Selenium WebDriver Recipes
in Java

The Problem Solving Guide to Selenium WebDriver

Selenium WebDriver Recipes in Java

The problem solving guide to Selenium WebDriver in Java

Zhimin Zhan

This book is available at https://leanpub.com/selenium-recipes-in-java

This version was published on 2025-07-18

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2013 - 2025 Zhimin Zhan

https://leanpub.com/selenium-recipes-in-java
https://leanpub.com/
https://leanpub.com/manifesto

Also By Zhimin Zhan

Web Test Automation in Action: Volume 1
Practical Performance and Load Testing
Practical Continuous Testing

Practical Desktop App Test Automation with Appium
Selenium WebDriver Recipes in Node.js
API Testing Recipes in Ruby

Selenium WebDriver Recipes in Python
Learn Swift Programming by Examples
Learn Ruby Programming by Examples
Selenium WebDriver Recipes in Ruby
Watir Recipes

Practical Web Test Automation with Selenium WebDriver

https://leanpub.com/u/zhiminzhan
https://leanpub.com/web-test-automation-in-action-volume-1
https://leanpub.com/practical-performance-and-load-testing
https://leanpub.com/practical-continuous-testing
https://leanpub.com/practical-desktop-app-test-automation-with-appium
https://leanpub.com/selenium-webdriver-recipes-in-nodejs
https://leanpub.com/api-testing-recipes-in-ruby
https://leanpub.com/selenium-recipes-in-python
https://leanpub.com/learn-swift-programming-by-examples
https://leanpub.com/learn-ruby-programming-by-examples-en
https://leanpub.com/selenium-recipes-in-ruby
https://leanpub.com/watir-recipes
https://leanpub.com/practical-web-test-automation

To Dominic and Courtney!

Contents

Preface i
Who shouldread thisbook ii
Howtoreadthisbook ii
Recipe testscripts L e ii
Sendmefeedback iii

1. Introduction 1
11 Selenium 1
1.2 Selenium language bindings. L. 1
1.3 Crossbrowsertesting, 4
14 JUnit. 6
1.5 Setup Development Environment 9
1.6 Setup Intellij IDEA project 9
17 RunrecipescCriptS. i 1

2. Locatingwebelements 16
21 Startbrowser 16
22 FindelementbyID 17
2.3 FindelementbyName 18
24 FindelementbyLinkText 18
2.5 Find element by Partial Link Text 18
2.6 FindelementbyXPath 19
2.7 FindelementbyTagName 20
2.8 FindelementbyClass 21
29 FindelementbyCSSSelector. 21

CONTENTS

2.10 Chain findElement to find child elements 22
211 Find multipleelements 22
3. Hyperlink 24
31 Clickalinkbytext 24
3.2 ClickalinkbyID 24
3.3 Clickalinkbypartialtext 25
34 ClickalinkbyXPath 25
3.5 Click Nth link with exact samelabel 26
3.6 Click Nthlinkby CSSSelector 27
3.7 Verifyalinkpresentornot?. 27
3.8 Gettinglinkdata attributes oL 27
3.9 Testlinks open a new browser window 28
4. Resources 29
41 BOOKS 29
42 WebSites 30
43 Blog e 30
44 TOOIS. 31

Preface

After observing many failed test automation attempts by using expensive commercial
test automation tools, I am delighted to see that the value of open-source testing
frameworks has finally been recognized. I still remember the day (a rainy day at a Gold
Coast hotel in 2011) when I found out that the Selenium WebDriver was the most wanted
testing skill in terms of the number of job ads on the Australia’s top job-seeking site.

Now Selenium WebDriver is big in the testing world. We all know software giants
such as Facebook and LinkedIn use it, immensely-comprehensive automated Ul testing
enables them pushing out releases several times a day'. However, from my observation,
many software projects, while using Selenium WebDriver, are not getting much value
from test automation, and certainly nowhere near its potential. A clear sign of this is
that the regression testing is not conducted on a daily basis (if test automation is done
well, it will happen naturally).

Among the factors contributing to test automation failures, a key one is that automation
testers lack sufficient knowledge in the test framework. It is quite common to see some
testers or developers get excited when they first create a few simple test cases and
see them run in a browser. However, it doesn't take long for them to encounter some
obstacles: such as being unable to automate certain operations. If one step cannot be
automated, the whole test case does not work, which is the nature of test automation.
Searching solutions online is not always successful, and posting questions on forums
and waiting can be frustrating (usually, very few people seek professional help from
test automation coaches). Not surprisingly, many projects eventually gave up test
automation or just used it for testing a handful of scenarios.

The motivation of this book is to help motivated testers work better with Selenium. The
book contains over 190 recipes for web application tests with Selenium WebDriver. If
you have read one of my other books: Practical Web Test Automation?, you probably

Thttp: / /www.wired.com /business /2013 /04 /linkedin-software-revolution /
2https:/ /leanpub.com /practical-web-test-automation

http://www.wired.com/business/2013/04/linkedin-software-revolution/
https://leanpub.com/practical-web-test-automation
http://www.wired.com/business/2013/04/linkedin-software-revolution/
https://leanpub.com/practical-web-test-automation

Preface ii

know my style: practical. I will let the test scripts do most of the talking. These recipe
test scripts are ‘live’, as I have created the target test site and included offline test web
pages. With both, you can:

1. Identify your issue

2. Find the recipe

3. Run the test case

4. See test execution in your browser

Who should read this book

This book is for testers or programmers who are writing (or want to learn) automated
tests with Selenium WebDriver. In order to get the most of this book, basic (very basic)
Java coding skills is required.

How to read this book

Usually, a ‘recipe’ book is a reference book. Readers can go directly to the part that
interests them. For example, if you are testing a multiple select list and don’t know how,
you can look up in the Table of Contents, then go to the chapter. This book supports this
style of reading. Since the recipes are arranged according to their levels of complexity,
readers will also be able to work through the book from the front to back if they are
looking to learn test automation with Selenium.

Recipe test scripts

To help readers to learn more effectively, this book has a dedicated site® that contains
the recipe test scripts and related resources.

3http:/ /zhimin.com/books /selenium-recipes-java

http://zhimin.com/books/selenium-recipes-java
http://zhimin.com/books/selenium-recipes-java

Preface iii

As an old saying goes, “There’s more than one way to skin a cat” You can achieve the
same testing outcome with test scripts implemented in different ways. The recipe test
scripts in this book are written for simplicity, there is always room for improvement.
But for many, to understand the solution quickly and get the job done are probably

more important.
If you have a better and simpler way, please let me know.

All recipe test scripts are Selenium 2 (aka Selenium WebDriver) compliant, and can be
run on Firefox, Chrome and Internet Explorer on multiple platforms. I plan to keep the
test scripts updated with the latest stable Selenium version.

Send me feedback

I would appreciate your comments, suggestions, reports on errors in the book and the
recipe test scripts. You may submit your feedback on the book site.

Zhimin Zhan

Brisbane, Australia

1. Introduction

Selenium is a free and open source library for automated testing web applications. I
assume that you have had some knowledge of Selenium, based on the fact that you
picked up this book (or opened it in your eBook reader).

1.1 Selenium

Selenium was originally created in 2004 by Jason Huggins, who was later joined by his
other ThoughtWorks colleagues. Selenium supports all major browsers and tests can
be written in many programming languages and run on Windows, Linux and Macintosh
platforms.

Selenium 2 marked the merger with another testing framework, WebDriver, originally
led by Simon Stewart at Google (who later joined Facebook). This integration is why
the project is now known as “Selenium WebDriver”. Selenium 2.0 was released in July
2011, followed by Selenium 3.0 in October 2016 and Selenium 4 in October 2021.

1.2 Selenium language bindings

Selenium tests can be written in multiple programming languages such as Java, C#,
JavaScript, Python and Ruby (the core ones). All examples in this book are written in
Selenium with Java binding. As you will see the examples below, the use of Selenium in
different bindings are very similar. Once you master one, you can apply it to others
quite easily. Take a look at a simple Selenium test script in four different language
bindings: Java, C#, JavaScript, Python and Ruby.

Java:

Introduction

import org.openqa.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.WebElement;

import org.openqa.selenium.firefox.FirefoxDriver;

public class GoogleSearch {
public static void main(String[] args) {
// Create a new instance of the html unit driver
// Notice that the remainder of the code relies on the interface,
// not the implementation.
WebDriver driver = new FirefoxDriver();

// And now use this to visit Google
driver.get("http://www.google.com");

// Find the text input element by its name
WebElement element = driver.findElement(By.name("q"));

// Enter something to search for
element.sendKeys("Hello Selenium WebDriver!");

// Submit the form based on an element in the form
element.submit();

// Check the title of the page
System.out.println("Page title 1dis: " + driver.getTitle());

C#:

using System;

using OpenQA.Selenium;

using OpenQA.Selenium.Firefox;
using OpenQA.Selenium.Support.UI;

class GoogleSearch
{
static void Main()
{
IWebDriver driver = new FirefoxDriver();
driver.Navigate().GoToUrl("http://www.google.com");
IWebElement query = driver.FindElement(By.Name("q"));
query.SendKeys ("Hello Selenium WebDriver!");

Introduction

query.Submit();
Console.WriteLine(driver.Title);

JavaScript:

var webdriver = require('selenium-webdriver');
var driver = new webdriver.Builder ()
.forBrowser ('chrome')
Lbuild();

driver.get('http://www.google.com/ncr');
driver.findElement(webdriver.By.name('q')).sendKeys('webdriver');
driver.findElement (webdriver.By.name('btnG')).click();

driver.wait(webdriver.until.titleIs('webdriver - Google Search'), 1000);
console.log(driver.title);

Python:

from selenium import webdriver

driver = webdriver.Firefox()
driver.get("http://www.google.com")

elem = driver.find_element_by_name('"q")
elem.send_keys("Hello WebDriver!")

elem.submit()

print(driver.title)

Ruby:

Introduction 4

require "selenium-webdriver"

driver = Selenium::WebDriver.for :firefox
driver.navigate.to "http://www.google.com"

element = driver.find_element(:name, 'q')
element.send_keys "Hello Selenium WebDriver!"
element.submit

puts driver.title

1.3 Cross browser testing

The biggest advantage of Selenium over other web test frameworks, in my opinion, is
that it supports all major web browsers: Firefox, Chrome and Edge. The browser market
nowadays is more diversified (based on the StatsCounter!, the usage share in June 2025
for Chrome, Firefox, Safari, Edge and are 66.5%, 5.9%, 7.4% and 13.1% respectively). It is
logical that all external facing websites require serious cross-browser testing. Selenium
is a natural choice for this purpose, as it far exceeds other commercial tools and free
test frameworks.

1.3.1 Chrome

To run Selenium tests in Google Chrome, you'll need both the Chrome browser and
ChromeDriver installed. As of Selenium v4.12 and Chrome v155, the new Selenium
Manager handles ChromeDriver installation automatically. However, it’s still helpful to
know how to install ChromeDriver manually, just in case.

Installing ChromeDriver is easy: go to ChromeDriver site?.

Thttps:/ /gs.statcounter.com /browser-market-share /desktop /worldwide
2https:/ /googlechromelabs.github.io /chrome-for-testing /

https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://googlechromelabs.github.io/chrome-for-testing/
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://googlechromelabs.github.io/chrome-for-testing/

Introduction 5

< C 25 googlechromelabs.github.io/chrome-for-testing/ w LI 2

https://storage.googleapis.com/chrome-for-testing-

chromedriver linux64)) . .)
public/130.0.6723.69/1inux64/chromedriver-1inux64.zip

mac- https://storage.googleapis.com/chrome-for-testing-

chromedriver . .
arm64 public/130.0.6723.69/mac-arm64/chromedriver-mac—-armé4.zip

https://storage.googleapis.com/chrome-for-testing-

chromedriver mac-x64 . X .
public/130.0.6723.69/mac—x64/chromedriver-mac—x64.zip

https://storage.googleapis.com/chrome-for-testing-

chromedriver win32 . . X . X
public/130.0.6723.69/win32/chromedriver-win32.zip

https://storage.googleapis.com/chrome-for-testing-

chromedriver win64
public/130.0.6723.69/win64/chromedriver-win64.zip

Download the one matching your browser and target platform, unzip it and put
chromedriver executable in your PATH. To verify the installation, open a command
window (terminal for Unix/Mac), execute command chromedriver, You should see
output similar to the following:

Starting ChromeDriver 130.0.6723.69 (...) on port 0
Only local connections are allowed.
ChromeDriver was started successfully on port 64654.

The test script below opens a website in a new Chrome browser window and closes it
one second later.

import org.openqa.selenium.chrome.ChromeDriver;
/...

WebDriver driver = new ChromeDriver();

1.3.2 Edge

Mircosoft Edge Chromium is like Google Chrome in the context of test automation,
except installing Microsoft Edge WebDriver?® instead of ChromeDriver.

3https:/ /developer.microsoft.com/en-us/microsoft-edge /tools /webdriver /

https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/

Introduction 6

import org.openqa.selenium.edge.EdgeDriver;
import org.openqa.selenium.edge.EdgeOptions;

/]

String edgeDriverPath = "C:\\agileway\\testing\\msedgedriver.exe'";
System.setProperty("webdriver.edge.driver", edgeDriverPath);
EdgeOptions options = new EdgeOptions();

WebDriver driver = new EdgeDriver(options);

1.3.3 Firefox

Selenium tests require Gecko Driver? to drive Firefox. The test script below will open
a website in a new Firefox window.

import org.openqa.selenium.firefox.FirefoxDriver;

/7

WebDriver driver = new FirefoxDriver();

1.4 JUnit

The examples above drive browsers, strictly speaking, they are not tests. To make the
effective use of Selenium scripts for testing, we need to put them in a test framework
that defines test structures and provides assertions (performing checks in test scripts).
The de facto test framework for Java is JUnit, and here is an example using JUnit 4.

4https:/ /github.com /mozilla/geckodriver /releases /

https://github.com/mozilla/geckodriver/releases/
https://github.com/mozilla/geckodriver/releases/

Introduction

import org.junit.After;

import org.junit.Before;

import org.junit.Test;

import org.opengqa.selenium.By;

import org.openga.selenium.support.pagefactory.x;
import org.openqa.selenium.WebDriver;

import org.openqa.selenium.WebElement;

import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.ie.InternetExplorerDriver;

[*x
* Start 4 difference browsers by Selenium
*/

public class GoogleSearchDifferentBrowsersTest {

@Test

public void testInIE() throws Exception {
WebDriver driver = new InternetExplorerDriver();
driver.get("https://agileway.com.au/demo");
Thread.sleep(1000);
driver.quit();

@Test

public void testInFirefox() throws Exception {
WebDriver driver = new FirefoxDriver();
driver.get("https://agileway.com.au/demo");
Thread.sleep(1000);
driver.quit();

@Test

public void testInChrome() throws Exception {
WebDriver driver = new ChromeDriver();
driver.get("https://agileway.com.au/demo");
Thread.sleep(1000);
driver.quit();

@Test
public void testInEdge() throws Exception {
WebDriver driver = new EdgeDriver();

Introduction 8

driver.get("https://agileway.com.au/demo");
Thread.sleep(1000);
driver.quit();

@Test annotates a test case below, in a format of testCamelCase (). You will find more
about JUnit from its home page®. However, I honestly don't think it is necessary. The
part used for test scripts is not much and quite intuitive. After studying and trying out
some examples, you will be quite comfortable with JUnit.

1.4.1 JUnit fixtures

If you worked with xUnit before, you must know setUp () and tearDown () fixtures, used
run before or after every test. In JUnit 4, by using annotations (@BeforeClass, @Before,
@After, @AfterClass), you can choose the name for fixtures. Here are mine:

@BeforeClass
public static void beforeAll() throws Exception {
// run before all test cases

@Before
public void before() throws Exception {
// run before each test case

@Test
public void testCasel() throws Exception {
// one test case

@Test
public void testCase2() throws Exception {
// another test case

Shttp:/ /junit.org/

http://junit.org/
http://junit.org/

Introduction 9

@After
public void after() throws Exception {
// run after each test case

}

@AfterClass
public static void afterAll() throws Exception {
// run after all test cases

1

1.5 Set up Development Environment

Most Java developers write code using an IDE (Integrated Development Environment)
such as Eclipse, IntelliJ] IDEA, or NetBeans. For this book, I'll be using IntelliJ] IDEA
(Community Edition), which is free and well-suited for test automation. All IDE-related
instructions are kept generic, so readers can easily adapt them to their preferred IDE.

1.5.1 Prerequisite:

Download and install JDK (jdk21 is the version used in recipes).

Download and install Intellij IDEA IDE.

Download the latest Selenium Java binding libraries, eg. selenium-java-4.34.0.zip®,
about 35MB in size (including dependent jars)

Download and install Apache Ant, for running tests or test suites from command

line.

* Your target browser is installed, such as Chrome or Firefox.

1.6 Set up Intellij IDEA project

I suggest start the same project (downloadable from the book site):

6https:/ /www.selenium.dev/downloads /

https://www.selenium.dev/downloads/
https://www.selenium.dev/downloads/

Introduction

* selenium-recipes-java.zip, test script in an Intellij IDEA project.

* lib.zip, requried libraries (jar files)

Unzip the project first. Then unzip the lib.zip under it.

< selenium-recipes-java-sample

Name ~

autoauth-3.1.1-an.fx.xpi
4 build.xml
buildwise.rake
kill_browsers_and_driver.sh
v [lib

csv

oW

| excel

T junitd

| selenium-dependent
selenium-devtools

!

!

| selenium-java-4.34.0
sql
manifest.mf
Rakefile
ReadMe.md
recipes.iml
> @ cho1
> B3 ch02_locator
> B3 ch03_link
> B2 helper

Wi

vV Vv v vV v v v

i

Content of the recipe project

All test scripts (classes in Java) are located under test folder.

Launch Intellij IDEA and open the project folder, e.g. selenium-recipes-java.

Introduction 11

o o selenium-recipes-java — HyperLinkTest.java
selenium-recipes-java = test = ch03_link -] HyperLinkTest Xy AN HyperLinkTest w > & O v
g Project + €3 = = & — (€ HyperLinkTestjava
E v selenium-recipes-java [recipes] VEss
[> .idea 4 *l
% ’ lib @ Qauthor Administrator
£ > out %/
3 v test e . .
o 5 cho1 b public class HyperLinkTest {
ch02_locator
o ch03_link static WebDriver driver = new ChromeDriver();

€' HyperLinkTest
> ch04_button

1.7 Run recipe scripts

Test scripts for all recipes can be downloaded from the book site. They are all in ready-
to-run state. I include the target web pages/sites as well as Selenium test scripts. There
are two kinds of target web pages: local HTML files and web pages on a live site. To run
tests written for a live site requires Internet connection.

1.7.1 Run tests in a Java IDE

A test class may contain one or more test cases. The most convenient way to run one
test case or a test class is to do it in an IDE.

1.7.1.1 Navigate to the test case

You can locate the recipe either by following the chapter or searching by name. There
are about 200 test cases in one test project. Here is the quickest way to find the one
you want in Intellij IDEA.

Select the menu ‘Navigate’ — ‘Class A pop-up window will appear. As you begin
typing, the search starts immediately.

Introduction 12

All Classes Files Symbols Actions Text ProjectFiles~ & Y LI

Q- button

€' ButtonTest ch04_button recipes 9y
RadioZI{e) Test ch06_radio recipes

ch06_radio/RadioButtonTest.java Open In Right Split

Pressing the Enter key opens the selected test class.

You can also quickly navigate to a specific test case. Select the menu ‘Navigate’ —
‘Symbol ...
All Classes Files Symbols Actions Text ProjectFiles ~ & Y LI

Q- LinkByPath

@ testClickIRIENXEE() of ch03_link.HyperLinkTest recipes

it testClickLinkByXPathFunctions() of ch03_link.HyperlLinkTest recipes I

ch03_link/HyperLinkTest.java Open In Right Split

1.7.1.2 Run all test cases in a test class

In Intellij IDEA, A double green triangle icon appears next to the test class declaration
(e.g., public class XxxTest {).

e’ "rnuhlia Aalace Hunanl inkTae+ S
Run 'HyperLinkTest' ~OBR
Debug 'HyperLinkTest' ~OD few ChromeDriver():

Click it to run the test class.

Introduction 13

Run: HyperLinkTest e
> v @ 1 I 1=
v HyperLinkTest (ch03_link) 2sec 653ms /Library/Java/JavaVirtualMachines/jdk-2

ol

= I¥ » « 12testspassed 12 tests total, 2sec 653 ms

5 testClickLinkByText 10ms [Selenium] The hidden 1link cannot be fo
testClickLinkByID 45ms

£ testVerifyLinkDsiplayedOi 2 sec 138 ms Process finished with exit code @
testVerifyLinkPresent 20ms
testClickLinkByArraylndex 43ms
testRetrieveCommonLinkDetails 26 ms
testClickLinkByXPath 37ms

testClickLinkOpenningNewWin: 113 ms
testClickLinkByXPathFunctions 30 ms
» testClickLinkByPartialText 33ms
testRetrieveAdvancedLinkDetail 22 ms
testClick3rdLinkUnderParagrapl 36 ms

1.7.1.3 Run individual test case

When developing a new test script or debugging an existing one, running invidual test
case is the most common execution method.

Click the green triangle in the front of test class delcration, e.g. public void testClick-
LinkByID() throws Exception {,to run this test case.

> ch02_locator @Test
v h03 |Ink C‘, B e L S T .'._|.n..-r-._4.4:
- H " LinkT Run 'testClickLinkByText()" ~ASR |
c H
yperSimclost # Debug 'testClickLinkByText()' AHD

> ch04_button
- U, Run 'testClickLinkByText()' with Coverage

Modify Run Configuration...

Run: HyperLinkTest.testClickLinkByText
P @ 121l 1= T = I¥ » « 1testpassed 1 test total, 80ms
v HyperLinkTest (ch03_link) 80ms /Library/Java/JavaVirtualMachines/ji
o testClickLinkByText 80ms
~

1.7.1.4 Run all tests

“You can also run all test cases in the project using IntelliJ IDEA. Right-click the test
folder in the Project view and select Run ‘All Tests’.

Introduction 14

Run: All in recipes o —

> v @ 1211 = = 1T 4 X » O 1tests failed, 183 passed

@ v O <default package> timestamp = 07180115

S ’ GoogleSearchDifferentBro Now on page: Assertion Test Page

y? ’ GoogleSearchTest Application number is 1234 _
> LocatorTest -
> HyperLinkTest =4
> ButtonTest -
> HiddenFieldTest =
>+ TextFieldTest §
> RadioButtonTest

= > CheckBoxTest

» > SelectTest
> FirefoxProfileTest
> NavigationTest

Running all 190+ tests in the recipe project using IntelliJ IDEA

It is not recommended to run large suites of automated end-to-end (E2E) tests
in an IDE

Unlike unit tests, automated E2E tests take much longer to run and have more
dependencies. The best practice is to execute the entire test suite on a Continuous
Testing server, such as BuildWise.

1.7.2 Run tests from command line

One key advantage of open-source test frameworks, such as Selenium, is FREEDOM.
You can edit the test scripts in any text editors and run them from a command line.

To run a Java class, you needs to compile it first (Within IDE, IDEs do it for you
automatically). Running code in compiled language (such as Java) with many libraries
dependency from command line is not easy as dynamic ones (such as Ruby). Build tools
such as Ant can help on this.

Iincluded an Ant build.xml (with recipe source) to simplify the test execution from com-

Introduction 15

mand line. To run test cases in a test script file (named ch10_assertion.AssertionTest.java),
enter command

> ant runTest -DTestName=chl0O_assertion.AssertionTest

Example Output

compile:

[mkdir] Created dir: /Users/zhimin/books/SeleniumRecipes-Java/recipes/build/c\
lasses

[javac] Compiling 22 source files to /Users/zhimin/books/SeleniumRecipes-Java\
/recipes/build/classes

runTest:
[junit] Running chl@_assertion.AssertionTest

[junit] Tests run: 11, Failures: 0, Errors: 0, Time elapsed: 0.659 sec

BUILD SUCCESSFUL
Total time: 9 seconds

Also, to run all recipe tests (within the test folder)

> ant runAll

which generate JUnit style test report like this

Summary
Tests Failures Errors Success rate Time
i08 1] 1] 100.00% 159.075

Mote: failures are anticipated and checked for with assertions while errors are unanticipated.

Packages

Name Tests Errors Failures Time(s) Time Stamp Host
ch01 4 1] 1] 28.604 2013-12-25T22:08:30 imac
ch02 link 11 1] 1] 3.476 2013-12-25T22:09:07 imac
ch03 button 8 0 0 3.304 2013-12-25T22:09:19 imac
chi04 textfield 7 0 0 0.735 2013-12-25T22:09:30 imac

The command syntax is identical for Windows, Mac OS X and Linux platforms.

2. Locating web elements

As you might have already figured out, to drive an element in a page, we need to find

it first. Selenium uses what is called locators to find and match the elements on web

page. There are 8 locators in Selenium:

Locator Example

ID findElement (By.id("user"))

Name findElement (By.name("username"))

Link Text findElement (By.linkText("Login"))

Partial Link Text findElement (By.partialLinkText("Next"))

XPath findElement (By.xpath("//div[@id='login']/input"))

Tag Name findElement (By.tagName ("body"))

Class Name findElement(By.className("table"))

CSS findElement(By.cssSelector, "#login > input[type='text']"))

You may use any one of them to narrow down the element you are looking for.

2.1 Start browser

Testing web sites starts with a browser. The test script below launches a Firefox

browser window and navigate to a site.

static WebDriver driver = new FirefoxDriver();
driver.get("https://agileway.com.au/demo")

Use ChromeDriver and IEDriver for testing in Chrome and IE respectively.

Locating web elements 17

Test Pages

I prepared the test pages for the recipes, you can download them (in a zip file) at the
book’s site®. Unzip to a local directory and refer to test pages like this:

// in TestHelper
public static String siteUrl() {
if (isWindows()) {
return "file:///C:/agileway/books/SeleniumRecipes-Java/site/";
} else if (disMac()) {
return "file:///Users/zhimin/work/books/SeleniumRecipes-Java/site/";
} else {
throw new RuntimeException("Your 0S is not support!!");
}
}

// in test script

driver.get(TestHelper.siteUrl() + "locators.html");

%http:/ /zhimin.com/books /selenium-recipes-java

I recommend, for beginners, closing the browser window at the end of a test case.

driver.quit();

2.2 Find element by ID

Using IDs is the easiest and the safest way to locate an element in HTML. If the page
is W3C HTML conformed', the IDs should be unique and identified in web controls. In
comparison to texts, test scripts that use IDs are less prone to application changes (e.g.
developers may decide to change the label, but are less likely to change the ID).

thttp:/ /www.w3.0rg/TR /WCAG20-TECHS /H93.htm]

http://zhimin.com/books/selenium-recipes-java
http://zhimin.com/books/selenium-recipes-java
http://zhimin.com/books/selenium-recipes-java
http://www.w3.org/TR/WCAG20-TECHS/H93.html
http://www.w3.org/TR/WCAG20-TECHS/H93.html

Locating web elements 18

driver.findElement(By.id("submit_btn")).click();
driver.findElement(By.id("cancel_link")).click(); // Link
driver.findElement(By.id("username")).sendKeys("agileway"); // Textfield
driver.findElement(By.id("alert_div")).getText(); // HTML Div element

2.3 Find element by Name

The name attributes are used in form controls such as text fields and radio buttons.
The values of the name attributes are passed to the server when a form is submitted.
In terms of least likelihood of a change, the name attribute is probably only second to
ID.

driver.findElement(By.name("comment")).sendKeys("Selenium Cool");

2.4 Find element by Link Text

For Hyperlinks only. Using a link’s text is probably the most direct way to click a link,
as it is what we see on the page.

driver.findElement(By. linkText("Cancel")).click();

2.5 Find element by Partial Link Text

Selenium allows you to identify a hyperlink control with a partial text. This can be quite
useful when the text is dynamically generated. In other words, the text on one web page
might be different on your next visit. We might be able to use the common text shared
by these dynamically generated link texts to identify them.

Locating web elements 19

// will click the "Cancel" link
driver.findElement(By.partiallLinkText("ance")).click();

2.6 Find element by XPath

XPath, the XML Path Language, is a query language for selecting nodes from an XML
document. When a browser renders a web page, it parses it into a DOM tree or similar.
XPath can be used to refer a certain node in the DOM tree. If this sounds a little too
much technical for you, don't worry, just remember XPath is the most powerful way to
find a specific web control.

// clicking the checkbox under 'div2' container
driver.findElement(By.xpath("//*[@id="div2']/input[@type="'checkbox']")).click();

Some testers feel intimidated by the complexity of XPath. However, in practice, there
is only limited scope of XPath to master for testers.

Locating web elements 20

P Avoid using copied XPath from Browser’s Developer Tool

Browser’s Developer Tool (right click to select ‘Inspect element’ to show) is
very useful for identifying a web element in web page. You may get the XPath
of a web element there, as shown below (in Chrome):

a href="link-partial.himl”>(lick here</a»

Add attnbute

Force element state *

Edit as HTML

Copy C55 path
Copy XPath

The copied XPath for the second “Click here” link in the example:
//*[@id="container"]/div[3]/div[2]/a

It works. However, I do not recommend this approach as the test script
is fragile. If developer adds another div under <div id='container'>,
the copied XPath is no longer correct for the element while
//div[contains(text(), "Second")]/a[text()="Click here"] still
works.

In summary, XPath is a very powerful way to locating web elements when 1d,
name or linkText are not applicable. Try to use a XPath expression that is
less vulnerable to structure changes around the web element.

2.7 Find element by Tag Name

There are a limited set of tag names in HTML. In other words, many elements share the
same tag names on a web page. We normally don't use the tag_name locator by itself
to locate an element. We often use it with others in a chained locators (see the section
below). However, there is an exception.

Locating web elements 21

driver.findElement(By.tagName("body")).getText();

The above test statement returns the text view of a web page, this is a very useful one
as Selenium WebDriver does not have built-in method return the text of a web page.

2.8 Find element by Class

The class attribute of a HTML element is used for styling. It can also be used for
identifying elements. Commonly, a HTML element’s class attribute has multiple values,
like below.

Cancel
<input type="submit" class="btn btn-deault btn-primary">Submit</input>

You may use any one of them.

driver.findElement(By.className("btn-primary")).click(); // Submit button
driver.findElement(By.className("btn")).click(); // Cancel link

// the below will return error "Compound class names not permitted"
// driver.findElement ((By.className("btn btn-deault btn-primary")).click();

The className locator is convenient for testing JavaScript/CSS libraries (such as
TinyMCE) which typically use a set of defined class names.

// inline editing

driver.findElement(By.id("client_notes")).click();

Thread.sleep(500);
driver.findElement(By.className("editable-textarea")).sendKeys("inline notes");
Thread.sleep(500);

driver.findElement(By.className("editable-submit")).click();

2.9 Find element by CSS Selector

You may also use CSS Path to locate a web element.

Locating web elements 22
driver.findElement(By.cssSelector ("#div2 > input[type='checkbox']")).click();

However, the use of CSS selector is generally more prone to structure changes of a web
page.

2.10 Chain findElement to find child elements

For a page containing more than one elements with the same attributes, like the one
below, we could use XPath locator.

<div id="div1i">

<input type="checkbox" name="same" value="on"> Same checkbox in Div 1
</div>
<div id="div2">

<input type="checkbox" name="same" value="on"> Same checkbox in Div 2
</div>

There is another way: chain findElement to find a child element.

driver.findElement(By.id("div2")).findElement(By.name("same")).click();

2.11 Find multiple elements

As its name suggests, findElements return a list of matched elements back. Its syntax
is exactly the same as findElement, i.e. can use any of 8 locators.

The test statements will find two checkboxes under div#container and click the
second one.

Locating web elements 23

List<WebElement> checkbox_elems = driver.findElements(By.xpath("//div[@id="contai\
ner']//input[@type="'checkbox']"));

System.out.println(checkbox_elems); // => 2

checkbox_elems.get(1l).click();

Sometimes findElement fails due to multiple matching elements on a page, which you
were not aware of. findElements will come in handy to find them out.

3. Hyperlink

Hyperlinks (or links) are fundamental elements of web pages. As a matter of fact, it is
hyperlinks that makes the World Wide Web possible. A sample link is provided below,
along with the HTML source.

Recommend Selenium

HTML Source

<a href="index.html" id="recommend_selenium_1link" class="nav" data-id="123"
style="font-size: 14px;'">Recommend Selenium

3.1 Click a link by text

Using text is probably the most direct way to click a link in Selenium, as it is what we
see on the page.

driver.get(TestHelper.siteUrl() + "link.html");

driver.findElement(By.linkText("Recommend Selenium")).click();

3.2 Click a link by ID

driver.findElement(By.id("recommend_selenium_1link")).click();

Furthermore, if you are testing a web site with multiple languages, using IDs is probably
the only feasible option. You do not want to write test scripts like below:

Hyperlink 25

if (is_italian()) {
driver.findElement(By. linkText("Accedi")).click();

} else if (is_chinese()) { // a helper function determines the locale
driver.findElement(By.linkText, "KR").click();

} else {
driver.findElement(By. linkText("Sign in")).click();

}

3.3 Click a link by partial text

driver.findElement(By.partialLinkText("Recommend Seleni")).click();

3.4 Click a link by XPath

The example below is finding a link with text ‘Recommend Selenium’ under a <p> tag.

driver.findElement(By.xpath("//p/al[text()="Recommend Selenium']")).click();

Your might say the example before (find by linkText) is simpler and more intuitive,
that’s correct. but let’s examine another example:

First div Click here
Second div Click here

On this page, there are two ‘Click here’ links.

HTML Source

Hyperlink 26

<div>

First div

Click here
</div>
<div>

Second div

Click here
</div>

If test case requires you to click the second ‘Click here’ link, the simple findEle-
ment (By.linkText("Click here")) won't work (as it clicks the first one). Here is a
way to accomplish using XPath:

driver.findElement(By.xpath("//div[contains(text(), \"Second\")]/a[text()=\"Click\
here\"]")).click();

3.5 Click Nth link with exact same label

It is not uncommon that there are more than one link with exactly the same text. By
default, Selenium will choose the first one. What if you want to click the second or Nth

one?

The web page below contains three ‘Show Answer” links,

1. Do you think automated testing is important and valuable? Show Answer I%
2. Why didnt you do automated testing in your projects previously? Show Answer

3. Your project now has so comprehensive automated test suite, What changed? Show Answer

To click the second one,

assert driver.findElements(By.linkText("Show Answer")).size() == 2;
driver.findElements(By.linkText("Show Answer")).get(1l).click(); // 2nd link

findElements return a list (also called array) of web controls matching the criteria in
appearing order. Selenium (in fact Java) uses 0-based indexing, i.e., the first one is 0.

Hyperlink 27

3.6 Click Nth link by CSS Selector

You may also use CSS selector to locate a web element.

driver.findElement(By.cssSelector("p > a:nth-child(3)")).click(); // 3rd link

However, generally speaking, the stylesheet are more prone to changes.

3.7 Verify a link present or not?

assert driver.findElement(By.linkText("Recommend Selenium")).isDisplayed();
assert driver.findElement(By.id("recommend_selenium_link")).isDisplayed();

3.8 Getting link data attributes

Once a web control is identified, we can get its other attributes of the element. This is
generally applicable to most of the controls.

WebElement seleniumLink = driver.findElement(By.linkText("Recommend Selenium"));
assert seleniumLink.getAttribute("href").equals(TestHelper.siteUrl() + "dindex.htm\
s

assert "recommend_selenium_link".equals(seleniumLink.getAttribute("id"));

assert "Recommend Selenium".equals(seleniumLink.getText());

assert "a".equals(seleniumLink.getTagName());

Also you can get the value of custom attributes of this element and its inline CSS style.

Hyperlink 28

assert "font-size: 14px;".equals(driver.findElement(By.id("recommend_selenium_1lin\
k")) .getAttribute("style"));

// Please note using attribute_value("style") won't work

assert "123".equals(driver.findElement(By.id("recommend_selenium_link")).getAttri\
bute("data-1id"));

3.9 Test links open a new browser window

Clicking the link below will open the linked URL in a new browser window or tab.

0Open new window

While we could use switchTo() method (see chapter 10) to find the new browser
window, it will be easier to perform all testing within one browser window. Here is

how:

String currentUrl = driver.getCurrentUrl();

String newWindowUrl = driver.findElement(By.LlinkText("Open new window")).getAttri\
bute("href");

driver.navigate().to(newWindowUr1l);
driver.findElement(By.name('""name")).sendKeys("sometext");
driver.navigate().to(currentUrl); // back

In this test script, we use a local variable ‘currentUrl’ to store the current URL.

4. Resources

Recipe test scripts

http: //zhimin.com/books/bought-selenium-recipes-java!

Username: agileway
Password: SITEWISE12

Log in with the above, or scan QR Code to access directly.

4.1 Books

* Practical Web Test Automation? by Zhimin Zhan

Solving individual selenium challenges (what this book is for) is far from achieving
test automation success. Practical Web Test Automation is the book to guide you

to the test automation success, topics include:
Page object model

Functional Testing Refactorings

Cross-browser testing against IE, Firefox and Chrome

Strategies on team collaboration and test automation adoption in projects
and organizations

* Practical Continuous Testing® by Zhimin Zhan

* Selenium WebDriver Recipes in C#, 2nd Edition? by Zhimin Zhan

Selenium WebDriver recipe tests in C#, another popular language that is quite
similar to Java.

Thttp: / /zhimin.com /books /bought-selenium-recipes-java
2https:/ /leanpub.com /practical-web-test-automation
3https:/ /leanpub.com /practical-continuous- testing
4http:/ /www.apress.com /9781484217412

http://zhimin.com/books/bought-selenium-recipes-java
https://leanpub.com/practical-web-test-automation
https://leanpub.com/practical-continuous-testing
http://www.apress.com/9781484217412
http://zhimin.com/books/bought-selenium-recipes-java
https://leanpub.com/practical-web-test-automation
https://leanpub.com/practical-continuous-testing
http://www.apress.com/9781484217412

Resources 30

* Selenium WebDriver Recipes in Ruby® by Zhimin Zhan

Selenium WebDriver tests can also be written in Ruby, a beautiful dynamic
language very suitable for scripting tests. Master Selenium WebDriver in Ruby
quickly by leveraging this book.

* Selenium WebDriver Recipes in Python® by Zhimin Zhan

Selenium WebDriver recipes in Python, a popular script language that is similar
to Ruby.

* Selenium WebDriver Recipes in Node.js’ by Zhimin Zhan

Selenium WebDriver recipe tests in Node.js, a very fast implementation of Web-
Driver in JavaScript.

* API Testing Recipes in Ruby?® by Zhimin Zhan

The problem solving guide to testing APIs such as SOAP and REST web services
in Ruby language.

4.2 Web Sites

* Selenium Java API https: //www.selenium.dev/selenium /docs/api/java/org /openqga/selen;

summary.html®

* Selenium Home (https: //www.selenium.dev'®)

4.3 Blog

* Agile Way Blog (https: //agileway.substack.com')

Shttps:/ /leanpub.com /selenium-recipes-in-ruby

6https:/ /leanpub.com /selenium-recipes-in-python

"https:/ /leanpub.com /selenium-webdriver-recipes-in-nodejs

8https:/ /leanpub.com /api-testing-recipes-in-ruby

9https://www.selenium.dev/selenium /docs /api /java/org/openqga/selenium /package-summary.

html
Ohttps:/ /www.selenium.dev
Ihttps: / /agileway.substack.com

https://leanpub.com/selenium-recipes-in-ruby
https://leanpub.com/selenium-recipes-in-python
https://leanpub.com/selenium-webdriver-recipes-in-nodejs
https://leanpub.com/api-testing-recipes-in-ruby
https://www.selenium.dev/selenium/docs/api/java/org/openqa/selenium/package-summary.html
https://www.selenium.dev/selenium/docs/api/java/org/openqa/selenium/package-summary.html
https://www.selenium.dev/
https://agileway.substack.com/
https://leanpub.com/selenium-recipes-in-ruby
https://leanpub.com/selenium-recipes-in-python
https://leanpub.com/selenium-webdriver-recipes-in-nodejs
https://leanpub.com/api-testing-recipes-in-ruby
https://www.selenium.dev/selenium/docs/api/java/org/openqa/selenium/package-summary.html
https://www.selenium.dev/selenium/docs/api/java/org/openqa/selenium/package-summary.html
https://www.selenium.dev/
https://agileway.substack.com/

Resources 31

I share my experience and views on Test Automation and Continuous Testing
there.

4.4 Tools

¢ Intellij IDEA IDE (https: //www.jetbrains.com /idea /')

The most popular Java IDE, the community edition is free.

* NetBeans IDE (https: //netbeans.org/downloads’®)

Free Java IDE from Sun (now Oracle).

* BuildWise (https: //agileway.com.au/buildwise!*)

AgileWay's free and open-source continuous testing server, purposely designed
for running automated Ul tests with quick feedback.

https:/ /www.jetbrains.com/idea
3https:/ /netbeans.org/downloads
https:/ /agileway.com.au/buildwise

https://www.jetbrains.com/idea
https://netbeans.org/downloads
https://agileway.com.au/buildwise
https://www.jetbrains.com/idea
https://netbeans.org/downloads
https://agileway.com.au/buildwise

	Table of Contents
	Preface
	Who should read this book
	How to read this book
	Recipe test scripts
	Send me feedback

	Introduction
	Selenium
	Selenium language bindings
	Cross browser testing
	JUnit
	Set up Development Environment
	Set up Intellij IDEA project
	Run recipe scripts

	Locating web elements
	Start browser
	Find element by ID
	Find element by Name
	Find element by Link Text
	Find element by Partial Link Text
	Find element by XPath
	Find element by Tag Name
	Find element by Class
	Find element by CSS Selector
	Chain findElement to find child elements
	Find multiple elements

	Hyperlink
	Click a link by text
	Click a link by ID
	Click a link by partial text
	Click a link by XPath
	Click Nth link with exact same label
	Click Nth link by CSS Selector
	Verify a link present or not?
	Getting link data attributes
	Test links open a new browser window

	Resources
	Books
	Web Sites
	Blog
	Tools

