a
MDG), name, notes, scope, status, stereotype, type (e.g. “Class”)

The two date properties are pointless as you can only test for in-/equality in Shape Script.
The format to test is exactly that what you copy from the properties. In my localization it’s
“DD.MM.YYYY hh:mm:ss” and I wonder how the guys over the Atlantic ocean will see this to
work commonly. I guess it won’t work.

... omitted ...

7. Advanced Usage

Probably you do not want to define Shape Scripts directly in the stereotypes. More likely you
are going to deploy them along with an MDG Technology file. I can not explain how to create
MDG:s in this book as it would lead much too far. So you either know already how to do that, or
you need some outside help.

Another advanced usage is when you simply need more than Shape Script can deliver in respect
to querying model contexts. That is where add-ins come into play.

7.1 Shape Script in MDG

Any Shape Script for a profile element must be defined by adding a property named _image and
clicking the ellipsis button next to the Initial Value field. This will open the Shape Script editor.

It is advisable to first test the shape using the method described in the beginning of this
book. Else you would need to go through creating and deploying the MDG before you
can see what was wrong with your Shape Script.

7.2 Add-in

Since Shape Script is so limited in performing algorithms there is an escape through the use of
external code hosted in an add-in. If you want to use this feature you need to know how to write
add-ins at all. T can not explain how to do that so you need to get outside help for that. But if
you know it then here is what you need to take advantage of this escape.

Basically you can retrieve a string value from your add-in which you can evaluate by HasProperty
or by directly printing it using a properties. The format is

addin:<addin_name>, <function_name> {, <parameter>}

where <addin_name> is the name you had chosen for your add-in (the identifier) and
<function_name> is the name of the function inside your add-in. An arbitrary list of comma
separated parameters can be supplied which are passed by value to the called add-in
procedure where the repository, the element-GUID and the additional parameters' are
passed. Since Shape Script knows neither variables nor string substitution you need to write
those by hand in any case. So a single parameter will usually suffice — or you just have
named functions. The called function must return a string as result.

E.g.

'Since I use Perl, I only can see the repository and the GUID parameter so I have to use unique functions. This is perfect anyhow as
these add-in methods should be used in rare cases only.

Advanced Usage 13

1 print("#addin:myAddIn,pFunci#")

will print the result returned by the function pFunct inside your add-in framework.

Similarly

1 hasproperty('addin:myAddIn,pFunc2', '1')

will evaluate to true if your function pFunc2 returns the string value 1.

Of course there’s also a major drawback here. Since the anyway interpreted Shape
Scripts are relatively slow, each time your add-in is called will be on top of the rendering
time. So whatever you are doing in your add-in: it should be done quickly.

O© 00 1 O O b W N =

10
11
12
13
14
15

8. Advanced Patterns

This chapter simply shows a couple of shapes you could adapt for your own use. Currently they
are not ordered in any way.

And if the following are not enough you should visit Geert Bellekens™ public repository
at https://github.com/GeertBellekens/Enterprise- Architect-Shapescript-Library. It contains all
disassembled Shape Scripts that Sparx has used in their MDGs. And, not to forget, Sparx has
given permission to make them public.

8.1 Different Actor

This nice actor symbol comes courtesy of Andy J (from the Enterprise Architect forum).

shape main {

// Blue Person courtesy of Andy J;
fixedAspectRatio = "true";
SetFillColor(®,192,255); // light blue
SetPenColor(0,192,255); // ditto
Ellipse(70,-15,90,20); // head
Rectangle(60,25,100,75); // chest/arms
Rectangle(70,75,90,110); // legs
SetFillColor(255,255,255); // white "shadows"
Rectangle(80,75,82,110); // legs
Rectangle(66,40,68,75); // left arm
Rectangle(92,40,94,75); // right arm
Println("#NAME#"); // name it
Println("#TAG:Stakeholder Type#"); // add. tag info

displays as

"https://bellekens.com

https://bellekens.com/
https://github.com/GeertBellekens/Enterprise-Architect-Shapescript-Library
https://bellekens.com/

O© 00 N O O b W N =

Advanced Patterns 15

| B class 5Settings 1]
Blus Actor . Tarme Blue Ackor
Supear User Scope Public
Type Class
Stereotype | az_blue_actor
alias
Carnplexity Easy
Wersion 1.0
Phase 1.0
Language Java
Filename od
Project
Advanced [
A= X |9 @
E class (Elue Actor)
Stakeholder Type Super User

8.2 Composite Symbol

In case you want to show the lying 8 (composite symbol) on your shape you simply need to add
the following at the end of your script:

decoration composite {
orientation="SE";
if(HasProperty("iscomposite", "true")) {
Ellipse(-80,25,-10,75);
Ellipse(10,25,80,75);
MoveTo(-10,50);
LineTo(10,50);

If you already have a decoration at the SE position you need to merge the above code,
not simply add the decoration as there can be only one decoration at SE.

8.3 Non-/Rectangular Notation

If you want the user to allow switching between rectangular and iconic representation you simply
can do that with

O O B W N

Advanced Patterns 16

if (HasProperty('rectanglenotation', '@')) {
// code for iconic representation

) else {
// code for rectangular representation
// e.g. Rectangle or DrawNativeShape

If the shape script finds this query it will show the Advanced/Use Rectangular Notation in the
context menu.

This will not work for the base classes UseCase and Actor where the context menu option
Use Rectangular Notation will always appear greyed out. It will however work with
the base classes Class, Action and Activity.

o The checkmark indicating the use of rectangular notation seems to be inverted. EAUL

Besides the Use Rectangular Notation in the Advanced context menu you can add your
own options there. The way to do it (via MDG) is summarized on one of Sparx’ help

pages®.

... omitted ...

*http://sparxsystems.com/enterprise_architect_user_guide/12.1/building_models/query_methods.html

http://sparxsystems.com/enterprise_architect_user_guide/12.1/building_models/query_methods.html
http://sparxsystems.com/enterprise_architect_user_guide/12.1/building_models/query_methods.html
http://sparxsystems.com/enterprise_architect_user_guide/12.1/building_models/query_methods.html

9. Shape Script Syntax

This is the EBNF for Enterprise Architect’s Shape Script language. The start symbol is Shape-
Script. Any spaces and tabs between non-terminals are ignored.

ShapeScript = { Shape | Decoration };

Shape = “shape”* ShapeName ShapeBody;

ShapeName = /* any reserved or non-reserved string literal depending on the context */;
Decoration = “decoration” Name ShapeBody;

Name = /* an arbitrary string that should describe the form of the decoration */;
ShapeBody = “{* {InitializationAttributeAssignment} {DrawingStatement} {SubShape} “}”
SubShape = Shape /* with a non-reserved name */;

InitializationAttributeAssignment = Attribute “=” Value “;”;

Attribute = /* see chapter Shape Attributes for a list of values /*;

Value = StringLiteral | Integer | Tuple;

StringLiteral = Quote { Character } Quote;

Quote = /* the double quote “ or a single quote * */;

Character = /* any printable character except the used Quote */;

Integer = [>-“] {*0” .. “9”};

Tuple = “(“ Integer “ Integer “)”;

Block = “{* {DrawingStatement} “}” | DrawingStatement;

DrawingStatement = IfElseSection | Method;

IfElseSection = “if” “(“ QueryExpression “)” Block [“else” Block];

QueryExpression = /* see chapter Query Methods for the 2 methods and their parameters */;
Method = /* see chapter Shaping Elements for possible methods and their parameters */;

'Actually you can arbitrarily replace “shape” with “label” and “text”. You may do so to confuse others.

	Table of Contents
	Preface
	Copyright and Disclaimer
	Basic Concept
	Control Structures
	Query Methods

	Shaping Elements
	The Main Shape

	Shaping Connectors
	The Connector

	Properties
	Element properties

	Advanced Usage
	Shape Script in MDG
	Add-in

	Advanced Patterns
	Different Actor
	Composite Symbol
	Non-/Rectangular Notation

	Shape Script Syntax

