

[image: Scheming: The journey through functional programming, language design, insobriety and bad jokes]

 Scheming: The journey through functional programming, language design, insobriety and bad jokes

 Ivan Appel

 This book is for sale at http://leanpub.com/scheming

 This version was published on 2021-05-28

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2020 - 2021 Ivan Appel

 Table of Contents

 	

 	
 Chapter 1, where the story begins

 	
 Chapter 2, where I parse Lisp code

 	
 Chapter 3, where I evaluate

 	
 Chapter 4, where I finally write some code in Scheme

 	
 Chapter 5, where I reinvent the wheel and then collect garbage

 	
 Chapter 6, where things become objective

 	
 Chapter 7, where I do some typing and some pairing

 	
 Chapter 8, where I reinvent one more wheel

 Guide

 	
 Begin Reading

Chapter 1, where the story begins

Every story has to start somewhere. This one is a tour through a simplistic Scheme interpreter written in C, and every C program begins with the main() function.

 1 void setup_runtime(void);
 2 void do_useful_stuff(int argc, const char** argv);
 3 void teardown_runtime(void);
 4
 5 int main(int argc, const char** argv)
 6 {
 7 	setup_runtime();
 8 	do_useful_stuff(argc, argv);
 9 	teardown_runtime();
10 }

Here I can imagine people asking, “Wait a minute, is this some kind of pseudo-C? Ain’t you supposed to have #include <stdio.h> at the beginning and main() function at the very end?”

Well. There is a whole universe of possible implications behind “Ain’t you supposed to do X?” questions, and I’ll use them as rant fuel throughout this story. But considering the most straightforward one, which is “is C compiler okay with such way of structuring code?” the answer is “yes, it compiles just fine”. It will keep failing to link until those functions will be implemented, but, as far as the compiler is concerned, forward declarations are good enough.

Moreover, this is the general pattern in this story where I follow the example of Quintus Fabius Maximus and keep postponing writing lower-level implementation of a feature until I get a handle on how it’s going to be used.

This approach is called top-down, and it’s not the only way to write a program. A program can also be written bottom-up by starting with individual nuts and bolts and then assembling them into a big piece of software.

There’s a potential problem with the latter, though.

Let’s say I start with writing a piece of the standard library. I’m certainly going to need it at some point, so it isn’t an obviously wrong place to start. Oh, and I’ll also need a garbage collector, so I can write one too.

But then I’m running a risk of ending up with an implementation of a chunk of Scheme standard library that is neat, and cute, and pretty, and a garbage collector that is as terrific as a garbage collector in a pet project may possibly be, and they don’t quite fit!

And then I’ll have a dilemma. Either I’ll have to redo one or both of those pieces. Which probably won’t be 100% waste, as I hope to have learned a few things on the way, but it’s still double work. Or else I can refuse to accept sunk costs and then stubbornly work around the incompatibilities between my own standard library implementation and my own garbage collector. And that’s just dumb.

But as long as something isn’t done at all, I can be totally sure that it isn’t done wrong. There’s a certain Zen feeling to it.

Another thing is more subtle but will get many programmers, especially more junior ones, nervous once they figure it out. It’s setup_runtime() call. It’s pretty clear what it will do, which is initialize garbage collector and such, but it also implies I’m going to have the runtime, probably scattered around in a bunch of global variables.

I can almost hear voices asking, “But what if you need to have multiple runtimes? What if a customer comes and asks to make your interpreter embeddable as a scripting engine? What about multithreading? Why are you not worried?!”

The answer is, “I consciously don’t care.” This is just a pet project that started with me willing to tinker with Scheme. And then realizing that just writing in Scheme is too easy, so I wrote my own interpreter. And then figuring out that even that is not fun enough, so I wrapped it into a sort of “literary programming” exercise. In a (highly improbable) situation when I’ll have to write my own multithreaded embeddable Scheme interpreter, I’ll just start from scratch, and that’s about it.

Anyway, I’ll write functions to set up and tear down runtime once said runtime will take a more concrete shape. And for now, I’ll focus on doing the useful stuff.

 1 #include <stdio.h>
 2 #include <unistd.h>
 3
 4 void execute(FILE*);
 5 void execute_file(const char* filename);
 6 void repl(void);
 7
 8 void do_useful_stuff(int argc, const char** argv)
 9 {
10 	if (argc >= 2) {
11 		for (int i = 1; i < argc; i++)
12 			execute_file(argv[i]);
13 	} else if (isatty(fileno(stdin))) {
14 		repl();
15 	} else {
16 		execute(stdin);
17 	}
18 }

This one is pretty straightforward: when a program is launched as ./scheme foo.scm, then execute a file; when it’s started as cat foo.scm | ./scheme do precisely the same, and otherwise fire up a REPL.

Now that I know that I’m going to have a function that reads code from a stream and executes it, writing a function that does the same with a file is trivial, so let’s just make one.

 1 #include <errno.h>
 2 #include <stdlib.h>
 3 #include <string.h>
 4
 5 #define DIE(fmt, ...) \
 6 	do { \
 7 		fprintf(stderr, "[%s:%d] ", __FILE__, __LINE__); \
 8 		fprintf(stderr, fmt, ##__VA_ARGS__); \
 9 		fprintf(stderr, "\n"); \
10 		abort(); \
11 	} while (0)
12
13 FILE* fopen_or_die(const char* pathname, const char* mode)
14 {
15 	FILE* f = fopen(pathname, mode);
16 	if (f)
17 		return f;
18 	const char* err = strerror(errno);
19 	DIE("Error opening file %s: %s", pathname, err);
20 }
21
22 void execute_file(const char* filename)
23 {
24 	FILE* f = fopen_or_die(filename, "r");
25 	execute(f);
26 	fclose(f);
27 }

Some might find error handling in fopen_or_die() a bit naive. If you aren’t among those, you can skip the following rant, and if you are, it’s okay, there’s nothing to be ashamed of, it’s just natural cognitive inertia.

See, in general, when something goes wrong, you have three options:

 	You can handle the problem and continue.

 	You can abort.

 	You can notify the invoker about the problem and let them make their own choice from these same three options.

In this case, option #1 is unavailable. Because, well, failing to open a file that the interpreter is told to execute is clearly a fatal error, and there’s no sane way to recover from it.

Oh, of course, there are insane ways to do it. For instance, I can just quietly skip the problematic file and later collapse in an obscure way because I can’t find functions that were supposed to be defined in that file, or take your guess, but I’m not even going to spend time explaining why I’m not doing that.

Option #3 is an interesting one to reflect on as this is what many programmers would consider a natural and only alternative when #1 is not available. In fact, if you’re coding on top of a rich fat framework (think Spring or Django), this indeed is the natural and only way to do it. But there’s no framework here, and the operating system is effectively the invoker (“there was nothing between us… not even a condom…” yeah, horrible joke), and abort()ing is a proper way to notify the operating system about the problem. So #2 is pretty much #3, just without boilerplate code to pull error status to main() and then abort there.

Anyway, let’s implement execute()

 1 #include <stdbool.h>
 2
 3 struct object;
 4 typedef struct object* object_t;
 5
 6 void decref(object_t);
 7
 8 object_t eval_repl(object_t);
 9 object_t read_object(FILE*);
10
11 void execute(FILE* in)
12 {
13 	object_t expr;
14
15 	while ((expr = read_object(in))) {
16 		object_t result = eval_repl(expr);
17 		decref(expr);
18 		decref(result);
19 	}
20 }

Several things are introduced here.

The first one is struct object, which is going to be the representation of a Scheme object. It’s clearly going to be some sort of a struct (I mean, we’re doing C here, what else can it be); internal details of that struct I’ll figure out later.

The second and the third are read_object() and eval_repl() functions that, respectively, read an object from an input stream and evaluate it in REPL context.

The last one is the decref() function that is needed because I’m going to have automatic memory management. For this, I have three options:

 	I can do reference counting. Very simple to do for as long as objects don’t form reference cycles, then it gets quirky.

 	I can make a tracing garbage collector that traverses the process’ memory to figure out which objects are still needed.

 	I can apply a sort of a hybrid approach where I do tracing for the sections of process’ memory that are convenient to traverse and fall back to reference counting for those which aren’t.

From this simple function, it’s already clear that whichever method I choose must be able to deal with references from the C call stack. Analyzing them in a pure tracing manner is pretty cumbersome, so I have to count them anyway, and that’s what decref() will do.

Now comes the REPL…

 1 void write_object(FILE*, object_t obj);
 2
 3 void repl()
 4 {
 5 	object_t expr;
 6
 7 	printf("> ");
 8 	while ((expr = read_object(stdin))) {
 9 		object_t result = eval_repl(expr);
10 		decref(expr);
11
12 		write_object(stdout, result);
13 		decref(result);
14
15 		printf("\n> ");
16 		fflush(stdout);
17 	}
18 	printf("bye\n");
19 }

…which isn’t particularly interesting, and we proceed to

Chapter 2, where I parse Lisp code

What’s neat about implementing a Lisp dialect is that you can be done with parsing in about three pints of Guinness and then move on to funnier stuff.

Of course, “funnier” is relative here, and not just grammatically, but also in a Theory of Relativity kind of sense. I mean, the Theory of Relativity describes extreme conditions where gravity is so high that common Newtonian laws don’t work any more.

Likewise, here we’re venturing deep into the dark swampy forests of Nerdyland, where the common understanding of “fun” doesn’t apply. By the standards of ordinary folks whose idea of having fun involves such activities as mountain skiing and dance festivals, spending evenings tinkering with the implementation of infinite recursion is hopelessly weird either way. So I mean absolutely no judgement towards those fantastic guys and gals who enjoy messing with lexers, parsers, and all that shebang. Whatever floats your boat, really!

This had to be said. Anyway, back to parsing.

 1 int fgetc_skip(FILE*);
 2
 3 object_t read_atom(FILE* in);
 4 object_t read_list(FILE* in);
 5 object_t read_quote(FILE* in);
 6 object_t read_string(FILE* in);
 7
 8 object_t read_object(FILE* in)
 9 {
10 	int ch = fgetc_skip(in);
11 	switch (ch) {
12 	case EOF:
13 		return NULL;
14 	case '(':
15 		return read_list(in);
16 	case ')':
17 		DIE("Unmatched ')'");
18 	case '\'':
19 		return read_quote(in);
20 	case '"':
21 		return read_string(in);
22 	default:
23 		ungetc(ch, in);
24 		return read_atom(in);
25 	}
26 }

Lisp syntax is famously Spartan. Basically, all you get is:

 	lists (those thingies with (the (astonishingly) copious) amount of parentheses),

 	strings (delimited by “double quotes” or however you call that character),

 	quotations (if you don’t know who these are, you better look it up in Scheme spec, but basically it’s a way to specify that '(+ 1 2) is literally a list with three elements and not an expression that adds two numbers),

 	and atoms, which are pretty much everything else, including numbers, characters, and symbols.

So what I’m doing here is I’m looking at the first non-trivial character in the input stream, and if it’s an opening parenthesis, I interpret it as a beginning of a list etc.

 1 #include <ctype.h>
 2
 3 int fgetc_or_die(FILE* in)
 4 {
 5 	int ch = fgetc(in);
 6 	if ((ch == EOF) && (! feof(in))) {
 7 		const char* err = strerror(errno);
 8 		DIE("IO error: %s", err);
 9 	}
10 	return ch;
11 }
12
13 int fgetc_skip(FILE* in)
14 {
15 	bool comment = false, skip;
16 	int ch;
17
18 	do {
19 		ch = fgetc_or_die(in);
20 		if (ch == ';')
21 			comment = true;
22 		skip = comment || isspace(ch);
23 		if (ch == '\n')
24 			comment = false;
25 	} while ((ch != EOF) && skip);
26
27 	return ch;
28 }

Oh, and “the first non-trivial character” means I fast-forward through the input stream ignoring comments and whitespace until I encounter a character that’s neither or reach an EOF.

There are four read_something() functions that I promised to implement, let’s start with read_string()

 1 int fgetc_read_string(FILE* in)
 2 {
 3 	int ch = fgetc_or_die(in);
 4
 5 	switch (ch) {
 6 	case EOF:
 7 		DIE("Premature end of input");
 8 	case '\"':
 9 		return EOF;
10 	case '\\':
11 		ch = fgetc_or_die(in);
12 		switch (ch) {
13 		case EOF:
14 			DIE("Premature end of input");
15 		case 'n':
16 			return '\n';
17 		}
18 	}
19
20 	return ch;
21 }
22
23 object_t wrap_string(const char*);
24
25 object_t read_string(FILE* in)
26 {
27 	char buffer[10240];
28 	int fill = 0, ch;
29
30 	while ((ch = fgetc_read_string(in)) != EOF) {
31 		buffer[fill++] = ch;
32 		if (fill >= 10240)
33 			DIE("Buffer overflow");
34 	}
35
36 	buffer[fill] = '\0';
37 	return wrap_string(buffer);
38 }

Nothing particularly surprising here. Just read characters into the buffer until you reach the closing double quote, then wrap the contents of the buffer into an object_t and call it a day.

Yes, this simplistic implementation will miserably fail to parse a source file with a string constant that is longer than 10K characters.

And if you take some time to think about it, hard-coded 10K bytes for buffer size is kind of interesting here. It’s an arbitrary number that, on the one hand, is safely above any practical limit in terms of usefulness. I mean, of course, you can hard-code the entirety of “Crime and Punishment” as a single string constant just to humiliate a dimwit interpreter author. But within any remotely sane coding style, such blob must be offloaded to an external text file, and even a buffer that is an order of magnitude smaller should still be good enough for all reasonable intents and purposes.

On the other hand, it’s also safely below any practical limit in terms of conserving memory. It can easily be an order of magnitude larger without causing any issues whatsoever.

At least on a modern general-purpose machine with a couple of gigs of memory. If you’ve got a PDP-7 like one that Ken Thompson used for his early development of Unix, then a hundred kilobytes might be your entire RAM, and then you have to be more thoughtful with your throwaway buffers.

By the way, it’s awe-inspiring how those people in the 1960s could develop an entire real operating system on a computer like that. Well, not precisely mind-boggling, like, I myself started coding on a Soviet-made ZX Spectrum clone with 48 kilobytes of RAM, and you can’t write a super-duper-sophisticated OS on such machine because it just won’t fit, but still, it’s so cool.

Okay, back to business. Let’s parse_atom().

 1 bool isspecial(char ch)
 2 {
 3 	switch (ch) {
 4 	case '(':
 5 	case ')':
 6 	case ';':
 7 	case '\"':
 8 	case '\'':
 9 		return true;
10 	default:
11 		return false;
12 	}
13 }
14
15 int fgetc_read_atom(FILE* in)
16 {
17 	int ch = fgetc_or_die(in);
18 	if (ch == EOF)
19 		return EOF;
20 	if (isspace(ch) || isspecial(ch)) {
21 		ungetc(ch, in);
22 		return EOF;
23 	}
24 	return ch;
25 }
26
27 object_t parse_atom(const char*);
28 object_t wrap_char(char ch);
29
30 object_t read_character(FILE* in)
31 {
32 	int ch = fgetc_or_die(in);
33 	if ((ch == EOF) || isspace(ch))
34 		return wrap_char(' ');
35 	else
36 		return wrap_char(ch);
37 }
38
39 object_t read_atom(FILE* in)
40 {
41 	char buffer[10240];
42 	int fill = 0, ch;
43
44 	while ((ch = fgetc_read_atom(in)) != EOF) {
45 		buffer[fill++] = ch;
46 		if (fill >= 10240)
47 			DIE("Buffer overflow");
48 	}
49
50 	if ((fill == 2) && (buffer[0] == '#') && (buffer[1] == '\\'))
51 		return read_character(in);
52
53 	buffer[fill] = '\0';
54 	return parse_atom(buffer);
55 }

Here I use the same approach as in read_string(): collect characters for as long as it looks like an atom, then convert it to an object_t, and that’s pretty much it.

Well, the syntax for characters in Scheme is a bit wonky: you have #!\x for the letter ‘x’ and #\! for an exclamation mark, and, surprisingly, #!\newline and #!\space for a newline and space respectively. Oh, and #\ is also a space. Go figure.

Most of that wonkiness can be dealt with by simply reading everything up until a special character and then figuring out what I’ve got in parse_atom(). Unless it is a special character, e.g. #\) or #\;, those need a bit of special handling.

And now I’m looking at another buffer, and do you know what actually boggles my mind?

Remember, at the very beginning of this story, I mentioned that a C program is typically supposed to have its main() function at the end? So, what boggles my mind is why are we still doing it?

Well, I don’t mean we all do. In some programming languages, it is more common, and in some, it is less, but really, why would you do it in any language? It’s such a weird way to layout your code where you have to scroll all the way down to the bottom of the source file and then work your way up in a Benjamin Button kind of way.

I mean, I know it’s the legacy of Pascal where you were required to have the equivalent of main() at the bottom (and finish it with an end. with a period instead of a semicolon). I also understand that, back in those days, it made sense in order to simplify the compiler that had to run on limited hardware. But why we still sometimes do it in the 2020s is a mystery to me.

Okay, enough of ranting, let’s parse_atom()

 1 object_t wrap_bool(bool v);
 2
 3 object_t parse_bool(const char* text)
 4 {
 5 	if (strcmp(text, "#f") == 0)
 6 		return wrap_bool(false);
 7 	if (strcmp(text, "#t") == 0)
 8 		return wrap_bool(true);
 9 	return NULL;
10 }
11
12 object_t parse_char(const char* text)
13 {
14 	if (strcmp(text, "#\\newline") == 0)
15 		return wrap_char('\n');
16 	if (strcmp(text, "#\\space") == 0)
17 		return wrap_char(' ');
18 	if (strcmp(text, "#\\") == 0)
19 		return wrap_char(' ');
20 	if ((strlen(text) == 3) && (text[0] == '#') && (text[1] == '\\'))
21 		return wrap_char(text[2]);
22 	return NULL;
23 }
24
25 object_t wrap_int(int value);
26
27 object_t parse_int(const char* text)
28 {
29 	int index = 0, digits = 0, accum = 0, sign = 1;
30
31 	if (text[0] == '-') {
32 		index = 1;
33 		sign = -1;
34 	}
35
36 	for (; text[index]; index++) {
37 		if (! isdigit(text[index]))
38 			return NULL;
39 		accum = accum * 10 + (text[index] - '0');
40 		digits++;
41 	}
42
43 	return (digits == 0) ? NULL : wrap_int(sign * accum);
44 }
45
46 object_t wrap_symbol(const char*);
47
48 object_t parse_atom(const char* buffer)
49 {
50 	object_t result;
51 	if ((result = parse_bool(buffer)))
52 		return result;
53 	if ((result = parse_int(buffer)))
54 		return result;
55 	if ((result = parse_char(buffer)))
56 		return result;
57 	return wrap_symbol(buffer);
58 }

Pretty straightforward, really. If it looks like a boolean, convert it to a boolean. If it appears to be an integer number, convert it to an integer. If it seems to be a symbol, convert it to a symbol. If it looks like a floating-point number… Convert it to a symbol because screw you!

To give a bit of a background here, this pet project of mine was never intended to be a feature-complete standards-compliant Scheme implementation. It started with solving some of “99 Lisp problems” and then escalated into writing a sufficient Scheme interpreter to run those. None of those problems relied on floating-point arithmetics, and so I didn’t implement it.

Not that it’s particularly hard, just tedious (if done Python-style with proper type coercions), and JavaScript solution with simply using floats for everything I find aesthetically unappealing.

What I couldn’t possibly skip is lists (they didn’t call it LISt Processing for nothing), so let’s read_list()

Oh, and a quick remark on the naming convention. Functions like wrap_symbol() are named this way intentionally. They could easily be called, say, make_symbol(), but that would imply that it’s some sort of a constructor that really makes a new object. But by the time I get to actually implement those, I might not want to be bound by this implication (because I might find out that a proper constructor doesn’t conform to the language standard and/or isn’t practical, and I need and/or want some sort of a cache or a pool or whatever).

So, instead, it’s a vague “wrap”, which stands for “get me an object that represents this value, and how you make it under the hood is none of my business.”

 1 object_t read_next_object(FILE* in)
 2 {
 3 	int ch = fgetc_skip(in);
 4 	if (ch == EOF)
 5 		DIE("Premature end of input");
 6 	if (ch == ')')
 7 		return NULL;
 8 	ungetc(ch, in);
 9 	return read_object(in);
10 }
11
12 void push_to_list(object_t* ptr, object_t item);
13 object_t reverse_read_list(object_t list);
14 object_t wrap_nil(void);
15
16 object_t read_list(FILE* in)
17 {
18 	object_t accum = wrap_nil(), obj;
19
20 	while ((obj = read_next_object(in))) {
21 		push_to_list(&accum, obj);
22 		decref(obj);
23 	}
24
25 	object_t result = reverse_read_list(accum);
26 	decref(accum);
27 	return result;
28 }

This one is simple but might need a bit of refresher on how lists work in Lisp (and other FP(-esque) languages).

So, your basic building block is a two-element tuple (also known as a pair). If you make a tuple with some value in the first cell and in the second cell a reference to another tuple with another value in the first cell et cetera et cetera… And then you put a special null value to the second cell of the last tuple, then you what get is a singly-linked list. Oh, and the representation of the empty list is simply the null value.

So what I do here is I read objects from the input stream and push them one by one to the front of the list until I see a closing parenthesis. But then the list ends up reversed, so I need to reverse it back. Easy.

 1 object_t wrap_pair(object_t, object_t);
2
3 void push_to_list(object_t* ptr, object_t head)
4 {
5 	object_t tail = *ptr;
6 	*ptr = wrap_pair(head, tail);
7 	decref(tail);
8 }

This is such a pretty little function that utilizes call by pointer (very much a C idiom) to construct a very Lispy list. Tell me about multiparadigm programming.

Oh, and while we’re at it, let’s also implement reverse_read_list()

 1 struct pair;
 2 typedef struct pair* pair_t;
 3
 4 pair_t assert_pair(object_t obj, const char* context);
 5 object_t car(pair_t);
 6
 7 bool is_symbol(const char* text, object_t obj);
 8
 9 object_t pop_from_list(object_t*);
10
11 void incref(object_t);
12
13 object_t reverse_read_list(object_t list)
14 {
15 	object_t result = wrap_nil(), obj;
16
17 	while ((obj = pop_from_list(&list))) {
18 		if (! is_symbol(".", obj)) {
19 			push_to_list(&result, obj);
20 			continue;
21 		}
22
23 		pair_t pair = assert_pair(result, "when parsing a list");
24 		obj = car(pair);
25 		incref(obj);
26 		decref(result);
27 		result = obj;
28 	}
29
30 	return result;
31 }

that simply pops things from one list and pushes them to another.

Well, except for one gotcha: . has special meaning in list notation, so that '(a . b) is not a list but is equivalent to (cons 'a 'b), and so I cater for it here.

 1 object_t cdr(pair_t);
 2 bool is_nil(object_t);
 3
 4 object_t pop_from_list(object_t* ptr)
 5 {
 6 	object_t obj = *ptr;
 7 	if (is_nil(obj))
 8 		return NULL;
 9 	pair_t pair = assert_pair(obj, "when traversing a list");
10 	*ptr = cdr(pair);
11 	return car(pair);
12 }

pop_from_list() is pretty much the opposite of push_to_list() with a bit of type checking to make sure I’m dealing with a list and not something dodgy.

 1 #define DEBUG(key, obj) \
 2 	do { \
 3 		fprintf(stderr, "[%s:%d] %s = ", __FILE__, __LINE__, key); \
 4 		write_object(stderr, obj); \
 5 		fprintf(stderr, "\n"); \
 6 	} while (0)
 7
 8 const char* typename(object_t);
 9 pair_t to_pair(object_t);
10
11 pair_t assert_pair(object_t obj, const char* context)
12 {
13 	pair_t pair = to_pair(obj);
14 	if (pair)
15 		return pair;
16
17 	DEBUG("obj", obj);
18 	DIE("Expected a pair %s, got %s instead", context, typename(obj));
19 }

I still haven’t decided what exactly I will put into either struct object or struct pair, but I already need to be able to convert one to another. So, I promise to write a to_pair() function that would do just that (or return NULL if the value that this object holds is not a pair), and here’s write a neat little helper around it to abort with a human-readable message when the conversion fails.

 1 object_t read_quote(FILE* in)
 2 {
 3 	object_t obj = read_object(in);
 4 	if (! obj)
 5 		DIE("Premature end of input");
 6
 7 	object_t result = wrap_nil();
 8 	push_to_list(&result, obj);
 9 	decref(obj);
10
11 	object_t keyword = wrap_symbol("quote");
12 	push_to_list(&result, keyword);
13 	decref(keyword);
14
15 	return result;
16 }

Since 'bla is merely a shorter version of (quote bla) parsing it is trivial, and with that in place, we’re finally done with parsing and can move on to

Chapter 3, where I evaluate

By the way, I don’t know if you noticed or not, but I try to use the word “we” as sparingly as I can. Perhaps it has something to do with me coming from a culture where “We” is commonly associated with the dystopian novel by Yevgeny Zamyatin.

Of course, there are legit usages for “we,” such as academic writing where all of “us” are listed on the paper’s first page, and the reader is interested in overall results rather than the internal dynamics of the research team.

But using “we did it” when it’s actually “I did it” (and it’s stylistically appropriate to say “I did it”) feels to me like the speaker is a wimp who wants to avoid the responsibility.

Likewise, using “we” when it’s actually “I and Joe, mostly Joe” feels like reluctance to give a fair share of the credit.

Okay, enough of that, let’s implement eval_repl()

 1 struct scope;
 2 typedef struct scope* scope_t;
 3
 4 object_t eval_eager(scope_t scope, object_t expr);
 5 scope_t get_repl_scope(void);
 6
 7 object_t eval_repl(object_t expr)
 8 {
 9 	return eval_eager(get_repl_scope(), expr);
10 }

That’s a one-liner function that relies on two crucial concepts.

The first one is the scope. The scope is pretty much just a binding between variables’ names and their values. For now, just think of it as a sort of a dictionary (it’s not exactly that, but we’ll get there when we get there).

Another one is the differentiation between eager and lazy evaluation. Before I go into explaining what exactly do I mean by eager and lazy evaluation in the context of this story, I first have to elaborate on the pragmatics for having all that in the first place.

So. Scheme is a functional programming language, and in functional programming, people don’t do loops, but instead, they do recursion. And for infinite loops, they do, well, infinite recursion. And “infinite” here doesn’t mean “enormously big,” but properly infinite.

Consider this example:

 1 (define (infinite-loop depth)
2 	(display (list depth 'bla))
3 	(display #\newline)
4 	(infinite-loop (+ 1 depth)))
5
6 (infinite-loop 0)

Obviously, a direct equivalent of this code in vanilla C/C++/Ruby/Python/Java will run for some time and eventually blow up with a stack overflow. But code in Scheme, well, better shouldn’t.

I have three ways to deal with it:

 	Just do nothing and hope that the C stack will not overflow.

 	Do code rewriting so that, under the hood, the snippet above is automagically converted into a loop, e.g.

 1 (define (infinite-loop depth)
2 	(loop
3 		(display depth)
4 		(display #\newline)
5 		(set! depth (+ 1 depth))))

3. Apply the technique called trampolining. Semantically it means

 1 (define (infinite-loop depth)
2 	(display (list depth 'bla))
3 	(display #\newline)
4 	(invoke-later infinite-loop (+ 1 depth)))

that instead of calling itself, function… Well, to generalize and to simplify, let’s say it informs the evaluator that computation is incomplete and also tells what to do next in order to complete it.

#1 looks like a joke, but actually, it’s a pretty good solution. It’s also a pretty bad solution, but let’s get through the upsides first.

First of all, it’s trivial to implement (because it doesn’t require writing any specific code). It clearly won’t introduce any quirky bugs (because there’s no specific code!). And it won’t have any performance impact (because it does nothing!!)

You see, “just do nothing” half of it is all good; it’s the “and hope that” part that isn’t. Although for simple examples, it doesn’t really matter: provided there are a couple of thousands of stack levels available, it’s gonna be okay with or without optimizations. But a more complex program may eventually hit that boundary, and then I’ll have to get around deficiencies of my code in, well, my other code, and that’s not a place I’d like to get myself into.

This also sets a constraint on what a “proper” solution should be: it must be provably reliable for a complex piece of code, or else it’s back to square one.

#2 looks like a super fun thing to play with, and it seems deceptively simple for toy snippets. But thinking just a tiny bit about pesky stuff like mutually recursive functions, and self-modifying-ish code (think (set! infinite-loop something-else) from within infinite-loop), and escape procedures and whatnot… And all this starts to feel like a breeding ground for wacky corner cases, and I don’t want to commit to being able to weed them all out.

#3, on the contrary, is pretty straightforward, both conceptually and implementation-wise, so that’s what I’ll do (although I might do #2 on top of it later; because it looks like a super fun thing to play with).

Now let’s get back to lazy vs eager. “Lazy” in this context means that the evaluation function may return either a result (if computation is finished) or a thunk (a special object that describes what to do next). Whereas “eager” means that the evaluation function will always return the final result.

“Eager” evaluation can be easily arranged by getting a “lazy” result first…

 1 object_t eval_lazy(scope_t scope, object_t expr);
2 object_t force(object_t value);
3
4 object_t eval_eager(scope_t scope, object_t expr)
5 {
6 	object_t result_or_thunk = eval_lazy(scope, expr);
7 	return force(result_or_thunk);
8 }

…and then reevaluating it until the computation is complete.

 1 struct thunk;
 2 typedef struct thunk* thunk_t;
 3
 4 object_t eval_thunk(thunk_t thunk);
 5 thunk_t to_thunk(object_t obj);
 6
 7 object_t force(object_t value)
 8 {
 9 	thunk_t thunk;
10
11 	while ((thunk = to_thunk(value))) {
12 		object_t new_value = eval_thunk(thunk);
13 		decref(value);
14 		value = new_value;
15 	}
16
17 	return value;
18 }

You know, I’ve just realized it’s the third time in this story when I say, “I have three ways to deal with it,” the previous two being considerations about memory management and error handling in Chapter 1.

Moreover, I noticed a pattern. In a generalized form, those three options to choose from are:

 	Consider yourself lucky. Assume things won’t go wrong. Don’t worry that your solution is too optimistic.

 	Consider yourself clever. Assume you’ll be able to fix every bug. Don’t worry that your solution is too complex.

 	Just bloody admit that you’re a dumb loser. Design a balanced solution that is resilient while still reasonable.

This is such a deep topic that I’m not even going to try to cover it in one take, but I’m damn sure I’ll be getting back to it repeatedly.

For now, let’s continue with eval_lazy()

 1 struct symbol;
 2 typedef struct symbol* symbol_t;
 3
 4 symbol_t to_symbol(object_t);
 5
 6 object_t eval_sexpr(scope_t, object_t head, object_t body);
 7 object_t eval_var(scope_t scope, symbol_t key);
 8
 9 object_t eval_lazy(scope_t scope, object_t expr)
10 {
11 	symbol_t varname = to_symbol(expr);
12 	if (varname)
13 		return eval_var(scope, varname);
14
15 	pair_t sexpr = to_pair(expr);
16 	if (sexpr)
17 		return eval_sexpr(scope, car(sexpr), cdr(sexpr));
18
19 	incref(expr);
20 	return expr;
21 }

This is relatively straightforward: if it’s a symbol, treat it as a name of the variable, if it’s a list, treat it as a symbolic expression, and otherwise just evaluate it to itself (so that (eval "bla") is simply "bla")

 1 object_t lookup_in_scope(scope_t scope, symbol_t key);
 2 const char* unwrap_symbol(symbol_t);
 3
 4 object_t eval_var(scope_t scope, symbol_t key)
 5 {
 6 	object_t result = lookup_in_scope(scope, key);
 7 	if (! result)
 8 		DIE("Undefined variable %s", unwrap_symbol(key));
 9 	incref(result);
10 	return result;
11 }

Evaluating a variable is pretty much just look it up in the current scope and DIE() if it’s not there.

 1 object_t eval_funcall(scope_t scope, object_t func, object_t exprs);
 2 object_t eval_syntax(scope_t scope, object_t syntax, object_t body);
 3
 4 object_t eval_sexpr(scope_t scope, object_t head, object_t body)
 5 {
 6 	object_t syntax_or_func = eval_eager(scope, head);
 7
 8 	object_t result = eval_syntax(scope, syntax_or_func, body);
 9 	if (! result)
10 		result = eval_funcall(scope, syntax_or_func, body);
11
12 	decref(syntax_or_func);
13 	return result;
14 }

And evaluating an expression is… Well, if you ever wondered why the hell they use so many of those bloody parentheses in Lisps, here’s your answer.

In most programming languages (mainstream ones anyway), syntax constructs and functions are two fundamentally different kinds of creatures. They don’t just behave differently, but they also look differently, and you can’t mix them up.

Much less so in Lisp, where you have (if foo bar) for conditional, and (+ foo bar) to add two numbers, and (cons foo bar) to make a pair, and you can’t help but notice they look pretty darn similar.

Moreover, even though they behave differently, it’s not that dissimilar either. + and cons are functions that accept values of foo and bar and do something with them. Whereas if is also simply a function, only instead of values of its’ arguments, it accepts a chunk of code verbatim.

Let me reiterate: a syntax construct is merely a data manipulation function that happens to have program’s code as the data that it manipulates. Oh, and code as data is not some runtime introspection shamanistic voodoo, but it’s just regular lists and symbols and what have you.

And all of that is enabled by using the same notation for data and for code. That’s why parentheses are so cool.

So, with the explanation above in mind, pretty much all this function does is: first, it evaluates the first item of the S-expression, and then looks at what it is. If it happens to be an “I want the code as is” function, then it’s fed code as-is. Otherwise, it is treated as an “I want values of the arguments” function instead. That’s it.

If my little story is your first encounter with Lisp, I can imagine how mind-blowing can this be. Let it sink in, take your time.

 1 struct lambda;
 2 typedef struct lambda* lambda_t;
 3
 4 lambda_t to_lambda(object_t);
 5
 6 object_t invoke(object_t, int, object_t*);
 7 object_t wrap_thunk(lambda_t, int, object_t*);
 8
 9 object_t eval_funcall(scope_t scope, object_t func, object_t exprs)
10 {
11 	object_t args[64], expr;
12 	int argct = 0;
13
14 	while ((expr = pop_from_list(&exprs))) {
15 		if (argct >= 64)
16 			DIE("Buffer overflow");
17 		args[argct++] = eval_eager(scope, expr);
18 	}
19
20 	lambda_t lambda = to_lambda(func);
21 	if (lambda)
22 		return wrap_thunk(lambda, argct, args);
23
24 	return invoke(func, argct, args);
25 }

This one is not very complicated: go through the list, evaluate the stuff you have there, then either feed it to a function or make a thunk to evaluate it later.

There are few minor funky optimizations to mention, though.

 	I put arguments into a buffer and not to a list. I mean, lists are superb for everything except two things. They’re not as efficient for “just give me an element at index X” random access, and they’re kinda clumsy when it comes to memory allocation. And these are two things I really won’t mind having for a function call: as much as I don’t care about performance, having to do three malloc()s just to call a function of three arguments feels sorta wasteful.

 	I introduce lambda_t type for functions that are implemented in Scheme and require tail-call optimizations. This is done to separate them from built-in functions, which are written in C and are supposed to be hand-optimized, making lazy call overhead avoidable and unnecessary.

 	I cap the maximum number of arguments that a function may have at 64. I even drafted a tirade to rationalize that… But I’m running out of Chardonnay, so let’s park it for now and move on to

Chapter 4, where I finally write some code in Scheme

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/scheming.

Chapter 5, where I reinvent the wheel and then collect garbage

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/scheming.

Chapter 6, where things become objective

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/scheming.

Chapter 7, where I do some typing and some pairing

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/scheming.

Chapter 8, where I reinvent one more wheel

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/scheming.

OEBPS/resources/leanpub_tip.png

OEBPS/resources/leanpub_error.png

OEBPS/resources/leanpub_exercise.png

OEBPS/resources/leanpub_discussion.png

OEBPS/resources/leanpub_warning.png

OEBPS/resources/leanpub_question.png

OEBPS/resources/leanpub_information.png

OEBPS/resources/leanpub-logo.png
[

Leanpub

OEBPS/resources/title_page.png

