

Scalable
Un libro sobre SVG

Jorge Aznar

Este libro está a la venta en http://leanpub.com/scalable

Esta versión se publicó en 2017-04-25

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2017 Jorge Aznar

http://leanpub.com/scalable
http://leanpub.com/
http://leanpub.com/manifesto

¡Twitea sobre el libro!
Por favor ayuda a Jorge Aznar hablando sobre el libro en Twitter!

El tweet sugerido para este libro es:

Aprendiendo SVG con SCALABLE http://leanpub.com/scalable/

El hashtag sugerido para este libro es #scalablelibro.

Descubre lo que otra gente está diciendo sobre el libro haciendo click en este enlace para buscar el
hashtag en Twitter:

https://twitter.com/search?q=#scalablelibro

http://twitter.com
https://twitter.com/intent/tweet?text=Aprendiendo%20SVG%20con%20SCALABLE%20http://leanpub.com/scalable/
https://twitter.com/search?q=%23scalablelibro
https://twitter.com/search?q=%23scalablelibro

Para Mª Carmen, Rosana e Izarbe, y a la memoria de mi padre Agustín.

Índice general

DRY con group, defs y use . 1
Group . 1
Defs y use . 2
Usando CSS para aplicar estilos . 5
Sprites con SVG . 7
Métodos para aplicar estilos CSS a SVG . 12
Fragmentos identificadores . 14

DRY con group, defs y use
Dont repeat yourself que viene a ser que no te repitas a ti mismo. Si ya tenemos una figura que
ocupa veinte líneas para que vamos a repetir las veinte líneas si con una sola línea nos basta y nos
sobra. En este capítulo vamos a ver como lo podemos hacer.

Group

La etiqueta <g> representa a los grupos, y como su nombre indica la utilizamos para agrupar los
diferentes elementos que estén dentro de la propia etiqueta.

En ella podemos definir una serie de figuras y aplicarles los mismos colores de fondo, grosor y
color del borde. A los grupos también le podemos aplicar filtros, animaciones, transformaciones y
atributos CSS.

Para mover un grupo vamos a tener que recurrir a transform=”translate” ya que no disponemos
de las coordenadas x e y. Lo mismo para el tamaño, el cuál si queremos modificar a la vez lo haremos
con transform=”scale”.

<g fill="crimson" transform="rotate(45)">

<rect x="100" y="30" width="40" height="40"/>

<rect x="150" y="30" width="40" height="40"/>

<rect x="200" y="30" width="40" height="40"/>

<rect x="250" y="30" width="40" height="40"/>

<rect x="300" y="30" width="40" height="40"/>

</g>

¹

¹http://codepen.io/jorgeatgu/details/qexKf/

http://codepen.io/jorgeatgu/details/qexKf/
http://codepen.io/jorgeatgu/details/qexKf/

DRY con group, defs y use 2

En el anterior ejemplo podemos ver como hemos indicado a la vez el mismo color y las mismas
transformaciones a todos los rectángulos.

Soporte

Defs y use

Ahora que ya sabemos como crear nuestras propias formas básicas, patrones, degradados y aplicar a
todos ellos múltiples transformaciones vamos a ver como podemos reutilizar todo este código para
no tener que ir repitiendo a lo largo de documento los mismos elementos con el consecuente ahorro
de código y sobre todo de tiempo.

El código que queramos repetir a lo largo del documento deberá de ir entre <defs> </defs> a los
elementos les indicaremos un id=”” con el nombre que queramos y a continuación para usar este
código utilizaremos la etiqueta <use>, lo posicionaremos en el documento a través de las coordenadas
x e y, le podemos aplicar transformaciones como scale, matrix, rotate etc…

Todo el código que esté dentro de la etiquetas <defs> no se va a tener en cuenta a no ser que
utilicemos la etiqueta <use>.

Aunque su uso no es obligatorio la W3C recomienda utilizar estas etiquetas para hacer nuestro
código mucho más accesible y legible. Vamos a ver unos ejemplo para que nos quede más claro su
funcionamiento.

DRY con group, defs y use 3

<defs>

<rect id="rectangulo" width="40" height="40"/>

<circle id="circulo" r="30"/>

</defs>

<use xlink:href="#rectangulo" x="300" y="200"fill="crimson"/>

<use xlink:href="#circulo" x="250" y="300" fill="gold"/>

<use xlink:href="#circulo" x="600" y="200" fill="darkslategrey"/>

<use xlink:href="#rectangulo"x="700" y="300" fill="navajowhite"/>

²

En el ejemplo anterior hemos definido entre las etiquetas <defs></defs> un elemento <rect> con un
id=”rectangulo” y un elemento <circle> con un id=”circulo”. Ahora vamos a llamar a estos dos
elementos tantas veces como queramos a través de la etiqueta <use> y para ello vamos a utilizar el
atributo xlink:href con la # antes del nombre del id, también le indicamos la posición del elemento
a través de las coordenadas horizontal y vertical.

Una advertencia, como podéis observar en el código los elementos <rect> y <circle> no tienen
un color definido, esto se debe a que si le indicamos un color al elemento que está en <defs> los
elementos que creamos a través del <use> heredarán ese color y no tendremos oportunidad alguna
de cambiar el color, así que si la idea es que cada rectángulo tenga un color diferente tendremos que
dejar sin definir el color. En el caso de que no definamos el color ni en <defs> ni en <use> el color
por defecto será negro.

Vamos a ver qué podemos hacer si combinamos <defs> + <use> + <g>

²http://codepen.io/jorgeatgu/details/Cuavg/

http://codepen.io/jorgeatgu/details/Cuavg/
http://codepen.io/jorgeatgu/details/Cuavg/

DRY con group, defs y use 4

<defs>

<g id="cuadrados" fill="crimson" transform="translate(150 50)">

<rect x="30" y="30" width="40" height="40"/>

<rect x="80" y="30" width="40" height="40"/>

<rect x="130" y="30" width="40" height="40"/>

<rect x="180" y="30" width="40" height="40"/>

<rect x="230" y="30" width="40" height="40"/>

</g>

</defs>

<use xlink:href="#cuadrados"/>

<use xlink:href="#cuadrados" transform="translate(0 100)"/>

<use xlink:href="#cuadrados" transform="translate(0 100) rotate(45)"/>

<use xlink:href="#cuadrados" transform="scale(.5)"/>

<use xlink:href="#cuadrados" y="400" opacity=".5"/>

³

En este ejemplo con cinco etiquetas <use> hemos creado cinco grupos de cinco rectángulos cada
uno, y a cada grupo le hemos dado una propiedad diferente.

³http://codepen.io/jorgeatgu/details/lHFAi/

http://codepen.io/jorgeatgu/details/lHFAi/
http://codepen.io/jorgeatgu/details/lHFAi/

DRY con group, defs y use 5

Soporte

Usando CSS para aplicar estilos

Vamos a ver cómo podemos aplicar un efecto de filtro, un patrón y un degradado a los elementos de
nuestro SVG a través de CSS.

El método es sencillo, una vez declarados nuestros efectos entre las etiquetas SVG vamos a crear
una clase en nuestro achivo CSS, y en esa clase vamos a declarar el efecto por ejemplo el <pattern>
declaramos con fill: url(#patron) ahora volvemos al HTML y aplicamos la clase al elemento que
queremos que reciba el efecto.

.patron {

fill: url(#patron);

}

.filtro {

filter: url(#filtro);

}

.degradado {

fill: url(#degradado);

}

DRY con group, defs y use 6

<defs>

<pattern id="patron" width="40" height="40" patternUnits="userSpaceOnUse">

<circle cx="20" cy="20" r="20" fill="crimson"/>

</pattern>

<filter id="filtro" filterUnits="objectBoundingBox">

<feColorMatrix type="hueRotate" in="SourceGraphic" values="60"/>

</filter>

<linearGradient id="degradado" gradientUnits="objectBoundingBox">

<stop offset="0%" stop-color="khaki"/>

<stop offset="10%" stop-color="khaki"/>

<stop offset="10%" stop-color="crimson"/>

<stop offset="20%" stop-color="crimson"/>

<stop offset="20%" stop-color="khaki"/>

<stop offset="30%" stop-color="khaki"/>

<stop offset="30%" stop-color="crimson"/>

<stop offset="40%" stop-color="crimson"/>

<stop offset="40%" stop-color="khaki"/>

<stop offset="50%" stop-color="khaki"/>

<stop offset="50%" stop-color="crimson"/>

<stop offset="60%" stop-color="crimson"/>

<stop offset="60%" stop-color="khaki"/>

<stop offset="70%" stop-color="khaki"/>

<stop offset="70%" stop-color="crimson"/>

<stop offset="80%" stop-color="crimson"/>

<stop offset="80%" stop-color="khaki"/>

<stop offset="90%" stop-color="khaki"/>

<stop offset="90%" stop-color="crimson"/>

<stop offset="100%" stop-color="crimson"/>

</linearGradient>

</defs>

<image class="filtro" xlink:href="zgzsky.jpg" width="200" height="200" y="50" x=\

"150"/>

<rect class="patron" width="200" height="200" x="500" y="150"/>

<rect class="degradado" width="200" height="200" x="750" y="150"/>

⁴

⁴http://codepen.io/jorgeatgu/details/xCebt/

http://codepen.io/jorgeatgu/details/xCebt/
http://codepen.io/jorgeatgu/details/xCebt/

DRY con group, defs y use 7

Soporte

En IE9 y iOS5 no se aplica el efecto del filtro ya que no están soportados.

Sprites con SVG

A continuación vamos a ver como podemos crear un sprite con SVG y todas las ventajas que ello
conlleva.

Ahora vamos a preparar el archivo que vamos a utilizar como sprite. Lo primero es crear un archivo
XML con la extensión SVG, lo vamos a llamar sprite-images.svg. Las medidas que vaya a tener
nuestro SVG no nos tienen que preocupar ya que vamos a ir seleccionando partes que están dentro
de el, aún así y aunque no es necesario yo le he dado un viewBox="0 0 2976.5 299" vuelvo a repetir
que las medidas no nos tiene que preocupar, podéis hacer todas las pruebas que queráis modificando
el viewBox y si hacemos todo el proceso bien el resultado va a ser el mismo. Para aquellos que
no estén familiriazados con SVG ni con el viewBox aquí os dejo un artículo que escribí sobre el
viewBox⁵, también os dejo otro de Sara Soudeian⁶ bastante más extenso y con una herramienta
visual que deja bastante claro todo el funcionamiento del viewBox.

Vamos a continuar preparando nuestro archivo de sprites. Ahora vamos a ir copiando el código de los
archivos que queremos incluir dentro del sprite. Vamos a copiar todo el código que este comprendido
entre las etiquetas <svg></svg>, las etiquetas no las queremos. Ahora nos vamos a ir a nuestro
sprite-images.svg y vamos a pegar todo el código entre dos etiquetas <g></g> a la etiqueta de
apertura le vamos a asignar un id="robot-codepen" para mas tarde poder hacer referencia al id=”“.
Si dejamos al grupo sin nombre no vamos a poder llamarlo. Con los cuatro archivos restantes vamos
a hacer exactamente lo mismo, al final tendremos que tener un archivo con el siguiente código. He
omitido el código que tiene cada archivo SVG para no hacer muy extenso el ejemplo.

⁵http://jorgeatgu.com/blog/atributos-viewbox-y-preserveaspectratio-en-svg/
⁶http://sarasoueidan.com/blog/svg-coordinate-systems/

http://jorgeatgu.com/blog/atributos-viewbox-y-preserveaspectratio-en-svg/
http://sarasoueidan.com/blog/svg-coordinate-systems/
http://jorgeatgu.com/blog/atributos-viewbox-y-preserveaspectratio-en-svg/
http://sarasoueidan.com/blog/svg-coordinate-systems/

DRY con group, defs y use 8

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 2976.5 299">

<g id="robot-codepen">

----->Aquí va todo el código de robot-codepen

</g>

<g id="perfil-codepen">

----->Aquí va todo el código de perfil-codepen

</g>

<g id="github">

----->Aquí va todo el código de github

</g>

<g id="visible">

----->Aquí va todo el código de visible

</g>

<g id="filtros">

----->Aquí va todo el código de filtros

</g>

</svg>

Ahora que ya tenemos preparado nuestro sprite vamos a utilizarlo. Vamos a utilizar de nuevo la
etiqueta <use>, ahora en el atributo xlink:href="" le vamos a indicar la ruta donde se encuentra
nuestro sprite-images.svg, en mi caso esta en la carpeta raíz así que con poner el nombre es
suficiente, en caso de que estuviera en una carpeta images la ruta sería la siguiente images/sprite-
images.svg. Ahora la ruta va acompañada de una almohadilla(#) y el nombre del grupo donde estaba
la imagen, en primer lugar vamos a llamar al SVG robot CodePen que estaba dentro del grupo <g

id="robot-codepen> quedando la etiqueta <use>de la siguiente manera:

<svg viewBox="0 0 595.3 299" class="recuadro">

<use xlink:href="sprite-images.svg#robot-codepen"/>

</svg>

Una vez incluidas todas las imágenes el código quedará de la siguiente manera:

DRY con group, defs y use 9

<svg viewBox="0 0 595.3 299" class="recuadro">

<use xlink:href="sprite-images.svg#robot-codepen"/>

</svg>

-->HTML

<svg viewBox="0 0 595.3 299" class="recuadro">

<use xlink:href="sprite-images.svg#perfil-codepen"/>

</svg>

-->HTML

<svg viewBox="0 0 595.3 299" class="recuadro">

<use xlink:href="sprite-images.svg#github"/>

</svg>

-->HTML

<svg viewBox="0 0 595.3 299" class="recuadro">

<use xlink:href="sprite-images.svg#visible"/>

</svg>

-->HTML

<svg viewBox="0 0 595.3 299" class="recuadro">

<use xlink:href="sprite-images.svg#filtros"/>

</svg>

También he añadido a los SVG una clase de CSS para modificar el tamaño a nuestro gusto.

.recuadro {

width: 350px;

height: 176px;

}

Por desgracia si hacemos todo esto en local no vamos a ver ningún resultado a no ser que tengamos
un servidor local o utilicemos en nuestro flujo de trabajo programas como CodeKit⁷ o GhostLab⁸.
Si no utilizamos ninguna de estas opciones tenemos que subir todos los archivos a nuestro propio
servidor para poder ver todo en funcionamiento. A continuación he subido todo el ejemplo a mi web
para que lo veáis en funcionamiento.

⁷https://incident57.com/codekit/
⁸http://vanamco.com/ghostlab/

https://incident57.com/codekit/
http://vanamco.com/ghostlab/
https://incident57.com/codekit/
http://vanamco.com/ghostlab/

DRY con group, defs y use 10

Un último apunte, cualquier elemento que contenga un id="" en SVG puede ser reutilizado a través
de use aunque no este dentro de las etiquetas defs. Aún así desde la W3C nos recomiendan que
todos estos elementos vayan dentro de defs para que nuestro código sea mas legible y accesible.

DEMO⁹

Soporte

Este método como vamos a ver en la siguiente sección no tiene soporte en IE.

Mucho cuidado los SVG que estén dentro del sprite y que contengan filtros o degradados ya que solo
se van a ver en Firefox. En Chrome, Opera y Safari veremos la figura o forma que lleve el degradado
pero su color de relleno será negro. En el caso de los filtros algunos se van a ver en negro y otros
directamente no se mostrarán.

Malas y buenas noticias.

Las malas son que esto no tiene soporte en ninguna versión de Internet Explorer, tampoco en IE11.
Como suele pasar este método funciona sin ningún tipo de problema en los navegadores modernos.

Las buenas es que como siempre hay alguien haciendo cosas que molan por amor al arte, en este
caso Jonathan Neal¹⁰ se ha currado un polyfill para que funcione en Internet Explorer. Simplemente
tenemos que subir el script a nuestro servidor y agregar el siguiente código con la ruta donde
está alojado nuestro script a nuestroHTML <script src="js/svg4everybody.js"></script>. Que
menos que darle una estrellita al repo de GitHub¹¹.

La demo que he subido a mi web lleva incluido el polyfill para que veáis que si que funciona en ese
navegador llamado Internet Explorer.

⁹http://jorgeatgu.com/ejemplos/supercss/trabajos.html
¹⁰https://github.com/jonathantneal
¹¹https://github.com/jonathantneal/svg4everybody

http://jorgeatgu.com/ejemplos/supercss/trabajos.html
https://github.com/jonathantneal
https://github.com/jonathantneal/svg4everybody
http://jorgeatgu.com/ejemplos/supercss/trabajos.html
https://github.com/jonathantneal
https://github.com/jonathantneal/svg4everybody

DRY con group, defs y use 11

COMPARATIVA

Y para terminar una pequeña comparativa.

Mi página de trabajos¹² con los SVG cargados a través de la etiqueta <object>mas un fallback para
navegadores que no soportan SVG.

¹²http://jorgeatgu.com/trabajos-object

http://jorgeatgu.com/trabajos-object
http://jorgeatgu.com/trabajos-object

DRY con group, defs y use 12

Mi página de trabajos¹³ con los SVG cargados a través de images-sprites.svg sin fallback alguno.

Como podéis apreciar en las imágenes me ahorro un montón de resquets y la página carga bastante
más rápido.

Lo único malo es que cuando utilizamos esta técnica de importar partes de otro SVG aquellos que
contengan filtros no se van a importar. Tampoco importa los degradados, así que aquellos elementos
que contengan degradados se quedarán de color negro.

Métodos para aplicar estilos CSS a SVG

A lo largo de libro hemos ido aplicando los estilos a través de los presentation attributes o atributos
de presentación de tal manera que aplicamos el estilo en la propia etiqueta del elemento. Ahora
vamos a ver otros métodos para aplicar diferentes estilos a nuestros SVG.

A través de una etiqueta XML

Podemos aplicar una hoja de estilos directamente en nuestros archivos SVG a través de una etiqueta
xml. Para ello vamos a colocar en la cabecera de nuestro SVG la siguiente etiqueta XML.

¹³http://jorgeatgu.com/trabajos

http://jorgeatgu.com/trabajos
http://jorgeatgu.com/trabajos

DRY con group, defs y use 13

<? xml-stylesheet href="style.css" type="text/css" ?>

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 2976.5 299">

<rect class="rectangulo" width="50" height="50"/>

</svg>

Ahora en nuestro archivo style.css aplicamos los estilos al rectángulo.

.rectangulo {

fill: crimson;

stroke: black;

}

Un aviso antes de que os volváis locos, este método no funciona en local. Tendréis que lanzar un
servidor desde vuestro ordenador por ejemplo con Grunt, Gulp, CodeKit, GhostLab podéis ver como
la hoja de estilos aplica los estilos al SVG. La otra opción es si disponéis de un servidor web subir el
SVG y los CSS al servidor.

A través del style en el HTML

Aquí otro método que seguramente suene a más de uno y como bien sabéis es poco o nada
recomendable. Solamente tenemos que incluir los estilos CSS en el propio HTML a través de la
etiqueta style.

<style type="text/css">

<![CDATA[

circle {

fill: navajowhite;

stroke: orange;

}

]]>

</style>

<circle cx="50" cy="10" r="50"/>

A través de la etiqueta style en SVG

Al igual que los presentation attributes también podemos usar estilos inline en SVG a través de
style

DRY con group, defs y use 14

<circle cx="50" cy="10" r="50" style="fill: ivory; stroke: snow;"/>

A través de un archivo CSS externo

Y por último el método más conocido, aplicar los estilos a través de una hoja de estilos externa
gracias a la etiqueta link en el head del HTML.

<link rel="stylesheet" href="turuta.css">

<circle cx="50" cy="10" r="50" class="circulo"/>

.circulo {

fill: tomato;

stroke: snow;

}

Fragmentos identificadores

Los fragmentos identificadores son otro método para poder hacer una llamada a una parte en
concreto de un SVG. La llamada la podemos realizar desde el HTML con la etiqueta img o desde el
CSS con background-image: a través del ID del elemento y también a través de la etiqueta view.

Ademas de hacer la llamada al fragmento también lo podemos modificar con lo siguientes atributos.
Todos ellos los vamos a incluir entre paréntesis.

ViewBoxParams: corresponde al atributo viewBox. AspectParams: corresponde al atributo pre-
serveAspectRatio. TransformParams: corresponde a la transformación y todos los métodos que
podemos aplicar a través de ella. ZoomAndPanParams: corresponde al atributo zoomAndPan. Tiene
dos valores magnify y disable.

Si queremos utilizar mas de un atributo simplemente lo separaremos con un punto y coma.

Ahora vamos a ver como tenemos que preparar nuestro SVG. Vamos a crear un archivo con cinco
iconos, cada icono es de 32 por 32 pixels. Lo importante es crear una etiqueta view por cada icono,
en la etiqueta vamos a indicar un ID para diferenciar cada icono y a través del viewBox la posición
que ocupa el icono.

DRY con group, defs y use 15

<view id="codepen-view" viewBox="0 0 32 32"/>

<view id="twitter-view" viewBox="0 32 32 32"/>

<view id="github-view" viewBox="0 64 32 32"/>

<view id="dribbble-view" viewBox="0 96 32 32"/>

<view id="behance-view" viewBox="0 128 32 32"/>

En el viewBox influíra la posición que ocupe cada icono en nuestro SVG. El primer valor corresponde
a la coordenada horizontal. El segundo valor corresponde a la coordenada vertical. El tercer valor
corresponde al ancho. El cuarto valor corresponde a la altura.

Llamada desde el HTML

Ahora vamos a llamar a los iconos desde el HTML. Esto lo podemos hacer de dos maneras.

La primera es a través de la etiqueta img, en src vamos a indicar la ruta donde se aloja nuestro
archivo SVG y a continuación lo siguiente: #svgView(viewBox(0,0,32,32)) todo esto da lugar al
código que vemos a continuación.

<img src="http://jorgeatgu.com/libro/ejemplos/images/iconos.svg#svgView(viewBox(\

0,32,32,32))" class="iconos-size">

El otro método que podemos utilizar es llamando al ID que hemos asignado a cada uno de los iconos.

<img src="http://jorgeatgu.com/libro/ejemplos/images/iconos.svg#codepen-view" cl\

ass="iconos-size">

Llamada desde el CSS

Ahora vamos a llamar a los iconos desde el CSS. Al igual que con el HTML vamos podemos utilizar
los dos métodos.

El primer método a través de una clase en CSS es igual que el que hemos utilizado en el HTML a
través de la svgView

.view {

background-image: url('http://jorgeatgu.com/libro/ejemplos/images/iconos.svg#svg\

View(viewBox(0,0,32,32))');

}

El segundo método también es igual que el que hemos utilizado en el HTML a través del ID que
hemos asignado en el SVG.

DRY con group, defs y use 16

.view-dos {

background-image: url('http://jorgeatgu.com/libro/ejemplos/images/iconos.svg#cod\

epen-view');

}

¹⁴

La demo en mi web: DEMO¹⁵

SOPORTE

A través del HTML

Android Browser es el único que carece de soporte, en cambio Firefox for Android y Chrome for
Android si que dan soporte.

A través del CSS

¹⁴http://codepen.io/jorgeatgu/pen/rqKBg/
¹⁵jorgeatgu.com/libro/ejemplos/fragments-iconos.html

http://codepen.io/jorgeatgu/pen/rqKBg/
jorgeatgu.com/libro/ejemplos/fragments-iconos.html
http://codepen.io/jorgeatgu/pen/rqKBg/
jorgeatgu.com/libro/ejemplos/fragments-iconos.html

	Tabla de contenidos
	DRY con group, defs y use
	Group
	Defs y use
	Usando CSS para aplicar estilos
	Sprites con SVG
	Métodos para aplicar estilos CSS a SVG
	Fragmentos identificadores

