
Salt To Ansible Migration Guide

Salt To Ansible Migration Guide

1 / 84

af://h1-0

Copyright
Introduction

Audience
Acknowledgements
Disclaimers

Software Versions
Limitations
AI Usage
Release History

Migration Guiding Principles
Minimize external dependencies
Validate data as much as possible.
Avoid refactoring while migrating

Major Salt/Ansible Differences
Ansible provisions hosts via ssh
Ansible is YAML-first while Salt is Jinja2-first
Ansible calls function calls with ansible.builtin.include_tasks instead of Jinja2
macros
Main Ansible source is under tasks/main.yml instead of init.sls
Ansible tasks are run sequentially
Ansible names are descriptive only
Ansible uses host_vars and group_var files instead of pillar files
Ansible uses a global ansible_facts map instead of Grains
Ansible uses a lookup() function instead of external pillar

Migration Workflow
Scrub the Salt-specific tickets and repos
Inventory all the hosts
Survey Current Salt Usage
Anticipate Emergency Salt Fixes
Configure SSH access to the hosts
Create ansible-vault keys
Migrate Pillar Data

Build up a JSON Schema
Migrate pillar data to inventory/host_vars files
Migrate ext_pillar data to inventory/host_data files
Construct the Ansible site.yml file

Analyze Salt States
Port Salt init.sls states to Ansible tasks
Create a argument_specs.yml file for the role

Salt To Ansible Migration Guide

2 / 84

Port Salt MACRO.sls states to Ansible tasks
Test out the new role code
Work the Salt-specific edge case tickets
Use Ansible in production
Post migration tasks

Ansible File Layout
Jinja2 Migration Guide

Jinja2 Variable Assignment
Jinja2 conditional blocks
Jinja2 loops
Jinja2 Macros

Salt Prerequisites Migration Guide
watch_in/watch
onlyif/unless
require/require_in
order: last

Specific Salt States Migration Guide
Running in no-op mode
cmd.run (single command)
cmd.run (multiple commands)
cmd.run (wget or curl command)
file.directory
file.absent
file.exists
file.managed (without source)
file.managed (with a 'salt://' URI source)
file.managed (with a path source)
file.managed (with contents)
file.managed (with contents_pillar)
file.managed (with template)
file.missing
file.recurse
file.replace
file.touch
file.symlink
pkg.installed
service.running
sysctl.present
Pillar access

Salt To Ansible Migration Guide

3 / 84

Grains access
user.present
git.cloned
git.latest

Known Unknowns
Porting custom states
Porting custom facts

Appendix A: Salt Introduction
Salt is (usually) agent based
Salt also uses YAML
Salt uses Jinja2 more aggressively than Ansible
Salt is usually more holistic than Ansible
Salt is more 'batteries included' than Ansible
Salt also uses YAML file for host-specific data
Salt uses 'grains' instead of ansible_facts
Salt uses gpg for encrypting data instead of ansible-vault.
Salt is not necessarily executed sequentially
Salt runs host-by-host, not role-by-role
The concept of 'roles' isn't baked into Salt

Appendix A(I): A ChatGPT Prompt
Endnotes

Salt To Ansible Migration Guide

4 / 84

Copyright
Copyright © 2026 Jude Nagurney

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the author, except for brief quotations used in reviews or
scholarly works.

All product names and trademarks are the property of their respective owners and are used
for identification purposes only.

First edition, 2026

Salt To Ansible Migration Guide

5 / 84

af://h2-1

Introduction
I'm writing this in the second half of 2025 soon after retiring with 35 years in software
development. I used Salt extensively for the last 7 years, and before that I had been using
Puppet for 7 years. I was often involved in tasks that eventually became known as DevOps,
mostly focusing on configuration management at smaller companies.

I became disillusioned with Salt after the company was sold to VMware which itself was later
acquired by Broadcom. Now in late 2025, Salt isn't getting much attention or support from its
current owner. Many of the core Salt developers have left the company, and the cadence of
bug fixes and releases seem to be slowing down Also before retiring, I looked at the job
market and found almost nobody is looking for people with Salt experience while at least
some people were still looking for Ansible experience

With that in mind, I decided to learn Ansible by porting the Salt states for my home lab over
to Ansible. I kept notes along the way, and thought other developers might benefit if I
published what I learned.

Please let me know if when you find errors in the text, so I can fix them in future editions.
Any errors are of course my own fault.

If you want to support me more than paid for this book (if you paid for it at all), you can 'buy
me some Ceylon tea' with the QR code below. If you're a software developer, working on a
migration project covered in this book, and you have some extra unused training allowance
dollars going to waste, maybe send some of them my way. This book should save you at
least a day of work, so maybe send me half a day's pay per developer on you team my way.
Those tea tariffs won't pay themselves.

Enjoy!

Audience

This book is geared towards three groups of readers.

The first group is Salt users who want to quickly get up to speed with Ansible because they
are porting over their existing Salt states to Ansible tasks for whatever reason. Maybe they

Salt To Ansible Migration Guide

6 / 84

af://h2-2
af://h3-3

just don't want to be pigeon-holed into knowing one provisioning system. Maybe their
company is forcing a migration to Ansible as one of its number one priorities this quarter.
Maybe Salt's current owner is doing something new and innovative to drive away users.

The second group is users who don't know Salt and have inherited some Salt states that
they need to port over to Ansible. If you aren't already familiar with Salt, check out Appendix
A.

The third group has a size of one - myself. I'm writing this to prove to myself that I
understand how I migrated my states well enough to document it as per the Feynman
technique.

I assume all the groups have a good understanding of Salt, YAML, the Jinja2 templating
system, and at least enough programming experience to understand Jinja2 variables,
conditionals, and looping constructs. I'm also assuming readers have access to the Salt and
Ansible documentation sites so they can look up more info on the many Salt and Ansible
basics I'll be glossing over.

The purpose of the book is to show you a migration path, not to teach you Salt or Ansible
from scratch.

I assume you're using git for version control, and you have some system in place for tracking
issues and bugs.

Acknowledgements

The cover photo is from https://pxhere.com/en/photo/777522. According to the site it has a
CC0 Public Domain license, but didn't include the name of the photographer. Thanks to
whoever took the picture, and thanks for putting it in the public domain.

I used Obsidian 1.10.6 for editing the book's markup and generating the pdf, and Dia 0.97.3
for the diagrams.

Disclaimers

Software Versions

During my migration work, Salt was at version 3007.10 and Ansible was at version 2.18.6.
The content below may be obsolete if there are newer versions of these tools available by

the time you're reading this. Sic transit gloria mundi[1].

Limitations

There a number of features of the Salt ecosystem this book currently doesn't cover such as

No coverage of Salt reactors
No coverage of Salt mines

Salt To Ansible Migration Guide

7 / 84

https://en.wikipedia.org/wiki/Learning_by_teaching#Plastic_platypus_learning
https://en.wikipedia.org/wiki/Learning_by_teaching#Plastic_platypus_learning
https://pxhere.com/en/photo/777522
af://h3-4
af://h3-5
af://h4-6
af://h4-7

Owners of this book should receive free updates whenever there are new releases that
cover these topics.

AI Usage

I didn't 'vibe code' my Ansible migration project, but I did use chatGPT a fair amount,
especially for finding initial Salt->Ansible equivalents, and asking for explanations for various
ansible-playbook and ansible-lint error messages.

As for this book, it was written all by me, a baseline human in late 2025, with no neural
implants. I do have a dumb, artificial lens in my left eye after cataract surgery. If I cover my
right eye everything is clear, but if I cover my left eye, everything looks like an old, sepia tone
photo. That's a little freaky, but I don't think this has impacted my writing much.

Release History

Release Date Notes

0.5 2026-01-
15

(limited release)

1.0 2026-01-
19

Initial public release, mostly to see if LeanPub will display
the PDF's TOC. (It doesn't)

No coverage of custom Salt facts
No coverage of custom Salt states
Only salt.pillar.file_tree is covered for ext_pillar migration
No coverage of Salt or Ansible for Windows (all my hosts are using Debian or Ubuntu)
SELinux-specific issues (my hosts are all in permissive mode)
No coverage of porting Salt-specific unit tests over to Ansible.
No coverage of scaling Ansible to large networks. I'm assuming the number of hosts in
your network is probably less than a hundred.

Salt To Ansible Migration Guide

8 / 84

af://h4-8
af://h4-9

Migration Guiding Principles
Here are the principles I tried to adhere to while working on the migration. These hold for
pretty much any migration project, and aren't really specific to Salt or Ansible.

Minimize external dependencies

Early on I decided to try to migrate as many of the Salt states as possible using vanilla
Ansible ansible.builtin.* roles as much as possible. I avoided picking community-built
roles from the galaxy.ansible.com site since I didn't know Ansible well enough to know
how to choose well-written and well-maintained roles.

I also didn't want to introduce unneeded dependencies on my Ansible roles if I didn't really
want to have to maintain. I also wasn't sure how much of a hassle it would be to find out
when new versions of the community-built roles were available.

In general, it's better to avoid dependencies as much as possible.

Validate data as much as possible.

One of the big pain points in Salt was configuring the pillar data files correctly for new hosts.
Salt had no native means of validating pillar data other than Jinja2 checks. It was pretty
common for folks writing the pillar files to introduce indentation or spelling errors in the pilllar
files that Salt would then ignore.

I was excited to see Ansible's support for JSON Schema for data validating and the
argument_specs.yml support for validating role arguments. I incorporated these checks into
the migration process below, and they were useful in pointing out some typos during
development.

I was also please to see that Ansible had a pretty nice linter called ansible-lint, which I
incorporated into my workflow. I managed to avoid having to disable any of the ansible-lint
checks.

Avoid refactoring while migrating

Your current Salt states have probably been in use for some time and have been tested in
production.

With that in mind, I tried to minimize refactoring the provisioning code as it is being migrated,
sticking with a one-for-one migration of Salt state to Ansible task as much as possible, so I
didn't end up losing any of the hard-earned provisioning steps that may only be captured in
the Salt states.

That said, if I saw the current Salt states aren't "battening down the hatches" as tightly as
they could be (say forgetting to set a mode on a file), I went ahead and added the missing

Salt To Ansible Migration Guide

9 / 84

af://h2-10
af://h3-11
af://h3-12
af://h3-13

