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1 Preface

In my first book, “Interpretable Machine Learning,” I overlooked the inclusion
of SHAP. I conducted a Twitter survey to determine the most frequently used
methods for interpreting machine learning models. Options included LIME, per-
mutation feature importance, partial dependence plots, and “Other.” SHAP was
not an option.

To my surprise, the majority of respondents selected “Other,” with many com-
ments highlighting the absence of SHAP. Although I was aware of SHAP at that
time, I underestimated its popularity in machine learning explainability.

This popularity was a double-edged sword. My PhD research on interpretable
machine learning was centered around partial dependence plots and permutation
feature importance. On multiple occasions, when submitting a paper to a con-
ference, we were advised to focus on SHAP or LIME instead. This advice was
misguided because we should make progress for all interpretation methods, not
just SHAP, but it underscores the popularity of SHAP.

SHAP has been subjected to its fair share of criticism: it’s costly to compute,
challenging to interpret, and overhyped. I agree with some of these criticisms. In
the realm of interpretable machine learning, there’s no perfect method; we must
learn to work within constraints, which this book also addresses. However, SHAP
excels in many areas: it can work with any model, it’s modular in building global
interpretations, and it has a vast ecosystem of SHAP adaptations.

As you can see, my relationship with SHAP is a mix of admiration and frustra-
tion – perhaps a balanced standpoint for writing about SHAP. I don’t intend to
overhype it, but I believe it’s a beneficial tool worth understanding.
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2 Introduction

Machine learning models are powerful tools, but their lack of interpretability is
a challenge. It’s often unclear why a certain prediction was made, what the
most important features were, and how the features influenced the predictions in
general. Many people argue that as long as a machine learning model performs
well, interpretability is unnecessary. However, there are many practical reasons
why you need interpretability, ranging from debugging to building trust in your
model.

Interpretability

I think of “interpretability” in the context of machine learning as a keyword.
Under this keyword, you find a colorful variety of approaches that attempt
to extract information about how the model makes predictions.

2.1 Interpreting to debug

Interpretability is valuable for model debugging, as illustrated by a study predict-
ing pneumonia (Caruana et al. 2015). The authors trained a rule-based model,
which learned that if a patient has asthma, they have a lower risk of pneumo-
nia. Seriously? I’m no doctor, but that seems off. Asthma patients typically
have a higher risk of lung-related diseases. It appears the model got it all wrong.
However, it turns out that asthma patients in this dataset were less likely to
get pneumonia. The indirect reason was that these patients received “aggressive
care,” such as early antibiotic treatment. Consequently, they were less likely to
develop pneumonia. A typical case of “correlation does not imply causation” as
you can see in Figure 2.1.

The problematic dependence on the asthma feature was only discovered due to
the model’s interpretability. Imagine if this scenario involved a neural network.
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Figure 2.1: Asthma increases the likelihood of pneumonia. However, in the study,
asthma also increased the (preemptive) use of antibiotics which gener-
ally protects against pneumonia and led to an overall lower pneumonia
risk for asthma patients.

No rule would be apparent, stating “asthma ⇒ lower risk.” Instead, the network
would learn this rule and conceal it, potentially causing harm if deployed in real-
life situations.

Although you could theoretically spot the problem by closely examining the data
and applying domain knowledge, it’s generally easier to identify such issues if
you can understand what the model has learned. Machine learning models that
aren’t interpretable create a distance between the data and the modeler, and
interpretability methods help bridge this gap.

2.2 Users may create their own interpretations

Here’s a story about how the lack of interpretability led users of a model to
develop their own incorrect interpretations. The story relates to sepsis, a life-
threatening condition in which the body responds severely to an infection. As
one of the most common causes of death in hospitals, sepsis is hard to diagnose,
expensive to treat, and detrimental to patients, making early detection systems
highly sought after.

Duke University and Duke Health Systems developed Sepsis Watch, an early
warning system for sepsis in hospitals. This software system, based on deep
neural networks, takes patient data as input and predicts whether the patient
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is likely to develop sepsis (Elish and Watkins 2020). If the model detects a po-
tential sepsis case, it triggers an alert that initiates a new hospital protocol for
diagnosis and treatment. This protocol involves a rapid response team (RRT)
nurse who monitors the alarms and informs the doctors, who then treat the pa-
tient. Numerous aspects of the implementation warrant discussion, especially the
social implications of the new workflow, such as the hospital hierarchy causing
nurses to feel uncomfortable instructing doctors. There was also considerable
repair work carried out by RRT nurses to adapt the new system to the hospital
environment. Interestingly, the report noted that the deep learning system didn’t
provide explanations for warnings, leaving it unclear why a patient was predicted
to develop sepsis. The software merely displayed the score, resulting in occasional
discrepancies between the model score and the doctor’s diagnosis. Doctors would
consequently ask nurses what they were observing that the doctors were not. The
patient didn’t seem septic, so why were they viewed as high-risk? However, the
nurse only had access to the scores and some patient data, leading to a discon-
nect. Feeling responsible for explaining the model outputs, RRT nurses collected
context from patient charts to provide an explanation. One nurse assumed the
model was keying in on specific words in the medical record, which wasn’t the
case. The model wasn’t trained on text. Another nurse also formed incorrect
assumptions about the influence of lab values on the sepsis score. While these
misunderstandings didn’t hinder tool usage, they underscore an intriguing issue
with the lack of interpretability: users may devise their own interpretations when
none are provided.

2.3 Building trust in your models

Anecdotally, I’ve heard data scientists express their avoidance of certain models,
like neural networks or gradient boosting, due to their lack of interpretability.
This decision isn’t always left to the developer or data scientist, but could be
influenced by their environment: the end user of the model, the middle manager
who needs to understand the model’s limitations and capabilities, or the senior
data scientist who prefers interpretable models and sees no need to change. A lack
of interpretability can discourage the use of models deemed uninterpretable. The
fear of unexplained outcomes or the inability to use the model in its intended
way can be overwhelming. For instance, the coefficients in a linear regression
model could be used to inform other decisions, or a dashboard might display
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explanations alongside model scores to facilitate others’ engagement with the
predictions.

2.4 The limitations of inherently interpretable
models

Is the solution to exclusively use “inherently” interpretable models? These may
include:

• Linear regression and logistic regression
• Generalized additive models
• Decision rules & decision trees

Inherently interpretable typically means the model is constructed in a way that
allows for easy understanding of its individual components. The prediction may
be a weighted sum (linear model) or based on comprehensible rules. Some have
even argued for the use of such models exclusively when the stakes are high
(Rudin 2019).

However, there are two problems.

Problem 1: The definition of an interpretable model is ambiguous. One
group may understand linear regression models, while another may not due to
lack of experience. Even if you accept a linear regression model as interpretable,
it can easily be made perplexing. For instance, by log-transforming the target,
standardizing the features, adding interaction terms, using harder-to-interpret
features, or adding thousands of features, an inherently interpretable model can
become uninterpretable.

Problem 2: The models with the highest predictive performance are
often not inherently interpretable. In machine learning, a metric is usually
optimized. Boosted trees often emerge as the best choice in many scenarios
(Grinsztajn et al. 2022). Most people wouldn’t deem them interpretable, at least
not in their original form. The same can be said for transformers, the standard
for text (large language models, anyone?), and convolutional neural networks
for image classification. Furthermore, ensembles of models often yield the best
results and they are clearly less interpretable as they combine multiple models.
Hence, restricting model selection to inherently interpretable models might lead
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to inferior performance. This inferior performance could directly result in fewer
sales, increased churn, or more false negative sepsis predictions.

So, what’s the solution?

2.5 Model-agnostic interpretation is the answer

Model-agnostic methods like explainable artificial intelligence (XAI) or inter-
pretable machine learning (IML) provide solutions for interpreting any machine
learning model1. Despite the vast differences between machine learning models,
from k-nearest neighbors to deep neural networks and support vector machines,
model-agnostic methods are always applicable as they don’t need knowledge of
the model’s inner mechanics, such as coefficients.

Consider playing fighting games on a console, where you push inputs (the con-
troller) and observe the outcomes (the character fights). This is similar to how
model-agnostic interpretable machine learning operates. The model is treated
like a box with inputs and outputs; you manipulate the inputs, observe how
the outputs change, and draw conclusions. Most model-agnostic interpretation
methods can be summarized by the SIPA framework (Scholbeck et al. 2020):

• Sampling data.
• Intervention on the data.
• Prediction step.
• Aggregating the results.

Various methods operate under the SIPA framework (Molnar 2022), including:

• Partial dependence plots, which illustrate how altering one (or two) features
changes the average prediction.

• Individual conditional expectation curves, which perform the same function
for a single data point.

• Accumulated Local Effect Plots, an alternative to partial dependence plots.

1The terms “Explainable AI” and “interpretable machine learning” are used interchangeably
in this book. Some people use XAI more for post-hoc explanations of predictions and inter-
pretable ML for inherently interpretable models. However, when searching for a particular
method, it’s advisable to use both terms.
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• Permutation Feature Importance, quantifying a feature’s importance for
accurate predictions.

• Local interpretable model-agnostic explanations (LIME), explaining predic-
tions with local linear models (Ribeiro et al. 2016).

SHAP is another model-agnostic interpretation method that operates by sampling
data, intervening on it, making predictions, and then aggregating the results.

Tip

Even if you use an interpretable model, this book can be of assistance. Meth-
ods like SHAP can be applied to any model, so even if you’re using a decision
tree, SHAP can provide additional interpretation.

2.6 SHAP: An explainable AI technique

SHAP (Lundberg and Lee 2017a) is a game-theory-inspired method created to
explain predictions made by machine learning models. SHAP generates one value
per input feature (also known as SHAP values) that indicates how the feature
contributes to the prediction of the specified data point. In the example in Fig-
ure 2.2, the prediction model estimates the probability of a person earning more
than $50k based on that person’s socio-economic factors. Some factors positively
affect the predicted probability, while others negatively impact it. Understanding
this figure isn’t crucial at this point; it’s simply a goal to keep in mind as we dive
into the theory behind SHAP in the following chapters.

SHAP has gained popularity and is applied in various fields to explain predictive
models:

• Identifying COVID-19 mortality factors (Smith and Alvarez 2021).
• Predicting heat wave-related mortality (Kim and Kim 2022).
• Wastewater treatment plant management (Wang et al. 2022).
• Genome-wide association studies (Johnsen et al. 2021).
• Accident detection (Parsa et al. 2020).
• NO2 forecasting (Garcı́a and Aznarte 2020).
• Molecular design (Rodrı́guez-Pérez and Bajorath 2020).
• Gold price forecasting (Jabeur et al. 2021).
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Figure 2.2: SHAP values to explain a prediction.
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Given its wide range of applications, you are likely to find a use for SHAP in your
work.

Before we talk about the practical application of SHAP, let’s begin with its his-
torical background, which provides context for the subsequent theory chapters.
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3 A Short History of Shapley
Values and SHAP

By the end of this chapter, you will be able to:

• Understand the key historical milestones of SHAP.
• Explain the relationship between SHAP and Shapley values.

This chapter offers an overview of the history of SHAP and Shapley values, focus-
ing on their chronological development. The history is divided into three parts,
each highlighted by a milestone:

• 1953: The introduction of Shapley values in game theory.
• 2010: The initial steps toward applying Shapley values in machine learning.
• 2017: The advent of SHAP, a turning point in machine learning.

3.1 Lloyd Shapley’s pursuit of fairness

Shapley values have greater importance than might initially be apparent from
this book. These values are named after their creator, Lloyd Shapley, who first
introduced them in 1953. In the 1950s, game theory saw an active period, during
which many core concepts were formulated, including repeated games, the pris-
oner’s dilemma, fictitious play, and, of course, Shapley values. Lloyd Shapley, a
mathematician, was renowned in game theory, with fellow theorist Robert Au-
mann calling him the “greatest game theorist of all time”1. After World War II,
Shapley completed his PhD at Princeton University with a thesis titled “Addi-
tive and Non-Additive Set Functions.” In 1953, his paper “A Value for n-Person

1https://www.wsj.com/articles/lloyd-shapley-won-the-nobel-prize-for-economics-1923-2016-
1458342678
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Games” (Shapley et al. 1953) introduced Shapley values. In 2012, Lloyd Shapley
and Alvin Roth were awarded the Nobel Prize in Economics2 for their work in
“market design” and “matching theory.”

Shapley values serve as a solution in cooperative game theory, which deals with
games where players cooperate to achieve a payout. They address the issue of a
group of players participating in a collaborative game, where they work together
to reach a certain payout. The payout of the game needs to be distributed
among the players, who may have contributed differently. Shapley values provide
a mathematical method of fairly dividing the payout among the players.

Shapley values have since become a cornerstone of coalitional game theory, with
applications in various fields such as political science, economics, and computer
science. They are frequently used to determine fair and efficient strategies for
resource distribution within a group, including dividing profits among sharehold-
ers, allocating costs among collaborators, and assigning credit to contributors in
a research project. However, Shapley values were not yet employed in machine
learning, which was still in its early stages at the time.

3.2 Early days in machine learning

Fast forward to 2010. Shapley hadn’t yet received his Nobel Prize in Economics,
but the theory of Shapley values had been established for nearly 60 years. In
contrast, machine learning had made tremendous strides during this period. In
2012, the ImageNet competition (Deng et al. 2009), led by Fei-Fei Li, was won for
the first time by a team using a deep neural network (AlexNet) with a significant
lead over the runner-up. Machine learning continued to advance and attract more
research in many other areas.

While Shapley values had previously been defined for linear models, 2010 marks
the beginning of model-agnostic estimation of Shapley values. In 2010, Erik
Štrumbelj and Igor Kononenko published a paper titled “An efficient explanation
of individual classifications using game theory” (Štrumbelj and Kononenko 2010),
proposing the use of Shapley values to explain machine learning model predictions.

2It’s not the real Nobel Prize, but the “Nobel Memorial Prize in Economic Sciences.” Officially,
it’s termed the “Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel.”
This prize is a kind of surrogate Nobel award created by economists since they were not
included in the original five Nobel Prizes.
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In 2014, they further developed their methodology for computing Shapley values
(Štrumbelj and Kononenko 2014).

However, this approach did not immediately gain popularity. Some possible rea-
sons why Shapley values were not widely adopted at the time include:

• Explainable AI/Interpretable machine learning was not as widely recog-
nized.

• The papers by Štrumbelj and Kononenko did not include code.
• The estimation method was still relatively slow and not suitable for image

or text classification.

Next, we will look at the events that led to the rise of Shapley values in machine
learning.

3.3 The SHAP Cambrian explosion

In 2016, Ribeiro et al. (2016) published a paper introducing Local Interpretable
Model-Agnostic Explanations (LIME), a method that uses local linear regression
models to explain predictions. This paper served as a catalyst for the field of
explainable AI and interpretable machine learning. A more cautious claim might
be that the paper’s publication coincided with a growing interest in interpreting
machine learning models. The prevailing sentiment at the time was a concern
over the complexity of advanced machine learning algorithms, such as deep neu-
ral networks, and the lack of understanding of how these models generate their
predictions.

Shortly after the LIME paper, in 2017, Scott Lundberg and Su-In Lee published a
paper titled “A Unified Approach to Interpreting Model Predictions” (Lundberg
and Lee 2017b). This paper introduced SHapley Additive exPlanations (SHAP),
another method to explain machine learning predictions. The paper was pub-
lished at NIPS, now known as NeurIPS3. NeurIPS is a major machine learning
conference, and if your research is published there, it’s more likely to draw atten-
tion. But what exactly did the SHAP paper introduce, given that Shapley values
for machine learning were already defined in 2010/2014?

3The name NIPS faced criticism due to its association with “nipples” and its derogatory usage
against Japanese individuals, leading to its change to NeurIPS.
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Lundberg and Lee presented a new way to estimate SHAP values using a weighted
linear regression with a kernel function to weight the data points4. The paper also
demonstrated how their proposed estimation method could integrate other expla-
nation techniques, such as DeepLIFT (Shrikumar et al. 2017), LIME (Ribeiro et
al. 2016), and Layer-Wise Relevance Propagation (Bach et al. 2015).

Here’s why I believe SHAP gained popularity:

• It was published in a reputable venue (NIPS/NeurIPS).
• It was a pioneering work in a rapidly growing field.
• Ongoing research by the original authors and others contributed to its de-

velopment.
• The open-source shap Python package with a wide range of features and

plotting capabilities

The availability of open-source code played a significant role, as it enabled people
to integrate SHAP values into their projects.

Naming conventions

The naming can be slightly confusing for several reasons:

• Both the method and the resulting numbers can be referred to as Shap-
ley values (and SHAP values).

• Lundberg and Lee (2017b) renamed Shapley values for machine learn-
ing as SHAP, an acronym for SHapley Additive exPlanations.

This book will adhere to these conventions:

• Shapley values: the original method from game theory.
• SHAP: the application of Shapley values for interpreting machine learn-

ing predictions.
• SHAP values: the resulting values from using SHAP for the features.
• shap: the library that implements SHAP.

“SHAP” is similar to a brand name used to describe a product category,
like Post-it, Jacuzzi, Frisbee, or Band-Aid. I chose to use it since it’s well-
established in the community and it distinguishes between the general game-

4The shap package no longer uses Kernel SHAP by default, rendering the paper somewhat
historical.
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theoretic method of Shapley values and the specific machine learning appli-
cation of SHAP.

Since its inception, SHAP’s popularity has steadily increased. A significant mile-
stone was reached in 2020 when Lundberg et al. (2020) proposed an efficient
computation method specifically for SHAP, targeting tree-based models. This
advancement was crucial because tree-boosting excels in many applications, en-
abling rapid estimation of SHAP values for state-of-the-art models. Another
remarkable achievement by Lundberg involved extending SHAP beyond individ-
ual predictions. He stacked SHAP values, similar to assembling Legos, to cre-
ate global model interpretations. This method was made possible by the fast
computation designed for tree-based models. Thanks to numerous contributors,
Lundberg continued to enhance the shap package, transforming it into a com-
prehensive library with a wide range of estimators and functionalities. Besides
Lundberg’s work, other researchers have also contributed to SHAP, proposing
extensions. Moreover, SHAP has been implemented in other contexts, indicating
that the shap package is not the only source of this method.

Given this historical context, we will begin with the theory of Shapley values and
gradually progress to SHAP.
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4 Theory of Shapley Values

By the end of this chapter, you will be able to:

• Understand the theory of Shapley values.
• Calculate Shapley values for simple games.
• Understand the axioms of Shapley values: efficiency, symmetry,

dummy, and additivity.

To learn about SHAP, we first discuss the theory behind Shapley values from
game theory. We will progressively define a fair payout[^fair] in a coalition of
players and ultimately arrive at Shapley values (spoiler alert). [^fair]: There is
no perfect definition of fairness everyone would agree upon. Shapley values define
a very specific version of fairness, which can be seen as egalitarian.

4.1 Who’s going to pay for that taxi?

Consider a concrete example that can be seen as a coalitional game: splitting the
cost of a taxi ride. Alice, Bob, and Charlie have dinner together and share a taxi
ride home. The total cost is $51. The question is, how should they divide the
costs fairly?

View the taxi ride as a coalitional game: Alice, Bob, and Charlie form a coalition
and receive a specific payout. In this case, the payout is negative (costs), but
this doesn’t change the fact that we can consider this as a coalitional game. To
determine a fair distribution of the costs, we first pose simpler questions: How
much would the ride cost for a random coalition of passengers? For instance,
how much would Alice pay for a taxi ride if she were alone? How much would
Alice and Bob pay if they shared a taxi? Let’s suppose it would be $15 for Alice
alone. Alice and Bob live together, but adding Bob to the ride increases the cost
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to $25, as he insists on a more spacious, luxurious taxi, adding a flat $10 to the
ride costs. Adding Charlie to Alice and Bob’s ride increases the cost to $51 since
Charlie lives somewhat further away. We define the taxi ride costs for all possible
combinations and compile the following table:

Passengers Cost Note
{} $0 No taxi ride, no costs
{Alice} $15 Standard fare to Alice’s & Bob’s place
{Bob} $25 Bob always insists on luxury taxis
{Charlie} $38 Charlie lives slightly further away
{Alice, Bob} $25 Bob always gets his way
{Alice, Charlie} $41 Drop off Alice first, then Charlie
{Bob, Charlie} $51 Drop off luxurious Bob first, then Charlie
{Alice, Bob, Charlie} $51 The full fare with all three of them

The coalition {} is a coalition without any players in it, i.e., an empty taxi. This
table seems like a step in the right direction, giving us an initial idea of how much
each person contributes to the cost of the ride.

4.2 Calculating marginal contributions for the taxi
costs

We can take a step further by calculating the so-called marginal contributions of
each passenger to each coalition. For example, how much additional cost does
Alice incur when she joins a taxi with Bob already in it?

Marginal contribution

The marginal contribution of a player to a coalition is the value of the coali-
tion with the player minus the value of the coalition without the player. In
the taxi example, the value of a coalition is equal to the cost of the ride
as detailed in the above table. Therefore, the marginal contribution of, for
instance, Charlie to a taxi already containing Bob is the cost of the taxi with
Bob and Charlie, minus the cost of the taxi with Bob alone.
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Using the table, we can easily calculate the marginal contributions. Taking an
example, if we compare the cost between the {Alice, Bob} coalition and Bob
alone, we derive the marginal contribution of Alice, the “player”, to the coalition
{Bob}. In this scenario, it’s $25 - $25 = $0, as the taxi ride cost remains the
same. If we calculate the marginal contribution of Bob to the {Alice} coalition,
we get $25 - $15 = $10, meaning adding Bob to a taxi ride with Alice increases
the cost by $10. We calculate all possible marginal contributions in this way:

Addition To Coalition
Cost
Before

Cost
After

Marginal
Contribution

Alice {} $0 $15 $15
Alice {Bob} $25 $25 $0
Alice {Charlie} $38 $41 $3
Alice {Bob,

Charlie}
$51 $51 $0

Bob {} $0 $25 $25
Bob {Alice} $15 $25 $10
Bob {Charlie} $38 $51 $13
Bob {Alice,

Charlie}
$41 $51 $10

Charlie {} $0 $38 $38
Charlie {Alice} $15 $41 $26
Charlie {Bob} $25 $51 $26
Charlie {Alice, Bob} $25 $51 $26

We’re one step closer to calculating a fair share of ride costs. Could we just
average these marginal contributions per passenger? We could, but that would
assign equal weight to every marginal contribution. However, one could argue
that we learn more about how much Alice should pay when we add her to an
empty taxi compared to when we add her to a ride with Bob. But how much
more informative?

One way to answer this question is by considering all possible permutations of
Alice, Bob, and Charlie. There are 3! = 3 ∗ 2 ∗ 1 = 6 possible permutations of
passengers:

• Alice, Bob, Charlie
• Alice, Charlie, Bob
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• Bob, Alice, Charlie
• Charlie, Alice, Bob
• Bob, Charlie, Alice
• Charlie, Bob, Alice

We can use these permutations to form coalitions, for example, for Alice. Each
permutation then maps to a coalition: People who come before Alice in the
order are in the coalition, people after are not. Since in a coalition the order
of passengers doesn’t matter, some coalitions will occur more often than others
when we iterate through all permutations like this: In 2 out of 6 permutations,
Alice is added to an empty taxi; In 1 out of 6, she is added to a taxi with Bob; In
1 out of 6, she is added to a taxi with Charlie; And in 2 out of 6, she is added to
a taxi with both Bob and Charlie. We use these counts to weight each marginal
contribution to continue our journey towards a fair cost sharing.

We could make different decisions regarding how to “fairly” allocate the costs
to the passengers. For instance, we could weight the marginal contributions
differently. We could divide the cost by 3. Alternatively, we could use solutions
that depend on the order of passengers: Alice alone would pay $15, when we add
Bob it’s +$10, which would be his share, and Charlie would pay the remainder.
However, all these different choices would lead us away from Shapley values.

4.3 Averaging marginal contributions

In two of these cases, Alice was added to an empty taxi, and in one case, she
was added to a taxi with only Bob. By weighting the marginal contributions
accordingly, we calculate the following weighted average marginal contribution
for Alice, abbreviating Alice, Bob, and Charlie to A, B, and C:

1
6(2 ⋅ $15⏟

A to ∅
+ 1 ⋅ $0⏟

A to B
+ 1 ⋅ $3⏟

A to C
+ 2 ⋅ $0⏟

A to B,C
) = $5.50

We multiply by 1/6 because 6 is the sum of the weights (2 + 1 + 1 + 2). That’s
how much Alice should pay for the ride: $5.50.

We can calculate the contribution for Bob the same way:
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1
6(2 ⋅ $25⏟

B to ∅
+ 1 ⋅ $10⏟

B to A
+ 1 ⋅ $13⏟

B to C
+ 2 ⋅ $10⏟

B to A,C
) = $15.50

And for Charlie:

1
6(2 ⋅ $38⏟

C to ∅
+ 1 ⋅ $26⏟

C to A
+ 1 ⋅ $26⏟

C to B
+ 2 ⋅ $26⏟

C to A,B
) = $30.00

The individual contributions sum to the total cost: $5.50 + $15.50 + $30.00 =
$51.00. Perfect! And that’s it, this is how we compute Shapley values (Shapley
et al. 1953).

Let’s formalize the taxi example in terms of game theory and explore the Shapley
value theory, which makes Shapley values a unique solution.

4.4 Calculating Shapley values

The upcoming sections will use several game theoretic terms. Even though we’ve
already used most of them in the previous example, here’s an overview for refer-
ence.

Term Math Term Taxi Example
Player 1, … , |N| Passenger, for example Alice
Coalition of All
Players

N {Alice, Bob, Charlie}

Coalition S Any combination of passengers,
ranging from {} to {Alice, Bob,
Charlie}.

Size of a Coalition |S| For example, |{Alice}| = 1,
|{Alice, Bob, Charlie}| = 3

Value Function v() Defined by the table showing all
possible arrangements of passengers in
the taxi

Payout v(N) $51, the cost of the taxi ride with all
passengers

27



Term Math Term Taxi Example
Shapley Value 𝜙𝑗 (phi) For example, 𝜙1 = $5.50 for Alice,

𝜙2 = $15.50 for Bob, and 𝜙3 = $30 for
Charlie.

The value function v can also be referred to as the characteristic function.

We have explored how to calculate Shapley values through the taxi ride example.
Now, let’s formalize Shapley values for the general case:

𝜙𝑗 = ∑
𝑆⊆𝑁\{𝑗}

|𝑆|!(|𝑁| − |𝑆| − 1)!
|𝑁|! (𝑣(𝑆 ∪ {𝑗}) − 𝑣(𝑆)) (4.1)

The value function 𝑣 ∶ 𝑃 (𝑁) ↦ ℝ maps from all possible coalitions of N players
to a real number, which represents the payout for that coalition. The formula is
quite complex, so let’s break it down.

• 𝑣(𝑆∪{𝑗})−𝑣(𝑆): This is the core of the equation. It represents the marginal
contribution of player 𝑗 to coalition 𝑆. If 𝑗 is Alice and 𝑆 = {𝐵𝑜𝑏}, then
this part expresses how much more expensive the ride becomes when Alice
joins Bob.

• ∑𝑆⊆𝑁\{𝑗}: The entire formula is a sum over all possible coalitions without
𝑗. If we calculate the Shapley value for Alice, we sum over the coalitions:
{}, {Bob}, {Charlie}, and {Bob, Charlie}.

• |𝑆|!(|𝑁|−|𝑆|−1)!
|𝑁|! : This term determines the weight of a marginal contribution.

{} and 𝑁\{𝑗} get the highest weights. The |𝑁|! in the denominator ensures
that the sum of the weights equals 1.

The complex formula isn’t so intimidating after all!

Shapley value formula summary

The Shapley value is the weighted average of a player’s marginal contribu-
tions to all possible coalitions.
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4.5 The axioms behind Shapley values

We now have the formula, but where did it come from? Lloyd Shapley derived it
(Shapley et al. 1953), but it didn’t just materialize out of thin air. He proposed
axioms defining what a fair distribution could look like, and from these axioms,
he derived the formula. Lloyd Shapley also proved that based on these axioms,
the Shapley value formula yields a unique solution.

Let’s discuss these axioms, namely Efficiency, Symmetry, Dummy, and Ad-
ditivity. An axiom is a statement accepted as self-evidently true. Consider the
axioms as defining fairness when it comes to payouts in team play.

4.5.1 Efficiency

The efficiency axiom states that the sum of the contributions must precisely add
up to the payout. This makes a lot of sense. Consider Alice, Bob, and Charlie
sharing a taxi ride and calculating their individual shares, but the contributions
don’t equal the total taxi fare. All three, including the taxi driver, would find
this method useless. The efficiency axiom can be expressed formally as:

∑
𝑗∈𝑁

𝜙𝑗 = 𝑣(𝑁)

4.5.2 Symmetry

The symmetry principle states that if two players are identical, they should receive
equal contributions. Identical means that all their marginal contributions are the
same. For instance, if Bob wouldn’t need the luxury version of the taxi, his
marginal contributions would be exactly the same as Alice’s. The symmetry
axiom says that in such situations, both should pay the same amount, which
seems fair.

We can also express symmetry mathematically for two players 𝑗 and 𝑘:

If 𝑣(𝑆 ∪ {𝑗}) = 𝑣(𝑆 ∪ {𝑘}) for all 𝑆 ⊆ 𝑁\{𝑗, 𝑘}, then 𝜙𝑗 = 𝜙𝑘.
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4.5.3 Dummy or Null Player

The Shapley value for a player who doesn’t contribute to any coalition is zero,
which seems quite fair. Let’s introduce Dora, Charlie’s dog, and consider her an
additional player. Assuming there’s no extra cost for including Dora in any ride,
all of Dora’s marginal contributions would be $0. The dummy axiom states that
when all marginal contributions are zero, the Shapley value should also be zero.
This rule seems reasonable, especially as Dora doesn’t have any money.

To express this axiom formally:

If 𝑣(𝑆 ∪ {𝑗}) = 𝑣(𝑆) for all 𝑆 ⊆ 𝑁\{𝑗}, then 𝜙𝑗 = 0.

4.5.4 Additivity

In a game with two value functions 𝑣1 and 𝑣2, the Shapley values for the sum of
the games can be expressed as the sum of the Shapley values:

𝜙𝑗,𝑣1+𝑣2
= 𝜙𝑗,𝑣1

+ 𝜙𝑗,𝑣2

Imagine Alice, Bob, and Charlie not only sharing a taxi but also going out for
ice cream. Their goal is to fairly divide not just the taxi costs, but both the taxi
and ice cream costs. The additivity axiom suggests that they could first calculate
each person’s fair share of the ice cream costs, then the taxi costs, and add them
up per person.

These four1 axioms ensure the uniqueness of the Shapley values, indicating there’s
only one solution presented in the Shapley formula, Equation 4.1. The proof of
why this is the case won’t be discussed in this book, as it would be too detailed.
Instead, it’s time to relate this approach to explaining machine learning predic-
tions.

1A fifth axiom called Linearity or Marginality exists, but it can be derived from the other
axioms, so it doesn’t introduce any new requirements for fair payouts.
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5 From Shapley Values to SHAP

By the end of this chapter, you will be able to:

• Describe a prediction as a coalitional game.
• Explain how SHAP values are defined.
• Interpret Shapley value axioms for machine learning predictions.

We have been learning about Shapley values from coalitional game theory. But
how do these values connect to machine learning explanations? The connection
might not seem apparent – it certainly didn’t to me when I first learned about
SHAP.

5.1 A machine learning example

Consider the following scenario: You have trained a machine learning model 𝑓
to predict apartment prices. For a specific apartment 𝑥(𝑖), the model predicts
𝑓(𝑥(𝑖)) = 300, 000. Your task is to explain this prediction. The apartment has
an area of 50 𝑚2 (538 square feet), is located on the 2nd floor, has a nearby
park, and cats are banned. These features are what the model used to make the
prediction.
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Figure 5.1: The predicted price for a 50 𝑚2 2nd floor apartment with a nearby
park and cat ban is €300,000. Our goal is to explain how each of
these feature values contributed to the prediction.

The average prediction for all apartments in the data is €310,000, which places
the predicted price of this specific apartment slightly below average. How much
did each feature value contribute to the prediction compared to the average pre-
diction? In the apartment example, the feature values park-nearby, cat-banned,
area-50, and floor-2nd collectively led to a prediction of €300,000. Our goal is
to explain the difference between the actual prediction (€300,000) and the aver-
age prediction (€310,000), which is a difference of -€10,000. Here’s an example
of what an answer might look like: park-nearby contributed €30,000; area-50
contributed €10,000; floor-2nd contributed €0; and cat-banned contributed
-€50,000. The contributions add up to -€10,000, which is the final prediction
minus the average predicted apartment price. From the Shapley theory chapter,
we know that Shapley values can provide a fair attribution of a payout. We
just need to translate concepts from game theory to machine learning prediction
concepts.

5.2 Viewing a prediction as a coalitional game

A prediction can be viewed as a coalitional game by considering each feature
value of an instance as a “player” in a game. The “payout” is the predicted
value. We refer to this version of Shapley values adapted for machine learning
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predictions as “SHAP”. Let’s translate the terms from game theory to machine
learning predictions one by one:

Concept Machine Learning Term
Player Feature index 𝑗
Coalition Set of features 𝑆 ⊆ {1, … , 𝑝}
Not in coalition Features not in coalition 𝑆 𝐶 ∶ 𝐶 = {1, … , 𝑝}\𝑆
Coalition size Number of features in coalition 𝑆 |𝑆|
Total number
of players

Number of features 𝑝

Total payout Prediction for 𝑥(𝑖) minus average
prediction

𝑓(𝑥(𝑖)) − 𝔼(𝑓(𝑋))

Value function Prediction for feature values in
coalition S minus expected

𝑣𝑓,𝑥(𝑖)(𝑆)

SHAP value Contribution of feature 𝑗 towards
payout

𝜙(𝑖)
𝑗

You may have questions about these terms, but we will discuss them shortly. The
value function is central to SHAP, and we will discuss it in detail. This function
is closely related to the simulation of absent features.

5.3 The SHAP value function

The SHAP value function, for a given model 𝑓 and data instance 𝑥(𝑖), is defined
as:

𝑣𝑓,𝑥(𝑖)(𝑆) = ∫ 𝑓(𝑥(𝑖)
𝑆 ∪ 𝑋𝐶)𝑑ℙ𝑋𝐶

− 𝔼(𝑓(𝑋))

Note

The value function relies on a specific model 𝑓 and a particular data point to
be explained 𝑥(𝑖), and maps a coalition 𝑆 to its value. Although the correct
notation is 𝑣𝑓,𝑥(𝑖)(𝑆), I will occasionally use 𝑣(𝑆) for brevity. Another misuse
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of notation: I use the union operator for the feature vector: 𝑥(𝑖)
𝑆 ∪ 𝑋𝐶 is a

feature vector ∈ ℝ𝑝 where values at positions 𝑆 have values from 𝑥(𝑖)
𝑆 and

the rest are random variables from 𝑋𝐶.

This function provides an answer for the simulation of absent features. The second
part 𝔼(𝑓(𝑋)) is straightforward: It ensures the value of an empty coalition 𝑣(∅)
equals 0.

Confirm this for yourself:

𝑣(∅) = ∫ 𝑓(𝑋1, … , 𝑋𝑝)𝑑ℙ𝑋 − 𝐸𝑋(𝑓(𝑋)) (5.1)

= 𝐸𝑋(𝑓(𝑋)) − 𝐸𝑋(𝑓(𝑋)) (5.2)
= 0 (5.3)

The first part of the value function, ∫ 𝑓(𝑥(𝑖)
𝑆 ∪𝑋𝐶)𝑑𝑋𝐶, is where the magic occurs.

The model prediction function 𝑓 , which is central to the value function, takes the
feature vector 𝑥(𝑖) ∈ ℝ𝑝 as input and generates the prediction ∈ ℝ. However, we
only know the features in set 𝑆, so we need to account for the features not in 𝑆,
which we index with 𝐶.

SHAP’s approach is to treat the unknown features as random variables and inte-
grate over their distribution. This concept of integrating over the distribution of
a random variable is called marginalization.

Marginalization

Integration of a function typically involves calculating the area under the
curve. However, when integrating with respect to a distribution, certain
portions under the curve are weighted more heavily based on their likelihood
within the integral.

This means that we can input “known” features directly into the model 𝑓 , while
absent features are treated as random variables. In mathematical terms, I distin-
guish a random variable from an observed value by capitalizing it:
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Feature value Random variable

𝑥(𝑖)
𝑗 𝑋𝑗

𝑥(𝑖)
𝑆 𝑋𝑆

𝑥(𝑖)
𝐶 𝑋𝐶

𝑥(𝑖) 𝑋

Let’s revisit the apartment example:

Park Cat Area Floor Predicted Price
Nearby Banned 50 2nd €300,000

Informally, the value function for the coalition of park, floor would be:

𝑣({park, floor}) = ∫ 𝑓(𝑥𝑝𝑎𝑟𝑘, 𝑋𝑐𝑎𝑡, 𝑋𝑎𝑟𝑒𝑎, 𝑥𝑓𝑙𝑜𝑜𝑟)𝑑ℙ𝑋𝑐𝑎𝑡,𝑎𝑟𝑒𝑎
− 𝐸𝑋(𝑓(𝑋)),

where 𝑥𝑝𝑎𝑟𝑘 = nearby, 𝑥𝑓𝑙𝑜𝑜𝑟 = 2, and 𝐸𝑋(𝑓(𝑋)) = 300.000.

• The features ‘park’ and ‘floor’ are “present”, so we input their corresponding
values into 𝑓 .

• The features ‘cat’ and ‘area’ are “absent”, and thus are treated as random
variables and integrated over.

5.4 Marginal contribution

We are gradually working our way up to the SHAP value. We’ve examined the
value function, and the next step is to determine the marginal contribution. This
is the contribution of feature 𝑗 to a coalition of features 𝑆.

The marginal contribution of 𝑗 to 𝑆 is:
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𝑣(𝑆 ∪ 𝑗) − 𝑣(𝑆) = ∫ 𝑓(𝑥(𝑖)
𝑆∪𝑗 ∪ 𝑋𝐶\𝑗)𝑑ℙ𝑋𝐶\𝑗

− 𝔼(𝑓(𝑋))

− (∫ 𝑓(𝑥(𝑖)
𝑆 ∪ 𝑋𝐶)𝑑ℙ𝑋𝐶

− 𝔼(𝑓(𝑋)))

= ∫ 𝑓(𝑥(𝑖)
𝑆∪𝑗 ∪ 𝑋𝐶\𝑗)𝑑ℙ𝑋𝐶\𝑗

− ∫ 𝑓(𝑥(𝑖)
𝑆 ∪ 𝑋𝐶)𝑑ℙ𝑋𝐶

For instance, the contribution of ‘cat’ to a coalition of {park, floor} would be:

𝑣({cat, park, floor}) − 𝑣({park, floor})

The resulting marginal contribution describes the change in the value of the
coalition {park, floor} when the ‘cat’ feature is included. Another way to interpret
the marginal contribution is that present features are known, absent feature values
are unknown, so the marginal contribution illustrates how much the value changes
from knowing 𝑗 in addition to already knowing 𝑆.

5.5 Putting it all together

Combining all the terms into the Shapley value equation, we get the SHAP equa-
tion:

𝜙(𝑖)
𝑗 = ∑

𝑆⊆{1,…,𝑝}\𝑗

|𝑆|! (𝑝 − |𝑆| − 1)!
𝑝!

⋅ (∫ 𝑓(𝑥(𝑖)
𝑆∪𝑗 ∪ 𝑋𝐶\𝑗)𝑑ℙ𝑋𝐶\𝑗

− ∫ 𝑓(𝑥(𝑖)
𝑆 ∪ 𝑋𝐶)𝑑ℙ𝑋𝐶

)

The SHAP value 𝜙(𝑖)
𝑗 of a feature value is the average marginal contribution of

a feature value 𝑥(𝑖)
𝑗 to all possible coalitions of features. And that concludes it.
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This formula is similar to the one in the Shapley Theory Chapter, but the value
function is adapted to explain a machine learning prediction. The formula, once
again, is an average of marginal contributions, each contribution being weighted
based on the size of the coalition.

5.6 Interpreting SHAP values through axioms

The axioms form the foundation for defining Shapley values. As SHAP values are
Shapley values with a specific value function and game definition, they adhere to
these axioms. This has been demonstrated by Štrumbelj and Kononenko (2010),
Štrumbelj and Kononenko (2014), and Lundberg and Lee (2017b). Given that
SHAP follows the principles of Efficiency, Symmetry, Dummy, and Additivity, we
can deduce how to interpret SHAP values or at least obtain a preliminary under-
standing. Let’s explore each axiom individually and determine their implications
for the interpretation of SHAP values.

5.6.1 Efficiency: SHAP values add up to the (centered)
prediction

SHAP values must total to the difference between the prediction for 𝑥(𝑖) and the
expected prediction:

𝑝
∑
𝑗=1

𝜙(𝑖)
𝑗 = 𝑓(𝑥(𝑖)) − 𝔼(𝑓(𝑋))

Implications: The efficiency axiom is prevalent in explainable AI and is adhered to
by methods like LIME. This axiom guarantees that attributions are on the scale of
the output, allowing us to interpret the results as contributions to the prediction.
Gradients, another method for explaining model predictions, do not sum up to
the prediction, hence in my opinion, are more challenging to interpret.
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Symmetry: Feature order is irrelevant

If two feature values j and k contribute equally to all possible coalitions, their
contributions should be equal.

Given

𝑣𝑓,𝑥(𝑖)(𝑆 ∪ {𝑗}) = 𝑣𝑓,𝑥(𝑖)(𝑆 ∪ {𝑘})

for all

𝑆 ⊆ {1, … , 𝑝}\{𝑗, 𝑘}

then

𝜙(𝑖)
𝑗 = 𝜙(𝑖)

𝑘

Implications: The symmetry axiom implies that the attribution shouldn’t depend
on any ordering of the features. If two features contribute equally, they will receive
the same SHAP value. Other methods, such as the breakdown method (Staniak
and Biecek 2018) or counterfactual explanations, violate the symmetry axiom
because two features can impact the prediction equally without receiving the same
attribution. For example, the breakdown method also computes attributions, but
does it by adding one feature at a time, so that the order by which features
are added matters for the explanation. Symmetry is essential for accurately
interpreting the order of SHAP values, for instance, when ranking features using
SHAP importance (sum of absolute SHAP values per feature).

Dummy: Features not affecting the prediction receive SHAP
values of 0

A feature j that does not alter the predicted value, regardless of the coalition of
feature values it is added to, should have a SHAP value of 0.

Given
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𝑣𝑓,𝑥(𝑖)(𝑆 ∪ {𝑗}) = 𝑣𝑓,𝑥(𝑖)(𝑆)

for all

𝑆 ⊆ {1, … , 𝑝}

then

𝜙(𝑖)
𝑗 = 0

Implications: The dummy axiom ensures that unused features by the model
receive a zero attribution. This is an obvious implication. For instance, if a
sparse linear regression model was trained, we can be sure that a feature with a
𝛽𝑗 = 0 will have a SHAP value of zero for all data points.

5.6.2 Additivity: Additive predictions correspond to additive
SHAP values

For a game with combined payouts 𝑣1 + 𝑣2, the respective SHAP values are:

𝜙(𝑖)
𝑗 (𝑣1) + 𝜙(𝑖)

𝑗 (𝑣2)

Implications: Consider a scenario where you’ve trained a random forest, meaning
the prediction is an average of numerous decision trees. The Additivity property
ensures that you can compute a feature’s SHAP value for each tree separately and
average them to obtain the SHAP value for the random forest. For an additive
ensemble of models, the final SHAP value equals the sum of the individual SHAP
values.

Note

An alternative formulation of the SHAP axioms exists where the Dummy
and Additivity axioms are replaced with a Linearity axiom; however, both
formulations eventually yield the SHAP values.
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This chapter has provided theoretical SHAP values. However, we face a significant
problem: In practice, we lack a closed-form expression for 𝑓 and we are unaware
of the distributions of 𝑋𝐶. This means we are unable to calculate the SHAP
values, but, fortunately, we can estimate them.
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