SCALABLE

UN LIBRO SOBRE SVG

por Jorge Aznar Tobajas

Scalable
Un libro sobre SVG

Jorge Aznar
Este libro est4 a la venta en http://leanpub.com/scalable

Esta version se publico en 2017-04-25

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2017 Jorge Aznar

http://leanpub.com/scalable
http://leanpub.com/
http://leanpub.com/manifesto

iTwitea sobre el libro!

Por favor ayuda a Jorge Aznar hablando sobre el libro en Twitter!
El tweet sugerido para este libro es:

Aprendiendo SVG con SCALABLE http://leanpub.com/scalable/
El hashtag sugerido para este libro es #scalablelibro.

Descubre lo que otra gente esta diciendo sobre el libro haciendo click en este enlace para buscar el
hashtag en Twitter:

https://twitter.com/search?q=#scalablelibro

http://twitter.com
https://twitter.com/intent/tweet?text=Aprendiendo%20SVG%20con%20SCALABLE%20http://leanpub.com/scalable/
https://twitter.com/search?q=%23scalablelibro
https://twitter.com/search?q=%23scalablelibro

Para M? Carmen, Rosana e Izarbe, y a la memoria de mi padre Agustin.

Indice general

DRY con group,defsyuse
Group
Defsyuse
Usando CSS para aplicarestilos
Spritescon SVG oL
Métodos para aplicar estilos CSSaSVG
Fragmentos identificadores Lo Lo

DRY con group, defs y use

Dont repeat yourself que viene a ser que no te repitas a ti mismo. Si ya tenemos una figura que
ocupa veinte lineas para que vamos a repetir las veinte lineas si con una sola linea nos basta y nos
sobra. En este capitulo vamos a ver como lo podemos hacer.

Group

La etiqueta <g> representa a los grupos, y como su nombre indica la utilizamos para agrupar los
diferentes elementos que estén dentro de la propia etiqueta.

En ella podemos definir una serie de figuras y aplicarles los mismos colores de fondo, grosor y
color del borde. A los grupos también le podemos aplicar filtros, animaciones, transformaciones y
atributos CSS.

Para mover un grupo vamos a tener que recurrir a transform="translate” ya que no disponemos
de las coordenadas x e y. Lo mismo para el tamario, el cual si queremos modificar a la vez lo haremos
con transform="scale”.

/
0“
4

<g fill="crimson" transform="rotate(45)">
<rect x="100" y="30" width="40" height="40"/>
<rect x="150" y="30" width="40" height="40"/>
<rect x="200" y="30" width="40" height="40"/>
<rect x="250" y="30" width="40" height="40"/>
<rect x="300" y="30" width="40" height="40"/>

CQRDEPEN

</g>

'http://codepen.io/jorgeatgu/details/qexKf/

http://codepen.io/jorgeatgu/details/qexKf/
http://codepen.io/jorgeatgu/details/qexKf/

DRY con group, defs y use 2

En el anterior ejemplo podemos ver como hemos indicado a la vez el mismo color y las mismas
transformaciones a todos los rectangulos.

Soporte

Defs y use

Ahora que ya sabemos como crear nuestras propias formas basicas, patrones, degradados y aplicar a
todos ellos multiples transformaciones vamos a ver como podemos reutilizar todo este c6digo para
no tener que ir repitiendo a lo largo de documento los mismos elementos con el consecuente ahorro
de cddigo y sobre todo de tiempo.

El cédigo que queramos repetir a lo largo del documento debera de ir entre <defs> </defs> a los
elementos les indicaremos un id="" con el nombre que queramos y a continuacion para usar este
codigo utilizaremos la etiqueta <use>, lo posicionaremos en el documento a través de las coordenadas
x e ¥, le podemos aplicar transformaciones como scale, matrix, rotate etc...

Todo el codigo que esté dentro de la etiquetas <defs> no se va a tener en cuenta a no ser que
utilicemos la etiqueta <use>.

Aunque su uso no es obligatorio la W3C recomienda utilizar estas etiquetas para hacer nuestro
codigo mucho mas accesible y legible. Vamos a ver unos ejemplo para que nos quede mas claro su

funcionamiento.

DRY con group, defs y use

<defs>
<rect id="rectangulo" width="40" height="40"/>
<circle id="circulo" r="30"/>

</defs>

<use xlink:href="#rectangulo" x="300" y="200"fill="crimson"/>

<use
<use
<use

En el ejemplo anterior hemos definido entre las etiquetas <defs></defs> un elemento <rect> con un
id="rectangulo” y un elemento <circle> con un id="circulo”. Ahora vamos a llamar a estos dos
elementos tantas veces como queramos a través de la etiqueta <use> y para ello vamos a utilizar el
atributo xlink:href con la # antes del nombre del id, también le indicamos la posicion del elemento

xlink:href="#circulo" x="250" y="300" fill="gold"/>
xlink:href="#circulo" x="600" y="200" fill="darkslategrey"/>
xlink:href="#rectangulo"x="700" y="300" fill="navajowhite"/>

C&RDEPEN

a través de las coordenadas horizontal y vertical.

Una advertencia, como podéis observar en el codigo los elementos <rect> y <circle> no tienen
un color definido, esto se debe a que si le indicamos un color al elemento que esta en <defs> los
elementos que creamos a través del <use> heredaran ese color y no tendremos oportunidad alguna
de cambiar el color, asi que si la idea es que cada rectangulo tenga un color diferente tendremos que
dejar sin definir el color. En el caso de que no definamos el color ni en <defs> ni en <use> el color

por defecto sera negro.

Vamos a ver qué podemos hacer si combinamos <defs> + <use> + <g>

®http://codepen.io/jorgeatgu/details/Cuavg/

http://codepen.io/jorgeatgu/details/Cuavg/
http://codepen.io/jorgeatgu/details/Cuavg/

DRY con group, defs y use 4

ENEEN
ENEEE

/

4§%
{ 4

<defs>
<g id="cuadrados" fill="crimson" transform="translate(150 50)">
<rect x="30" y="30" width="40" height="40"/>
<rect x="80" y="30" width="40" height="40"/>
<rect x="130" y="30" width="40" height="40"/>
<rect x="180" y="30" width="40" height="40"/>
<rect x="230" y="30" width="40" height="40"/>
</g>
</defs>

<use xlink:href="#cuadrados"/>

<use xlink:href="#cuadrados" transform="translate(@ 100)"/>

<use xlink:href="#cuadrados" transform="translate(@ 100) rotate(45)"/>
<use xlink:href="#cuadrados" transform="scale(.5)"/>

<use xlink:href="#cuadrados" y="400" opacity=".5"/>

C&RDEPEN

En este ejemplo con cinco etiquetas <use> hemos creado cinco grupos de cinco rectangulos cada
uno, y a cada grupo le hemos dado una propiedad diferente.

*http://codepen.io/jorgeatgu/details/IHFAi/

http://codepen.io/jorgeatgu/details/lHFAi/
http://codepen.io/jorgeatgu/details/lHFAi/

DRY con group, defs y use 5

Soporte

Usando CSS para aplicar estilos

Vamos a ver como podemos aplicar un efecto de filtro, un patréon y un degradado a los elementos de
nuestro SVG a través de CSS.

El método es sencillo, una vez declarados nuestros efectos entre las etiquetas SVG vamos a crear
una clase en nuestro achivo CSS, y en esa clase vamos a declarar el efecto por ejemplo el <pattern>
declaramos con fill: url(*patron) ahora volvemos al HTML y aplicamos la clase al elemento que
queremos que reciba el efecto.

.patron {
fill: url(#*patron);
}

.filtro {
filter: url(#filtro);

}

.degradado {
fill: url(*degradado);

}

DRY con group, defs y use

<defs>
<pattern id="patron" width="40" height="40" patternUnits="userSpaceOnUse">
<circle cx="20" cy="20" r="20" fill="crimson"/>
</pattern>
<filter id="filtro" filterUnits="objectBoundingBox">
<feColorMatrix type="hueRotate" in="SourceGraphic" values="60@"/>
</filter>
<linearGradient id="degradado" gradientUnits="objectBoundingBox">
<stop offset="0%" stop-color="khaki"/>
<stop offset="10%" stop-color="khaki"/>
<stop offset="10%" stop-color="crimson"/>
<stop offset="20%" stop-color="crimson"/>
<stop offset="20%" stop-color="khaki"/>
<stop offset="380%" stop-color="khaki"/>
<stop offset="380%" stop-color="crimson"/>
<stop offset="40%" stop-color="crimson"/>
<stop offset="40%" stop-color="khaki"/>
<stop offset="50%" stop-color="khaki"/>
<stop offset="50%" stop-color="crimson"/>
<stop offset="60%" stop-color="crimson"/>
<stop offset="60%" stop-color="khaki"/>
<stop offset="70%" stop-color="khaki"/>
<stop offset="70%" stop-color="crimson"/>
<stop offset="80%" stop-color="crimson"/>
<stop offset="80%" stop-color="khaki"/>
<stop offset="90%" stop-color="khaki"/>
<stop offset="90%" stop-color="crimson"/>
<stop offset="100%" stop-color="crimson"/>
</linearGradient>
</defs>

<image class="filtro" xlink:href="zgzsky.jpg" width="200" height="200" y="50" x=\
"150" />

<rect class="patron" width="200" height="200" x="500" y="150"/>

<rect class="degradado" width="200" height="200" x="750" y="150"/>

CQRDEPEN

“http://codepen.io/jorgeatgu/details/xCebt/

http://codepen.io/jorgeatgu/details/xCebt/
http://codepen.io/jorgeatgu/details/xCebt/

DRY con group, defs y use 7

Soporte

En IE9 y iOS5 no se aplica el efecto del filtro ya que no estan soportados.

Sprites con SVG

A continuacién vamos a ver como podemos crear un sprite con SVG y todas las ventajas que ello
conlleva.

Ahora vamos a preparar el archivo que vamos a utilizar como sprite. Lo primero es crear un archivo
XML con la extension SVG, lo vamos a llamar sprite-images.svg. Las medidas que vaya a tener
nuestro SVG no nos tienen que preocupar ya que vamos a ir seleccionando partes que estan dentro
de el, atin asi y aunque no es necesario yo le he dado un viewBox="0 @ 2976.5 299" vuelvo a repetir
que las medidas no nos tiene que preocupar, podéis hacer todas las pruebas que querais modificando
el viewBox y si hacemos todo el proceso bien el resultado va a ser el mismo. Para aquellos que
no estén familiriazados con SVG ni con el viewBox aqui os dejo un articulo que escribi sobre el
viewBox’, también os dejo otro de Sara Soudeian® bastante mas extenso y con una herramienta
visual que deja bastante claro todo el funcionamiento del viewBox.

Vamos a continuar preparando nuestro archivo de sprites. Ahora vamos a ir copiando el coédigo de los
archivos que queremos incluir dentro del sprite. Vamos a copiar todo el codigo que este comprendido
entre las etiquetas <svg></svg>, las etiquetas no las queremos. Ahora nos vamos a ir a nuestro
sprite-images.svg y vamos a pegar todo el codigo entre dos etiquetas <g></g> a la etiqueta de
apertura le vamos a asignar un id="robot-codepen" para mas tarde poder hacer referencia al id="*.
Si dejamos al grupo sin nombre no vamos a poder llamarlo. Con los cuatro archivos restantes vamos
a hacer exactamente lo mismo, al final tendremos que tener un archivo con el siguiente cédigo. He
omitido el codigo que tiene cada archivo SVG para no hacer muy extenso el ejemplo.

*http://jorgeatgu.com/blog/atributos-viewbox-y-preserveaspectratio-en-svg/
®http://sarasoueidan.com/blog/svg-coordinate-systems/

http://jorgeatgu.com/blog/atributos-viewbox-y-preserveaspectratio-en-svg/
http://sarasoueidan.com/blog/svg-coordinate-systems/
http://jorgeatgu.com/blog/atributos-viewbox-y-preserveaspectratio-en-svg/
http://sarasoueidan.com/blog/svg-coordinate-systems/

DRY con group, defs y use 3

<svg xmlns="http://www.w3.0rg/2000/svg" viewBox="0Q @ 2976.5 299">

<g id="robot-codepen">
————— >Aqui va todo el cédigo de robot-codepen
</g>

<g id="perfil-codepen">
————— >Aqui va todo el cdédigo de perfil-codepen
</g>

<g id="github">
----- >Aqui va todo el cédigo de github
</g>

<g id="visible">
----- >Aqui va todo el cédigo de visible
</g>

<g id="filtros">
————— >Aqui va todo el cédigo de filtros
</g>

</svg>

Ahora que ya tenemos preparado nuestro sprite vamos a utilizarlo. Vamos a utilizar de nuevo la
etiqueta <use>, ahora en el atributo xlink:href="" le vamos a indicar la ruta donde se encuentra
nuestro sprite-images.svg, en mi caso esta en la carpeta raiz asi que con poner el nombre es
suficiente, en caso de que estuviera en una carpeta images la ruta seria la siguiente images/sprite-
images.svg. Ahora la ruta va acompafiada de una almohadilla(#) y el nombre del grupo donde estaba
la imagen, en primer lugar vamos a llamar al SVG robot CodePen que estaba dentro del grupo <g
id="robot-codepen> quedando la etiqueta <use>de la siguiente manera

<svg viewBox="0 0@ 595.3 299" class="recuadro">
<use xlink:href="sprite-images.svg#robot-codepen"/>
</svg>

Una vez incluidas todas las imagenes el codigo quedara de la siguiente manera:

DRY con group, defs y use 9

<svg viewBox="0 0 595.3 299" class="recuadro">
<use xlink:href="sprite-images.svg#robot-codepen"/>
</svg>

-->HTML

<svg viewBox="0 @ 595.3 299" class="recuadro">
<use xlink:href="sprite-images.svg#perfil-codepen"/>
</svg>

-->HTML

<svg viewBox="0Q © 595.3 299" class="recuadro">
<use xlink:href="sprite-images.svg#github"/>
</svg>

-->HTML

<svg viewBox="0 © 595.3 299" class="recuadro">
<use xlink:href="sprite-images.svg#visible"/>
</svg>

-->HTML

<svg viewBox="0 @ 595.3 299" class="recuadro">
<use xlink:href="sprite-images.svg#filtros"/>
</svg>

También he afiadido a los SVG una clase de CSS para modificar el tamafio a nuestro gusto.

.recuadro {
width: 350px;
height: 176px;
}

Por desgracia si hacemos todo esto en local no vamos a ver ningun resultado a no ser que tengamos
un servidor local o utilicemos en nuestro flujo de trabajo programas como CodeKit” o GhostLab®.
Si no utilizamos ninguna de estas opciones tenemos que subir todos los archivos a nuestro propio
servidor para poder ver todo en funcionamiento. A continuacion he subido todo el ejemplo a mi web
para que lo veais en funcionamiento.

"https://incident57.com/codekit/
8http://vanamco.com/ghostlab/

https://incident57.com/codekit/
http://vanamco.com/ghostlab/
https://incident57.com/codekit/
http://vanamco.com/ghostlab/

DRY con group, defs y use 10

Un tdltimo apunte, cualquier elemento que contenga un id="" en SVG puede ser reutilizado a través
de use aunque no este dentro de las etiquetas defs. Aun asi desde la W3C nos recomiendan que
todos estos elementos vayan dentro de defs para que nuestro cddigo sea mas legible y accesible.

DEMO’

Soporte

Este método como vamos a ver en la siguiente seccion no tiene soporte en IE.

Mucho cuidado los SVG que estén dentro del sprite y que contengan filtros o degradados ya que solo
se van a ver en Firefox. En Chrome, Opera y Safari veremos la figura o forma que lleve el degradado
pero su color de relleno sera negro. En el caso de los filtros algunos se van a ver en negro y otros
directamente no se mostraran.

Malas y buenas noticias.

Las malas son que esto no tiene soporte en ninguna version de Internet Explorer, tampoco en IE11.
Como suele pasar este método funciona sin ningin tipo de problema en los navegadores modernos.

Las buenas es que como siempre hay alguien haciendo cosas que molan por amor al arte, en este
caso Jonathan Neal'® se ha currado un polyfill para que funcione en Internet Explorer. Simplemente
tenemos que subir el script a nuestro servidor y agregar el siguiente coédigo con la ruta donde
esta alojado nuestro script a nuestro HTML <script src="js/svg4everybody. js"></script>. Que
menos que darle una estrellita al repo de GitHub"'.

La demo que he subido a mi web lleva incluido el polyfill para que veais que si que funciona en ese
navegador llamado Internet Explorer.

*http://jorgeatgu.com/ejemplos/supercss/trabajos.html
®https://github.com/jonathantneal
"https://github.com/jonathantneal/svg4everybody

http://jorgeatgu.com/ejemplos/supercss/trabajos.html
https://github.com/jonathantneal
https://github.com/jonathantneal/svg4everybody
http://jorgeatgu.com/ejemplos/supercss/trabajos.html
https://github.com/jonathantneal
https://github.com/jonathantneal/svg4everybody

DRY con group, defs y use 11
[Rur
o &
Q [¥ http://jorgeatgu.com/ejemplo css/trabajos.html P~ [jorgeATGU - SVG - disefio g.. T 2
A
INICIO TRABAJOS CONTACTO BLOG
SVG SVG
SMIL Rodeo CodePen CodePen perfil
(< ‘
disefio web SVG & CSS3
pages GitHub Visible Spectrum
v

[http: /jorgeatgu.com/ejemplos/supercss/svg-error-404 }

COMPARATIVA

Y para terminar una pequefia comparativa.

Mi pagina de trabajos' con los SVG cargados a través de la etiqueta <ob ject> mas un fallback para

navegadores que no soportan SVG.

*http://jorgeatgu.com/trabajos-object

http://jorgeatgu.com/trabajos-object
http://jorgeatgu.com/trabajos-object

DRY con group, defs y use 12

® 0 ¥ = Preserve log & Disable cache

Name Status) size Time)
ok Method s Type Initiator - . Timeline — -
=] 404.htm 200 http:/ fwww.jorgeat 5.9KB 110ms
-l-‘ GET oK text/html | edirect 34.9K8 80ms
;| 404.htm 200 http: / fwww.jorgeat 5.9KB 109 ms
W-" GEl oK text/html - direct 34.9K8 76ms
‘ d73bb2aGe53ca684(fdcIadale 1bsb2a6216 1 fbabeBE0bcaalsL.. | 200 o deolxwz js:2 99.5KB 275ms
css ext/css
= use.typekit.net/c/Geaect/kepler-s lay:n4:n7 proxima-n oK ! Script 130 KB 124ms
‘ P.gif7s=1ak-dcoxwz&ht-tkeh-jorgeatgu.comaf=139.175.1 200 ol 3138 100 ms
__J paypekit.net oK Ipaoe/gi © 358 99 ms
] data:font/opentype;... A ‘ deodxwz.js:13 0B 7Llms
‘ GET (data) font/cpen Script 20.0KB 70ms
P : y deos: 13 0B 76
‘ data:font/opentype; o s fontjopen, ASSXNEls - 76ms
Script 20.1KB 75ms
7 data:font/opentype;... — . deoBxwz.is:13 oB 80ms
‘ S Cat fonk/oper 28.5KB 78ms
] data:fontfopentype;... o deodxwz.js:13 0B 93 ms
‘ GET (data) font/open Script o e A

112 requests | 686 KB transferred | 30.28 s (load: 28.31 s, DOMContentLoaded: 11.195)

Mi pagina de trabajos™ con los SVG cargados a través de images-sprites.svg sin fallback alguno.

® O Vv = Preserve log (4 Disable cache

Name Status , size Time
P Method S Type Initiator it iy Timeline - _
25| trabaios-allhtmi o 20 o 3.2K8 107ms
xt/htm the
22] Jejemplo ercss oK & = 12.5KB 104 ms
-] cloudflare.m http://jorgeatgu.com/ejemplos/supercss/ e 200 . trabajos-all.html:15 17.8KB 71ms
At text/javas..
22 sjax.cloudriytrabajos-all.tml oK eXtavas.. gripe 48.2KB 41ms
] style.css 200 trabajos-all.html:19 5.0KB 46ms
css GET text/css 41
ejemplos ss/css oK Parser 16.7K8 41ms
underscore-min.map 200 tabajos-allhtml:17 3ms
[» GET 9 text/plain =
L eljapbgkmIngdpckoiiibecpemleclhh/js oK Parser 3ms
rocket.js et 200 cloudflare.min.js:3 24.8KB 4ams
text, 3
== /cdn-cgi/nexp/dokv=88e434a982/cloudflare oK ext/lavas... | Seript 83.0KB 39ms
=] styless - 200 o trabajos-all.html:19 5.0KB 42ms
Gss| ext/css
22| Jejemplos/supercss/css oK AL Parser 16.7K8B 41ms
sprite-images-all.svg 200 trabajos-all.html:56 1098 164ms
GET image/sv.. i e
—J /ejemplos/supercss oK Parser 350KB s2ms
socialsprite.svg 302 trabajos-all.html:1 3848 1.18s
| GET text/htm| 2 :
L /ejemplos/supercss/img Found Parser 0B 579ms

19 requests | 278 KB transferred |1 6.82 s (load: 2.34 s, DOMContentLoaded: 2.18 s)

Como podéis apreciar en las imagenes me ahorro un montoén de resquets y la pagina carga bastante
mas rapido.

Lo dnico malo es que cuando utilizamos esta técnica de importar partes de otro SVG aquellos que

contengan filtros no se van a importar. Tampoco importa los degradados, asi que aquellos elementos
que contengan degradados se quedaran de color negro.

Métodos para aplicar estilos CSS a SVG

A lo largo de libro hemos ido aplicando los estilos a través de los presentation attributes o atributos
de presentaciéon de tal manera que aplicamos el estilo en la propia etiqueta del elemento. Ahora
vamos a ver otros métodos para aplicar diferentes estilos a nuestros SVG.

A través de una etiqueta XML

Podemos aplicar una hoja de estilos directamente en nuestros archivos SVG a través de una etiqueta
xml. Para ello vamos a colocar en la cabecera de nuestro SVG la siguiente etiqueta XML.

http://jorgeatgu.com/trabajos

http://jorgeatgu.com/trabajos
http://jorgeatgu.com/trabajos

DRY con group, defs y use 13

<? xml-stylesheet href="style.css" type="text/css" 7>
<svg xmlns="http://www.w3.0rg/2000/svg" viewBox="0 @ 2976.5 299">

<rect class="rectangulo" width="50" height="50"/>
</svg>

Ahora en nuestro archivo style.css aplicamos los estilos al rectangulo.

.rectangulo {
fill: crimson;
stroke: black;

}

Un aviso antes de que os volvais locos, este método no funciona en local. Tendréis que lanzar un
servidor desde vuestro ordenador por ejemplo con Grunt, Gulp, CodeKit, GhostLab podéis ver como
la hoja de estilos aplica los estilos al SVG. La otra opcion es si disponéis de un servidor web subir el
SVG y los CSS al servidor.

A través del style en el HTML

Aqui otro método que seguramente suene a mas de uno y como bien sabéis es poco o nada
recomendable. Solamente tenemos que incluir los estilos CSS en el propio HTML a través de la
etiqueta style.

<style type="text/css">
<! [CDATA[
circle {
fill: navajowhite;
stroke: orange;
}
1>
</style>
<circle cx="50" cy="10" r="50"/>

A través de la etiqueta style en SVG

Al igual que los presentation attributes también podemos usar estilos inline en SVG a través de
style

DRY con group, defs y use 14

<circle cx="H0Q" cy="10" r="50" style="fill: ivory; stroke: snow;"/>

A través de un archivo CSS externo

Y por ultimo el método mas conocido, aplicar los estilos a través de una hoja de estilos externa
gracias a la etiqueta link en el head del HTML.

<link rel="stylesheet" href="turuta.css">

<circle cx="H0" cy="10" r="50" class="circulo"/>

.circulo {
fill: tomato;
stroke: snow;

}

Fragmentos identificadores

Los fragmentos identificadores son otro método para poder hacer una llamada a una parte en
concreto de un SVG. La llamada la podemos realizar desde el HTML con la etiqueta img o desde el
CSS con background-image: a través del ID del elemento y también a través de la etiqueta view.

Ademas de hacer la llamada al fragmento también lo podemos modificar con lo siguientes atributos.
Todos ellos los vamos a incluir entre paréntesis.

ViewBoxParams: corresponde al atributo viewBox. AspectParams: corresponde al atributo pre-
serveAspectRatio. TransformParams: corresponde a la transformacion y todos los métodos que
podemos aplicar a través de ella. ZoomAndPanParams: corresponde al atributo zoomAndPan. Tiene
dos valores magnify y disable.

Si queremos utilizar mas de un atributo simplemente lo separaremos con un punto y coma.

Ahora vamos a ver como tenemos que preparar nuestro SVG. Vamos a crear un archivo con cinco
iconos, cada icono es de 32 por 32 pixels. Lo importante es crear una etiqueta view por cada icono,
en la etiqueta vamos a indicar un ID para diferenciar cada icono y a través del viewBox la posicion
que ocupa el icono.

DRY con group, defs y use 15

<view id="codepen-view" viewBox="0Q @ 32 32"/>
<view id="twitter-view" viewBox="0Q 32 32 32"/>
<view id="github-view" viewBox="0Q 64 32 32"/>
<view id="dribbble-view" viewBox="0Q 96 32 32"/>
<view id="behance-view" viewBox="@ 128 32 32"/>

En el viewBox influira la posicién que ocupe cada icono en nuestro SVG. El primer valor corresponde
a la coordenada horizontal. El segundo valor corresponde a la coordenada vertical. El tercer valor
corresponde al ancho. El cuarto valor corresponde a la altura.

Llamada desde el HTML

Ahora vamos a llamar a los iconos desde el HTML. Esto lo podemos hacer de dos maneras.

La primera es a través de la etiqueta img, en src vamos a indicar la ruta donde se aloja nuestro
archivo SVG y a continuacion lo siguiente: #svgView(viewBox(0,0,32,32)) todo esto da lugar al
cddigo que vemos a continuacion.

<img src="http://jorgeatgu.com/libro/ejemplos/images/iconos.svg#*svgView(viewBox(\
0,32,32,32))" class="iconos-size">

El otro método que podemos utilizar es llamando al ID que hemos asignado a cada uno de los iconos.

<img src="http://jorgeatgu.com/libro/ejemplos/images/iconos.svg#codepen-view" cl\

ass="iconos-size">

Llamada desde el CSS

Ahora vamos a llamar a los iconos desde el CSS. Al igual que con el HTML vamos podemos utilizar
los dos métodos.

El primer método a través de una clase en CSS es igual que el que hemos utilizado en el HTML a
través de la svgView

.view {

background-image: url('http://jorgeatgu.com/libro/ejemplos/images/iconos.svg#svg\
View(viewBox(0,0,32,32))"');

}

El segundo método también es igual que el que hemos utilizado en el HTML a través del ID que
hemos asignado en el SVG.

DRY con group, defs y use 16

.view-dos {
background-image: url('http://jorgeatgu.com/libro/ejemplos/images/iconos.svg#cod\
epen-view');

}

C&RDEPEN

La demo en mi web: DEMO?*’

14

SOPORTE

A través del HTML

Android Browser es el unico que carece de soporte, en cambio Firefox for Android y Chrome for
Android si que dan soporte.

A través del CSS

"http://codepen.io/jorgeatgu/pen/rqKBg/
%jorgeatgu.com/libro/ejemplos/fragments-iconos.html

http://codepen.io/jorgeatgu/pen/rqKBg/
jorgeatgu.com/libro/ejemplos/fragments-iconos.html
http://codepen.io/jorgeatgu/pen/rqKBg/
jorgeatgu.com/libro/ejemplos/fragments-iconos.html

	Tabla de contenidos
	DRY con group, defs y use
	Group
	Defs y use
	Usando CSS para aplicar estilos
	Sprites con SVG
	Métodos para aplicar estilos CSS a SVG
	Fragmentos identificadores

