
Table of contents

I. PREREQUISITES
II. OBJECTIVE
III. INTRODUCTION
IV. GETTING STARTED

1. LAUNCHING A HEADLESS BROWSER

V. MAKING A TRIPADVISOR SCRAPER

1. LAUNCHING CHROME
2. VISITING TRIPADVISOR
3. CLICKING AN ELEMENT IN PUPPETEER
4. LOCATING SIGN IN BTN
5. LOCATE CONTINUE & EMAIL BTN
6. READING AUTHENTICATION DETAILS
7. WRITING TO AN INPUT FIELD
8. FILLING AUTHENTICATION DETAILS
9. CHECK FOR [RE]CAPTCHA
10. LOCATE HOTELS LINK
11. EXITING CHROME
12. SAVING HOTELS
13. FINISHING UP

VI. RUNNING THE SCRAPER
VII. NUMERICAL RESULTS

II. Objective
At the end of this article, you will be able to scrape any kind of JS-
driven website with great speed while you avoid limitations.

You can download the project as zip or view it in GitHub.

III. Introduction
General Introduction

As in 2017, about 94.5% of websites use Javascript and 35% of
them require it. Even though web developers provide fallback to
browsers that do not support Javascript, most websites today will
not function unless Javascript is supported by the browser

Essential Difference Between Static Websites and JS-
rendered ones

Web scraping started off with making network requests to the
server and parsing the returned html markup to get the required
data. There are a lot of modules/libraries used in making
requests, and we have the ones we use in parsing the returned
html markup to get the data we want from a document.

A popular Node.js module for making HTTP requests is request-
promise and a common module for parsing HTML markup is
cheerio. With cheerio, you are able to use jQuery syntax to
extract the data you want from an HTML document.

This style of scraping websites is straight-forward, direct, fast
and very performant. But a web scraping professional will not
rely on this style of making web scrapers because it is close to
being archaic as a lot of websites today return a very minimal
HTML markup so that the data you intend to extract are not in
the markup.

If you visit the same website with a Javascript-enabled web
browser, the data is present. This is due to the fact that the data
you want are being rendered with Javascript while the web
scraper one makes cannot execute Javascript code. This article
guides you through how to start building web crawlers that are
able to execute Javascript code and expose an updated
Document Object Model which contains data you want.

As a web bot developer, you need to up your game by learning to
scrape Javascript-dependent websites effortlessly. Luckily, this
guide teaches you all you need to be able to scrape any kind of
website.

http://webscraping.pro/src/nodejs/js-dependent-website-scraping.zip
https://github.com/devjohneniola/js-dependent-scraping
https://www.npmjs.com/package/request-promise
https://www.npmjs.com/package/cheerio

IV. Getting Started
Make sure Node.js and NPM are installed

First check if your Node is installed by running node -version
(shortcut: node -v) on the terminal (also called shell or command
line but for the purpose of simplicity, let's stick to terminal
throughout this article), and that npm (node package manager)
is also installed by running npm -version (shortcut: npm -v). The
two should output the current version of Node and npm you are
running as shown below:

unless Node is not well installed on your version where you will
now have to install it. Make sure you are running Node.js v12 or a
later version. It is recommended to be running a stable release.

Create a folder and set it up for your web scraping
project

A good practice is to have a folder where all your web scraping
projects are stored and you should name each folder the name of
the project or rather follow a naming convention for your
projects. The first step is to create a folder and navigate to it on
the command line (also called terminal or shell). The folder I
created for this project is js-dependent-scrape.

Then run npm init in your project directory and you will have an
interactive screen waiting for your inputs like below:

As you can see, the package name is having js-dependent-

1. Launching a Headless Browser
We will be creating a function in the funcs/browser.js file, one
launches a browser in headless mode and opens new pages. We
will then export these functions so that other files can access it.

A simple function to launch the browser is:

const launchChrome = async () => {
 const puppeteer = require("puppeteer");

 const args = [
 "--disable-dev-shm-usage",
 "--no-sandbox",
 "--disable-setuid-sandbox",
 "--disable-accelerated-2d-canvas",
 "--disable-gpu",
 "--lang=en-US,en"
]; let chrome;
 try {
 chrome = await puppeteer.launch({
 headless: true, // run in headless mode
 devtools: false, // disable dev tools
 ignoreHTTPSErrors: true, // ignore https error
 args,
 ignoreDefaultArgs: ["--disable-extensions"],
 });
 return chrome;
 } catch(e) {
 console.error("Unable to launch chrome", e);
 return false;
 }
};

All the above does is launch Chrome, we need to create 2
functions inside this function such that our function returns an
array of the 2 functions. The first function creates a new page
and the second function exits the launched browser.

It is better to use the async/await syntax (like you see above) when the
next statement or expressions or functions depend on the current one.

The newPage function:

VII. Numerical Results
Scrape speed comparison table

Chromium headless instance* HTTP requests

Setup time, ms 45000 5

Log-in time, ms 105000 13

1 page load time, ms 6 10

*based on TripAdvisor scrape

Regular scraping without launching a Chromium instance seems
slower to scrape the pages because it mostly involves making
HTTP requests that download the whole HTML document. While
headless scraping could make just AJAX (XmlHttp) requests to
the server to get just the needed data (hotels in this context)
without having to download other unnecessary data.

The scraper ran for approx. 3 mins. To scrape 30 hotel listings
from the first page of TripAdvisor London hotels listings, it took
approx. 3.55 mins and 193MB of RAM on my local computer with
(4.00GB of RAM and 1.30GHz CPU).

While for scraping the same amount of data, it ran for approx.
2.36 mins and 225MB of RAM on a remote server (4.00GB of
RAM and 2.40GHz CPU). Particular results depend on the
available CPU, memory, and network speed.

Avg. time to launch the headless Chrome instance and sign in is
2.50 mins, and the average scraping speed to scrape the 30
hotel listings off each page is approx. 1 page / 6 ms.

While a regular scraping without launching a headless browser
would take an average of 18 ms to sign in, and the average
speed would be 1 page / 10 ms.

