

Secrets of PowerShell
Remoting (Spanish)

The DevOps Collective, Inc.

Este libro está a la venta en
http://leanpub.com/secrets-of-powershell-remoting-spanish

Esta versión se publicó en 2018-10-28

Este es un libro de Leanpub. Leanpub anima a los autores y
publicadoras con el proceso de publicación. Lean Publishing es el
acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 The DevOps Collective, Inc.

http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/
http://leanpub.com/manifesto

También por The DevOps
Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell

Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers

Why PowerShell? (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Índice general

Secretos de PowerShell Remoting 1

Fundamentos de Remoting 3
¿Qué es Remoting? . 4
Examinando la arquitectura de Remoting 4
Habilitando Remoting . 7
Entorno de pruebas . 9
Primeros pasos con Remoting 10
Tareas “core” de Remoting 13
Remoting devuelve datos deserializados 18
Enter-PSSession vs. Invoke-Command 19

Acceso a equipos remotos 21
Configuración de un HTTPS Listener 23
Autenticación de certificados 44
Modificación de la lista TrustedHosts 53
Conexión a través de dominios 57
Administradores de otros dominios 60
El segundo salto . 61

Trabajar con Endpoints (también conocido como Confi-
guraciones de Sesión) . 67
Conexión a un punto final diferente 67
Creación de un punto de extremo personalizado 69
Precauciones de seguridad con puntos finales personali-

zados . 78

ÍNDICE GENERAL

Diagnóstico y solución de problemas 81
Ejemplos de diagnósticos 81
Metodología Estándar de Solución de Problemas 104
Resumen . 106

Gestión de sesiones . 107
Sesiones Ad-Hoc vs. Persistentes 107
Desconexión y Reconexión de Sesiones 107
Opciones de Sesión . 110

PowerShell, Remoting y la Seguridad 113
Ni PowerShell ni Remoting son una “puerta trasera” para

el Malware . 113
Remoting no transmite ni almacena credenciales 115
Remoting utiliza el cifrado 116
Remoting es transparente para la seguridad 116
Remoting es una sobrecarga menor 117
Remoting utiliza autenticación mutua 117
Resumen . 118

Configuración de Remoting mediante GPO 119
Advertencias de GPO . 119
Permitir la configuración automática de los escuchas

(Listeners) de WinRM 120
Configuración del servicio WinRM para que se inicie

automáticamente 121
Creación de una excepción de Firewall de Windows . . . 123
¡Darle una oportunidad! 125
Lo que no se puede hacer con una GPO 127

Secretos de PowerShell
Remoting

Autor principal: Don Jones
Autor colaborador: Dr. Tobias Weltner
Contribuciones de: Dave Wyatt y Aleksandar Nikolik

Introducido en Windows PowerShell 2.0, Remoting es una de
las tecnologías más útiles e importantes de PowerShell. Permite
ejecutar casi cualquier comando que existe en un equipo remoto,
abriendo un universo de posibilidades para la administración en
masa y de forma remota. Remoting subyace otras tecnologías,
incluyendo Workflow, Desired State Configuration, ciertos tipos
de jobs en background y mucho más. Esta guía no pretende ser un
documento completo de referencia, aunque sí busca proporcionar
una buena introducción. En su lugar, esta guía está diseñada para
documentar algunos pequeños detalles de configuración que no
parecen estar documentados en otras partes.

Esta guía se publica bajo la licencia Creative CommonsAttribution-
NoDerivs 3.0 Unported. Los autores le animan a redistribuir este
archivo lo más ampliamente posible, pero le solicitan que no
modifique el documento original.

¿Ha sido útil este libro? El (los) autor (es) le pide (n) que haga
una donación deducible de impuestos (en los EE.UU., consulte sus

Secretos de PowerShell Remoting 2

leyes si vive en otro lugar) de cualquier cantidad a The DevOps
Collective¹ para apoyar su trabajo.

** Revise las actualizaciones! ** Nuestros ebooks se actualizan a
menudo con contenido nuevo y corregido. Los hacemos disponibles
de tres maneras:

• Nuestra rama principal GitHub organization², con un re-
positorio para cada libro. Visite https://github.com/devops-
collective-inc/

• Nuestra GitBook page³, donde puede navegar por los libros
en línea, o descargarlos en formato PDF, EPUB o MOBI. Uti-
lizando el lector en línea, puede saltar a capítulos específicos.
Visite https://www.gitbook.com/@devopscollective

• En LeanPub⁴, donde se pueden descargar como PDF, EPUB, o
MOBI (login requerido), y “comprar” los libros haciendo una
donación a DevOps. También puede elegir recibir notificacio-
nes de actualizaciones. Visite https://leanpub.com/u/devopscollective

GitBook y LeanPub generan la salida del formato PDF ligeramente
diferente, por lo que puede elegir el que prefiera. LeanPub también
le puede notificar cada vez que liberamos alguna actualización.
Nuestro repositorio de GitHub es el principal; los repositorios
en otros sitios suelen ser sólo espejos utilizados para el proceso
de publicación. GitBook normalmente contendrá nuestra última
versión, incluyendo algunos bits no terminados; LeanPub siempre
contiene la más reciente “publicación liberada” de cualquier libro.

¹https://devopscollective.org/donate
²https://github.com/devops-collective-inc
³https://www.gitbook.com/@devopscollective
⁴https://leanpub.com/u/devopscollective

https://devopscollective.org/donate
https://devopscollective.org/donate
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://devopscollective.org/donate
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

Fundamentos de
Remoting

Windows PowerShell 2.0 introdujo una potente tecnología, Remo-
ting, refinada y ampliada en PowerShell 3.0. Basada principalmente
en protocolos y técnicas estandarizadas, el sistema de Remoting es
posiblemente uno de los aspectos más importantes de PowerShell:
los futuros productos de Microsoft se basarán en él casi en su
totalidad para las comunicaciones administrativas a través de una
red.

Desafortunadamente, Remoting es también un sistema complejo de
componentes, y mientras que Microsoft ha intentado proporcionar
la dirección sólida para usarla en una variedad de escenarios,
muchos administradores todavía luchan con esta. Este “mini e-
book” está diseñado para ayudarle a entender mejor lo que es el
Remoting, cómo funciona y, lo que es más importante, cómo usarlo
en una variedad de situaciones diferentes.

Nota Tenga en cuenta que esta guía no pretende reemplazar la
gran variedad de libros existentes que cubren los fundamentos de
Remoting, como el propio Learn Windows PowerShell in a Month
of Lunches (http://morelunches.com) de Don Jones o PowerShell
in Depth. En su lugar, esta guía complementa a aquellas que
proporcionan instrucciones paso a paso para muchos de los escena-
rios “alrededor” de un sistema de comunicación remota, e intenta
explicar algunos de los comportamientos y requerimientos de los
sistemas remotos más inusuales.

Fundamentos de Remoting 4

¿Qué es Remoting?

En esencia, el acceso remoto le permite acceder a máquinas remotas
a través de una red y recuperar datos o ejecutar código en una o
varias computadoras remotas. Esto no es una idea nueva. Ya en el
pasado una serie de diferentes tecnologías remotas han intentado
lo mismo. Algunos Cmdlets de PowerShell han proporcionado
tradicionalmente capacidades propias de acceso remoto limitadas,
mientras que la mayoría de los Cmdlets no admiten la conexión
remota por su propia cuenta.

Con PowerShell Remoting se encuentra finalmente un entorno ge-
nérico que permite la ejecución remota para, literalmente, cualquier
comando que se puede ejecutar en una instanica de PowerShell
de forma local. Por lo que en lugar de agregar capacidades de
acceso remoto a cada Cmdlet y/o aplicación, simplemente se deja a
PowerShell transferir la ejecución de su código al equipo de destino
y a continuación, enviar los resultados de vuelta.

A lo largo de este libro nos centraremos en el control remoto de
PowerShell pero no cubriremos las funciones remotas privadas no
estándar incorporadas en algunos Cmdlets seleccionados .

Examinando la arquitectura de
Remoting

Como se muestra en la figura 1.1, la arquitectura remota genérica
de PowerShell se compone de numerosos componentes y elementos
diferentes e interrelacionados.

Fundamentos de Remoting 5

image003.png

Figura 1.1: Los elementos y componentes de PowerShell Remoting

Aquí está la lista completa:

• En la parte inferior de la figura está su computadora, o más
correctamente su cliente. Es donde usted se sienta físicamen-
te, y donde iniciará la mayor parte de sus actividades de
control remoto.

• Su computadora se comunicará a través de WS-MAN, o del
protocolo de servicios web para la administración. Este es
un protocolo basado en http(s) que puede encapsular una
variedad de tipos de comunicación. Hemos ilustrado el uso de

Fundamentos de Remoting 6

http, que es la configuración predeterminada, pero también
podría ser fácilmente https

• En el equipo remoto, en la terminología adecuada, el servidor
(que no hace referencia al sistema operativo), ejecuta el ser-
vicio de administración remota de Windows (WinRM). Este
servicio está configurado para tener uno o más oyentes. Cada
oyente espera el tráfico entrante de WS-MAN en un puerto
específico, cada uno ligado a un protocolo específico (http o
https), y en direcciones IP específicas (o todas las direcciones
locales)

• Cuando un oyente recibe tráfico, el servicio WinRM busca
el EndPoint a donde se debe enviar el tráfico. Para nuestro
propósito, un EndPoint usualmente estará asociado con una
instancia de Windows PowerShell. En términos de PowerS-
hell, un EndPoint también se denomina una configuración de
sesión. Esto se debe a que además de lanzar PowerShell, se
pueden cargar secuencias de comandos y módulos, agregar
restricciones sobre lo que puede hacer el usuario conectado y
aplicar configuraciones adicionales de sesión específicas que
no se mencionan aquí.

NotaAunquemostramos powershell.exe en nuestro diagrama, eso
solo para propósitos de ilustración. Powershell.exe es la aplicación
de consola de PowerShell, y no tendría sentido tener esta ejecución
como un proceso de fondo en un equipo remoto. El proceso real
se denomina wsmprovhost.exe, que aloja PowerShell en segundo
plano para conexiones remotas.

Como se puede ver, un único equipo remoto puede tener fácilmente
decenas o incluso cientos de EndPoints, cada uno con una con-
figuración diferente. PowerShell 3.0 configura tres EndPoints por
defecto: uno para PowerShell de 32 bits (en sistemas de 64 bits), un
EndPoint de PowerShell por defecto (que es de 64 bits en sistemas
x64) y otro para PowerShell Workflow. Comenzando conWindows
Server 2008 R2, hay un cuarto EndPoint predeterminado para las
tareas de Server Manager Workflow.

Fundamentos de Remoting 7

Habilitando Remoting

La mayoría de las versiones cliente de Windows, iniciando con
Windows Vista, no habilitan las conexiones remotas entrantes
de forma predeterminada, aunque las versiones de servidor más
recientes de Windows vienen con Remoting habilitado. El primer
paso con Remoting suele ser habilitarlo en los equipos en que se
desean recibir conexiones entrantes. Hay tres maneras de habilitar
Remoting. La tabla 1.1 compara lo que se puede lograr con cada una
de ellas.

Tabla 1.1 comparando las maneras de habilitar Remoting

Enable-
PSRemoting

Política de
grupo

Manualmente
paso a
paso

Establecer
WinRM
para auto-
iniciar e
iniciar el
servicio

Si Si Si - utilice
Set-
Service y
Start-
Service.

Configurar
el detector
de HTTP

Si Puede
configurar
el registro
automático
de
Listeners,
sin crear
Listeners
personali-
zados

Si - Utilice
la utilidad
de línea de
comandos
WSMAN y
la unidad
WSMAN:
de
PowerShell

Fundamentos de Remoting 8

Enable-
PSRemoting

Política de
grupo

Manualmente
paso a
paso

Configurar
el detector
de HTTPS

No No Si - Utilice
la utilidad
de línea de
comandos
WSMAN y
la unidad
WSMAN:
de
PowerShell

Configurar
EndPoints /
Configurar
sesiones

Si No Si - utilice
el Cmdlet
PSSession-
Configura-
tion

Configurar
la
excepción
de Firewall
de
Windows

Si* Si* Si* - Utilice
Cmdlets
del
Firewall o
la GUI del
Firewall de
Windows

Nota Tenga en cuenta que las versiones existentes de cliente
de Windows, como Windows Vista, no permiten excepciones de
Firewall en una red identificada como “pública”. Las redes deben ser
“casa” o “trabajo/dominio” para permitir excepciones. En PowerS-
hell 3.0, se puede ejecutar Enable-PSRemoting con el modificador
-SkipNetworkProfileCheck para evitar este problema..

Estaremos habilitando la administración remota en nuestro entorno
de prueba ejecutando Enable-PSRemoting. Es rápido, fácil e in-
cluye todo lo necesario. También vera una gran cantidad de tareas
manuales a realizar en las siguientes secciones.

Fundamentos de Remoting 9

Entorno de pruebas

Usaremos un entorno de pruebas consistente en las siguientes
secciones. Consiste en seis máquinas virtuales en cloudshare.com
configuradas como se muestra en la figura 1.2.

image004.png

Figura 1.2: configuración del entorno de pruebas

Algunas notas importantes:

• .NET Framework v4 y PowerShell 3.0 están instalados en
todos los equipos. La mayor parte de lo que cubriremos

Fundamentos de Remoting 10

también se aplica a PowerShell 2.0.
• Como se muestra, la mayoría de las computadoras tienen
un nombre de computadora numérico (c2108222963, y así
sucesivamente); El controlador de dominio para cada dominio
(que también es un servidor DNS) tiene registros CNAME con
nombres más fáciles de recordar.

• Cada controlador de dominio tiene un reenviador condicional
configurado para el otro dominio, de modo que las máquinas
de cualquiera de los dominios puedan resolver nombres de
equipos en el otro dominio.

• Realizamos todas las tareas como miembro del grupo de
administradores del dominio, a menos que se indique lo
contrario.

• Creamos un sexto servidor completamente independiente que
no está en ningún dominio. Esto será útil para cubrir algunas
de las situaciones que no son de dominio con las que puede
encontrarse en un sistema de comunicación remota.

Tenga cuidado al abrir PowerShell en un equipo que tenga habi-
litado el control de cuenta de usuario (UAC), asegúrese de hacer
clic con el botón derecho en el icono de PowerShell y seleccione
“Ejecutar como administrador”. Si la barra de título de la ventana
PowerShell resultante no comienza con la palabra Administrador:
entonces no tiene privilegios administrativos. Puede comprobar los
permisos de forma programática con esto (whoami /all | select-
string S-1-16-12288) -ne $null en una consola de PowerShell. En
un Shell con permisos de administrador se devuelve True, de lo
contrario será False.

Primeros pasos con Remoting

Comenzamos ejecutando Enable-PSRemoting en las seis compu-
tadoras. Debemos asegurarnos que el comando finaliza sin errores.

Fundamentos de Remoting 11

Cualquier error en este punto es una señal para se detenga y
resuelva el error antes de intentar continuar. La figura 1.3 muestra
la salida esperada.

image005.png

Figura 1.3: salida esperada de Enable-PSRemoting

Nota: Observara un uso desmedido de capturas de pantalla a lo
largo de esta guía. Me permiten asegurar que no cometo errores
ortográficos o errores del tipo copiar/pegar. Verá exactamente lo
que escribimos y los resultados de su ejecución.

Ejecutar Get-PSSessionConfiguration debe revelar los tres o cuatro
EndPoints creados por Enable-PSRemoting. La figura 1.4 muestra
la salida esperada en uno de los servidores.

Fundamentos de Remoting 12

image006.png

Figura 1.4: Salida esperada de Get-PSSessionConfiguration

Nota: la figura 1.4 ilustra que se puede esperar que diferentes
EndPoints se configuren en diferentes máquinas. Este ejemplo
fue con un servidor Windows 2008 R2 equipo, que tiene menos
EndPoints que una máquina con Windows 2012.

Vale la pena tomar un momento para comprobar rápidamente la
configuración de Remoting. Para los equipos que forman parte del
mismo dominio, al iniciar sesión como administrador de dominio
de ese dominio, el sistema de comunicación remota debería “fun-
cionar”. Compruébelo rápidamente conectarse de una computadora
a otra usando Enter-PSSession.

Nota: en otros entornos, es posible que una cuenta de administrador
de dominio no sea la única que pueda usar Remoting. Si en su
hogar o entorno de trabajo se tienen cuentas adicionales en el grupo
de administradores locales como estándar en su dominio, también
podrá utilizar esas cuentas para realizar llamadas remotas.

La figura 1.5 muestra la salida esperada, en la que también ejecu-
tamos un comando dir rápido y luego salimos de la sesión remota.

Fundamentos de Remoting 13

image007.png

Figura 1.5: comprobación de la conectividad remota desde el cliente
al controlador de dominio DCA.

Precaución: si está configurando su propio entorno de pruebas,
no continúe hasta que haya confirmado la conectividad de los
sistemas remotos entre dos equipos del mismo dominio. Por ahora
no necesitamos comprobar otros escenarios.

Tareas “core” de Remoting

PowerShell proporciona dos escenarios principales para el uso de
Remoting. El primero, Remoting 1-a-1, es similar en su naturaleza
al shell SSH disponible en sistemas UNIX y Linux. Con él, obtendrá
acceso a una línea de comandos en un único equipo remoto. El
segundo, Remoting 1-a-muchos, permite enviar un comando (o
una lista de comandos) en paralelo, a un conjunto de equipos

Fundamentos de Remoting 14

remotos. Hay otro par de técnicas secundarias útiles que veremos
más adelante.

Remoting 1-a-1

El comando Enter-PSSession se conecta a un equipo remoto y
permite el acceso a una línea de comandos en ese equipo. Puede
ejecutar cualquier comando en dicho equipo, siempre y cuando
tenga permiso para realizar esa tarea. Tenga en cuenta que no está
creando un inicio de sesión interactivo. La conexión se auditará
como un inicio de sesión de red, al igual que si se estuviera conec-
tando al recurso compartido administrativo C$ de la computadora.
PowerShell no cargará ni procesará las secuencias de comandos
del perfil de usuario en el equipo remoto. Cualquier script que
elija ejecutar (y esto incluye la importación de módulos de script)
sólo funcionará si la política de ejecución de la máquina remota lo
permite.

1 Enter-PSSession -computerName DC01

Nota: Mientras esté conectado a una máquina remota a través de
Enter-PSSession, el “prompt” de la línea de comandos cambia y
muestra el nombre del sistema remoto al que está conectado entre
corchetes. Si ha personalizado su “prompt”, todas esas personali-
zaciones se perderán porque el “prompt” se creará en el sistema
remoto y se transferirá de regreso a usted. Todas las entradas de
teclado se envían a la máquina remota, y todos los resultados son
devueltos a usted. Es importante tener en cuenta esto porque no
puede utilizar Enter-PSSession en un script. Si lo hace, el script
seguiría ejecutándose en su máquina local, ya que no se ingresó
ningún código (en el teclado) de forma interactiva.

Fundamentos de Remoting 15

Remoting 1-a-muchos

Con esta técnica, se especifican uno o más nombres de equipo y un
comando (o una lista de comandos separados por punto y coma).
PowerShell envía los comandos, a través de Remoting, a los equipos
especificados. Esas computadoras ejecutan los comandos, serializan
los resultados en XML y transmiten los resultados de vuelta. El
equipo deserializa el XML de nuevo en objetos y los coloca en la
canalización (pipeline) de la sesión de PowerShell. Esto se logra a
través del Cmdlet Invoke-Command.

1 Invoke-Command -computername DC01,CLIENT1 -scriptBlock { \

2 Get-Service }

Si tiene una secuencia de comandos para ejecutar, puede hacer
que Invoke-Command la lea, transmita el contenido a los equipos
remotos y haga que se ejecuten dichos comandos.

1 Invoke-Command -computername DC01,CLIENT1 -filePath c:\Sc\

2 ripts\Task.ps1

Tenga en cuenta que Invoke-Command, de forma predeterminada,
se comunicará con hasta 32 equipos a la vez. Si especifica más, los
equipos extra se pondrán en cola e Invoke-Command comenzará a
procesarlos al terminar los primeros 32. El parámetro -ThrottleLimit
puede aumentar este límite. El único costo es para su computadora,
ya que debe tener recursos suficientes para mantener una sesión
única de PowerShell para cada equipo al que esté contactando
simultáneamente. Si espera recibir grandes cantidades de datos de
los equipos remotos, el ancho de banda de red disponible puede ser
otro factor limitante.

Fundamentos de Remoting 16

Sesiones

Cuando ejecuta Enter-PSSession o Invoke-Command y utiliza el pa-
rámetro -ComputerName, Remoting crea una conexión (o sesión),
hace lo que se le pidió y luego cierra la conexión (en el caso de
una sesión interactiva creada con Enter-PSSession, PowerShell sabe
que ha terminado cuando ejecuta Exit-PSSession). Hay algunas
sobrecargas involucradas en esa configuración y arranque, por lo
que PowerShell también ofrece la opción de crear una conexión
persistente, llamada PSSession. Se ejecuta New-PSSession para
crear una sesión nueva y persistente. Entonces, en lugar de usar
-ComputerName con Enter-PSSession o Invoke-Command, utilice
su parámetro -Session y pase un objeto PSSession existente y
abierto. Esto permite a los comandos volver a utilizar la conexión
persistente que se había creado anteriormente.

Cuando utiliza el parámetro -ComputerName y trabaja con se-
siones “ad hoc”, cada vez que envía un comando a una máquina
remota, hay un retraso significativo causado por la sobrecarga
que se tarda en crear una nueva sesión. Como cada llamada a
Enter-PSSession o Invoke-Command configura una nueva sesión,
tampoco se puede conservar el estado. En el ejemplo siguiente, la
variable $test se pierde en la segunda llamada:

1 PS> Invoke-Command -computername CLIENT1 -scriptBlock { $\

2 test = 1 }

3 PS> Invoke-Command -computername CLIENT1 -scriptBlock { $\

4 test }

5 PS>

Cuando se utilizan sesiones persistentes, por otro lado, las re-cone-
xiones son mucho más rápidas, y puesto que se están manteniendo
y reutilizando las sesiones, se conservará el estado. Así que aquí, en
la segunda llamada a Invoke-Command todavía podrá acceder a la
variable $test que se configuró en la primera llamada.

Fundamentos de Remoting 17

1 PS> $Session = New-PSSession -ComputerName CLIENT1

2 PS> Invoke-Command -Session $Session -scriptBlock { $test\

3 = 1 }

4 PS> Invoke-Command -Session $Session -scriptBlock { $test\

5 }

6 1

7 PS> Remove-PSSession -Session $Session

Existen otros comandos para verificar el estado de la sesión y recu-
perar sesiones (Get-PSSession), cerrarlos (Remove-PSSession), des-
conectar y volver a conectarlos (Disconnect-PSSession y Reconnect-
PSSession, agregados en PowerShell v3), etc. En PowerShell v3,
también puede pasar una sesión abierta a Get-Module e Import-
Module, lo que le permite ver los módulos listados en una compu-
tadora remota (a través de la PSSession abierta) o importar un
módulo desde una computadora remota a su computadora. Revise
la ayuda de esos comandos para obtener más información.

Nota: Una vez que utilice New-PSSession y cree sus propias sesio-
nes persistentes, es su responsabilidad “hacer el trabajo” y luego
cerrar la sesión cuando haya terminado. Hasta que lo haga, las
sesiones persistentes permanecen activas, consumen recursos y
pueden impedir que otros se conecten. De forma predeterminada,
sólo se permiten 10 conexiones simultáneas a una máquina remota.
Si mantiene demasiadas sesiones activas, se encontrará fácilmente
al borde de los límites de recursos. Esta línea muestra lo que sucede
si intenta configurar demasiadas sesiones simultáneas:

1 PS> 1..10 | Foreach-Object { New-PSSession -ComputerName \

2 CLIENT1 }

Fundamentos de Remoting 18

Remoting devuelve datos
deserializados

Los resultados que recibe de una computadora remota se han
serializado enXMLy luego se han deserializado en su computadora.
En esencia, los objetos colocados en el pipeline de su shell son
instantáneas estáticas y separadas de lo que estaba en el equipo
remoto en el momento en que se completó el comando. Estos obje-
tos deserializados carecen de los métodos de los objetos originales,
y en cambio solo ofrecen propiedades estáticas.

Si necesita acceder a métodos o cambiar propiedades, o en otras
palabras, si debe trabajar con los objetos en vivo, asegúrese de
hacerlo en el lado remoto, antes de que los objetos se serialicen
y regresen al llamador. Este ejemplo utiliza métodos de objeto en
el lado remoto para determinar los propietarios de un proceso que
funciona bien:

1 PS> Invoke-Command -ComputerName CLIENT1 -scriptBlock { G\

2 et-WmiObject -Class Win32_Process | Select-Object Name, {\

3 $_.GetOwner().User } }

Una vez que los resultados vuelven a usted, ya no puede invocar
métodos de objetos porque ahora trabaja con objetos “rehidrata-
dos”, diferentes a los “objetos vivos” por lo que ahora ya no pueden
acceder a sus métodos:

1 PS> Invoke-Command -ComputerName CLIENT1 -scriptBlock { G\

2 et-WmiObject -Class Win32_Process } | Select-Object Name,\

3 { $_.GetOwner().User }

Serializar y deserializar es relativamente costoso. Puede optimizar
la velocidad y los recursos asegurándose de que su código remoto
emita sólo los datos que realmente necesita. Por ejemplo, puede

Fundamentos de Remoting 19

utilizar Select-Object y seleccionar cuidadosamente las propiedades
que desea volver en lugar de serializar y deserializar todo.

Enter-PSSession vs.
Invoke-Command

Muchos de los recién llegados pueden confundirse un poco acerca
de la comunicación remota, en parte debido a cómo PowerS-
hell ejecuta los scripts. Tenga en cuenta lo siguiente y asuma
que SERVER2 contiene una secuencia de comandos denominada
C:RemoteTest.ps1:

1 Enter-PSSession -ComputerName SERVER2

2 C:\RemoteTest.ps1

Si se sentara y escribiera estos comandos de forma interactiva en la
ventana de comandos de su equipo cliente, funcionaría (suponiendo
que se configurara el sistema, tuvieran permisos y todo eso). Sin
embargo, si los pegó en un script y ejecutó ese script, no funcionaría.
El script intentaría ejecutar C:RemoteTest.ps1 en su equipo local.

El resultado práctico de esto es que Enter-PSSession está realmente
destinado a un uso interactivo por parte de un ser humano, y no
a un uso por lotes de un script. Si desea enviar un comando a una
computadora remota, desde dentro de una secuencia de comandos,
Invoke-Command es la forma correcta de hacerlo. Puede configurar
una sesión de antemano (útil si va a enviar más de un comando)
o puede utilizar un nombre de equipo si sólo desea enviar un solo
comando. Por ejemplo:

Fundamentos de Remoting 20

1 $session = New-PSSession -ComputerName SERVER2

2 Invoke-Command -session $session -ScriptBlock { C:\Remote\

3 Test.ps1 }

Obviamente, tendrá que tener un poco de precaución. Si esas eran
las dos únicas líneas en el script, entonces cuando el script termine
de ejecutarse, $session dejaría de existir. Eso podría desconectar (en
cierto sentido) de la sesión que se ejecuta en SERVER2. Los resul-
tados dependen mucho de lo que hace y de cómo lo hace. En este
ejemplo, todo estaría bien, porque Invoke-Command “mantendría”
el script local en ejecución hasta que el script remoto terminara y
devolviera su salida (si la hubiera).

Acceso a equipos
remotos

Principalmente existen dos escenarios al acceder una computadora
remota. La diferencia entre estos escenarios radica especialmente en
la respuesta a una pregunta: ¿PuedeWinRM identificar y autenticar
la máquina remota?

Obviamente, la máquina remota necesita saber quién es usted,
porque estará ejecutando comandos en su nombre. Pero usted
necesita saber quién es, también. Esta autenticación mutua, es
un paso de seguridad importante. Significa que cuando escribe
SERVER2, se está conectando realmente con el SERVER2 real, y
no con alguna máquina haciéndose pasar por SERVER2. Mucha
gente ha publicado artículos de blog sobre cómo deshabilitar las
verificaciones de autenticación. Hacerlo, hace que Remoting “
funcione” y se deshaga de los molestos mensajes de error, pero
abre brechas de seguridad y hace posible que alguien “secuestre”
o “falsifique” su conexión y potencialmente capture información
confidencial como sus credenciales .

Precaución: Tenga en cuenta que Remoting implica delegar una
credencial en el equipo remoto. Usted está haciendo algo más que
simplemente enviar un nombre de usuario y una contraseña (que
en realidad no ocurre todo el tiempo). Está dando a la máquina
remota la capacidad de ejecutar las tareas como si estuviera allí
ejecutándolas usted mismo. Un impostor podría hacer mucho daño
con ese poder. Es por eso que Remoting se enfoca en la autentica-
ción mutua, para que los impostores no tengan esa oportunidad.

En los escenarios de Remoting más sencillos, usted se conecta a
una máquina que está en el mismo dominio de AD utilizando su
nombre de equipo real, tal como está registrado en AD. AD maneja

Acceso a equipos remotos 22

la autenticación mutua y todo funciona de maravilla. Pero las cosas
se pueden poner un poco más difíciles en otros escenarios:

• Conectar a una máquina en otro dominio
• Conectar a una máquina que no está en un dominio en
absoluto

• Conectarse a través de un alias de DNS, o a través de una
dirección IP, en lugar de a través del nombre de equipo real
de la máquina como está registrado con AD

En estos casos, AD no puede hacer la autenticación mutua, por
lo que tendrá que hacerlo usted mismo. En este punto tiene dos
opciones:

• Configurar lamáquina remota para aceptar conexionesHTTPS
(en lugar de HTTP) y equiparla con un certificado SSL.
El Certificado SSL debe ser emitido por una Autoridad de
Certificación (CA) en la que confíe la máquina. Esto permite
que el certificado SSL proporcione la autenticaciónmutua que
WinRM usara luego.

• O, agregar el nombre de la máquina remota (lo que esté
especificando, ya sea un nombre de equipo real, una dirección
IP o un alias CNAME) a la lista deWinRMTrustedHosts de su
equipo local. Tenga en cuenta que esto básicamente inhabilita
la autenticación mutua, ya que permite a WinRM conectarse
con ese identificador (nombre, dirección IP o lo que sea) sin
utilizar la autenticación mutua. Esto abre la posibilidad para
que una máquina pretenda ser la que usted desea, así que es
mejor que tenga la debida precaución.

En ambos casos, también debe especificar un parámetro -Credential
en el comando Remoting, aunque sólo esté especificando la misma
credencial que está utilizando para ejecutar PowerShell. Cubrire-
mos ambos casos en las siguientes dos secciones.

Acceso a equipos remotos 23

Nota: A lo largo de esta guía, usaremos “Comando Remoting”
para referirnos genéricamente a cualquier comando que implique
la creación de una conexión Remoting. Estos incluyen (pero no se
limitan a) New-PSSession, Enter-PSSession, Invoke-Command, y
así sucesivamente.

Configuración de un HTTPS Listener

Esta es una de las cosas más complejas que puede hacer con
Remoting, e implicará ejecutar una gran cantidad de utilitarios
externos. Lo siento - es sólo que así se hace- En este momento
no parece haber una manera fácil de hacer esto totalmente desde
PowerShell, o al menos no la hemos encontrado. Algunas cosas,
podrían hacerse a través de PowerShell, pero como resulta más fácil
hacerlo de otra forma, así lo he hecho.

El primer paso es identificar el nombre del host que la gente utiliza-
rá para acceder a su servidor. Esto es muy, muy importante, y no es
necesariamente lo mismo que el nombre de equipo real del servidor.
Por ejemplo, la gente que accede a “www.ad2008r2.loc” podría estar
golpeando un servidor llamado “DC01”, pero el certificado SSL que
creará debe ser emitido para el nombre de host “www.ad2008r2.loc”
porque eso es lo que la gente estará escribiendo Por lo tanto, el
nombre del certificado debe coincidir con el nombre que la gente
va a escribir para llegar a la máquina - incluso si es diferente de su
verdadero nombre de equipo. ¿Lo tiene?

Nota: Nota: Parte de la configuración de un listener de HTTPS es
obtener un certificado SSL. Utilizaré unaAutoridad de Certificación
(CA) pública llamada DigiCert.com. También puede usar una PKI
interna, si su organización tiene una. No recomiendo usar Make-
Cert.exe, ya que los equipos que intentan conectarse no pueden
confiar implícitamente en dicho certificado. Me doy cuenta de que
cada blog en el universo le dice que use MakeCert.exe para crear
un certificado auto-firmado local. Sí, es fácil, pero está mal. Usarlo

Acceso a equipos remotos 24

requiere que apague la mayor parte de la seguridad de WinRM, así
que ¿por qué molestarse con SSL si planea apagar la mayoría de sus
características de seguridad?

También necesita asegurarse de conocer el nombre completo usado
para conectar con una computadora. Si la gente tiene que escribir
“dc01.ad2008r2.loc”, entonces eso es lo que debe aparecer en el
certificado. Si simplemente necesita digitar “dca”, y saber que un
DNS puede resolver eso a una dirección IP, entonces “dca” es lo que
debe llevar el certificado. Estamos creando un certificado que solo
dice “dca” y debemos asegurarnos que nuestros equipos puedan
resolver eso a una dirección IP.

Creación de una solicitud de certificado

A diferencia de IIS, PowerShell no ofrece una forma amigable y
gráfica de crear una Solicitud de Certificado (de hecho no ofrece
ninguna). Entonces, vaya a http://DigiCert.com/util⁵ y descargue
su versión gratuita del “Utilitario para certificados”. La Figura 2.1
muestra el utilitario. Tenga en cuenta el mensaje de advertencia.

⁵http://DigiCert.com/util

http://digicert.com/util
http://digicert.com/util

Acceso a equipos remotos 25

image008.png

Figura 2.1: Ejecutando DigiCertUtil.exe

Sólo tiene que preocuparse por la advertencia si planea adquirir su
certificado de la CA de DigiCert. Haga clic en el botón Repair para
instalar los certificados intermedios en su computadora, permitien-
do que su certificado sea confiable y se pueda utilizar. La figura 2.2
muestra el resultado de hacerlo. Una vez más, si planea llevar la
Solicitud de Certificado (CSR) eventual a una CA diferente, no se
preocupe por el botón Repair o por el mensaje de advertencia

Acceso a equipos remotos 26

Nota También puede abrir una consola MMC en blanco y agregar el complemento “Certificados” de Windows. Cuando se le solicite, agregue la “cuenta de equipo” para el equipo local. A continuación, haga clic con el botón derecho en la carpeta “Personal” y seleccione Todas las tareas para encontrar la opción para crear una nueva solicitud de certificado.

image009.png

Figura 2.2: Después de agregar los certificados intermedios de
DigiCert

Haga clic en “ Create CSR”. Como se muestra en la figura 2.3,
complete la información sobre su organización. Esto tiene que ser
exacto: El “nombre común” es exactamente lo que la gente escribirá
para acceder al equipo en el que se instalará este certificado SSL.
Podría ser simplemente “dca”, en nuestro caso, o “dc01.ad20082.loc”
si se necesita un nombre completo, y así sucesivamente. El nombre
de su empresa también debe ser preciso: la mayoría de las CA
verificarán esta información.

Acceso a equipos remotos 27

image010.png

Figura 2.3: Diligenciar el CSR

Por lo general, se guarda la CSR en un archivo de texto, como se
muestra en la figura 2.4. También puede copiarlo en el Portapapeles.
Cuando vaya a su CA, asegúrese de que está solicitando un certi-
ficado SSL (“Servidor Web”, en algunos casos). Un certificado de
correo electrónico u otro tipo no funcionará.

Acceso a equipos remotos 28

image011.png

Figura 2.4: Guardar el CSR en un archivo de texto

A continuación, lleve esa CSR a su CA y solicite su certificado. Verá
algo como la figura 2.5 si está utilizando DigiCert. Obviamente será
diferente con otra CA, con una PKI interna. Tenga en cuenta que
con la mayoría de las CA comerciales tendrá que seleccionar el tipo
de servidor Web que está utilizando (IIS o el que corresponda).

Nota: El uso del utilitario MakeCert.exe en el SDK de Windows
generará un certificado local en el que solo su máquina confiará.
Esto no es útil. Mucha gente le dirá que haga esto en varias
publicaciones o blogs, porque es rápido y fácil. También le dirán
que deshabilite algunas comprobaciones de seguridad para que el
certificado inherentemente inútil funcione. Es una pérdida de tiem-
po. Usted estará utilizando cifrado, pero no tendrá la seguridad de
que la máquina remota es a la que tenía la intención de conectarse.
Si alguien está secuestrando su información, ¿a quién le importa si
se cifró antes de enviarla a ellos?

Acceso a equipos remotos 29

image012.png

Figura 2.5: Carga del CSR en una CA

Precaución: Observe el mensaje de advertencia en la figura 2.5. Mi
CSR necesita ser generado con una clave de 2048 bits. La utilidad
de DigiCert ofrece eso o 1024 bits. Muchas CA tendrán un requisito
de bit-alto. Asegúrese de que su RSE cumple con lo que necesita.
Observe también que se trata de un certificado de servidor Web
lo que estamos solicitando. Como escribimos anteriormente, es el
único tipo de certificado que funcionará.

Eventualmente, la CA emitirá su certificado. La Figura 2.6 muestra
el sitio a dónde fuimos para descargarlo. Elegimos descargar todos
los certificados. Queríamos asegurarnos de tener una copia del
certificado raíz de la CA, en caso de que necesitáramos configurar
otra máquina para confiar en esa raíz.

Sugerencia: El truco con los certificados digitales es que lamáquina
que los utiliza y las máquinas a las que se presentarán, deben
confiar en la entidad emisora de certificados que emitió el mismo.
Es por eso que descarga el certificado raíz de la CA, para que pueda
instalarlo en las máquinas que necesitan confiar en dicha CA. En
un entorno grande, esto se puede hacer a través de una directiva de
grupo, si se quisiera.

Acceso a equipos remotos 30

image013.png

Figura 2.6: Descarga del certificado emitido

Asegúrese de hacer una copia de seguridad de los archivos de
certificados. Aunque la mayoría de las CA las publicarían de nuevo
de ser necesario, es mucho más fácil tener una copia de seguridad.

Instalación del certificado

No intente hacer doble clic en el archivo de certificado para
instalarlo. Si lo hace, lo instalará en el almacén de certificados de su
cuenta de usuario. Lo necesita en el almacén de certificados de su
computadora. Para instalar el certificado, abra una nueva consola
de administración de Microsoft (mmc.exe), seleccione Agregar o
quitar complementos y agregue el complemento Certificados, como
se muestra en la figura 2.7.

Acceso a equipos remotos 31

image014.png

Figura 2.7: Agregar el complemento Certificados a la MMC

Como se muestra en la figura 2.8, establezca el complemento en la
cuenta de equipo.

Acceso a equipos remotos 32

image015.png

Figura 2.8: Establecer el complemento Certificados en la cuenta de
equipo

A continuación, como se muestra en la figura 2.9, establezca el
equipo local. Por supuesto, si está instalando un certificado en
una computadora remota, establezca esa computadora en su lugar.
Esta es una buena forma de instalar un certificado en un ambiente
Windows sin GUI como en un Server Core, por ejemplo.

Nota: Quisiéramos poder mostrarle una forma de hacer todo esto
desde PowerShell. No pudimos encontrar una que no implicara un
montón de pasos más además de complejos. Dado que esto no es
algo que tendrá que hacer a menudo o automatizarlo, la GUI es más
fácil y debería ser suficiente.

Acceso a equipos remotos 33

image016.png

Figura 2.9: Establecer el complemento Certificados en el equipo
local

Con el complemento cargado, como se muestra en la figura 2.10,
haga clic con el botón derecho en el almacén “Personal” y seleccione
“Import”.

Acceso a equipos remotos 34

image017.png

Figura 2.10: Inicio del proceso de importación en el almacén Perso-
nal

Como se muestra en la figura 2.11, vaya al archivo de certificado
que descargó de su CA. A continuación, haga clic en Next.

Precaución: Si ha descargado varios certificados, tal vez los certifi-
cados raíz de la CA junto con el certificado, asegúrese de importar
el certificado SSL que se le entregó. Si hay alguna confusión, PARE.
Vuelva a su CA y descargue sólo su certificado, para que sepa cuál
importar. No experimente, necesita realizar bien esto a la primera
vez.

Acceso a equipos remotos 35

image018.png

Figura 2.11: Selección del archivo de certificado SSL recién publi-
cado

Como se muestra en la figura 2.12, asegúrese de que el certificado
se ubicará en el almacén Personal.

Acceso a equipos remotos 36

image019.png

Figura 2.12: Asegúrese de ubicar el certificado en el almacén Perso-
nal, que debe estar preseleccionado.

Como se muestra en la figura 2.13, haga doble clic en el certificado
para abrirlo. O bien, haga clic con el botón derecho y seleccione
Abrir. No seleccione Propiedades - no le proporcionará la informa-
ción que necesita-.

Acceso a equipos remotos 37

image020.png

Figura 2.13: Haga doble clic en el certificado o haga clic con el botón
derecho del ratón y seleccione Open

Finalmente, como se muestra en la figura 2.14, seleccione la huella
digital del certificado. Deberá anotar esto o copiarlo en el Portapa-
peles. Así WinRM identificará el certificado que desea utilizar.

Nota: Es posible listar su certificado en la unidad CERT: de PowerS-
hell, lo que hará que la huella digital sea más fácil de copiar en el
Portapapeles. En PowerShell, ejecute Dir CERT:LocalMachineMy.
Asegúrese que selecciona el certificado correcto. Si no se muestra
toda la huella digital, ejecute Dir CERT:LocalMachineMy | FL * en
su lugar.

Acceso a equipos remotos 38

image021.png

Figura 2.14: Validación de la huella digital del certificado

Configuración del listener de HTTPS

Los siguientes pasos se llevarán a cabo en el shell Cmd.exe, no en
PowerShell. La sintaxis de la utilidad de línea de comandos requiere
un ajuste significativo y escapar algunas cosas en PowerShell, así
que es mucho más sencillo de escribir y entender directamente en
el shell de Cmd.exe (que es donde la utilidad tiene que ejecutarse
de todos modos). Ejecutarlo en PowerShell sólo lanzaría Cmd. Exe
tras bambalinas.

Como se muestra en la figura 2.15, ejecute el siguiente comando:

Acceso a equipos remotos 39

image022.png

Figura 2.15: Configuración del listener de HTTPS WinRM

1 Winrm create winrm/config/Listener?Address=*+Transport=H\

2 TTPS @{Hostname="xxx";CertificateThumbprint="yyy"}

Hay dos o tres piezas de información que necesitará colocar en este
comando:

• En lugar de *, puede poner una dirección IP individual. El uso
de * hará que el oyente (listener) escuche todas las direcciones
IP locales.

• En lugar de xxx, coloque el nombre de equipo exacto para
el que se emitió el certificado. Si eso incluye un nombre de
dominio (como dc01.ad2008r2.loc), póngalo. Lo que está en
el certificado debe ir aquí, de lo contrario tendrá un error
de coincidencia CN. Como nuestro certificado fue emitido a
“dca”, puse “dca”

• En lugar de yyy, coloque la huella digital de certificado exacta
que copió anteriormente. Está bien si contiene espacios.

Eso es todo lo que debe hacer para que el oyente (listener) funcione.

Acceso a equipos remotos 40

Nota: Teníamos el Firewall de Windows deshabilitado en este
servidor, por lo que no necesitamos crear una excepción. La ex-
cepción no se crea automáticamente; por lo tanto, si tiene un
firewall habilitado en su computadora, deberá crear manualmente
la excepción para el puerto 5986.

También puede ejecutar un comando equivalente de PowerShell
para realizar esta tarea:

1 New-WSManInstance winrm/config/Listener -SelectorSet @{Ad\

2 dress='*';

3 Transport='HTTPS'} -ValueSet @{HostName='xxx';Certificate\

4 Thumbprint='yyy'}

En ese ejemplo, “xxx” y “yyy” se reemplazan como lo hicieron en
el ejemplo anterior.

Probando el HTTPS Listener

He probado esto desde el equipo C3925954503 independiente, tra-
tando de llegar al controlador de dominio DCA en COMPANY.loc.
He configurado C3925954503 en el archivo HOSTS, de modo que
podría resolver el nombre de host DCA a la dirección IP correcta
sin necesidad del DNS. Estaba seguro de que correría:

1 Ipconfig /flushdns

Esto aseguró que el archivo HOSTS se leyó en el caché de nombres
DNS. Los resultados se muestran en la figura 2.16. Tenga en cuenta
que no puedo acceder a DCA utilizando directamente su dirección
IP, porque el certificado SSL no contiene una dirección IP. El
certificado SSL se emitió a “dca”, por lo que tenemos que ser capaces
de acceder a la computadora escribiendo “dca” como el nombre de
la computadora. El uso del archivo HOSTS permitirá que Windows
resuelva eso a una dirección IP.

Acceso a equipos remotos 41

Nota: Recuerde, hay dos cosas que suceden aquí: Windows debe
poder resolver el nombre a una dirección IP, que es lo que hace
el archivo HOSTS, con el fin de hacer una conexión física. Pero
WinRM necesita autenticación mutua, lo que significa que cual-
quier cosa que escribimos en el parámetro -ComputerName debe
coincidir con lo que está en el certificado SSL. Es por eso que no
podemos simplemente proporcionar una dirección IP al comando -
habría funcionado para la conexión, pero no la autenticación.

image023.png

Figura 2.16: Prueba del Listener de HTTPS

Comenzamos con esto:

1 Enter-PSSession -computerName DCA

No funcionó, como se esperaba. Entonces intentamos esto:

Acceso a equipos remotos 42

1 Enter-PSSession -computerName DCA -credential COMPANY\Adm\

2 inistrator

Proporcionamos una contraseña válida para la cuenta de adminis-
trador, pero como se esperaba, el comando no funcionó. Finalmen-
te:

1 Enter-PSSession -computerName DCA -credential COMPANY\Adm\

2 inistrator -UseSSL

Nuevamente proporcionando una contraseña válida, se mostró el
aviso remoto que esperábamos. ¡Funcionó! Esto cumple las dos
condiciones que especificamos anteriormente: Estamos utilizando
una conexión HTTPS y proporcionamos una credencial. Ambas
condiciones son necesarias porque el equipo no está en mi dominio
(ya que en este caso el equipo de origen no está ni siquiera en un
dominio). Solo para recordar, la figura 2.17 muestra, en verde, la
conexión que creamos y usamos.

Acceso a equipos remotos 43

image024.png

Figura 2.17: La conexión utilizada para la prueba de escucha de
HTTPS

Modificadores

Hay dos modificadores que puede utilizar en una conexión, ya
sea con Invoke-Command, Enter-PSSession o algún otro comando
Remoting, que se relacionan con los oyentes (listeners) HTTPS.
Éstos se crean como parte de un objeto de opción de sesión.

• -SkipCACheck hace que WinRM no se preocupe si el certi-
ficado SSL fue emitido por una entidad de confianza o no.
Sin embargo, utilizar CAs no confiables en realidad puede

Acceso a equipos remotos 44

ser poco fiable. Una CA “pobre” puede emitir un certificado
para una computadora falsa, lo que le lleva a creer que se está
conectando a la máquina correcta cuando de hecho se está
conectando a una maquina impostora. Esto es riesgoso, así
que úselo con precaución.

• -SkipCNCheck hace que WinRM no se preocupe si el certi-
ficado SSL en la máquina remota se emitió realmente para
esa máquina o no. Una vez más, esta es una gran manera de
encontrarse conectado a un impostor. La mitad del punto de
SSL es la autenticación mutua, y este parámetro desactiva esa
mitad.

El uso de una o ambas de estas opciones seguirán activando el
cifrado SSL en la conexión, pero habrá aniquilado el otro propósito
esencial de SSL, que es la autenticación mutua por medio de una
autoridad intermedia de confianza.

Para crear y utilizar un objeto de sesión que incluye ambos pará-
metros:

1 $option = New-PSSessionOption -SkipCACheck -SkipCNCheck

2 Enter-PSSession -computerName DCA -sessionOption $option

3 -credential COMPANY\Administrator -useSSL

Precaución: Sí, esta es una manera fácil de hacer que los mensajes
de error molestos desaparezcan. Pero esos errores están intentando
advertirle de un problema potencial y le defienden de riesgos
potenciales de la seguridad que son muy reales, y que están muy
en uso por los atacantes modernos.

Autenticación de certificados

Una vez que haya establecido un oyente (listener) de HTTPS,
tendrá la opción de autenticarse con Certificados. Esto le permite

Acceso a equipos remotos 45

conectarse a equipos remotos, incluso aquellos en un dominio o
grupo de trabajo no confiable, sin requerir el ingreso de usuario-
clave, lo que puede ser útil cuando se programa una tarea para
ejecutar un script de PowerShell, por ejemplo.

En la autenticación de certificados, el cliente tiene un certificado
con una clave privada y el equipo remoto asigna la clave pública de
ese certificado a una cuenta deWindows local. WinRM requiere un
certificado que tenga “Client Authentication (1.3.6.1.5.5.7.3.2)” que
aparece en el atributo Enhanced Key Usage, y que tiene un nombre
principal de usuario listado en el atributo Subject Alternative Na-
me. Si utiliza la Autoridad de Certificación de Microsoft Enterprise,
la plantilla de certificado “Usuario” cumple estos requisitos.

Obtención de un certificado de autenticación de
cliente

Estas instrucciones asumen que tiene una CA de Microsoft En-
terprise. Si está utilizando un método diferente de inscripción de
certificados, siga las instrucciones proporcionadas por su proveedor
o el administrador de CA.

En el equipo cliente, realice los siguientes pasos:

• Ejecute certmgr.msc para abrir la consola “ Certificates -
Current User”.

• Haga clic derecho en el nodo “Personal” y seleccione All Tasks
-> Request New Certificate

• En el cuadro de diálogo Certificate Enrollment, haga clic en
Next. Seleccione “Active Directory Enrollment Policy “ y haga
clic en Next de nuevo. Seleccione la plantilla User y haga clic
en Enroll

Acceso a equipos remotos 46

image025.png

Figura 2.18: Solicitud de un certificado de usuario.

Una vez finalizado el proceso de inscripción (enrolamiento) y
regrese de nuevo a la consola de certificados, debería ver el nuevo
certificado en la carpeta PersonalCertificates:

image026.png

Figura 2.19: El certificado de autenticación de cliente instalado del
usuario.

Antes de cerrar la consola de Certificados, haga clic con el botón
derecho en el nuevo certificado y seleccione All Tasks -> Export.
En las pantallas siguientes, elija “ do not export the private key” y
guarde el certificado en un archivo en disco. Copie el certificado
exportado al equipo remoto, para utilizarlo en los pasos siguientes.

Acceso a equipos remotos 47

Configuración del equipo remoto para permitir la
autenticación de certificados

En el equipo remoto, ejecute la consola de PowerShell como Ad-
ministrador e introduzca el siguiente comando para habilitar la
autenticación del certificado:

1 Set-Item -Path WSMan:\localhost\Service\Auth\Certificate \

2 -Value $true

Importar el certificado del cliente en el equipo
remoto

El certificado del cliente debe agregarse al almacén de certificados
de “ Trusted People” del equipo. Para ello, realice los pasos siguien-
tes para abrir la consola “Certificados (equipo local)”:

• Ejecutar “mmc”.
• En el menú Archivo, elija “ Add/Remove Snap-in”.
• Resalte “ Certificates” y haga clic en el botón Add.
• Seleccione la opción “ Computer Account” y haga clic en
Next.

• Seleccione “Local Computer”, haga clic en Finish y a conti-
nuación, haga clic en OK

Nota: Este es el mismo proceso que siguió en la sección “Instalación
del certificado” en Configuración y escucha de HTTPS. Consulte las
figuras 2.7, 2.8 y 2.9 si es necesario.

En la consola de Certificados (Local Computer), haga clic con el
botón secundario “Trusted People” y seleccione All Tasks -> Import.

Acceso a equipos remotos 48

image027.png

Figura 2.20: Inicio del proceso de importación de certificados.

Haga clic en Next y busque la ubicación donde copió el archivo de
certificado del usuario.

Acceso a equipos remotos 49

image028.png

Figura 2.21: Selección del certificado del usuario.

Asegúrese de que el certificado se coloca en el almacén de “Trusted
People”:

Acceso a equipos remotos 50

image029.png

Figura 2.22: Colocación del certificado en el almacén de “Trusted
People”.

Creación de una asignación de certificados de cliente
en el equipo remoto

Abra una consola de PowerShell como Administrador en el equipo
remoto. Para el paso siguiente, necesitará la huella digital de certi-
ficado de la CA que emitió el certificado del cliente. Debería poder
encontrarlo utilizando uno de estos comandos (dependiendo de si
el certificado de la entidad emisora de certificados se encuentra en
las “ Trusted Root Certification Authorities “ o en la “Intermediate
Certification Authorities”):

Acceso a equipos remotos 51

1 Get-ChildItem -Path cert:\LocalMachine\Root

2 Get-ChildItem -Path cert:\LocalMachine\CA

image030.png

Figura 2.23: Obtención de la huella digital del certificado de la CA.

Una vez que tenga la huella digital, emita el siguiente comando para
crear la asignación de certificados:

1 New-Item -Path WSMan:\localhost\ClientCertificate -Creden\

2 tial (Get-Credential) -Subject <userPrincipalName> -URI \\

3 * -Issuer <CA Thumbprint> -Force

Cuando se le pidan credenciales, ingrese el nombre de usuario y la
contraseña de una cuenta local con derechos de administrador.

Nota: No es posible especificar las credenciales de una cuenta de
dominio para la asignación de certificados, incluso si el equipo
remoto es un miembro de un dominio. Debe utilizar una cuenta
local y la cuenta debe ser miembro del grupo Administradores.

image031.png

Figura 2.24: Configuración de la asignación de certificados de
cliente.

Acceso a equipos remotos 52

Conexión al equipo remoto mediante la
autenticación de certificados

Ahora, debe estar listo para autenticarse en el equipo remoto
utilizando su certificado. En este paso, necesitará la huella digital
del certificado de autenticación de cliente. Para obtenerlo, puede
ejecutar el siguiente comando en el equipo cliente:

1 Get-ChildItem -Path Cert:\CurrentUser\My

Una vez que tenga esta huella digital, puede autenticarse en el
equipo remoto mediante los Cmdlets Invoke-Command o New-
PSSession con el parámetro -CertificateThumbprint, como se mues-
tra en la figura 2.25.

Nota: El Cmdlet Enter-PSSession no parece funcionar con el pa-
rámetro -CertificateThumbprint. Si desea introducir una sesión de
acceso remoto interactiva con autenticación de certificado, utilice
primero New-PSSession y, a continuación, Enter-PSSession.

Nota: El modificador -UseSSL está implícito cuando se utiliza -
CertificateThumbprint en cualquiera de estos comandos. Incluso si
no escribe -UseSSL, seguirá conectándose al equipo remoto a través
de HTTPS (puerto 5986, de forma predeterminada, en Windows
7/2008 R2 o posterior). La Figura 2.26 muestra esto.

image032.png

Acceso a equipos remotos 53

Figura 2.25: Uso de un certificado para autenticarse con PowerShell
Remoting.

image033.png

Figura 2.26: Demostración de que la conexión está sobre el puerto
SSL 5986, incluso sin el modificador -UseSSL.

Modificación de la lista
TrustedHosts

Como mencioné anteriormente, el uso de SSL es sólo una opción
para conectarse a un equipo para el que no es posible la auten-
ticación mutua. La otra opción es desactivar selectivamente la
necesidad de autenticación mutua proporcionando a su equipo una
lista de “hosts de confianza”. En otras palabras, le está diciendo a su
computadora, “Si intento acceder a SERVER1 [por ejemplo], no se
molesten con la autenticación mutua. Estoy seguro que SERVER1
no puede ser falsificado o suplantado, por lo que estoy tomando esa
responsabilidad.”

La figura 2.27 ilustra la conexión que vamos a intentar.

Acceso a equipos remotos 54

image034.png

Figura 2.27: Prueba de conexión a un TrustedHosts

A partir de un cliente, con una configuración Remoting completa-
mente predeterminada, intentaremos conectarnos a C3925954503,
que también tiene una configuración de Remoting por defecto.
La figura 2.28 muestra el resultado. Tenga en cuenta que estoy
conectando a través de la dirección IP, en lugar de al hostname.
Nuestro cliente no tiene ninguna manera de resolver el nombre de
la computadora a una dirección IP, y para esta prueba preferimos
no modificar mi archivo local HOSTS.

Acceso a equipos remotos 55

image035.png

Figura 2.28: Intentando conectarse al equipo remoto

Esto es lo que esperábamos: El mensaje de error es claro. No
podemos usar una dirección IP (o un nombre de host para un equipo
que no sea de dominio, aunque el error no lo diga) a menos que
utilicemos HTTPS y una credencial o que agregue la computadora
a mi lista de TrustedHosts y use una credencial. Elegiremos esta
última opción. La figura 2.29 muestra el comando que debemos
ejecutar. Si hubiéramos querido conectarnos a través del nombre de
la computadora (C3925954503) en lugar de su dirección IP, habría-
mos añadido ese nombre de equipo a la lista de TrustedHosts (sería
nuestra responsabilidad asegurar que mi computadora pudiera de
alguna manera resolver ese nombre de equipo a una dirección IP
para realizar la conexión física).

Acceso a equipos remotos 56

image036.png

Figura 2.29: Agregar lamáquina remota a nuestra lista TrustedHosts

Este es otro caso en el que muchos blogs aconsejarán simplemente
poner “*” en la lista de TrustedHosts. ¿De verdad? ¿No hay nin-
guna posibilidad de que cualquier computadora, nunca, en ningún
lugar, pudiera ser suplantada o falsificada? Preferimos agregar un
conjunto limitado y controlado de nombres de host o direcciones
IP. Utilice una lista separada por comas. Está bien usar comodines
junto con otros caracteres (como un nombre de dominio, como *
.COMPANY.loc), para permitir un rango amplio pero no ilimitado
de computadoras. La figura 2.30 muestra una conexión correcta.

Sugerencia: Utilice el parámetro -Concatenate de Set-Item para
agregar su nuevo valor a los existentes, en lugar de sobrescribirlos.

Acceso a equipos remotos 57

image037.png

Figura 2.30: Conexión a la computadora remota

Administrar la lista de TrustedHosts es probablemente la formamás
fácil de conectarse a un equipo que no puede ofrecer autenticación
mutua, siempre y cuando esté absolutamente seguro de que la
suplantación no es una posibilidad. En una intranet, por ejemplo,
donde ya tiene buenas prácticas de seguridad, la suplantación puede
ser una posibilidad remota y puede agregar un rango de direcciones
IP o un rango de nombres de host utilizando comodines.

Conexión a través de dominios

La Figura 2.31 ilustra la siguiente conexión que trataremos de
hacer, que se encuentra entre dos equipos en dominios diferentes
de confianza.

Acceso a equipos remotos 58

image038.png

Figura 2.31: Conexión de prueba entre dominios

Nuestra primera prueba está en la figura 2.32. Tenga en cuenta que
estamos creando una credencial reutilizable en la variable $cred,
para que no tengamos que volver a teclear la contraseña mientras
lo intentamos. Sin embargo, los resultados de la prueba de Remoting
todavía no tienen éxito.

Acceso a equipos remotos 59

image039.png

Figura 2.32: Intentar conectarse al equipo remoto

¿El problema? Estamos usando un alias CNAME (MEMBER1), no
el nombre de host real de la computadora (C2108222963). Aunque
WinRM puede utilizar un CNAME para resolver un nombre a
una dirección IP para la conexión física, no puede utilizar el alias
CNAME para buscar el equipo en AD, ya que AD no utiliza el
registro CNAME (incluso en una Zona AD-DNS integrada). Como
se muestra en la figura 2.33, la solución es usar el nombre de host
real de la computadora.

Acceso a equipos remotos 60

image040.png

Figura 2.33: Conectar correctamente a través de dominios

¿Qué pasa si necesita usar una dirección IP o alias CNAME para
conectarse? Tendrá que volver a la lista de TrustedHosts o a un
detector de HTTPS, exactamente como si se estuviera conectando a
un equipo que no pertenece al dominio. Esencialmente, si no puede
utilizar el nombre de host real de la computadora, tal como aparece
en AD, entonces no puede confiar en el dominio para acelerar el
proceso de autenticación.

Administradores de otros dominios

Hay una peculiaridad en Windows que tiende a obviar el token
de la cuenta de administrador para las cuentas de administrador
procedentes de otros dominios, lo que significa que terminan eje-
cutándose bajo privilegios de usuario estándar, lo que a menudo
no es suficiente. En el dominio de destino, se puede cambiar ese
comportamiento.

Acceso a equipos remotos 61

Para ello, ejecute esto en el equipo de destino (escriba todo esto en
una línea y pulse Enter):

1 New-ItemProperty -Name LocalAccountTokenFilterPolicy

2 -Path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\

3 Policies\System -PropertyType Dword -Value 1

Eso debería solucionar el problema. Tenga en cuenta que esto
desactiva el Control de cuentas de usuario (UAC) en la máquina
donde lo ejecutó, así que asegúrese de lo que está haciendo antes
de hacerlo.

El segundo salto

Una limitación predeterminada con Remoting es a menudo referida
como el segundo salto. La Figura 2.25 ilustra el problema básico:
Puede realizar una conexión Remoting de un host a otro (la línea
verde), pero pasar de ese segundo host a un tercero (la línea roja)
simplemente se rechaza. Este “segundo salto” no funciona porque,
de forma predeterminada, Remoting no puede delegar su credencial
por segunda vez. Esto es incluso un problema si realiza el primer
salto y posteriormente intenta acceder a cualquier recurso de red
que requiera autenticación. Por ejemplo, si accede a otro equipo
y, a continuación intenta tener acceso a algún archivo compartido
pero necesita autenticación, la operación falla.

La solución CredSSP

Los siguientes cambios de configuración son necesarios para habi-
litar el segundo salto:

Nota: Esto sólo funciona en Windows Vista, Windows Server 2008
y versiones posteriores de Windows. No funcionará en Windows
XP o Windows Server 2003 o versiones anteriores.

Acceso a equipos remotos 62

• CredSSP debe estar habilitado en su computadora de origen
y el servidor intermedio al que se conecta. En PowerShell, en
el equipo de origen, ejecute:

1 Set-Item WSMAN:\localhost\client\auth\credssp -value $true

• En su (s) servidor (es) intermedio (s), realiza un cambio
similar al anterior, pero en una sección diferente de la con-
figuración:

1 Set-Item WSMAN:\localhost\service\auth\credssp -value $tr\

2 ue

• Su política de dominio debe permitir la delegación de nuevas
credenciales. En un objeto de directiva de grupo (GPO), se
encuentra en Configuración del equipo> Políticas> Plantillas
administrativas> Sistema> Delegación de credenciales> Per-
mitir delegación de nuevas credenciales. Debe proporcionar
los nombres de las máquinas a las que se pueden delegar las
credenciales o especificar un comodín como “*.ad2008r2.loc”
para permitir un dominio completo. Asegúrese de dar tiempo
para que el GPO actualizado se aplique o ejecute Gpupdate
en el equipo de origen (o reinícielo).

Nota: Una vez más, el nombre que usted proporciona aquí es
importante. Lo que realmente va a escribir para el parámetro -
ComputerName es lo que debe aparecer aquí. Esto hace que sea
realmente difícil delegar credenciales a, digamos, direcciones IP,
sin agregar simplemente “*” como delegado permitido. La adición
de “*”, por supuesto, significa que puede delegar en CUALQUIER
computadora, lo que es potencialmente peligroso, ya que facilitaría
a un atacante suplantar una máquina y apoderarse de su cuenta
super-privilegiada de administrador de dominio!

Acceso a equipos remotos 63

• Al ejecutar un comando Remoting, debe especificar el pa-
rámetro “-Authentication CredSSP”. También debe utilizar
el parámetro -Credential y proporcionar un valor DOMI-
NIO\Usuario (se le pedirá la contraseña) - incluso si es el
mismo nombre de usuario que utilizó para abrir PowerShell
al inicio.

Después de configurar lo anterior, pudimos utilizar Enter-PSSession
para pasar de nuestro controlador de dominio a mi servidor miem-
bro y, a continuación, utilizar Invoke-Command para ejecutar un
comando en un equipo cliente: la conexión ilustrada en la figura
2.34.

image041.png

Acceso a equipos remotos 64

Figura 2.34: Las conexiones para la prueba del segundo salto

¿Le parece tedioso y tedioso hacer todos esos cambios? Hay un
camino más rápido. En el equipo de origen, ejecute esto:

1 Enable-WSManCredSSP -Role Client -Delegate name

Donde “nombre” es el nombre de los equipos que planea remitir al
siguiente. Esto puede ser un comodín, como *, o un comodín parcial,
como *.AD2008R2.loc. A continuación, en el equipo intermedio
(aquél al que delegará sus credenciales), ejecute lo siguiente:

1 Enable-WSManCredSSP -Role Server

Entre ellos, estos dos comandos logran casi todos los puntos de
configuración que enumeramos anteriormente. La única excepción
es que modificarán su política local para permitir una nueva
delegación de credenciales, en lugar de modificar la directiva de
dominio a través de un GPO. Puede optar por modificar la direc-
tiva de dominio usted mismo, utilizando la GPMC, para que esa
configuración particular sea más universal.

La solución Kerberos

CredSSP no se considera el protocolo más seguro del mundo
(vea https://msdn.microsoft.com/en-us/library/cc226796.aspx). Las
credenciales se transmiten en texto claro, lo cual es un proble-
ma. Afortunadamente, dentro de un dominio, hay otra forma de
habilitar el multi-salto Remoting, utilizando el protocolo nativo
Kerberos, que no transmite credenciales. Específicamente, se llama
delegación de restricciones Kerberos basada en recursos, Ashley
McGlone (@goateePFE) escribió sobre ello⁶.

⁶https://blogs.technet.microsoft.com/ashleymcglone/2016/08/30/powershell-remoting-
kerberos-double-hop-solved-securely/

https://blogs.technet.microsoft.com/ashleymcglone/2016/08/30/powershell-remoting-kerberos-double-hop-solved-securely/
https://blogs.technet.microsoft.com/ashleymcglone/2016/08/30/powershell-remoting-kerberos-double-hop-solved-securely/
https://blogs.technet.microsoft.com/ashleymcglone/2016/08/30/powershell-remoting-kerberos-double-hop-solved-securely/

Acceso a equipos remotos 65

Esta técnica básica funciona desde Windows Server 2003, por lo
que debería cubrir cualquier situación que necesite. La idea aquí
es que se puede permitir a una máquina delegar credenciales
específicas para servicios en otra máquina. Windows Server 2012
simplificó el diseño de esta técnica, anteriormente indocumentada
y compleja, por lo que nos centraremos en eso. Por lo tanto,
cada máquina involucrada necesita tener Windows Server 2012 o
posterior, incluyendo al menos un controlador de dominioWin2012
en el dominio. También necesitará un equipo Windows de última
generación con el RSAT instalado (he usado Windows 10). Sabrá
que tiene la versión de ejecución si puede ejecutar esto:

1 Import-Module ActiveDirectory

2 Get-Command -ParameterName PrincipalsAllowedToDelegateToA\

3 ccount

Y obtener algunos resultados de vuelta. Si no obtiene nada, tienes
una versión anterior del RSAT - necesitara una más nueva, lo que
probablemente requerirá una versión más reciente de Windows
en su cliente. Por lo tanto, supongamos que estamos en ClientA,
queremos conectarnos a ServerB y que delegue una credencial a
través de un segundo salto a ServerC.

1 $ClientA = $env:COMPUTERNAME

2 $ServerB = Get-ADComputer -Identity ServerB

3 $ServerC = Get-ADComputer -Identity ServerC

4

5 Set-ADComputer -Identity $ServerC -PrincipalsAllowedToDel\

6 egateToAccount $ServerB

Esto permite que ServerC acepte una credencial delegada de Ser-
verB. Si está prestando atención, esto significa que el equipo al
final del segundo salto es lo que se necesita modificar, para que
pueda recibir una credencial del intermediario. Además, si ya
ha intentado un segundo salto antes de configurar esto, tendrá

Acceso a equipos remotos 66

que esperar alrededor de 15 minutos para que la “memoria caché
incorrecta” de Active Directory expire y permita que todo funcione
correctamente. También podría reiniciar ServerB, si está en un
laboratorio o algo así.

El -PrincipalsAllowedToDelegateToAccount también puede ser una
matriz, como en @($ServerB, $ServerZ, $ ServerX), etc., permitien-
do que varios orígenes deleguen una credencial en la cuenta de
equipo que está actualizando. Puede hacer este trabajo a través de
límites de confianza, también - vea el artículo original de Ashley
para aplicar esta técnica.

Trabajar con Endpoints
(también conocido como

Configuraciones de
Sesión)

Como aprendió al principio de esta guía, Remoting está diseñado
para trabajar con múltiples puntos finales distintos en un equipo.
En la terminología de PowerShell, cada punto final es una configu-
ración de sesión o simplemente una configuración. Cada uno puede
ser configurado para ofrecer servicios y capacidades específicos, así
como tener restricciones y limitaciones específicas.

Conexión a un punto final diferente

Cuando utiliza un comando como Invoke-Command o Enter-PSSession,
normalmente se conecta al punto final predeterminado de un
equipo remoto. Eso es lo que hemos hecho hasta ahora. Pero
puede ver los otros puntos finales habilitados ejecutando Get-
PSSessionConfiguration, como se muestra en la figura 3.1.

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 68

image042.png

Figura 3.1: Listando los puntos finales instalados

Nota: Como señalamos en un capítulo anterior, cada computadora
mostrará puntos finales diferentes por defecto. Nuestra salida era
de un equipo conWindows Server 2008 R2, que tiene menos puntos
finales predeterminados que, por ejemplo, un equipo con Windows
2012.

Cada punto final tiene un nombre, como “Microsoft.PowerShell”
o “Microsoft.PowerShell32”. Para conectarse a un punto final es-
pecífico, agregue el parámetro -ConfigurationName al comando
Remoting, como se muestra en la Figura 3.2.

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 69

image043.png

Figura 3.2: Conexión a una configuración específica (punto final)
por nombre

Creación de un punto de extremo
personalizado

Existen varias razones para crear un punto final personalizado (o
una configuración):

• Puede tener scripts y módulos de carga automática cada vez
que alguien se conecta.

• Puede especificar un descriptor de seguridad (SDDL) que
determina quién tiene permiso para conectarse.

• Puede especificar una cuenta alternativa que se utilizará para
ejecutar todos los comandos dentro del punto final, en lugar
de utilizar las credenciales de los usuarios conectados.

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 70

• Puede limitar los comandos que están disponibles para los
usuarios conectados, restringiendo así sus capacidades.

Hay dos pasos para configurar un punto final: Crear un archivo de
configuración de sesión que definirá las capacidades de los puntos
finales y luego registrar ese archivo, que habilita el punto final y
define sus configuraciones. La Figura 3.3 muestra la ayuda para el
comando New-PSSessionConfigurationFile, que realiza el primero
de estos dos pasos.

image044.png

Figura 3.3: El comando New-PSSessionConfigurationFile

Aquí algunos de los parámetros que le permiten especificar (revise
el archivo de ayuda por los otros parámetros):

• -Path: El único parámetro obligatorio, es la ruta y el nombre
de archivo del archivo de configuración que creará. Ingrese
un nombre y utilice una extensión .PSSC para el nombre de
archivo.

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 71

• -AliasDefinitions: Esta es una tabla hash de alias y sus de-
finiciones. Por ejemplo, @ {Name = ‘d’; Definition = ‘Get-
ChildItem’; Options = ‘ReadOnly’} definiría el alias d. Utilice
una lista separada por comas de estas tablas hash para definir
varios alias.

• -EnvironmentVariables: Una tabla hash única de variables de
entorno para cargar en el punto final:@{‘MyVar’=’SERVERShare’;’MyOtherVar’=’SomethingElse’}

• -ExecutionPolicy: Por defecto es Restricted si no especifica
otra cosa. Utilice Unrestricted, AllSigned o RemoteSigned.
Establece la directiva de ejecución de secuencias de comandos
para el punto final.

• -FormatsToProcess y -TypesToProcess: Cada una de estas es
una lista separada por comas de la ruta de acceso y los
nombres de los archivos a cargar. El primero especifica los
archivos .format.ps1xml que contienen definiciones de vista,
mientras que el segundo especifica un archivo .ps1xml para
el ETS (Extensible Type System) de PowerShell.

• -FunctionDefinitions: Una lista separada por comas de tablas
hash, cada una de las cuales define una función para aparecer
dentro del punto final. Por ejemplo,@{Name=’MoreDir’;Options=’ReadOnly’;Value={
Dir | more }}

• -LanguageMode: El modo para el lenguaje de script de Po-
werShell. “FullLanguage” y “NoLanguage” son las opciones.
Este último sólo permite ejecutar funciones y Cmdlets. Tam-
bién hay “RestrictedLanguage” que permite un subconjunto
muy pequeño del lenguaje de scripting para trabajar - vea la
ayuda para más detalles.

• -ModulesToImport: Una lista de nombres de módulos separa-
dos por comas para cargar en el punto final. También puede
utilizar tablas hash para especificar versiones de módulo
específicas. Lea la ayuda completa del comando para obtener
más detalles.

• -PowerShellVersion: ‘2.0’ o ‘3.0’, especifica la versión de Po-
werShell que desea que el punto final utilice. 2.0 sólo se puede
especificar si PowerShell v2 se instala independientemente en

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 72

el equipo que aloja el punto final (instalando v3 “en la parte
superior de” v2 permite que v2 continúe existiendo).

• -ScriptsToProcess: Una lista separada por comas de nombres
de rutas y archivos de secuencias de comandos que se eje-
cutan cuando un usuario se conecta al punto final. Puede
usar esto para personalizar el espacio de ejecución del punto
final, definir funciones, cargar módulos o hacer cualquier otra
cosa que un script pueda hacer. Sin embargo, para ejecutar
la directiva de ejecución de secuencias de comandos debe
permitir la secuencia de comandos.

• -SessionType: “ Empty “ no carga nada por defecto, dejándolo
a usted libre de cargar lo que quiera a través de scripts o los
parámetros de este comando. “Default” carga las extensiones
principales de PowerShell normales, además de cualquier otra
cosa que haya especificado a través del parámetro. “Restric-
tedRemoteServer” agrega una lista fija de siete comandos,
además de lo que haya especificado. Consulte la ayuda para
obtener detalles sobre lo que se ha cargado

Precaución: Algunos comandos son importantes, como Exit-PSSession,
que permite a alguien salir de forma limpia de una sesión de
Remoting interactiva. RestrictedRemoteServer carga estos, pero
Empty no.

-VisibleAliases, -VisibleCmdlets, -VisibleFunctions y -VisibleProviders:
estas listas separadas por comas definen cuáles de los alias, cmdlets,
funciones y PSProviders disponibles serán visibles para el usuario
del punto final. Estos le permiten cargar un módulo completo, pero
sólo exponen uno o dos comandos, si lo desea.

Nota: No puede utilizar un punto de terminación personalizado
solo para controlar los parámetros a los que un usuario tendrá
acceso. Si necesita ese nivel de control, una opción es sumergirse en
la programación de .NET Framework, lo que le permite crear una
configuración remota más fina. Eso está más allá del alcance de esta
guía. También puede crear un punto de extremo personalizado que

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 73

sólo incluya funciones de proxy, otra forma de “integrar” comandos
incorporados y agregar o eliminar parámetros, pero eso también
está fuera del alcance de esta guía.

Una vez que haya creado el archivo de configuración, estará listo
para registrarlo. Esto se hace con el comando Register-PSSessionConfiguration,
como se muestra en la figura 3.4.

image045.png

Figura 3.4: El comando Register-PSSessionConfiguration

Como puede ver, hay mucho que hacer con este comando. Algunos
de los parámetros más interesantes son:

• -RunAsCredential: Permite especificar una credencial que se
utilizará para ejecutar todos los comandos dentro del punto
final. Proporcionar esta credencial permite a los usuarios co-
nectarse y ejecutar comandos que normalmente no tendrían
permiso para ejecutarse. Limitando los comandos disponibles
(a través del archivo de configuración de sesión), puede
restringir lo que los usuarios pueden hacer con este privilegio
elevado.

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 74

• -SecurityDescriptorSddl: Le permite especificar quién puede
conectarse al punto final. El lenguaje de especificación es
complejo. Considere el uso de -ShowSecurityDescriptorUI
en su lugar, que muestra un cuadro de diálogo gráfico para
establecer los permisos de punto final.

• -StartupScript: Especifica un script para ejecutarse cada vez
que se inicia el punto final.

Puede explorar las otras opciones por su cuenta en el archivo
de ayuda. Echemos un vistazo a la creación y el uso de uno de
estos extremos personalizados. Como se muestra en la figura 3.5,
hemos creado una nueva cuenta de usuario de AD para SallyS del
departamento de ventas. Sally, por alguna razón, debe ser capaz de
enumerar a los usuarios en nuestro dominio de AD - pero eso es
todo lo que debe ser capaz de hacer. Su cuenta no tiene permiso
para hacerlo.

image046.png

Figura 3.5: Creación de una nueva cuenta de usuario de AD para la
prueba

La Figura 3.6 muestra la creación del nuevo archivo de configura-

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 75

ción de la sesión y el registro de la sesión. Observe que la sesión
importará automáticamente el módulo ActiveDirectory, pero sólo
hará que el cmdlet Get-ADUser sea visible para Sally. Hemos espe-
cificado un tipo de sesión remota restringida, que proporcionará
algunos otros comandos clave a Sally. También desactivamos el
lenguaje de scripting de PowerShell. Al registrar la configuración,
especificamos una credencial “Ejecutar como” (se nos pidió la
contraseña), que es la cuenta bajo la qie que todos los comandos
ejecutarán.

image047.png

Figura 3.6: Creación y registro del nuevo punto final

Debido a que usamos el parámetro “ShowSecurityDescriptorUI”,
tenemos un cuadro de diálogo como el que se muestra en la figura
3.7. Esta es una manera más fácil de establecer los permisos para
quién puede usar este nuevo punto final. Tenga en cuenta que el
punto final ejecutará los comandos bajo una cuenta de adminis-
trador de dominio, por lo que debemos tener mucho cuidado de
a quien realmente dejamos ingresar. Sally necesita, como mínimo,
permiso de ejecución y lectura, que ya se le ha dado.

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 76

image048.png

Figura 3.7: Configuración de los permisos en el punto final

A continuación, establecer una contraseña para Sally y activar
su cuenta de usuario. Todo hasta este punto se ha hecho en el
ordenador DC01.AD2008R2.loc. La figura 3.8 se desplaza al equipo
cliente de Windows 7 de ese dominio, donde iniciamos sesión con
la cuenta de Sally. Como puede ver, no pudo ingresar a la sesión
predeterminada en el controlador de dominio. Pero cuando intentó
entrar en la nueva sesión especial que creamos sólo para ella, la
operación tuvo éxito. También pudo ejecutar Get-ADUser.

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 77

image049.png

Figura 3.8: Prueba del nuevo punto final iniciando sesión como Sally

La Figura 3.9 confirma que Sally tiene un número muy limitado de
comandos para ejecutar. Algunos de estos comandos, como Get-
Help y Exit-PSSession, son muy importantes para usar el punto fi-
nal. Otros, como Select-Object, le dan a Sally una cantidad mínima
de comodidad no destructiva para que su salida de comandos se vea
como ella necesita. Esta lista de comandos (aparte de Get-ADUser)
se establece automáticamente cuando se especifica el tipo de sesión
“restricted remote” en el archivo de configuración de la sesión.

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 78

image050.png

Figura 3.9: Solamente ocho comandos, incluido el Get-ADUser que
hemos agregado, están disponibles dentro del punto final.

En realidad, es poco probable que un usuario de ventas como
Sally estuviera ejecutando comandos en la consola de PowerShell.
Lo más probable es que utilizara alguna aplicación basada en
GUI que ejecutara los comandos “detrás de escenas”. De cualquier
manera, nos hemos asegurado de que ella tiene exactamente la
funcionalidad que necesita para hacer su trabajo, y nada más.

Precauciones de seguridad con
puntos finales personalizados

Cuando crea un archivo de configuración de sesión personalizado,
tal como lo ha visto, puede configurar su modo de idioma. El modo
de idioma determina qué elementos del lenguaje de secuencias
de comandos de PowerShell están disponibles en el punto final y

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 79

el modo de lenguaje puede ser como una laguna. Con el modo
de lenguaje “Full”, obtendrá todo el lenguaje de secuencias de
comandos, incluidos los bloques de secuencia de comandos. Un
bloque de secuencia de comandos es cualquier trozo ejecutable de
código de PowerShell contenido dentro de {curly brackets}. Ellos
son la escapatoria. Siempre que permita el uso de bloques de script,
puede ejecutar cualquier comando legal, incluso si su punto final
usó -VisibleCmdlets o -VisibleFunctions u otro parámetro para
limitar los comandos en el punto final.

En otras palabras, si registra un punto final que utiliza -VisibleCmdlets
para exponer sólo Get-ChildItem, pero crea el archivo de configu-
ración de sesión del punto final para que tenga el modo de lenguaje
Full, cualquier bloque de secuencia dentro del punto final puede
utilizar cualquier comando. Alguien podría ejecutar:

PS C:\> & { Import-Module ActiveDirectory; Get-ADUser

-filter * | Remove-ADObject }

¡Eek! Esto puede ser especialmente peligroso si ha configurado el
punto final para utilizar una credencial de RunAs para ejecutar
comandos bajo privilegios elevados. También es algo fácil dejar
que esto suceda por error, ya que se establece el modo de idio-
ma cuando se crea el nuevo archivo de configuración de sesión
(New-PSSessionConfigurationFile), no cuando se registra la sesión
(Register-PSSessionConfiguration). Por lo tanto, si está utilizando
un archivo de configuración de sesión creado por otra persona, abra
y confirme su modo de idioma antes de usarlo.

Puede evitar este problema estableciendo el modo de idioma en
NoLanguage, que deshabilita los bloques de secuencia de comandos
y el resto del lenguaje de secuencias de comandos. O bien, vaya a
RestrictedLanguage, que bloquea bloques de secuencia de coman-
dos al mismo tiempo que permite el uso de algunos operadores
básicos si desea que los usuarios del punto final puedan hacer
filtrado y comparaciones básicas.

Es importante distinguir que esto no es un error, pues el comporta-

Trabajar con Endpoints (también conocido como Configuraciones de Sesión) 80

miento que estamos describiendo aquí es por diseño. Puede ser un
problema si no lo sabe o no entiende lo que está haciendo.

Nota: Muchas gracias al compañero MVP Aleksandar Nikolic por
ayudarme a entender la lógica de esta laguna!

Diagnóstico y solución de
problemas

La solución de problemas y diagnóstico de Remoting puede ser
una de las tareas más difíciles que un administrador tenga que
tratar. Cuando funciona Remoting, funciona. Cuando no lo hace, a
menudo es difícil saber por qué. Afortunadamente, PowerShell v3 y
su implementación adjunta de Remoting tienenmensajes de errores
mucho más claros y descriptivos que las anteriores versiones. Sin
embargo, incluso v2 incluye un módulo indocumentado y poco va-
lorado llamado PSDiagnostics, que está diseñado específicamente
para facilitar la solución de problemas Remoting. Esencialmente,
el módulo le permite activar la información detallada del registro
de seguimiento antes de intentar iniciar una conexión remota. A
continuación, puede utilizar esa información de registro detallada
para obtener una mejor idea de dónde está fallando Remoting.

Ejemplos de diagnósticos

Para los siguientes escenarios, comenzaremos por importar el mó-
dulo PSDiagnostics (tenga en cuenta que se implementa como un
módulo de script y requiere una directiva de ejecución que le per-
mita ejecutarse, como RemoteSigned o Unrestricted). La Figura 4.1
muestra la ejecución del comando Enable-PSWSManCombinedTrace,
que inicia el registro de diagnóstico extendido.

Diagnóstico y solución de problemas 82

image051.png

Figura 4.1: Carga del módulo de diagnóstico e inicio de un rastreo

Para cada escenario, seguimos ejecutando uno omás comandos que
utilizan Remoting, como se muestra en la figura 4.2. A continua-
ción, desactivamos la traza ejecutandoDisable-PSWSManCombinedTrace,
de modo que el registro sólo contendrá los detalles de ese intento
en particular (borramos el registro entre intentos, para que cada
escenario proporcione un nuevo registro de diagnósticos).

Diagnóstico y solución de problemas 83

image052.png

Figura 4.2: Ingresando a una sesión y ejecutando un comando

Finalmente, como se muestra en la figura 4.3, recuperamos los men-
sajes del registro. En los escenarios que siguen, proporcionaremos
una versión detallada de éstos. Tenga en cuenta que típicamente
truncaremos gran parte de la salida para poder centrarnos en
las partes más significativas. Observe también que hay algo de
diferencia al leer la información de la arquitectura del registro
de eventos, como lo hacemos en la figura 4.3, y leer el archivo
de seguimiento .EVT directamente, como lo haremos en algunos
de nuestros escenarios. Este último proporcionará información
combinada de diferentes registros, lo que a veces puede ser más
útil.

Diagnóstico y solución de problemas 84

image053.png

Figura 4.3: Examinar la información de diagnóstico registrada

También vamos a hacer uso delMicrosoft-Windows-WinRM/analytic
log, que normalmente no contiene información fácilmente legible
por humanos. Para utilizar el contenido del registro, utilizaremos
un utilitario interno de Microsoft (que se nos ha dado permiso
para distribuir y que encontraremos en la página de descargas
en http://ConcentratedTech.com) para convertir el contenido del
registro en algo que podemos leer.

La información de rastreo se almacena en la carpeta de instalación
de PowerShell (ejecute cd $PSHome para llegar allí y luego cambie
a la carpeta Traces). La extensión del nombre de archivo es .ETL y
puede usar Get-WinEvent -Path Filename.etl para leer un archivo
en particular. El comando Construct-PSRemoteDataObject, inclui-
do en el archivo ZIP al que hacemos referencia, puede traducir
partes de la propiedad Message del registro analítico en texto
(Analytic log’s) legible para humanos. Un script de demostración
incluido en el archivo ZIP evidencia cómo utilizarlo. Como se
muestra en la figura 4.4, hemos utilizado “dot-sourcing” con el

Diagnóstico y solución de problemas 85

archivo Construct-PSRemoteDataObject.ps1 en nuestro shell para
obtener acceso a los comandos que expone.

image054.png

Figura 4.4 Dot-sourcing del script Construct-PSRemoteDataObject.ps1

También eliminamos el contenido de C:WindowsSystem32WindowsPowerShell\v1.0Traces
antes de iniciar cada uno de los ejemplos siguientes.

Una conexión remota perfecta

Para esta conexión, pasamos del equipo cliente de Windows 7
en el dominio AD2008R2 al controlador de dominio DC01. En la
DC, cambiamos a la carpeta C:\, ejecutamos el comando dir y
terminamos la sesión. La Figura 4.5 muestra todo el escenario.

Diagnóstico y solución de problemas 86

image055.png

Figura 4.5: Ejemplo completo del escenario

A continuación, leemos el registro en orden cronológico. Tiene
que ser cuidadoso. Ejecutando Enable-PSWSManCombinedTrace
y Disable-PSWSManCombined se crearan eventos de registro de
ellos mismos. A menudo ejecutaremos el comando Enable, y lue-
go esperaremos algunos minutos para hacer cualquier cosa con
Remoting. De esa manera, podemos establecer por la marca de
tiempo en el registro cuando comenzó el tráfico “real. Esperaremos
unos minutos más antes de ejecutar el comando Disable, para que
podamos saber fácilmente cuándo finalizó el tráfico de registro
“real”. También tenga en cuenta que vamos a obtener información
de dos registros, WinRM y PowerShell, aunque leer el archivo .ETL
con Get-WinEvent tomará todo en secuencia.

Nota: hemos experimentado problemas al utilizar Get-WinEvent en
PowerShell v3 en máquinas “non-US English”. Si tiene problemas,
considere ejecutar el comando desde PowerShell v2 o utilice la
aplicación GUI Event Viewer para ver el registro de eventos.

Diagnóstico y solución de problemas 87

La conexión comienza con (en este ejemplo) Enter-PSSession y la
resolución de nombres, como se muestra en la figura 4.6

image056.png

Figura 4.6: Inicio de la conexión remota

WinRM tiene que “iniciar” un espacio de ejecución (esencialmente,
un proceso de PowerShell) en el equipo remoto. Esto incluye
establecer varias opciones para la configuración regional, la tem-
porización, etc, como se muestra en la figura 4.7.

Diagnóstico y solución de problemas 88

image057.png

Figura 4.7: Inicio del espacio de ejecución remota

Esto puede tomar un tiempo. Eventualmente, verá que WinRM
comienza a enviar “trozos”, que son comunicaciones empaquetadas.
Estos son enviados a través del Protocolo de Acceso a Objetos
Simples, por lo que esperamos ver muchas referencias “SOAP”
(WS-MAN es un servicio Web, recuerde, y SOAP es el lenguaje de
comunicaciones de los servicios Web). La Figura 4.8 muestra un par
de estos trozos de 1500 bytes. Tenga en cuenta que la carga real es
más o menos ilegible.

Diagnóstico y solución de problemas 89

image058.png

Figura 4.8: Los datos comienzan a transferirse a través de la cone-
xión

Este texto ilegible es lo que el comandoConstruct-PSRemoteDataObject
puede traducir. Por ejemplo, los mensajes de “envío” tienen un ID
de evento de 32868. Buscando sólo esos eventos podemos ver lo que
se está enviando, como se muestra en la figura 4.9.

Diagnóstico y solución de problemas 90

image059.png

Figura 4.9: Traducir los datos enviados

En este caso, el cliente estaba preguntando al servidor (que está
listado como el destino) acerca de sus capacidades y algunos
metadatos en el comando Exit-PSSession (que es el segundo men-
saje). Así es como el cliente calcula con qué tipo de servidor está
hablando, y otra información importante de manera preliminar. En
este punto el cliente sabe qué versión del protocolo de serialización
se utilizará para enviar datos de ida y vuelta, en qué zona horaria
está el servidor y otros detalles.

Nota: Event ID 32868 es tráfico de cliente a servidor; ID 32867
representa tráfico de servidor a cliente. El uso de estos dos IDs junto
con Construct-PSRemoteDataObject puede revelar la mayoría del
trafico de sesión una vez que se establece la conexión.

Continuando. Como se muestra en la figura 4.10, verá una auten-
ticación de ida y vuelta, durante la cual se pueden esperar algunos
errores. El sistema acabará por superarlo y, como se muestra,
comenzará a recibir trozos de datos del servidor.

Diagnóstico y solución de problemas 91

image060.png

Figura 4.10: Obtención de la autenticación

Una cantidad bastante sorprendente de datos de ida y vuelta puede
ocurrir a medida que las dos computadoras intercambian y compar-
ten información sobre el otro y cómo trabajan, y así sucesivamente.
Vamos a cambiar nuestra salida del registro de eventos, ahora, para
incluir números de ID de evento, porque pueden ser muy útiles
al intentar obtener datos específicos. En este punto, el registro
consistirá principalmente en el cliente que envía comandos y el
servidor que envía los resultados. Esto es más legible cuando se
utiliza Construct-PSRemoteDataObject, así que aquí están los datos
“de aquí para allá”: Primero aparece la declaración del cliente y de
sus capacidades de sesión:

destination : Server messageType : SessionCapability

pipelineId : 00000000-0000-0000-0000-000000000000 runspaceId

: 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><Version

N="protocolversion">2.2</Version><Version N="PSVersion">2.0</Version><Version

N="SerializationVersion">1.1.0.1</Version><BA N="TimeZon e">AAEAAAD/////AQAAAAAAAAAEAQAAABxTeXN0ZW0uQ3VycmVudFN5c

3RlbVRpbWVab25lBAAAABdtX0NhY2hlZERheWxpZ2h0Q2hhbmdlcw1tX 3RpY2tzT2Zmc2V0Dm1fc3RhbmRhcmROYW1lDm1fZGF5bGlnaHROYW1lA

wABARxTeXN0ZW0uQ29sbGVjdGlvbnMuSGFzaHRhYmxlCQkCAAAAAPgpF 9b///8KCgQCAAAAHFN5c3RlbS5Db2xsZWN0aW9ucy5IYXNodGFibGUHA

AAACkxvYWRGYWN0b3IHVmVyc2lvbghDb21wYXJlchBIYXNoQ29kZVByb 3ZpZGVyCEhhc2hTaXplBEtleXMGVmFsdWVzAAADAwAFBQsIHFN5c3Rlb

S5Db2xsZWN0aW9ucy5JQ29tcGFyZXIkU3lzdGVtLkNvbGxlY3Rpb25zL klIYXNoQ29kZVByb3ZpZGVyCOxROD8AAAAACgoDAAAACQMAAAAJBAAAA

BADAAAAAAAAABAEAAAAAAAAAAs=</BA></MS></Obj>

Diagnóstico y solución de problemas 92

Entonces el servidor:

destination : Client messageType : SessionCapability

pipelineId : 00000000-0000-0000-0000-000000000000 runspaceId

: 00000000-0000-0000-0000-000000000000 data : <Obj RefId="0"><MS><Version

N="protocolversion">2.2</Version><Version N="PSVersion">2.0</Version><Version

N="SerializationVersion">1.1.0.1</Version></MS></Obj>

A continuación se muestra el objeto $PSVersionTable del servidor,
que lista varias informaciones de control de versiones:

destination : Client messageType : ApplicationPrivateData

pipelineId : 00000000-0000-0000-0000-000000000000 runspaceId

: 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><Obj

N="ApplicationPrivateData" RefId="1"><TN RefId="0"><T>System.Management.Automation.

PSPrimitiveDictionary</T><T>System.Collections.Hashtable </T><T>System.Object</T></TN><DCT><En><S

N="Key">PSVersionTable</S><Obj N="Value" RefId="2"><TNRef

RefId="0" /><DCT><En><S N="Key">PSVersion</S><Version N="Value">2.0</Version></En><En><S

N="Key">PSCompatibleVersions</S><Obj N="Value" RefId="3"><TN

RefId="1"><T>System.Version[]</T><T>System .Array</T><T>System.Object</T></TN><LST><Version>1.0</Ve

rsion><Version>2.0</Version><Version>3.0</Version></LST> </Obj></En><En><S

N="Key">BuildVersion</S><Version N="Value">6.2.8314.0</Version></En><En><S

N="Key">PSRemotingProtocolVersion</S><Version N="Value">2.2</Version></En><En><S

N="Key">WSManStackVersion</S><Version N="Value">3.0</Version></En><En><S

N="Key">CLRVersion</S><Version N="Value">4.0.30319.261</Version></En><En><S

N="Key">SerializationVersion</S><Version N="Value">1.1.0 .1</Version></En></DCT></Obj></En></DCT></Obj></MS></Obj

>

A continuación, el servidor envía información sobre el espacio de
ejecución que se utilizará:

destination : Client messageType : RunspacePoolStateInfo

pipelineId : 00000000-0000-0000-0000-000000000000 runspaceId

: 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><I32

N="RunspaceState">2</I32></MS></Obj>

El cliente envía información sobre su comando Exit-PSSession:

destination : Server messageType : GetCommandMetadata

Diagnóstico y solución de problemas 93

pipelineId : 03460806-3011-42a6-9843-c54f39ee6fb8 runspaceId

: 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><Obj

N="Name" RefId="1"><TN RefId="0" ><T>System.String[]</T><T>System.Array</T><T>System.Obje

ct</T></TN><LST><S>Out-Default</S><S>Exit-PSSession</S>< /LST></Obj><Obj

N="CommandType" RefId="2"><TN RefId="1"> <T>System.Management.Automation.CommandTypes</T><T>Syste

m.Enum</T><T>System.ValueType</T><T>System.Object</T></T N><ToString>Alias,

Function, Filter, Cmdlet</ToString><I32>15</I32></Obj><Nil

N="Namespace" /><Nil N="ArgumentList" /></MS></Obj>

Un poco más adelante veremos el resultado del comando CD C:\,
que un nuevomensaje de PowerShell que refleja la nueva ubicación
de la carpeta:

destination : Client messageType : PowerShellOutput pipelineId

: c913b8ae-2802-4454-9d9b-926ca6032018 runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <S>PS C:\> </S> A continuación, veremos la salida del
comando Dir. El primer bit define los encabezados de columna para
Mode, LastWriteTime, Length, Name y así sucesivamente. Todo
esto se envía a nuestro cliente - solo incluiremos las primeras líneas,
cada una de las cuales aparece en su propio bloque:

destination : Client messageType : RemoteHostCallUsingPowerShellHost

pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b runspaceId

: 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><I64

N="ci">-100</I64><Obj N="mi" RefId="1"><TN RefId="0"><T>System.Management.Automation.

Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst em.ValueType</T><T>System.Object</T></TN><ToString>Write

Line2</ToString><I32>16</I32></Obj><Obj N="mp" RefId="2"><TN

RefId="1"><T>System.Collections.ArrayList< /T><T>System.Object</T></TN><LST><S>Mode

LastWriteTime Length Name </S></LST></Obj></MS></Obj> destination

: Client messageType : RemoteHostCallUsingPowerShellHost

pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b runspaceId

: 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><I64

N="ci">-100</I64><Obj N="mi" RefId="1"><TN RefId="0"><T>System.Management.Automation.

Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst em.ValueType</T><T>System.Object</T></TN><ToString>Write

Line2</ToString><I32>16</I32></Obj><Obj N="mp" RefId="2"><TN

RefId="1"><T>System.Collections.ArrayList< /T><T>System.Object</T></TN><LST><S>----

------------- ------ ---- </S></LST></Obj></MS></Obj> destination

Diagnóstico y solución de problemas 94

: Client messageType : RemoteHostCallUsingPowerShellHost

pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b runspaceId

: 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><I64

N="ci">-100</I64><Obj N="mi" RefId="1"><TN RefId="0"><T>System.Management.Automation.

Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst em.ValueType</T><T>System.Object</T></TN><ToString>Write

Line2</ToString><I32>16</I32></Obj><Obj N="mp" RefId="2"><TN

RefId="1"><T>System.Collections.ArrayList< /T><T>System.Object</T></TN><LST><S>d----

8/25/2010 8:11 AM IT Structures </S></LST></Obj></MS></Obj>

destination : Client messageType : RemoteHostCallUsingPowerShellHost

pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b runspaceId

: 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><I64

N="ci">-100</I64><Obj N="mi" RefId="1"><TN RefId="0"><T>System.Management.Automation.

Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst em.ValueType</T><T>System.Object</T></TN><ToString>Write

Line2</ToString><I32>16</I32></Obj><Obj N="mp" RefId="2"><TN

RefId="1"><T>System.Collections.ArrayList< /T><T>System.Object</T></TN><LST><S>d----

7/13/2009 11:20 PM PerfLogs </S></LST></Obj></MS></Obj>

Finalmente, el comando finaliza y recibimos el “prompt” de nuevo:

destination : Client messageType : PowerShellOutput pipelineId

: f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9 runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <S>PS C:\> </S> También verá intercambios periódicos
sobre el estado de la tubería (pipeline) - esto indica que el comando
ha finalizado

destination : Client messageType : PowerShellStateInfo

pipelineId : f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9 runspaceId

: 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><I32

N="PipelineState">4</I32></MS></Obj>

Definitivamente hay una gran cantidad de datos que pasan de un
lado a otro, pero es posible entenderlo usando estas herramientas.
Francamente, lamayoría de los problemas de Remoting se producen
durante la fase de conexión, es decir, que una vez se haya conecta-
do, es bastante probable que no tenga más problemas. Así que en
los próximos escenarios, nos centraremos en errores de conexión
específicos.

Diagnóstico y solución de problemas 95

Nota: Para borrar el registro y prepararse para una nueva traza,
usualmente eliminamos los archivos .ETL y entramos en el Visor de
sucesos para borrar los registros de Applications and Services Logs
> Microsoft > Windows > Windows Remote Management. Si está
recibiendo errores al ejecutar Enable-PSWSManCombinedTrace,
una de esas dos tareas probablemente no se ha completado.

Problema de conexión: puerto bloqueado

La Figura 4.11 muestra lo que sucede cuando intenta conectarse
a una computadora y el puerto necesario (5985 por defecto) no
está abierto. Veamos cómo esto aparece en el registro. Tenga en
cuenta que estamos asumiendo que ya ha comprobado el nombre
del equipo y se aseguró de que se resuelve a la dirección IP correcta.
Lo que está viendo es definitivamente un puerto bloqueado (porque
lo configuramos de esa manera) en este ejemplo.

image061.png

Figura 4.11: Error de conexión debido a un cortafuegos u otro

Diagnóstico y solución de problemas 96

problema de bloqueo de puertos.

La Figura 4.12 muestra que hemos resuelto satisfactoriamente
el nombre del equipo. Encontramos que las pruebas con Enter-
PSSession son las más fáciles, porque es muy sencillo detectar ese
comando en el registro y ver cuándo empiezan los datos de registro
“reales”.

image062.png

Figura 4.12: Inicio del intento de conexión

Tenga en cuenta que gran parte del tráfico de registro inicial sigue
siendo WinRM hablando por sí mismo mientras se alista para
el intento de conexión real. Simplemente continúe desplazándose
hasta que comience a ver las indicaciones de problemas. La Figura
4.13 muestra un tiempo de espera - nunca una buena señal - y el
mensaje de error generado por WinRM. Como puede ver, esto es
exactamente lo que tenemos en la pantalla, por lo que PowerShell
no está ocultándonos nada.

Diagnóstico y solución de problemas 97

image063.png

Figura 4.13: El error de tiempo de espera en el registro de diagnós-
ticos

Éste es realmente una de las cosas más difíciles de Remoting. No le
puede decir porqué el servidor no respondió. No se da cuenta que
el puerto no está abierto. Podríamos haber especificado un nombre
de computadora que no existe. Todo lo que sabe WinRM es que se
envió un mensaje a la red y nadie respondió. Al final, casi todos los
posibles problemas de “nivel bajo” – son una dirección IP errada,
un nombre incorrecto de la computadora, un puerto bloqueado, etc.
Son iguales desde el punto de vista de WinRM. Usted tendrá que
solucionar estos problemas.

Hemos encontrado que una técnica útil puede ser usar el antiguo
cliente de Telnet de línea de comandos. Tenga en cuenta que WS-
MAN es sólo HTTP, y HTTP, como muchos protocolos de Internet,
simplemente envía texto de un lado a otro, más o menos lo mismo
que hace Telnet. HTTP tiene un texto específico para enviar y

Diagnóstico y solución de problemas 98

recibir, pero la transmisión real es Telnet de la vieja escuela. Así
que vamos a ejecutar algo como telnet dc01 5985 sólo para ver si
podemos conectar. Una pantalla en blanco es normal: pulsa Ctrl +
C para salir, y verá un error HTTP “Solicitud incorrecta”. Eso está
bien. Al menos confirma que el nombre del equipo, la dirección IP,
el puerto y todo lo demás “de bajo nivel” está bien.

Problema de conexión: Sin Permisos

Esto puede ser un problema complicado, ya que necesita ser un
administrador para habilitar una traza de diagnóstico. Por otra
parte, WinRM suele ser bastante claro cuando no se puede conectar
porque su cuenta no tiene permiso para el punto final: “Acceso
denegado” es el mensaje de error, y eso es bastante sencillo.

Pero también puede iniciar sesión como administrador (o abrir un
shell bajo Credenciales de administrador), habilitar una traza y, a
continuación, hacer que el otro usuario (o la otra cuenta de usuario)
lo intente. Volver atrás como administrador y deshabilitar la traza y
a continuación examinar el registro. La Figura 4.14 muestra lo que
está buscando.

Diagnóstico y solución de problemas 99

image064.png

Figura 4.14: “Acceso denegado” en el registro de diagnósticos

Los datos de registro le mostrarán la cuenta de usuario que se
utilizó para intentar crear la conexión (AD2008R2SallyS, en nuestro
ejemplo, por lo que el comando falló - ella no es un administra-
dor). Una comprobación rápida con Get-PSSessionConfiguration
en el equipo remoto confirmará los permisos en cualquier punto
final de Remoting al que intente conectarse. Además, como se
muestra en la figura 4.15, hemos descubierto que ejecutar Set-
PSSessionConfiguration puede ser útil. Proporcione el -nombre del
punto final que está comprobando y agregue -ShowSecurityDescriptorUI.
Eso le permitirá confirmar los permisos del punto final en un
formulario GUI más amigable, y puede modificarlo allí mismo si

Diagnóstico y solución de problemas 100

es necesario.

image065.png

Figura 4.15: Comprobación de los permisos de un punto final
mediante Set-PSSessionConfiguration

Problema de conexión: Host no confiable

La Figura 4-16 muestra la conexión que estamos intentando reali-
zar: Desde el cliente en el dominio AD2008R2 a un equipo indepen-
diente que no forma parte de un dominio.

Diagnóstico y solución de problemas 101

image066.png

Figura 4.16: Tentativa de conexión para este escenario

Como se muestra en la figura 4.17, el error se produce rápidamente,
aunque hemos proporcionado una credencial válida. El problema es
que estamos en una situación en la que WinRM no puede obtener
la autenticación mutua que requiere. La parte 2 de esta guía cubre
soluciones para este problema. Pero, ¿cómo se ve el problema en el
registro de diagnósticos?

Diagnóstico y solución de problemas 102

image067.png

Figura 4.17: El mensaje de error da buenas pistas sobre cómo
resolver este problema

La Figura 4.18 muestra que WinRM todavía envía su salva inicial
de tráfico al servidor. Es cuando la respuesta vuelve que el cliente
se da cuenta que no puede autenticar este servidor, y se genera el
error. Lo que ve en el registro es más o menos lo que aparece en el
shell, literalmente.

Diagnóstico y solución de problemas 103

image068.png

Figura 4.18: El contenido del registro de diagnóstico al intentar
conectarse a un host no confiable

La Figura 4.19 muestra un buen segundo paso: Ejecutar Test-
WSMan. Proporcione el mismo nombre de equipo o dirección IP,
pero deje fuera el parámetro -Credential. El Cmdlet puede al menos
indicarle que WS-MAN y WinRM están funcionando en el equipo
remoto y la versión que están ejecutando. Eso, por lo menos, reduce
el problema a uno de autenticación: o bien sus permisos (que

Diagnóstico y solución de problemas 104

habrían resultado en un “Acceso denegado”) o el componente de
autenticación mutua de Remoting.

image069.png

Figura 4.19: Test-WSMan es como un “ping” para Remoting

Nota: Verá prácticamente el mismo comportamiento cuando in-
tenta conectarse mediante HTTPS (el conmutador -UseSSL en los
distintos comandos de Remoting) y el nombre del certificado SSL
de la máquina remota no coincide con el nombre que utilizó en su
comando. El mensaje de error es inequívoco tanto en pantalla como
en el registro, y discutiremos las soluciones en la parte 2 de la guía.

Metodología Estándar de Solución
de Problemas

Solucionar problemas puede ser difícil, especialmente con Remo-
ting ya que haymuchas capas en las que algo puede salir mal. Seguir

Diagnóstico y solución de problemas 105

un enfoque sencillo y estandarizado puede ayudarle a identificar
problemas.

1. Probar Remoting con su configuración predeterminada. Si
ha cambiado algo, deshacer los cambios y empezar de cero.
Comience por intentar conectarse desde la máquina inicia-
dora a la máquina de destino utilizando algo distinto de
Remoting, pero que siga siendo sensible a la seguridad. Por
ejemplo, utilice el Explorador de Windows para abrir la
carpeta compartida C$ de la máquina remota.

2. Si eso no funciona, tiene problemas de seguridad más ge-
nerales. Anote si necesita o no proporcionar credenciales
alternativas - si lo hace, Remoting las necesitará también.

3. Instalar un cliente Telnet en la máquina iniciadora (un simple
cliente de línea de comandos, como el que viene con Win-
dows). Intente conectarse al oyente HTTPWinRM ejecutando
telnet nombre_máquina: 5985. Debería obtener una pantalla
en blanco y Ctrl + C finalizará la sesión. Si esto no funciona,
hay un problema básico de conectividad (como un puerto
bloqueado) que necesita resolver.

4. Utilice Test-WSMan como se describió anteriormente, utili-
zando una credencial alternativa si es necesario. Asegúrese de
que utiliza el nombre real de la máquina tal como aparece en
Active Directory o que ha tomado uno de los otros enfoques
(TrustedHosts más una credencial o SSL más una credencial)
que describimos en la Sección 2 de esta guía. Si eso no
funciona, tiene un problema en la configuración deWS-MAN

Simplemente avanzar por estos cuatro pasos, en este orden, puede
ayudarle a identificar al menos la causa general de la mayoría de
los problemas.

Diagnóstico y solución de problemas 106

Resumen

Entonces, ¿por qué nos molestábamos en pasar por los registros
cuando, en la mayoría de nuestros ejemplos, los registros simple-
mente hacían eco de lo que estaba en la pantalla? Simple: A medida
que PowerShell se inserta enmás ymás aplicaciones GUI, es posible
que no siempre tenga una consola, con sus mensajes de errores
agradables, en la que confiar. Lo que puede hacer, sin embargo,
es usar la consola para iniciar un seguimiento, ejecutar cualquier
aplicación GUI que este fallando y luego buscar en el registro para
ver si encuentra algunos de los signos que le hemos mostrado aquí.

Gestión de sesiones
Cuando crea una conexión Remoting entre dos máquinas, está
creando una sesión en la terminología de PowerShell. Hay un
número increíble de opciones que se pueden aplicar a estas sesiones,
y en esta parte de la guía los guiaremos a través de ellas.

Sesiones Ad-Hoc vs. Persistentes

Cuando utiliza un comando Remoting, principalmente Invoke-
Command o Enter-PSSession, y especifica un nombre de equipo
utilizando su parámetro -ComputerName, está creando una sesión
AdHoc. Básicamente, PowerShell crea una sesión, la utiliza, y luego
ejecuta sus comandos, todo de forma automática.

De manera alternativa, puede utilizar New-PSSession para crear
explícitamente una nueva sesión, que luego puede utilizarse pa-
sándola como el parámetro -Session de Invoke-Command, Enter-
PSSession y muchos otros comandos compatibles con Remoting.
Cuando crea manualmente una sesión, es su responsabilidad des-
hacerse de ella cuando haya terminado de utilizarla. Sin embargo,
si tiene una sesión abierta y cierra su instancia de PowerShell,
esa sesión se eliminará automáticamente por usted, por lo que no
estaría dejando nada pendiente que necesita ser limpiado.

Desconexión y Reconexión de
Sesiones

En PowerShell v3, puede desconectar y volver a conectar sesiones
utilizando Disconnect-PSSession y Connect-PSSession. Estos co-

Gestión de sesiones 108

mandos aceptan cada uno un objeto de sesión, que normalmente
crearía con New-PSSession.

Una sesión desconectada deja una copia de PowerShell en fun-
cionamiento en el equipo remoto. Esta es una buena manera
de ejecutar una tarea de larga duración, desconectarse y luego
volver a conectarse más tarde para comprobar su estado. Incluso
puede desconectar una sesión en una computadora, moverse a otra
computadora y volver a conectarse a esa sesión (aunque no puede
conectarse a la sesión desconectada de otro usuario porque está
limitado a volver a conectarse a la suya).

Por ejemplo, la figura 5.1 muestra una sesión que se está creando
desde un cliente a un servidor. A la sesión se le asigna una tarea para
realizarla como un trabajo de fondo y, a continuación, se desconecta
la sesión. Es importante tener en cuenta que el comando y el trabajo
de fondo están en el servidor (DC01), no en el cliente.

image070.png

Figura 5.1: Creación, uso y desconexión de una sesión

En la figura 5.2, nos hemos trasladado a una máquina diferente.

Gestión de sesiones 109

Hemos iniciado sesión y ejecutado PowerShell, como el mismo
usuario que estábamos en el equipo cliente anterior. Recuperamos
la sesión desde el equipo remoto y la reconectamos. Luego entramos
en la sesión conectada nuevamente, mostramos ese trabajo en
segundo plano y recibimos algunos resultados del mismo. Final-
mente, salimos de la sesión remota y “apagamos la sesión”mediante
Remove-PSSession.

image071.png

Figura 5.2: Reconectar, utilizar y eliminar una sesión

Obviamente, las sesiones desconectadas pueden ser un reto para
los procesos de administración, porque está dejando una copia de
PowerShell en funcionamiento en una máquina remota y lo está
haciendo de una manera que se hace difícil para alguien “verle”.
Ahí es donde entran en juego las opciones de sesión.

Gestión de sesiones 110

Opciones de Sesión

Cada vez que ejecuta un comando Remoting que crea una sesión, ya
sea persistente o Ad Hoc, tiene la opción de especificar un paráme-
tro -SessionOption que acepte un objeto PSSessionOption. El objeto
de opción predeterminado se utiliza si no especifica uno, y ese
objeto se puede encontrar en la variable global $PSSessionOption.
Se muestra en la figura 5.3.

image072.png

Figura 5.3: El objeto PSSessionOption predeterminado almacenado
en $PSSessionOption

Como se puede ver, especifica un número de valores predetermi-
nados, incluyendo el tiempo de espera de la operación, el tiempo
de espera inactivo y otras opciones. Puede cambiar estos valores
simplemente creando un nuevo objeto de opción de sesión y asig-
nándolo a $PSSessionOption. Tenga en cuenta que debe realizar
esto en una secuencia de comandos de perfil si desea que los
cambios se conviertan en el nuevo valor predeterminado cada vez

Gestión de sesiones 111

que abra una nueva copia de PowerShell. La figura 5.4 muestra un
ejemplo..

image073.png

Figura 5.4: Creación de un nuevo objeto PSSessionOption predeter-
minado

Por supuesto, un tiempo de inactividad de 2 segundos probable-
mente no es muy práctico (y de hecho no funcionará) por lo que
debería especificar al menos un tiempo de espera de 60 segundos
para lograr utilizar el objeto de sesión). Sin embargo, notará que
sólo es necesario especificar los parámetros de opción que desea
cambiar. Todo lo demás se establecerá a sus valores predetermi-
nados. También puede especificar una opción de sesión única para
cada sesión que cree. La figura 5.5 muestra una forma de hacerlo.

Gestión de sesiones 112

image074.png

Figura 5.5: Creación de un nuevo objeto PSSessionOption para usar
con una conexión 1-a-1

Mediante la especificación de valores convenientes para estas op-
ciones, puede ayudar a garantizar que las sesiones desconectadas
no se cierren y funcionen de manera adecuada. Un tiempo de
espera de inactividad razonable, por ejemplo, asegura que la sesión
acabará cerrándose, incluso si un administrador se desconecta y
posteriormente se olvida de ella. Tenga en cuenta que cuando se
cierra una sesión, se perderán todos los datos de esa sesión, inclui-
dos los resultados de los trabajos en segundo plano. Probablemente
sea una buena idea adoptar alguna practica para guardar datos en
un archivo (por ejemplo, utilizando Export-CliXML, por ejemplo),
para que una sesión inactiva no se cierre y se pierda todo su trabajo.

PowerShell, Remoting y
la Seguridad

Aunque PowerShell Remoting ha existido desde aproximadamente
2010, muchos administradores y organizaciones no pueden apro-
vecharse de ello, debido en gran parte a las políticas anticua-
das o desinformadas de seguridad y prevención de riesgos. Este
capítulo está diseñado para ayudar a abordar algunos de ellos,
al proporcionar detalles técnicos honestos sobre cómo funcionan
estas tecnologías. De hecho, presentan un riesgo significativamente
menor que muchos de los protocolos de gestión y comunicaciones
que ya están en uso generalizado; los protocolos más antiguos se
benefician principalmente de estar “anclados” en políticas, pero
nunca examinados de cerca.

Ni PowerShell ni Remoting son una
“puerta trasera” para el Malware

Este es un gran error. Tenga en cuenta que de forma predetermina-
da, PowerShell no ejecuta secuencias de comandos. Cuando lo hace,
sólo puede ejecutar comandos que el usuario ejecutor tiene permiso
para ejecutar - no ejecuta nada bajo una cuenta super-privilegiada,
y tampoco omite ni los permisos existentes ni la seguridad. De
hecho, como PowerShell está basado en .NET, es improbable que
algún autor de malware se moleste en utilizar PowerShell. Tal
atacante podría simplemente llamar a la funcionalidad de .NET
Framework directamente mucho más fácilmente.

De forma predeterminada, PowerShell Remoting sólo permite que
los administradores se conecten y, una vez conectados, sólo pueden

PowerShell, Remoting y la Seguridad 114

ejecutar comandos con permisos para ejecutarlos, sin posibilidad
de omitir permisos o seguridad subyacente. A diferencia de las he-
rramientas anteriores que funcionaban bajo una cuenta altamente
privilegiada (como LocalSystem), PowerShell Remoting ejecuta los
comandos impersonando al usuario que envió los comandos.

Conclusión: Debido a la forma en que funciona, PowerShell Remo-
ting no permite que ningún usuario, autorizado o no, haga algo que
no pueda hacer a través de una docena de otros medios, incluido el
inicio de sesión en la consola. Cualquier protección que usted tenga
en su lugar para prevenir ese tipo de ataques (como mecanismos
apropiados de autorización y autenticación) también protegerá a
PowerShell y a Remoting. Si permite a los administradores iniciar
sesión en las consolas de servidor, ya sea físicamente o mediante el
Escritorio remoto, tiene una exposición de seguridad mucho mayor
que la que realiza a través de PowerShell Remoting.

Además, PowerShell ofrece una mejor oportunidad para limitar
incluso a los administradores. Un EndPoint Remoting (o la confi-
guración de la sesión) se puede modificar para permitir que sólo
los usuarios especificados se conecten a él. Una vez conectado,
el EndPoint puede restringir más los comandos que esos usuarios
pueden ejecutar. Esto proporciona una oportunidad mucho mejor
para la administración delegada. En lugar de hacer que los admi-
nistradores inicien sesión en las consolas y hagan lo que les plazca,
puede hacer que se conecten a EndPoints restringidos y seguros y
que sólo completen las tareas específicas que el EndPoint permite

PowerShell Remoting no es opcional

A partir de Windows Server 2012, PowerShell Remoting está habi-
litado de forma predeterminada y es obligatorio para la adminis-
tración del servidor. Incluso cuando se ejecuta una consola de ad-
ministración gráfica localmente en un servidor, la consola todavía
“envía” y “responde” a través de Remoting para realizar sus tareas.
Sin Remoting, la administración del servidor es imposible. Por lo
tanto, las organizaciones están bien informadas para comenzar

PowerShell, Remoting y la Seguridad 115

inmediatamente a encontrar una forma de incluir Remoting en
sus protocolos permitidos. De lo contrario, los servicios críticos no
podrán ser administrados, ni siquiera a través de Escritorio remoto
o directamente en la consola del servidor.

Este enfoque realmente ayuda a protegermejor los centros de datos.
Debido a que la administración local es exactamente la misma que
la administración remota (a través de Remoting), ya no hay ninguna
razón para acceder físicamente o de forma remota a las consolas
de servidor. Las consolas pueden así permanecer más bloqueadas
y protegidas, y los administradores pueden permanecer fuera del
centro de datos por completo.

Remoting no transmite ni almacena
credenciales

De forma predeterminada, Remoting utiliza Kerberos, un protocolo
de autenticación que no transmite contraseñas a través de la
red. En su lugar, Kerberos se basa en contraseñas con una clave
de cifrado, asegurando que las contraseñas permanezcan seguras.
Remoting puede configurarse para usar protocolos de autenticación
menos seguros (como Basic), pero también puede configurarse para
requerir el cifrado basado en certificados para la conexión.

Además, Remoting nunca almacena credenciales en ningún alma-
cenamiento persistente de forma predeterminada. Una máquina
remota nunca tiene acceso a las credenciales de un usuario. Sólo
tiene acceso a un token de seguridad delegado (un “ticket” de
Kerberos), que se almacena en la memoria volátil que no puede,
por diseño del Sistema Operativo, ser escrito en el disco - incluso
en el archivo de página (page file) del SistemaOperativo. El servidor
presenta ese token al Sistema Operativo al ejecutar comandos,
haciendo que el comando sea ejecutado con la autoridad del usuario
original que invoca- y nada más

PowerShell, Remoting y la Seguridad 116

Remoting utiliza el cifrado

La mayoría de las aplicaciones habilitadas para Remoting aplican
su propia encriptación a su tráfico a nivel de aplicación enviado
a través de Remoting. Sin embargo, Remoting también puede
configurarse para utilizar HTTPS (conexiones con cifrado de cer-
tificado) y puede configurarse para que HTTPS sea obligatorio.
Esto cifra todo el canal utilizando cifrado de alto nivel, al tiempo
que garantiza la autenticación mutua tanto del cliente como del
servidor.

Remoting es transparente para la
seguridad

Como se ha indicado, Remoting ni añade nada ni quita nada a
su configuración de seguridad existente. Los comandos remotos se
ejecutan utilizando las credenciales delegadas de cualquier usuario
que invoque los comandos, lo que significa que sólo pueden hacer lo
que tienen permiso para hacer, y lo que podrían presumiblemente
hacer con media docena de otras herramientas de todos modos.
Cualquiera que sea la auditoría que tenga en su entorno no puede
ser ignorada por Remoting. A diferencia de muchas soluciones
anteriores de “ejecución remota”, Remoting no funciona bajo una
cuenta “super-privilegiada” amenos que la configure de esamanera
(lo que requiere varios pasos y no puede lograrse accidentalmente,
ya que requiere la creación de EndPoints personalizados).

Recuerde: cualquier cosa que alguien puede hacer a través de
Remoting, ya la puede hacer a través de media docena de formas
diferentes. Remoting simplemente proporciona como unmediomás
consistente, controlable y escalable de hacerlo

PowerShell, Remoting y la Seguridad 117

Remoting es una sobrecarga menor

A diferencia de Remote Desktop Connection (RDC, que muchos
Administradores utilizan actualmente para administrar servidores
remotos), Remoting es una cargamenor. No requiere que el servidor
genere un entorno operativo gráfico entero, lo que afecta el rendi-
miento del servidor y la gestión de la memoria. El control remoto
también es más escalable, permitiendo a los usuarios autorizados
(principalmente administradores en la mayoría de los casos) eje-
cutar comandos contra varios servidores a la vez, lo que mejora la
coherencia y reduce el error, al tiempo que acelera los tiempos de
respuesta y reduce los gastos administrativos.

Remoting es el camino a seguir de Microsoft. No utilizar Remoting
es intentar usar deliberadamente Windows de una manera para
la que no que fue diseñado. Reducirá, no mejorará su seguridad,
al mismo tiempo que aumentará la sobrecarga operacional, lo que
permitirá mayores errores humanos y reducirá el rendimiento del
servidor. Los Administradores de Microsoft han trabajado durante
décadas bajo un paradigma operacional que estaba mal dirigido
y era miope. Remoting está finalmente entregando a Windows el
modelo administrativo que todos los sistemas operativos de red han
utilizado durante años, si no décadas.

Remoting utiliza autenticación
mutua

A diferencia de casi todas las demás técnicas de gestión remota
- incluyendo herramientas como PSExec e incluso, en algunas
circunstancias, Remote Desktop, PowerShell Remoting por defecto
requiere autenticación mutua. El usuario que intenta conectarse a
un servidor es autenticado y conocido. El sistema también asegura
que el servidor conectado sea el servidor deseado y no un impostor.

PowerShell, Remoting y la Seguridad 118

Esto proporciona una seguridad mucho mejor que las técnicas
anteriores, al mismo tiempo que ayuda a reducir errores ya que no
se puede “iniciar sesión accidentalmente en la consola incorrecta”,
como podría hacerlo si tuviera que ingresar en el centro de datos.

Resumen

En este punto, negar PowerShell Remoting es como negar Ethernet.
Es ridículo pensar que operará exitosamente su entorno sin él. Por
primera vez, Microsoft ha proporcionado una tecnología oficial,
soportada, para la administración de servidores remotos que no
utiliza credenciales elevadas, no almacena credenciales de ninguna
manera, que admite autenticación mutua y que es transparente en
cuanto a seguridad. Esta es la tecnología de administración que
deberíamos haber tenido todo el tiempo; Moviéndose a Remoting
solamente hará su ambiente más manejable y más seguro, no
menos.

Configuración de
Remoting mediante GPO
La documentación de About_remote_troubleshooting de PowerS-
hell proporciona un conjunto de pasos para configurar la fun-
cionalidad de Remoting básica a través de objetos de directiva
de grupo (GPO). Ejecutando Enable-PSRemoting también revela
algunos detalles útiles, como las cuatro principales configuraciones
necesarias. En esta sección, cubriremos estos pasos de configura-
ción principales.

Nota: Nada de esto es necesario en Windows Server 2012 y ver-
siones posteriores del sistema operativo de servidor. Remoting
está habilitado de forma predeterminada y no debería encontrar
problemas, ya que muchas de las herramientas de administración
nativas (incluidas las consolas GUI, como el Administrador de
servidores) dependen de Remoting.

Advertencias de GPO

Una cosa a tener en cuenta es que a través de una GPO sólo se
pueden establecer cambios de configuración. No se puede cambiar
el estado del ordenador. En otras palabras, mientras una GPO puede
configurar el modo de inicio de un servicio como “Automático”, no
puede iniciar el servicio. Por lo tanto, en muchos casos, los cambios
que realice a través de GPO (con respecto a Remoting) no surtirán
efecto hasta la próxima vez que se reinicien los equipos afectados,
ya que en la mayoría de los casos la computadora sólo mira la
configuración durante el arranque. No pierda esto de vista.

Además, todo en esta sección supone que PowerShell ya está

Configuración de Remoting mediante GPO 120

instalado en los equipos de destino, algo que también se puede
lograr con una GPO u otro mecanismo de implementación de
software, por lo tanto no vamos a cubrir eso aquí. Tenga en cuenta
que la mayor parte de esta sección debería aplicarse a PowerShell
v2 o v3. En esto ejemplos, vamos a utilizar v2 en un equipo cliente
con Windows 7 perteneciente a un dominio de Windows Server
2008 R2.

Nota: Algunas de las configuraciones de GPO que estaremos revi-
sando estarán disponibles en Windows 2008 y Windows 2008 R2,
por lo que debería ser capaz de instalar las plantillas administra-
tivas necesarias en cualquier controlador de dominio. El Kit de
herramientas de administración remota (RSAT) de Windows 7 (y
versiones posteriores) contiene las plantillas necesarias.

No sabemos con certeza si los pasos de configuración de GPO deben
realizarse en el orden en que los presentamos. En la mayoría de los
casos, esperamos que los haga todos a la vez en un solo GPO, por lo
que no debería importar. Lo llevaremos paso a paso en este orden
para que podamos comprobar los resultados individuales a lo largo
del camino.

Permitir la configuración
automática de los escuchas

(Listeners) de WinRM

Como se explicó anteriormente en esta guía, el servicio WinRM
configura uno o más oyentes (listeners) para aceptar el tráfico
entrante. Ejecutar Enable-PSRemoting, por ejemplo, configura un
detector de HTTP y ya hemos cubierto cómo configurar un detector
de HTTPS además de, o en lugar de, uno predeterminado.

Encontrará esta configuración en: Computer Configuration\Administrative
Templates\Windows Components\Windows Remote Management

Configuración de Remoting mediante GPO 121

(WinRM)\WinRM Service. Habilite la directiva y especifique los
filtros IPv4 e IPv6, que determinan en qué rangos de direcciones
IP se configurará. Puede utilizar el comodín * para designar todas
las direcciones IP, que es lo que hemos hecho en la Figura 7.1.

image075.png

Figura 7.1: Habilitación de la configuración automática de los
oyentes de WinRM

Configuración del servicio WinRM
para que se inicie automáticamente

Este servicio está configurado para iniciarse automáticamente en
los sistemas operativos de servidor más recientes (Windows Server
2003 y posteriores), pero no en los clientes, así que este paso sólo
será necesario para los equipos cliente. Una vezmás, esto no iniciará
el servicio, pero la próxima vez que se reinicie el equipo, el servicio

Configuración de Remoting mediante GPO 122

se iniciará automáticamente.

Microsoft sugiere realizar esta tarea ejecutando un comando de Po-
werShell, que no requiere que se habilite Remoting para funcionar:

Set-Service WinRM -computername $servers -startup Automatic

Puede llenar $servers de la forma que desee, siempre que contenga
cadenas que sean nombres de equipos y siempre y cuando tenga
credenciales de administrador en esos equipos. Por ejemplo, para
capturar cada equipo de su dominio, ejecutaría lo siguiente (esto
supone PowerShell v2 o v3, en un equipo con Windows 7 con el
RSAT instalado):

Import-Module ActiveDirectory $servers = Get-ADComputer

-filter * | Select -expand name

Es probable que desee limitar el número de ordenadores especi-
ficando un - Filter distinto de “*” o especificando -SearchBase y
limitando la búsqueda a una UO específica. Lea la ayuda de Get-
ADComputer para obtenermás información sobre esos parámetros.

Tenga en cuenta que Set-Service devolverá un error si no puede
conectarse a una computadora o aquellas para las que el cambio no
se pudo establecer y luego continuara con la siguiente computadora
en la lista.

También puede configurar esto con una GPO. En Computer Con-
figurationWindows SettingsSecurity SettingsSystem Services, bus-
que “Windows Remote Management “. Haga clic con el botón
derecho y establezca un modo de inicio automático. Eso es lo que
hicimos en la figura 7.2.

Configuración de Remoting mediante GPO 123

image076.png

Figura 7.2: Configuración del modo de inicio del servicio WinRM

Creación de una excepción de
Firewall de Windows

Este paso será necesario en todos los equipos en los que esté habi-
litado el Firewall de Windows. Estamos asumiendo que sólo desea
que Remoting esté habilitado en su perfil de firewall de dominio,
de modo que eso es todo lo que haremos en nuestro ejemplo. Por
supuesto, usted puede gestionar cualquier otra excepción que desee
en los perfiles que sean apropiados para su entorno.

Encontrará una configuración Computer ConfigurationAdminis-
trative TemplatesNetworkNetworkConnectionsWindows Firewall-
Domain Profile. Tenga en cuenta que la directiva “ Windows
Firewall: Allow Local Port Exceptions “ simplemente permite a

Configuración de Remoting mediante GPO 124

los administradores locales configurar las excepciones de Firewall
mediante el Panel de control. En realidad no crea excepciones.

Entonces, ubicamos la política “Define inbound port exceptions “ y
lo habilitamos, como se muestra en la figura 7.3

image077.png

Figura 7.3: Habilitación de excepciones de Firewall

A continuación, hicimos clic en “ Show “, y agregamos “ 5985:TCP:*:enabled:WinRM
“ como una nueva excepción, como se muestra en la figura 7.4.

Configuración de Remoting mediante GPO 125

image078.png

Figura 7.4: Creación de la excepción de Firewall

¡Darle una oportunidad!

Después de aplicar los cambios de GPO anteriores, reiniciamos
nuestro equipo cliente. Cuando se inicia el servicio WinRM, este
comprueba si tiene oyentes configurados. Cuando descubra que
no lo hace, debería intentar configurar automáticamente uno, lo
que ahora le hemos permitido hacer mediante GPO. La excepción
Firewall debe permitir que el tráfico entrante llegue al oyente.

Como se muestra en la figura 7.5, parece que funciona. ¡Hemos
encontrado al oyente recién creado!

Configuración de Remoting mediante GPO 126

image079.png

Figura 7.5: Comprobación del escuchador WinRM recién creado

Por supuesto, no se puede saber si algo funciona, hasta que no se
pone a prueba. Así que intentamos conectar desde otra compu-
tadora y, como se muestra en la figura 7.6, pudimos iniciar una
sesión de Remoting interactiva en nuestro equipo cliente original.
No hemos configurado nada excepto a través de GPO, y todo está
funcionando.

Configuración de Remoting mediante GPO 127

image080.png

Figura 7-6: Iniciando una sesión de Remoting 1-a-1 con el equipo
cliente configurado mediante GPO

Lo que no se puede hacer con una
GPO

No puede utilizar una GPO para iniciar el servicio WinRM, como
ya lo hemos indicado. Tampoco se pueden crear escuchas (listeners)
personalizadas a través de GPO, ni puede crear puntos finales de Po-
werShell personalizados (configuraciones de sesión). Sin embargo,
una vez que se habilita el Remoting básico mediante GPO, puede
utilizar el Cmdlet Invoke-Command de PowerShell para realizar
de forma remota esas tareas. Incluso puede usar Invoke-Command
para deshabilitar remotamente el oyente HTTP predeterminado, si
así lo desea.

Además, tenga en cuenta que elWSMANPSProvider de PowerShell

Configuración de Remoting mediante GPO 128

puede asignar la configuración WinRM de los equipos remotos a la
unidad WSMAN local. Es por eso que, por defecto, la “carpeta” de
nivel superior en esa unidad es “localhost”; De modo que hay un
lugar para agregar otros ordenadores, si lo desea. Eso ofrece otra
forma de configurar oyentes (listeners) y otros ajustes relacionados
con Remoting.

La verdadera clave es utilizar GPO para habilitar Remoting en su
forma básica. A partir de ahí, puede utilizar Remoting en sí para
modificar, reconfigurar y/o establecer la configuración

	Tabla de contenidos
	Secretos de PowerShell Remoting
	Fundamentos de Remoting
	¿Qué es Remoting?
	Examinando la arquitectura de Remoting
	Habilitando Remoting
	Entorno de pruebas
	Primeros pasos con Remoting
	Tareas “core” de Remoting
	Remoting devuelve datos deserializados
	Enter-PSSession vs. Invoke-Command

	Acceso a equipos remotos
	Configuración de un HTTPS Listener
	Autenticación de certificados
	Modificación de la lista TrustedHosts
	Conexión a través de dominios
	Administradores de otros dominios
	El segundo salto

	Trabajar con Endpoints (también conocido como Configuraciones de Sesión)
	Conexión a un punto final diferente
	Creación de un punto de extremo personalizado
	Precauciones de seguridad con puntos finales personalizados

	Diagnóstico y solución de problemas
	Ejemplos de diagnósticos
	Metodología Estándar de Solución de Problemas
	Resumen

	Gestión de sesiones
	Sesiones Ad-Hoc vs. Persistentes
	Desconexión y Reconexión de Sesiones
	Opciones de Sesión

	PowerShell, Remoting y la Seguridad
	Ni PowerShell ni Remoting son una ``puerta trasera'' para el Malware
	Remoting no transmite ni almacena credenciales
	Remoting utiliza el cifrado
	Remoting es transparente para la seguridad
	Remoting es una sobrecarga menor
	Remoting utiliza autenticación mutua
	Resumen

	Configuración de Remoting mediante GPO
	Advertencias de GPO
	Permitir la configuración automática de los escuchas (Listeners) de WinRM
	Configuración del servicio WinRM para que se inicie automáticamente
	Creación de una excepción de Firewall de Windows
	¡Darle una oportunidad!
	Lo que no se puede hacer con una GPO

