Self
EXpressive

Code

A handbook of write readable codes

if (dir == FORWARD) {
through();

}

if (dir == TURN_LEFT) {
turn(RIGHT);
turn(RIGHT);
turn(RIGHT);

}

Stephen Wang

Self-Expressive Code
A handbook of write readable code.

Stephen Wang
This book is for sale at http://leanpub.com/self_expressive_code

This version was published on 2014-04-06

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 - 2014 Stephen Wang

http://leanpub.com/self_expressive_code
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Stephen Wang by spreading the word about this book on Twitter!
The suggested hashtag for this book is #Software Programming, Code Readability.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#Software Programming, Code Readability

http://twitter.com
https://twitter.com/search?q=%23Software Programming, Code Readability
https://twitter.com/search?q=%23Software Programming, Code Readability

Contents

Introduction 1
Acknowledgement L 2
What Is Self-Expressive Code 3
Part [Readability 5
Chapter 1 Annoyance of Lower Readability 5

1.1 Annoying Bugs 7
1.2Hard ToUnderstand 8

1.3 Hard To Change Or Extend 10
1.4Easy ToMakeBugsIn. 12
1.5Hard ToRefactor 14

Further Reading 17

Introduction

When we are writing programming code, readability issues happen. People often face
some hard to read source codes. What kind of codes are lower readability? What caused
this happen? How to solve these issues? All the above questions are big.

Restricted by the programming language, codes can be written in predefined ways.
People might think it is not possible to write source code as certain language. That’s
true. We could not write certain language, then let computer analyze the commands and
run properly, but we can write source code as certain language as we can. Programming
language provides some useful symbols allow programmers to write source code easy
to understand.

Some issues caused by English, some non-native speakers have smaller vocabulary set,
they tend to use simple words only to express what they want to do. However, even
for native speakers, they can give good names to classes, methods or variables, but
when call these classes, methods, variables, problems also appear. That means, code
readability is no only depend on the names, but also depend on how it will be called.
Plus, the algorithm, the structure, the architecture will affect the readability of codes.

Improve code’s readability is not so easy.

In this book, I would like to introduce a new way to write source code - ‘Self-Expressive
Code’. As implied in its name, Self-Expressive Code means, the code itself can express
what it will do. Programmers can understand the meaning of source code faster and
easier. Self-Expressive Code is chasing for the way to write source code that could be
understood at a glance.

Java is still popular and influential. This book picked Java as its sample language.

Acknowledgement

There is a list who helped editing this book.
Michael Chen Liu Chengzhang Han Kuikui

Thank my family, without their support, this book could not be published.

The first edition of this book is published in Chinese on paper. The initial intention for this book is
for help non-English speakers write more readable codes. Michael has reviewed the first edition and
provided some useful suggestions. He also provided many useful ideas for the second edition. This
is the second edition, chapters are re-organized, samples are revised. I hope this book can benefit
programmers across the world, not only non-English speakers.

This book referred the following books:

Design Patterns:Elements of Reusable Object-Oriented Software’, Erich Gamma, Richard
Helm, Ralph Johnson, John Vlissides ISBN: 9787111075752

Refactoring®, Martin Folwer
Clean Code?, Robert Martin
The Art of Readable Code (Theory in Practice), Dustin Boswell, Trevor Foucher

*http://en.wikipedia.org/wiki/Design_Patterns
*http://martinfowler.com/books/refactoring.html
*CleanCode:AHandbookofAgileSoftwareCraftsmanship
“http://baike.baidu.com/view/8805043.htm

http://en.wikipedia.org/wiki/Design_Patterns
http://martinfowler.com/books/refactoring.html
Clean Code: A Handbook of Agile Software Craftsmanship
http://baike.baidu.com/view/8805043.htm
http://en.wikipedia.org/wiki/Design_Patterns
http://martinfowler.com/books/refactoring.html
Clean Code: A Handbook of Agile Software Craftsmanship
http://baike.baidu.com/view/8805043.htm

What Is Self-Expressive Code

In assembly language, codes are written for machines, people can hard to read source code and guess
its meaning. After decades, programming languages become more and more easy to read. Shortly,
codes are written for people.

However, in the real world, we could hard to read many codes in C# or Java, even certain words are
used to name objects in programming. In a opened source famous platform, one module contains a
bunch of lower readable codes. After read that code, it seems the authors of the codes tend to write
source code for machines, not for people. We cannot know the real reason, but we could analyze the
source code.

The source code has:

if-else conditions that do not evaluate same object.
non-English names.
. long branches/methods.

Bow e

many duplications/similarities.

Those above features show that the programmer were not pay enough attention about the reader’s
feeling. This third party company shared their source code on that famous platform for brand image
or something. Unfortunately, the source code just leads to the opposite way. After read that code I
started to worry about the quality of their health care products. Hope they have different process to
make the products quality higher.

So, what is good way to write readable source code?

For instance, in a game application, player can control a hero to fight the enemy in a scene. The code
could seem like:

scene. fight(hero, enemy, Kongfu.FIST);

In the code above, readers cannot understand the fight direction between hero and enemy.

An revised version could seem like:
hero. fight(enemy, Kongfu.FIST);

For the restriction of programming language, constant should have its class name. The meaning of
this code is clear, but the code still seems like to be a machine language, not human language. Then
the ace version is appear:

What Is Self-Expressive Code 4
hero. fight(enemy) . with("FIST");

The fight() method returns a Fight object that has with() method. The with() method passed by a
Kongfu name that allows a KongfuFactory to create a Kongfu object and calculate the damage. This
process makes more classes, but it also make the source code more readable.

Implement functionality is the basic responsibility of source code, but keep it readable, extensible,
changeable are also important. As mentioned in the head of this section, codes are written for people.
I suggest to write source code as certain language as possible. I named that method ‘Self-Expressive
Code’. Before the word ‘Self-Expressive Code’ appear in the world, there are two similar words: Self-
Documenting Code’ and Self-Describing Code® already existed. They might have the same meaning,
but I think the word ‘expressive’ is more expressive, so I named this way of writing code as ‘Self-
Expressive Code’.

*http://en.wikipedia.org/wiki/Self-documenting
Shttp://en.wikipedia.org/wiki/Self-documenting

http://en.wikipedia.org/wiki/Self-documenting
http://en.wikipedia.org/wiki/Self-documenting
http://en.wikipedia.org/wiki/Self-documenting
http://en.wikipedia.org/wiki/Self-documenting
http://en.wikipedia.org/wiki/Self-documenting

Part | Readability

private List<int[]> solutions = new ArravList<int[]>():
private static final int ARRAY S5TZE =
private int[] tempBoard = new int[ARRAY S5IZE]:

private wvoid putQueenlt (int row, int column) {
tenpBoard[row] = column;

1

private boolean hasConfliction{int row) {

for (int i = 0; i < row; i ++) {
if (Math.abs(tempBoard[row] - tempBoard[i]) == HMath.abs(row - 1)} ||
tempBoard[row] = tempBoard[i]){

return true:
}
}

return false:

Chapter 1 Annoyance of Lower Readability

When programmers read others’ code, they would have feelings about the code. Just
like users access a website. If website makes user unsatisfied, user will go away. If the
code is not good for read, what would the reader do? The most frequently occurred
thing might be spitting out dirty words. The worst thing is that after spit out, the reader
noticed that the source were written by himself/herself. Apparently, lower readable
codes make programmers unsatisfied.

Lower readable codes may be a:

Part I Readability 6

1. Mouse Wheel Tester

Long file, long method, long branch, those force readers to roll their mouse wheel continu-
ously. The source code, in other side, is a mouse wheel tester.

2. Eye Tester
Similar codes make user confused about the nuances. Similar codes force user to look inside
with caution.

3. Memory Tester
Name variables as a, b, ¢ or count1, count2 to force readers remember meaning of these
variables.

4. Patience Tester

Long names hide the key information that forces user stop and think. Unformatted source
make user to keep big patience to read. Deep nested source makes reader think the relationship

harder.

or, it may have such features:

1. Names Make No Sense
Method names like : doProcess, invokeMethod, executeService.

Variable names like : returnValue, tempValue, list, result.
2. Dialects

Using other languages other than English, makes other readers totally have no idea about the
names. Even they share the same language.

“YouYu’ in Chinese have at least eight possible meanings.

‘ikou’ in Japanese have at least four possible meanings.

3. Made Up Words
Using ambiguous words that misguide readers, such as ‘float DBL’. That leads readers to think
‘DBL’ is the abbreviation of ‘double’.

4. Quiz

Using complicated expressions to make things more complex.

Lower readability also makes code hard to change, hard to extend, hard to fix bugs.
Lower readability codes share one feature - forces readers stop and think, that causes
lower productivity, lower quality.

1

Part I Readability

1.1 Annoying Bugs
Programmers are inevitable to face bugs. If it is easy to be fixed, programmers might

not hate bugs too much. In the real world, however, bugs are hard to be reproduced,
hard to be traced, hard to be fixed, or easy to degrade.

Not reproducible

One possible reason is that there are too many factors to make it happens again. And
these factors are existing in the source code, but not in the business process. This
reflects the code appended inner factors, and if possible, eliminate them to make bugs
reproducible.

Not traceable

One possible reason is that the bug caused by one complicated line code. If user got an
‘NullPointerException’ at the following code. Which is the root cause of the problem?

product.setUpdater (user.getFullName());

Another possible reason is that the bug were produced by mis-use of third party
framework. For example, Spring framework allows user to configure their xml to run
system, but it is not easy to find if xml has mistake.

Third possible reason is that the error message does not indicate the real reason. For
example, Ebean allows user to access db easier. If the server name of Ebean is not set
properly, User would get a message of ‘NullPointerException’. and user could not easily
to solve this problem without reading the source code of Ebean.

Not Fixable

After tried so hard, programmer found the reason of the source code, but cannot fix that
bug. Because it is a very influential place. If it changes, too much tests are required, but
time is limited.

Degrade
After fixed the bug, it works. Unfortunately, another bug appears according to this fix.

All those above annoyance occur frequently with lower readable codes.

B W N -

s w N -

Part I Readability

1.2 Hard To Understand

When a new programmer joined to a team, he/she needs to read source code before
touch it. If the source code has lower readability, it takes long time to understand. Until
the new programmer understood the source code, he/she could do nothing about fix
bugs or apply changes. This also works for job transfer from a member to another. It
depends on the readability, if the codes are easy to read, the time be taken is shorter,
otherwise, longer time needed.

There is a list that frequently happened in lower readable codes.
Negatives
Negative words contain a ‘NOT” information, if put negative variable into a conditional

statement, it just like a quiz : not of not is positive. If it happens to be a non-adjective
variable, the code becomes harder to read.

if ((hardKeyboardHidden == 1) == false)
Circular Reference

If object A contains an object B, and object B for some reasons needs reference from
object A, the two objects have a circular reference, just like below:

class Container
Context context;
Product product;

class Proudet
//This is for calling of 'container.context'
Container container;

In this case, container.product.container.product would be a strange object. In fact
this is caused by wrong ownership.

Diverse Meanings
If a local variable in a method have diverse meanings, readers could not easily check

the meaning of the variable at a line. The variable ‘flag’ in the following code is hard
to understand.

© 0 N O O & W N =

[N N =Y
N O O b W N =~ O

<N O O b wWwN -

Part I Readability

public String registerLesson(long userld, long lessonId) {
int flag = 9;

flag = checkUserExist(userlId);
if (flag == 0) {

return "User does not exist.";
flag = checklLessonExist(lessonld);

if (flag == 0) {
return "Lesson does not exist.";

wn,

return

Diverse Branches

Branches may have conditions, but the conditions should have same meaning, different
values. If two connected branches have different conditions, it makes no sense.

public void method(int flag, String name) {
if (flag == 0) {
//process 1;
} else if (name.equals("abc")) {
//process 2,

Ambiguous Names

If the name of a method can not show its meaning, reader should read every and each
line of its implementation to determine its real functionality. That takes time.

The following is a sample of ambiguous name.

O b W N -

©O© 0 N O O & W N =

N U SN
O O b W N~ O

Part I Readability 10

public class Keyboard {
//Pressed the 'alt' key or alter to another keyboard layout?
public void alt() {
}

Non-Match Documents

Many maintenance engineers are confusing about that the source code have nor
creditable documents, neither comments, which means the code is the only document.
Unfortunately, most of these time, the source code is not readable too.

1.3 Hard To Change Or Extend

Software changes. If a requirement change comes, how much time will be taken? The
higher the changeability is, the shorter the time is needed.

Changeability

A widget” place module in a system have magnet effects for widgets. That algorithm is
changed frequently because widget have many sizes. But the code is hard to be changed,
because the ‘move’ method is too complicated:

private Widget[] widgets;
private int focus;

public void move(int dir) {
if (dir == 1) {// move right
if (widgets|[focus].width == 1) {
int next = 0;
next = findNext();
if (widgets[next].height == 2) {
if (widgets[next].y == widgets|[focus].y) {
//omitted
1
//..omitted.
} else if (widgets[next].height == 3) {
if (widgets[next].y == widgets|[focus].y) {

"http://developer.android.com/guide/topics/appwidgets/index.html

http://developer.android.com/guide/topics/appwidgets/index.html
http://developer.android.com/guide/topics/appwidgets/index.html

17
18
19
20
21
22
23
24
25

O 00 9 O U » W N =~

10
11
12
13
14
15

Part I Readability 11

//omitted
}
//..omitted.
}
}
} else (dir == -1) { //move left
//omitted
}
}
In this complicated algorithm, programmer try to enumerate every possibility about
moving widget. Any new possibility will extend the method. The final version of source
is very terrible, and messed up. Even a small change to this algorithm will cause big
modification.
Extensibility

An input method system on android platform is required to have new input device :
remote control and game pad.

Below is the skeleton of the implemented codes:

public class Keyboard {
public boolean onKeyDown(int keyCode, KeyEvent event) {

if (hardKeyboardConnected == 0) {
//treat with soft keyboard

} else {
//treat with hard keyboard
if (keyCode >= KeyEvent.KEYCODE_A

&& keyCode <= KeyEvent.KEYCODE_7) {

} else if (keyCode == KeyEvent.KEYCODE_ENTER) {
} else if (keyCode == KeyEvent.KEYCODE_SPACE) ({
} else if (keyCode == KeyEvent.KEYCODE_SHIFT) ({

}

When add device like remote control and game pad, because it is not detectable for
android system, like a physical keyboard plugged in.

The code becomes:

O 0O = O O » wWw N =

10
11
12
13
14
15
16
17
18
19
20
21

Part I Readability

public class Keyboard {
public boolean onKeyDown(int keyCode, KeyEvent event) {
if (hardKeyboardConnected == 0) {
//treat with soft keyboard
} else {
//treat with hard keyboard
if (keyCode >= KeyEvent.KEYCODE_A
&& keyCode <= KeyEvent.KEYCODE 7) ({
else if (keyCode == KeyEvent.KEYCODE_ENTER) ({
else if (keyCode == KeyEvent.KEYCODE_SPACE) ({
else if (keyCode == KeyEvent.KEYCODE_SHIFT) {
else if (keyCode >= KeyEvent.KEYCODE_BUTTON_1

[R R)

&& keyCode <= KeyEvent.KEYCODE BUTTON_10) { //for remote control

} else if (keyCode >= KeyEvent.KEYCODE_BUTTON_A

&& keyCode <= KeyEvent.KEYCODE_BUTTON_C) { //for game pad
} else if (keyCode >= KeyEvent.KEYCODE_BUTTON_X

&& keyCode <= KeyEvent.KEYCODE_BUTTON_Z) { //for game pad

If follow this trend to modify source code, the source code will be very fatty and buggy.
All of the above system has lower readability.

1.4 Easy To Make Bugs In.

Not Match

It may cause bug when call a one method that declared one behavior, but actually did
two.

public void update() {
reloadData();
saveFile();

Duplications/Similarities

It may cause bug in case that should call method A, but called a similar method B.

12

O b W N -

© 00 I O O b w N =~

(ST
N =~ O

Part I Readability

public void clear() {
//remove all elements

public void clean() {
//remove all dump data.

Ambiguous

It is confused when trying to call a method with ambiguous name and implementation.

public int[] countDifferentSeries(int[][] basketTwoDArray) {
int count = 0O;
//omitted.
return differentSeriesCount;

}
This method start with ‘count’, but returns an array. It is not easy to understand the
meaning of this code in short. If want to count each item in the array, how about to
calculate separately in a loop?

Complicated

Deeper nested codes makes code hard to read, hard to understand.

private Widget[] widgets;
private int focus;

public void move(int dir) {
if (dir == 1) {// move right
if (widgets[focus].width == 1) {

int next = 0;

next = findNext();

if (widgets[next].height == 2) {

if (widgets[next].y == widgets|[focus].y) {

//omitted

13

13
14
15
16
17
18
19
20
21
22
23
24
25

Part I Readability

1
//..omitted.

} else if (widgets[next].height == 3) {
if (widgets[next].y == widgets|[focus].y) {

//omitted
1
//..omitted.
}
}
} else (dir == -1) { //move left
//omitted

When touch this code, it is very easy to make bugs in.

1.5 Hard To Refactor

Inconsistent Style

Many programmers do not care about the style of source code. In their editor both of
below exist.

a=a+1;

In this case, if reader want to search something, they do not know which pattern should
they use. They have to add additional information into the search box - Make it regular
expression.

Also, the mixed style exist together makes new joined programmers confused - What
rule should I follow if I want to change the source code.

Inconsistent Words

Not only the coding style, if the terms or words are not inconsistent in one system,
readers will also be confused.

14

0 N O O & W N =

O b W N =

Part I Readability 15

In one file, ‘save’ means ‘insert’, but in another file, ‘save’ means “update’, so why not
use ‘insert’” and ‘update’ to avoid this?

Inconsistent Process

Besides, in a system, treat similar objects in different ways may take extra time to
understand the difference. In a input method system, typed alphabet will be transferred
to certain characters according to the selected transfer rules.

The following code shows the design simply.

public interface TransferEngine {
public List<String> transfer();

public class InputMethodService
public List<String> transfer() {
String text = getTypedAlphabets();
TransferEngine engine = getSelectedTransferEngine();
List<String> candidates = engine.transfer(text);
return candidates;

If added one rule, it should be a implementation of TransferEngine,

public class HiraganaEngine implements TransferEngine ({
public List<String> transfer(String text) {
Y

However, the author changed code as follows:

O 0O = O O » wWw N =

S N
0o N O O b W N -~ O

Part I Readability

public class InputMethodService {

public List<String> transfer() {
String text = getTypedAlphabets();
TransferEngine engine = getSelectedTransferEngine();

List<String> candidates = nulll

if (engine instanceof SymbolEngine) {
candidates = new ArraylList<String>();
candidates.add(text);
return candidates;

candidates = engine.transfer(text);
return candidates;

16

Further Reading

Chapter 2. What Makes Readability Lower

2.1 English Skills 2.2 Programming Language Grammar 2.3 Naming 2.4
Architecture 2.5 Structure 2.6 Comment 2.7 Style 2.8 Restrictive Rules

Chapter 3. An Unreadable Experience
3.1 Usage Of Words 3.2 Style 3.3 Algorithm 3.4 Revise
Part IT Improvement
Chapter 4. Use English Properly

4.1 Frequently Found Mistakes 4.2 Prefix, Suffix 4.3 Pair Words 4.4 Abbrevi-
ation 4.5 Word Class 4.6 Grammar 4.7 Tense 4.8 Negatives

Chapter 5. Use Programming Language Features > 5.1 Annotation > 5.2 Exception > 5.3
Reflect > 5.4 Generic > 5.5 Lambda Expression

Chapter 6. Naming Improvement

6.1 Package 6.2 Interface 6.3 Class 6.4 Enumeration 6.5 Annotation 6.6
Method 6.7 Variable 6.8 Constant 6.9 Similarities 6.10 Keywords 6.11 Other
Improvements

Chapter 7. Architectural Improvement

7.1 Task Split 7.2 Inner Classes, Interfaces and Enumerations 7.3 Anonymous
Class 7.4 Relationship 7.5 Limited Values 7.6 Avoid Class Explosion 7.7
Abstraction 7.8 Responsibility

Chapter 8. Structural Improvement

Further Reading 18

8.1 Shorten Long Method 8.2 Reduce Parameter Count 8.3 Reduce Nested
Depth 8.4 Eliminate Duplications/Similarities 8.5 Decouple 8.6 Reduce Influ-
ence of Multi-Factors 8.7 Avoid Class Cast 8.8 Shorten Long Conditions 8.9
Eliminate Useless Codes 8.10 Remove Temporary Variables

Chapter 9. Commentary Improvement

9.1 Java Doc 9.2 FIXME, TODO, XXX 9.3 Copyright 9.4 Class Explanation
9.5 Method Comment 9.6 Process Comment 9.7 Comment Out Source Code

Chapter 10. Stylistic Improvement

10.1 Indent 10.2 Alignment 10.3 Space 10.4 Code Region 10.5 Line Length and
Tab 10.6 New Line 10.7 Braces, Brackets and Parentheses 10.8 Code Region

Chapter 11. Scriptic Improvement

11.1 Object Oriented JavaScript 11.2 HTML 11.3 JSP 11.4 SQL 11.5 OS Script
Chapter 12. Configurational Improvement

12.1 XML 12.2 JSON 12.3 Properties 12.4 Yaml 12.5 CSS
Chapter 13. Symbolic Improvement

13.1 Period 13.2 Logical Operators 13.3 Computing Operators 13.4 Quotations
13.5 String Parameters

Chapter 14. Algorithmic Improvement

14.1 Recursion 14.2 Replace List With Map 14.3 Replace Index With List 14.4
Apply Domain Specific Language 14.5 Apply Dynamic Design Patterns

Chapter 15. Readability Of Test Code
15.1 Assertion 15.2 Test Case 15.3 Test Fixture 15.4 Stability Of Test Codes

Chapter 16. Other Improvements

Further Reading
16.1 XXXXIXX
16.2 URL
16.3 XXXXIXX
16.4 XXXIX
16.5 LoghX
16.6 MXXIXIX
Part I1I Exploring
Chapter 17. Code Generator
17.1 Problems Of Code Generator
17.2 Layout Editor
17.3 Dynamic Codes
Chapter 18. Help From IDE
18.1 Auto-Formatter
18.2 Spell-Checker
18.3 Style-Checker
18.4 Auto-Complete
Chapter 19. Code Review
19.1 Machine’s Work

19.2 Quick Read

19

Further Reading

19.3 5S To Codes
19.4 Looks Good
19.5 Convention
19.6 Misunderstanding
Chapter 20. Readability Improving of Legacy Code
20.1 Make Sure Test Code Exist
20.2 Apply Tools
20.3 Small Improvement
20.4 Entire Improvement
20.5 Rewrite
Chapter 21. Evolutionary Design
21.1 Keep Readability From Line 1
21.2 Keep Clean
21.3 Just Enough
21.4 Think How It Would Be Called
21.5 Use Third Party Libraries
21.6 Be Habit
21.7 Time To Test
Chapter 22. A Journey To Improving Readability
22.1 Create Android IME Service
22.2 Layout
22.3 Input Device
22.4 Process Button(Input)
22.5 Process Button(Operation)

22.6 Control Input(Touch Screen)

	Table of Contents
	Introduction
	Acknowledgement
	What Is Self-Expressive Code
	Part I Readability
	Chapter 1 Annoyance of Lower Readability
	1.1 Annoying Bugs
	1.2 Hard To Understand
	1.3 Hard To Change Or Extend
	1.4 Easy To Make Bugs In.
	1.5 Hard To Refactor

	Further Reading

