From Silicon to Speed: Understanding Your
Processor Through Rust
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compilation.
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Chapter 3: The ALU — The Calculator Inside

In the previous chapter, you saw how simple logic gates — AND, OR, NOT, XOR — can be wired
together to build circuits that add binary numbers. A handful of gates gives you a half-adder. Two
half-adders give you a full-adder. Chain eight full-adders together and you can add two 8-bit
numbers.

That was not a toy exercise. You were building the core of the component we are going to explore in
this chapter: the Arithmetic Logic Unit, or ALU. The ALU is where computation actually happens.
Every addition, every comparison, every bitwise operation your Rust program performs eventually
arrives here, at a circuit made of logic gates, and gets resolved in a single clock cycle.

The ALU is conceptually simple. It takes two inputs, performs an operation, and produces an output.
But the details of what it can do — and what it cannot do — shape the performance of every
program you write.

What the ALU Does

The ALU performs two categories of operations:

Arithmetic operations — addition, subtraction, multiplication, and sometimes division. These are
the mathematical operations you use constantly. When you write a + b in Rust, the compiled
machine code sends a and b to the ALU with an instruction that says "add these."

Logic operations — AND, OR, XOR, NOT, and shifts. When you write a & b, a | b, a * b, a <<
3,0r la inRust, these go to the ALU as well. Logic operations are bitwise: they operate on each bit
independently.

That's it. The ALU does arithmetic and logic. It does not access memory. It does not make decisions
about what to execute next. It does not know about your structs, your functions, or your types. It
receives two binary values and an operation code, and it produces a binary result.



Anatomy of the ALU
A B
64 bits - operand 64 bits - operand

* 64
Opcode (F) Flags
ADD - SUB - AND - OR - XOR - SHL z-C-0-8
Z Zero:resultis 0
C Carry: unsigned overflow
O Overflow: signed overflow
64 S Sign: result is negative
Y (Result)
64 bits - back to register
Arithmetic Logic Comparison

ADD / SUB B 1cyce AND / OR / XOR / NOT CMP = SUB + set flags

MUL SHL / SHR (shift) Result discarded, only flags kept

DIv ________ i 20-90 cycles . All 1 cycle . 1cycle

Let's look at each category more carefully.

Arithmetic: Not All Operations Are Equal

Addition and subtraction are the ALU's bread and butter. A 64-bit adder can produce a resultin a
single clock cycle. This is extremely fast — on a modern processor running at 4 GHz, that's one
addition every 0.25 nanoseconds.

Subtraction is essentially free as well. The hardware for subtraction is almost identical to the
hardware for addition — flip the bits of Input B, set the carry-in to 1, and use the same adder circuit.
This works because of two's complement, the encoding scheme for negative numbers that we'll
cover later in this chapter.

Multiplication is more expensive. Multiplying two 64-bit numbers requires significantly more gates
than addition. On modern x86-64 processors, integer multiplication typically takes 3 clock cycles.
That's still fast in absolute terms, but it's 3x slower than addition. In a tight inner loop that runs
billions of times, that factor of 3 matters.

Division is the expensive one. Integer division on x86-64 can take 20-90+ clock cycles depending on
the operand sizes. That's not a typo — division can be ninety times slower than addition. The reason
is fundamental: division cannot be computed in a single pass through a fixed circuit the way addition
can. It requires an iterative algorithm internally, similar in spirit to long division, where each step
depends on the result of the previous step.

This is worth internalizing:



Operation Typical latency (cycles)

Addition 1
Subtraction 1
Multiplication 3
Division 20-90+

These numbers are for 64-bit integers on a modern x86-64 processor. They vary by processor, but
the ratios are consistent across generations: addition is cheap, multiplication is moderate, division is
expensive.

This is why compilers go to great lengths to avoid division. When you write x / 2 in Rust, the
compiler does not emit a division instruction. It emits a right shift: x >> 1. When you write x / 7,
the compiler replaces it with a multiplication by the modular multiplicative inverse of 7 — a clever
trick that avoids division entirely. When you write x % 8, the compiler emits x & 7, a single-cycle
bitwise AND.

You don't need to do these tricks yourself. The compiler handles them. But understanding why the
compiler does this — because division is 20-90x slower than the alternatives — is the kind of
hardware insight that helps you reason about performance.

Bitwise and Shift Operations

The logic side of the ALU — AND, OR, XOR, NOT — executes in a single cycle, just like addition. These
operations are trivially parallel at the hardware level: each bit is independent. A 64-bit AND is just 64
AND gates operating simultaneously. There is nothing to "carry" from one bit to the next.

Shift operations ( << and >> in Rust) are also single-cycle. A barrel shifter — a circuit that can shift
by any amount in one step — handles this. Left shift by n is equivalent to multiplying by 2”n. Right
shift by n is equivalent to dividing by 2”n (for unsigned values). Both are single-cycle operations that
replace what would otherwise be an expensive multiplication or division.

This is why you will sometimes see experienced systems programmers write x << 3 instead of x
8 . On modern compilers, this is unnecessary — the compiler makes the substitution automatically
— but the instinct comes from understanding that shifts are cheaper than multiplications at the
hardware level.

Comparisons Are Subtractions in Disguise

When you write if a > b in Rust, the processor doesn't have a dedicated "greater than" circuit.
Instead, it subtracts b from a and examines the result. It doesn't care about the actual difference
— it only looks at the metadata that the subtraction produced.

That metadata is stored in a set of flags, which we'll cover in the next section. But the key insight is:
comparison is subtraction. It costs exactly one cycle, same as subtraction, because it is subtraction
— the result is just discarded.



Flags: The ALU's Side Channel

Every time the ALU performs an operation, it doesn't just produce a result. It also sets a handful of
single-bit flags that describe properties of that result. These flags are stored in a special register
(called RFLAGS on x86-64) and are used by subsequent instructions to make decisions.

The most important flags are:

Zero Flag (ZF) — Set to 1 if the result is exactly zero. When you write if a == b, the processor
subtracts b from a and checks the Zero Flag.If a - b == 0, then a ==

Carry Flag (CF) — Set to 1 if the operation produced a carry out of the most significant bit. For
unsigned arithmetic, this indicates overflow. If you add two ue4 values and the result doesn't fit in
64 bits, the Carry Flag is set.

Overflow Flag (OF) — Set to 1 if the operation produced a signed overflow. This is different from
the Carry Flag: it indicates that the result of a signed operation has the wrong sign. For example,
adding two large positive 32 values that produce a negative result.

Sign Flag (SF) — Set to 1 if the most significant bit of the result is 1. For signed numbers in two's
complement, this means the result is negative.

Here's how they work together. Suppose the processor executes CMP a, b (compare a and b),
which internally computes a - b:

Condition Flags checked
a==b ZF =1
al=b ZF=0
a < b (signed) SF != OF
a > b (signed) ZF =0 and SF = OF
a < b (unsigned) CF=1
a > b (unsigned) CF=0andZF=0

You never interact with flags directly in Rust. The compiler generates the appropriate cmp
instruction followed by a conditional jump that checks the right combination of flags. But
understanding that comparisons are subtractions, and that branching is driven by flags, connects
your high-level if statement to the actual hardware operations.

In Chapter 9, when we discuss branch prediction, this will matter. The processor is predicting which
way these flag-based conditional jumps will go — before the subtraction has even finished.

Two's Complement: Negative Numbers in Binary

The flags section just showed you that the ALU uses different flag combinations for signed vs.
unsigned comparisons. But how does the hardware represent negative numbers in the first place?



The naive approach would be to reserve one bit as a "sign bit" — 0 for positive, 1 for negative — and
use the remaining bits for the magnitude. This is called sign-magnitude representation. It has
problems: there are two representations of zero (+0 and -0), and addition doesn't work naturally.
Adding +3 and -3 in sign-magnitude doesn't give you 0 without special-case logic.

Instead, virtually all modern hardware uses two's complement. The idea is elegant: to negate a
number, flip all the bits and add 1.

Let's see it in action with 8-bit numbers:

5 in binary: 00000101

Flip all bits: 11111010
Add 1: 11111011 ¢ this is -5 in two's complement

Why does this work? Because of a beautiful property: if you add a number and its two's complement,
you get zero (with a carry that overflows out of the register):

00000101 ( 5)
+ 11111011 (-5)

1 00000000 overflow bit discarded » result is 0

The hardware doesn't need to know whether it's adding signed or unsigned numbers. The same
adder circuit works for both. The bit pattern 11111011 is simultaneously -5 (if interpreted as {8)
and 251 (if interpreted as us ). The hardware performs the same addition either way — only the
interpretation of the result changes.

This is why Rust has separate types i8 and us that are the same size and use the same ALU
operations. The difference is purely in how the compiler interprets the result and which
comparisons it uses — signed comparisons check the Sign Flag and Overflow Flag, while unsigned
comparisons check the Carry Flag, exactly as shown in the flags table above.

This is also why subtraction is essentially free. To compute a - b, the ALU flips the bits of b, sets
the carry-in to 1 (which adds 1, completing the two's complement negation), and runs the same
adder circuit it uses for addition.

The Two's Complement Range
For an N-bit two's complement number:

e The most significant bit is the sign bit: 0 = positive, 1 = negative.
e Positive range: 0 to 2A(N-1) - 1
e Negative range: -1 to -2A(N-1)

For 8-bit (i8):



01111111 = 127 (maximum positive)
00000001 = 1
00000000 = 0]
11111111 = -1
11111110 = -2
10000000 = -128 (minimum negative)

Notice the asymmetry: there is one more negative value than positive. That's because zero takes one
slot from the "positive" side. For 18, the range is -128 to 127, not -128 to 128. The same asymmetry
exists in every signed integer type in Rust: 116 goes to -32,768 but only to 32,767.

This asymmetry is the source of a subtle bug pattern. In Rust, the expression -128_1i8.abs()
doesn't return 128, because 128 cannot be represented as an 8. In debug mode, Rust panics on
overflow. In release mode, it wraps silently. This is exactly the kind of hardware-level detail that
matters in practice.

Overflow: What Happens When Numbers Don't Fit

What happens when you add 1 to the maximum value of a ug?

11111111 (255)
+ 00000001 ( 1)

1 00000000 > carry overflows, result is 0

The hardware performs the addition normally. The carry bit falls off the edge of the 8-bit register.
The result wraps around to 0. The ALU doesn't care — it sets the Carry Flag and moves on.

For signed overflow, consider adding 127 + 1 in 1i8:

01111111  (127)
+ 00000001 (1)

10000000 > -128 1in two's complement!

The result "wraps" from the most positive value to the most negative. The ALU detects this by setting
the Overflow Flag (the sign of the result doesn't match what you'd expect from the signs of the
inputs).

Rust's behavior depends on the build mode:

¢ Debug mode: integer overflow panics. This is a safety check inserted by the compiler — it adds
extra instructions to check the overflow after each arithmetic operation.

¢ Release mode: integer overflow wraps (for unsigned) or wraps in two's complement (for
signed), matching the hardware behavior.

o Explicit wrapping: methods like wrapping_add, checked_add, saturating_add, and
overflowing_add give you precise control over overflow behavior.



let a: u8
let b: u8

255;
13

// Debug mode: panics!
// Release mode: wraps to 0
let ¢ = a + b;

// Explicit: always wraps, no panic
let d = a.wrapping_add(b); // ©

// Explicit: returns None on overflow
let e = a.checked_add(b); // None

// Explicit: clamps to max
let f = a.saturating_add(b); // 255

Understanding two's complement tells you exactly what "wrapping" means: it means the hardware
does the addition normally and drops the bit that doesn't fit. It's not a bug in the math — it's a
consequence of fixed-width arithmetic.

Integer ALU vs. Floating-Point Unit

Everything we've discussed so far applies to integer operations. But there's a separate piece of
hardware for floating-point math: the Floating-Point Unit (FPU), sometimes called the floating-
point execution unit.

The FPU is physically separate from the integer ALU. It has its own set of registers (on x86-64, the
XMM/YMM/ZMM registers, which are 128/256/512 bits wide), its own adder, its own multiplier, and
its own division logic. The reason for this separation is simple: floating-point arithmetic is
fundamentally different from integer arithmetic. The IEEE 754 format requires handling sign bits,
exponents, mantissas, rounding modes, and special values like NaN and infinity. The circuits that do
this are specialized and complex.

The performance profile is different too:

Operation Integer latency Floating-point latency
Addition 1 cycle 3-5 cycles
Multiplication 3 cycles 3-5 cycles
Division 20-90 cycles 10-20 cycles

A few things stand out:

Floating-point addition is slower than integer addition. Integer addition is a single pass through
an adder. Floating-point addition requires aligning the exponents, adding the mantissas, normalizing
the result, and rounding — multiple stages.

Floating-point multiplication is comparable to integer multiplication. Both take about 3-5
cycles. This surprises people who expect floating-point to always be slower.

Floating-point division is actually faster than integer division in many cases. This is because
FPU division uses iterative approximation algorithms (like Newton-Raphson) that converge quickly



for the fixed-width mantissa, while integer division must handle the full 64-bit range.

For Rust programmers, this means that switching between {64 and fe4 is not a simple "integers
are always faster" story. It depends on which operations dominate your workload. If your code is
mostly addition, integers win. If it's heavy on division, floating-point might actually be faster.

Where Rust Types Meet Hardware

When you choose a numeric type in Rust, you are — whether you know it or not — choosing which
execution unit will process your data, which registers will hold it, and how many bits of memory each
value occupies.

Rust Numeric Types: Size, Layout, and Hardware Mapping

Integer Types General-purpose registers (RAX, RBX, ...) / Integer ALU

us8 | i8 8 0..255 [ -128..127

ulé | 116 16 0..65,535 [ -32,768..32,767

u32 | 132 32 0..4.29 billion / -2.15B..2.15B

u64 | 164 64 0..18.4 quintillion [ ] NATIVE WIDTH

ul28 / il28 128 0.3.4*10738 low 64 high 64
2+ instructions per op

usize | isize 64* Pointer-sized. 64 bits on x86-64, 32 on 32-bit. [ ]

Floating-Point Types  XMM/YMM registers (XMMO, XMM1, ...) / FP execution unit

32 32 ~7 decimal digits / 1.2e-38 .. 3.4e38 S| EXP(8) | MANTISSA (23)

f64 64 ~15 decimal digits / 2.2e-308 .. 1.8e308 s | exp () MANTISSA (52)

What Happens in Hardware

“ Integer ALU “ Floating-Point Unit
64-bit wide. All integer types route here. Separate hardware. Own registers, own pipeline.

u8/i8 through u64/i64 1 register 32 (single precision) 1 XMM lane
u128/i128 f64 (double precision) 1 XMM lane
Sma\le.r types (u8, u16) ‘are ) Free at load FP aqd: 3-5 cycles (vs 1 for int) )
zero/sign-extended to fill 64 bits FP div: 10-20 cycles (vs 20-90 for int)

RAX RBX RCX RDX RSI RDI R8..R15 XMMO..XMM15 (128-bit) /| YMM (256) / ZMM (512)

Integer types

Rust gives you integers from 8 bits to 128 bits, signed and unsigned:

Type Size Range
ug / 18 8 bits (1 byte) 0..255/-128..127
ule / 16 16 bits (2 bytes) 0..65,535 / -32,768..32,767
u3z2 / 132 32 bits (4 bytes) 0..4.29 billion / -2.15B..2.15B

ue4 / 64 64 bits (8 bytes) 0..18.4 quintillion



Type Size Range
u128 / 128 128 bits (16 bytes) 0..3.4* 10138

usize / isize pointer-sized 64 bits on x86-64

All of these are processed by the integer ALU and stored in general-purpose registers (RAX, RBX,
RCX, RDX, RSI, RDI, R8 through R15 on x86-64).

The ALU is 64 bits wide. This is the native width — the size it was designed to process in a single
operation. The u64 and i64 types match this width perfectly: one value, one register, one
instruction.

Smaller types fit inside the same 64-bit register. When you load a u8 into a register, the
hardware zero-extends it to fill all 64 bits. A uie gets zero-extended. An 18 gets sign-extended (the
sign bit is copied into the upper bits). This extension happens at load time and costs nothing. The
ALU then operates on the full 64-bit register — it doesn't have a special 8-bit mode. This means that
arithmetic on u8 is not faster than arithmetic on ué64 . The ALU does the same work either way.

So why use smaller types? Memory. A vec<us> with a million elements uses 1 MB. A vec<u64> with
a million elements uses 8 MB. When your data lives in arrays, smaller types mean more values fit in
a cache line, which can dramatically improve performance. We'll explore this in Chapters 5, 6, and
13.

ul28 and 1128 don't fit in a single register. The x86-64 ALU is 64 bits wide. It cannot add two
128-bit integers in one instruction. The compiler splits every i128 operation across two registers
and multiple instructions — for addition, it emits two instructions (add the lower halves, then add
the upper halves with carry). For multiplication, it takes significantly more. This is why {128

arithmetic is measurably slower than 164, even though the language makes them look equivalent.

usize and disize are pointer-sized: 64 bits on a 64-bit system, 32 bits on a 32-bit system. They are
used for indexing into slices and collections. On x86-64, usize isidentical to ue4 atthe hardware
level.

Floating-point types

Rust has two floating-point types, both following the IEEE 754 standard:

Type Size Precision Range
f32 32 bits ~7 decimal digits 1.2 * 10N-38 to £3.4 * 10138
fe4 64 bits ~15 decimal digits 2.2 * 107-308 to £1.8 * 107308

Both are processed by the floating-point unit (FPU), not the integer ALU. They live in a completely
separate set of registers: the XMM registers (XMMO through XMM15), each 128 bits wide.

The internal layout of a floating-point number is very different from an integer. An 32 is splitinto
three fields: 1 sign bit, 8 exponent bits, and 23 mantissa bits (also called the significand). An f64
has 1 sign bit, 11 exponent bits, and 52 mantissa bits. This structure is why floating-point arithmetic
requires specialized hardware — the ALU must align exponents, operate on mantissas, normalize
the result, and handle rounding, all in a pipeline that takes 3-5 cycles instead of 1.



f32 vs fe4 performance. On modern x86-64 hardware, scalar f32 and fe4 operations have the
same latency — the FPU processes both at the same speed. The advantage of f32 is not faster
single operations but SIMD throughput: a 256-bit YMM register can hold 8 f32 values but only 4
f64 values. If your code vectorizes, f32 can be 2x faster. If it doesn't vectorize, f32 and f64
perform identically. Use fé64 by default for precision, and switch to 32 only when SIMD
throughput matters and the reduced precision is acceptable.

The type choice checklist

When choosing a numeric type, you are making three hardware decisions at once:

1. Execution unit. Integer types go to the ALU. Floating-point types go to the FPU. They have
different latency profiles.

2. Register file. Integer types use general-purpose registers. Floating-point types use XMM/YMM
registers. These are physically separate — using both means you can keep more values "hot"
simultaneously.

3. Memory footprint. Smaller types mean more values per cache line. In data-intensive code,
this matters more than the operation cost.

SIMD: One Instruction, Many Results

So far, every ALU operation we've discussed works on a single pair of values. Feed in two 64-bit
integers, get back one 64-bit result. This is called scalar execution.

But what if you need to add four pairs of numbers? In scalar mode, that's four separate ADD
instructions, four trips through the ALU, four clock cycles.

SIMD — Single Instruction, Multiple Data — is an extension that lets the processor perform the same
operation on multiple data elements simultaneously. Instead of adding two 64-bit integers, a single
SIMD instruction can add:

e Two 64-bit integers at once (128-bit registers, SSE2)
e Four 64-bit integers at once (256-bit registers, AVX2)
e FEight 64-bit integers at once (512-bit registers, AVX-512)

Or, working with smaller elements:

o Sixteen 8-bit integers at once (128-bit registers)
e Thirty-two 8-bit integers at once (256-bit registers)

The SIMD execution units are essentially wider versions of the regular ALU. Instead of a single 64-bit
adder, they have a 256-bit or 512-bit adder that is partitioned into independent lanes. Each lane
performs the same operation on its own data, completely independently, in the same clock cycle.



SIMD — One Instruction, Four Additions in Parallel

SIMD (Single Instruction, Multiple Data) Scalar (One at a Time)
Register A
c1 ADD 10 1T = M
10 20 30 40
c2 ADD 20 2 = 22
&l v G w7 c3 ADD 30 3 = 33
Register B

VADDPD (single instruction)

< <

)

Result

{11”22”33”44}

SIMD 1 cycle
4x faster

Scalar

Here's what SIMD looks like in Rust using the std::arch intrinsics (don't worry about the syntax —
we'll cover this in detail in Chapter 15):

use std::arch::x86_64::%*;

unsafe fn add_four_f64(a: &[f64; 4], b: &[f64; 4]) -> [fe4; 4] {
// Load 4 f64 values into a single 256-bit register
let va = _mm256_loadu_pd(a.as_ptr());
let vb = _mm256_loadu_pd(b.as_ptr());

// Add all 4 pairs in a single dinstruction
let result = _mm256_add_pd(va, vb);

// Store the result back

let mut out = [0.0f64; 4];
_mm256_storeu_pd(out.as_mut_ptr(), result);
out

One instruction — _mm256_add_pd — does the work of four scalar additions. This is a 4x theoretical
speedup for the addition itself.

In practice, you often don't need to write SIMD intrinsics by hand. The Rust compiler, through LLVM,
can automatically vectorize loops when it detects the pattern. A simple loop like this:



fn add_slices(a: &[f64], b: &[f64], result: &mut [f64]) {
for i in 0..a.len() {
result[i] = a[i] + b[i];
}

...will often be compiled into SIMD instructions automatically (in release mode). The compiler sees
that each iteration is independent, that the operation is the same, and that the data is contiguous in
memory — the perfect conditions for SIMD.

But auto-vectorization is fragile. It fails silently when the compiler can't prove the transformation is
safe. If the loop body has branches, dependencies between iterations, or non-contiguous memory
access, the compiler falls back to scalar code without telling you. In Chapter 15, we'll learn how to
check whether vectorization happened and what to do when it doesn't.

The SIMD Hierarchy on x86-64

Over the years, Intel and AMD have introduced progressively wider SIMD instruction sets:

Instruction set Register width Year introduced
SSE2 128-bit (XMM) 2001
AVX 256-bit (YMM) 2011
AVX2 256-bit (YMM) + integer 2013
AVX-512 512-bit (ZMM) 2017

Every x86-64 processor supports SSE2 — it's part of the base specification. AVX2 is supported by
virtually all processors from 2015 onward. AVX-512 has more limited support and comes with
caveats (some processors reduce their clock speed when executing AVX-512 instructions, partially
offsetting the gains).

For Rust, the default compilation target assumes only SSE2. If you want the compiler to use AVX2 for
auto-vectorization, you need to tell it:

RUSTFLAGS="-C target-cpu=native" cargo build --release

This tells LLVM to use whatever instruction sets your current CPU supports. We'll revisit this in
Chapter 12 and Chapter 15.

The ALU on ARM64: A Different Design Philosophy

Everything we've discussed so far has been x86-64 — the instruction set used by Intel and AMD
processors. But if you're developing on Apple Silicon (M1/M2/M3/M4) or deploying to AWS Graviton
servers, your code runs on ARM64 (also called AArch64). The ALU concepts are the same — addition,
multiplication, flags, SIMD — but the design philosophy is fundamentally different, and the
performance characteristics shift in ways that matter.



RISC vs. CISC: The Core Difference

x86-64 is a CISC (Complex Instruction Set Computer) architecture. Its instructions vary in length from
1 to 15 bytes and can do multiple things at once — a single instruction might load a value from
memory, add it to a register, and store the result back. This makes the instruction set powerful but
complex. The processor's decode stage must figure out the length and meaning of each variable-
width instruction, which requires substantial hardware.

ARM®64 is a RISC (Reduced Instruction Set Computer) architecture. Every instruction is exactly 4
bytes. Instructions do one thing: an ADD adds two registers. A LOAD loads from memory. A STORE
stores to memory. You cannot add a register to a memory location in one instruction — you must
load it first, add it, then store it back. This sounds slower on paper, but the simplicity means the
processor can decode and execute instructions more efficiently, and the fixed width makes
pipelining (Chapter 8) much easier.

For the ALU specifically, this means ARM64 has more instructions to accomplish the same task, but
each instruction is simpler and often faster to issue.

ARM64 ALU: What's Different

ARMG64 vs x86-64: ALU Architecture Comparison

x86-64 (Intel /| AMD) ARMG64 (Apple [ Graviton)

CISC Architecture RISC Architecture
Variable-length instructions (1-15 bytes) Fixed-length instructions (always 4 bytes)
ALU can operate directly on memory operands Strict load/store: ALU only uses registers
16 general-purpose registers (64-bit) 31 general-purpose registers (64-bit)
16 XMM /16 YMM / 32 ZMM SIMD registers 32 V registers (128-bit NEON) + SVE scalable
ADD RAX, [RBX+8] LDR X0, [X1,#8]; ADD X0,X0,X2
Operation Latency Comparison (cycles per operation, lower is faster)
Integer ADD -
-
Integer MUL G :
G :
Integer DIV G 2090
S -2
ARM64 wins big
FP ADD (f64) G -
G -
86-64 ARM64
FP DIV (f64) G o-20 @ e

. 710
SIMD Register Comparison

SSE2 128-bit NEON 128-bit

AVX2 256-bit SVE2 128-2048 bit

( ) Width set by hardware

The core arithmetic operations exist on both architectures, but ARM64 has some distinctive features:



ARMG64 Unique ALU Features
Fused Multiply-Add (MADD) Conditional Select (CSEL)

Total: 4 cycles, 2 roundings
CMP rdi, rsi; CMOVLE rax, rcx
MADD X0, X1, X2, X3 4 cycles, 1 rounding

ComputesX0 = X3 + (X1 % X2) CMP X0, X1; CSEL X0, X2, X3, GT

Single rounding = more precise result No branch = no misprediction penalty
SIMD: NEON + Scalable SVE
RAX (64-bit) 32 132 132 32 128b
EE0 (L) 32 registers, fixed 128-bit width
. 2=
. . 32 32 32 32 P ...
Writing AX: upper 48 bits NOT cleared _ S

Causes partial register stalls! Width set by hardware (128 to 2048 bits)
Same code runs on any SVE chip

[ X0 (6[ WO (32) ] Writing WO always zeros upper 32 bits . R .
x86 = fixed width per ISA; ARM SVE = hardware-defined

Fused multiply-add (FMA). ARM64 has a dedicated MADD instruction that computes a + (b * c)

in a single instruction. On x86-64, this requires two separate instructions (a multiply and an add).
The FMA instruction isn't just syntactic sugar — the hardware performs both operations with a single
rounding step, which is both faster and more numerically precise.

Conditional execution without branches. ARM64 has conditional select instructions ( CSEL,
CSINC, CSNEG ) that choose between two register values based on condition flags — no branch
needed. This eliminates branch misprediction penalties for simple conditional assignments. Where
x86-64 might use a cMov (conditional move) for if a > b { x } else { y }, ARM64 has a richer
set of conditional operations.

No partial register complications. ARM64 registers are cleanly 64-bit (X0-X30) or 32-bit (W0-W30,
the lower half). Writing to a W register always zeros the upper 32 bits. There's no equivalent of x86-
64's historical 8-bit and 16-bit sub-register access that causes partial register stalls.

Bit manipulation built in. ARM64 includes instructions for bit field extraction, bit reversal,
population count, and leading/trailing zero count as first-class operations. On x86-64, some of these
require special instruction set extensions (like POPCNT or LZCNT).

Operation Latency: x86-64 vs ARM64

The ALU latency story is similar on both architectures, but not identical. Here's a comparison using a
modern high-performance core from each:

Operation x86-64 (Zen 4 / Raptor Lake) ARM®64 (Apple M4 / Cortex-X4)
Integer ADD 1 cycle 1 cycle
Integer MUL (64-bit) 3 cycles 3 cycles



Operation x86-64 (Zen 4 / Raptor Lake) ARMG64 (Apple M4 / Cortex-X4)

Integer DIV (64-bit) 20-90 cycles 7-12 cycles

FP ADD (f64) 3-5 cycles 3-4 cycles

FP MUL (fe4) 3-5 cycles 3-4 cycles

FP DIV (f64) 10-20 cycles 7-10 cycles
Fused multiply-add 4-5 cycles (FMA instr.) 4 cycles (MADD)
Bitwise AND/OR/XOR 1 cycle 1 cycle

Shift 1 cycle 1 cycle

The big surprise: ARM64 integer division is significantly faster. While x86-64 division can take up
to 90 cycles in the worst case, ARM64 chips (especially Apple Silicon) have invested in faster division
hardware, typically completing in 7-12 cycles. This narrows the gap between division and
multiplication, though division is still the most expensive arithmetic operation on both architectures.

SIMD on ARM64: NEON and SVE

ARM®64 has its own SIMD story, which diverges from x86-64's SSE/AVX lineage:

Feature x86-64 ARM64
Base SIMD SSE2 (128-bit) NEON (128-bit)
Wide SIMD AVX2 (256-bit) SVE/SVE2 (128-2048 bit)
Widest SIMD AVX-512 (512-bit) SVE2 (up to 2048-bit)
Register count 16 XMM / 32 ZMM 32 Vregisters (128-bit)
Vector length Fixed per ISA extension Scalable (hardware-defined)

NEON is ARM64's base SIMD extension. Every ARM64 processor supports it. It provides 32 registers
of 128 bits each — twice as many as x86-64's base SSE2. NEON handles the same kinds of parallel
operations: add four f32 values at once, compare sixteen u8 values at once, etc.

SVE and SVE2 (Scalable Vector Extension) are ARM's answer to AVX-512, but with a twist. Instead of
fixing the vector width at 256 or 512 bits, SVE defines the vector length as an implementation detail.
A chip might implement 128-bit, 256-bit, or 2048-bit SVE registers — your code doesn't need to
know. You write one loop, and it adapts to whatever hardware width is available. This is a
fundamentally different approach from x86-64, where you must target SSE2, AVX2, or AVX-512
explicitly.

Apple Silicon currently implements NEON but not SVE. AWS Graviton3 and newer implement SVE2
with 256-bit vectors. The Rust compiler can auto-vectorize for NEON just as it does for SSE2/AVX2.

For Rust on ARM64:

# On Apple Silicon, enable NEON (enabled by default)
RUSTFLAGS="-C target-cpu=native" cargo build --release

# On Graviton3, this also enables SVE2
RUSTFLAGS="-C target-cpu=neoverse-v1" cargo build --release



The Full Comparison

Here's a comprehensive side-by-side of ALU-related features that matter for Rust programmers:

Feature x86-64 (Intel/AMD) ARM®64 (Apple/Graviton)
Design philosophy CISC (complex, variable-length) RISC (simple, fixed-length)
Instruction width 1-15 bytes Always 4 bytes
General-purpose regs 16 (64-bit) 31 (64-bit)

SIMD registers 16 XMM / 32 ZMM 32V (128-bit)

Integer ADD 1 cycle 1 cycle

Integer MUL 3 cycles 3 cycles

Integer DIV 20-90 cycles 7-12 cycles

FP ADD/MUL 3-5 cycles 3-4 cycles

FP DIV 10-20 cycles 7-10 cycles

Fused multiply-add FMA3 extension (2013+) Built-in (MADD/MSUB)
Conditional select CMOQV (limited) CSEL, CSINC, CSNEG
Base SIMD width 128-bit (SSE2) 128-bit (NEON)

Max SIMD width 512-bit (AVX-512) Scalable (SVE2)

Bit manipulation Extensions (BMI1/BMI2) Built-in

Load-store discipline Memory operands in ALU ops Strict load/store separation
Energy efficiency Moderate High

What This Means for Rust

The good news: you usually don't need to care. The Rust compiler (through LLVM) generates
optimal code for whichever architecture you're targeting. The same Rust source compiles to
different instruction sequences on x86-64 and ARM64, each tuned to the target's strengths.

But there are cases where the architecture matters:

1. Division-heavy code runs faster on ARM64. If profiling shows division as a hotspot, ARM64's
faster divider can help. But the best optimization is still to avoid division entirely (use shifts,
multiplicative inverses).

2. SIMD intrinsics are architecture-specific. If you write std::arch::x86_64::_mm256_add_pd,
that code won't compile on ARM64. Use std::simd (the portable SIMD API) or write separate
implementations behind #[cfg(target_arch)] attributes.

3. Register pressure is lower on ARM64. With 31 general-purpose registers (vs. 16), the compiler
has almost twice as much room. Complex functions that spill registers on x86-64 may run
entirely in registers on ARM64. We'll see how this matters in Chapter 4.

4. Branch-heavy code may differ. ARM64's conditional select instructions can eliminate
branches that x86-64 must predict. This can make code with unpredictable conditions (like
sorting comparisons) faster on ARM64. We'll explore branch prediction deeply in Chapter 9.



Putting It All Together
Let's trace a simple Rust expression through the hardware to see the ALU in action:
let x: i64 = a + b * c;

Assuming a, b,and c are already in registers (we'll discuss how they get there in Chapter 4), the
processor does:

1. Multiply b x ¢ —send b and c to the integer ALU with the MUL opcode. This takes 3 cycles.
The result goes into a temporary register.

2.Add a + (b x ¢) —send a and the multiplication result to the ALU with the ADD opcode.
This takes 1 cycle. The result goes into the register assigned to x .

Total: 4 cycles for the entire expression. At 4 GHz, that's 1 nanosecond.

But this is a simplified view. In reality, on a modern out-of-order processor, the multiply might start
before the previous instruction has finished. The add has to wait for the multiply's result (this is a
data dependency), but other independent instructions can execute during those 3 cycles of waiting.
We'll explore this in Chapter 10.

Now consider a different expression:
let y: i64 = a / b + c / d;

Two divisions. Each takes 20-90 cycles. But here's the interesting part: a / b and ¢ / d are
independent — neither needs the other's result. A modern out-of-order processor can execute both
divisions simultaneously on separate execution units. The total time is the latency of one division
(not two), plus one cycle for the addition. We'll see exactly how this works in Chapter 10.

What the ALU Tells Us About Performance

This chapter introduced the core computational engine of the processor. Here are the takeaways
that will matter throughout the rest of the book:

Not all operations cost the same. Addition is 1 cycle. Multiplication is 3. Division is 20-90. This ratio
is baked into the hardware and hasn't fundamentally changed in decades. Compilers know this and
optimize aggressively to avoid expensive operations, but there are limits to what a compiler can do.

Integer and floating-point are separate worlds. They use different execution units, different
registers, and have different performance profiles. Choosing between 64 and fe4 is notjusta
precision decision — it's a hardware decision.

SIMD multiplies throughput. The same ALU principles apply to SIMD, but operating on 2, 4, 8, or
more values simultaneously. This is the single biggest performance multiplier available in modern
hardware, but it requires the right data layout and access patterns to be effective.



The ALU is almost never the bottleneck. This is perhaps the most important point. The ALU can
perform billions of operations per second. What limits real-world performance is almost always
feeding the ALU fast enough — getting data from memory into registers where the ALU can operate

on it. The memory hierarchy, which we'll explore in Chapters 5 and 6, is where most performance is
won or lost.

The ALU is the engine. But an engine is useless without fuel. In the next chapter, we'll look at the

registers — the tiny, blazing-fast memory cells that sit right next to the ALU and hold the data it's
working on.



Chapter 13: Data Layout and Cache
Performance

In Part |, we learned that the processor doesn't read individual bytes — it reads 64-byte cache lines
(Chapter 5), that the L1 cache is 1000x faster than main memory (Chapter 5), and that cache misses
stall the entire out-of-order engine (Chapter 10). These aren't abstract facts. They're the most
important determinants of real-world performance for data-intensive Rust code.

This chapter is about one thing: how you arrange your data in memory determines how fast
your program runs. The exact same algorithm, operating on the exact same values, can run 10x
faster or slower depending on how the data is laid out. The processor doesn't care about your type
system or your abstractions — it cares about which bytes are adjacent in memory and whether the
next access hits the cache or misses it.

We'll start with how Rust lays out structs in memory, then move to the fundamental choice between
Array of Structs and Struct of Arrays, and finish with practical techniques for restructuring data to
make the cache work for you instead of against you.

How Rust Lays Out Structs

Every struct in Rust has three properties that affect its memory footprint: size, alignment, and
padding. These are not abstractions — they're physical facts about where bytes go in memory, and
they directly determine how many useful bytes fit in each 64-byte cache line.

Alignment

Every type has an alighment requirement — the address where it can be placed must be a multiple
of its alignment. This isn't arbitrary: the hardware loads data in aligned chunks. An unaligned load
may cross a cache line boundary, requiring two cache accesses instead of one and potentially two
cycles instead of one.

Type Size (bytes) Alignment (bytes)
u8 / i8 / bool 1 1
ule / il6 2 2
us2 / i32 / 32 4 4
us4 / i64 / fea 8 8
ul2g / 128 16 16
usize / isize / *const T 8 8
&T (thin reference) 8 8
&[T] (slice) 16 8
&dyn Trait 16 8



A struct's alignment equals the largest alignment of any of its fields. A struct containing a ue4 field
has 8-byte alignment, regardless of what other fields it contains.

Padding

When a struct has fields with different alignments, the compiler inserts padding bytes between
fields to maintain alignment. These padding bytes occupy space but carry no data — they're wasted
cache line capacity.

struct Wasteful {

a: u8, // 1 byte at offset 0
// 7 bytes of padding (b needs 8-byte alignment)
b: u64, // 8 bytes at offset 8
c: u8, // 1 byte at offset 16

// 7 bytes of padding (struct alignment = 8)

}
// Total: 24 bytes (but only 10 bytes of actual data!)

That's 14 bytes of padding — 58% waste. In a Vec<Wasteful> with a million elements, you're using
24 MB of memory for 10 MB of data, and every cache line carries 37% less useful information.

Struct Memory Layout — Alignment and Padding

#[repr(C)] struct Wasteful { a: u8, b: ué4, c: u8 } — 24 bytes (58% padding!)

0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 . 23

a b: u6a c
7 bytes PADDING 7 bytes PADDING
ug 8 bytes (needs 8-byte alignment) us

14 wasted = 42% utilization per cache line

repr(Rust) reorders: struct Efficient { b: u64, a: u8, c: u8 } — 16 bytes (62% useful)

0 1 2 3 4 5 6 7 8 9 10 15

b: u6a c
6 bytes PADDING
8 bytes (naturally aligned at offset 0) ug

10 useful = 62% utilization — saved 33% space

B4+ byt i 1 2 3 4 4 per line (1.5x more!)

repr(C) 24 bytes: ( struct 1 ] struct 2 213 2.66 per line

Rust's Default Layout: Reordering for Efficiency

Unlike C, Rust's default struct layout ( repr (Rust) ) does not guarantee field order in memory. The
compiler is free to reorder fields to minimize padding. This is one of Rust's quiet advantages:



// You write:
struct Efficient {

a: us,
b: u64,
c: us8,

// Rust may lay this out as:

// b: u64 at offset 0 (8 bytes)

// a: u8 at offset 8 (1 byte)

// c: u8 at offset 9 (1 byte)

// 6 bytes padding to reach alignment of 8
// Total: 16 bytes (not 24!)

By placing the ue4 first, the compiler eliminates the 7-byte gap that C would create. The struct is
33% smaller.

You can verify layout with std: :mem:

use std::mem;

println!("size: {}", mem::size_of::<Efficient>()); // 16
println! ("align: {}", mem::align_of::<Efficient>()); // 8

repr(C): When You Need C-Compatible Layout

#[repr(c)] forces C-compatible layout: fields are laid out in declaration order, with padding
inserted as a C compiler would. You need this for FFl, memory-mapped I/0, and any situation where
you must control exact byte positions:

#[repr(C)]

struct CLayout {
a: u8, // offset 0
// 7 bytes padding
b: u64, // offset 8
c: u8, // offset 16

// 7 bytes padding
}

// size = 24, same as C would produce

When using repr(C) , field order matters. Sort fields by descending alignment to minimize padding:

#[repr(C)]

struct CLayoutOptimized {
b: u64, // offset @ (8 bytes, alignment 8)
a: u8, // offset 8 (1 byte, alignment 1)
c: u8, // offset 9 (1 byte, alignment 1)

// 6 bytes padding
}

// size = 16 — same data, 33% smaller

The rule: fields with larger alignment go first. This is the manual version of what repr (Rust)
does automatically.



Checking Layout at Compile Time

For performance-critical structs, assert the size to catch accidental regressions:

const _: () = assert!(std::mem::size_of::<MyStruct>() == 64);
// Compile error if someone adds a field that changes the size

You can also use the #[repr(align(N))] attribute to force a minimum alignment, typically to
ensure a struct occupies exactly one cache line:

#[repr(align(64))]

struct CacheAligned {
data: [u8; 48],
counter: u64,

}
// Size: 64 bytes, aligned to cache line boundary
// Each element in Vec<CacheAligned> starts at a cache line boundary

The Cache Line Budget

A 64-byte cache line is your fundamental budget. Every field that ends up in the same cache line as
the data you're accessing comes "for free" — it's already loaded. Every field in a different cache line
costs an additional memory access.

Let's make this concrete. Consider iterating over a million structs:

struct Player {

name: String, // 24 bytes (ptr + len + capacity)
id: u64, // 8 bytes
x: 32, // 4 bytes
y: 32, // 4 bytes
z: 32, // 4 bytes
health: ulé6, // 2 bytes
team: u8, // 1 byte
active: bool, // 1 byte

// padding to alignment

}
// Total: ~48 bytes (depends on Rust's reordering)

If your physics update only uses x, y, z,and active, it needs 13 bytes per player. But each cache
line load brings in 48 bytes (the entire struct). That's 27% useful data per cache line, and you need at
least one cache line per player — likely two when structs straddle boundaries.

With a million players: you're loading 48 MB from memory when you only need 13 MB. The extra 35
MB flows through the cache hierarchy, evicting other useful data and consuming memory
bandwidth, all for fields you're not reading.

This is the core problem. Let's fix it.



Array of Structs vs. Struct of Arrays

The most impactful data layout decision in performance-critical code is the choice between Array of
Structs (AoS) and Struct of Arrays (SoA).

Array of Structs (AoS): The Default

This is how most code is naturally written — a collection of objects, each containing all their fields:

// AoS: each particle has all its data together
struct Particle {
x: f32,
y: f32,
z: f32,
vx: 32,
vy: 32,
vz: 32,
mass: 32,
charge: f32,
}
// Size: 32 bytes per particle

let particles: Vec<Particle> = vec![/x ... *x/; 1_000_000];
Memory layout of vec<Particle>:

Cache line 0: [x0 y® z0 vx0 vy0® vz0 mass® charge®] [x1l yl zl vxl vyl vzl massl
chargel]
Cache line 1: [x2 y2 z2 vx2 vy2 vz2 mass2 charge2] [x3 y3 z3 vx3 vy3 vz3 mass3
charge3]

Two particles per cache line (32 bytes each). If your update function reads all 8 fields, this is perfect
— 100% of each cache line is useful. But if you only need positions (x, y, z):

// Only need 12 bytes per particle, but load 32
fn total_distance(particles: &[Particle]) -> f32 {
particles.iter()
.map(|[p| (p.x * p.x + p.y * p.y + p.z * p.z).sqrt())
.sum()

Each cache line carries 24 bytes of position data (12 per particle x 2 particles) and 40 bytes of
velocity/mass/charge that you don't need. That's 37.5% utilization — the prefetcher and memory bus
work 2.7x harder than necessary.

Struct of Arrays (SoA): Fields Stored Separately

SoA groups each field into its own contiguous array:



// SoA: each field 1in 1its own array

struct

Particles {

x: Vec<f32>,

y:

Vec<f32>,

z: Vec<f32>,

VX

Vec<f32>,

vy: Vec<f32>,

vz:

Vec<f32>,

mass: Vec<f32>,
charge: Vec<f32>,

}

let particles
x: vec![0
y: vec! [0
z: vec![0
/!

}s

Memory layout:

X array: [x0
y array: [y0
z array: [z0

Particles {
1_000_000],
1_000_000],

-©3
-©3
.0; 1_000_000],

x1

yl
z1

X2 x3 x4 x5

y2 y3 y4 y5
z2 z3 z4 z5

Now the distance computation:

X6 X7 x8 x9 x10 x11 x12 x13 x14 x15]
y6 y7 y8 y9 yl0 yll yl2 yl3 yl4 yl5]
z6 z7 z8 z9 z10 z1l z12 z13 z14 z15]

fn total_distance(p: &Particles) -> 32 {
p.x.iter().zip(p.y.iter()).zip(p.z.iter())

map (| ((&x, &), &2) |

.sum()

(x * x +y xy+zx*z).sqrt())

Each cache line in the x array holds 16 f32 values — all x coordinates, all useful. Same for y and
z . You load 3 cache lines to process 16 particles (192 bytes for 192 bytes of useful data). With AoS,
you'd load 8 cache lines for the same 16 particles (512 bytes for 192 bytes of useful data).



Array of Structs vs. Struct of Arrays — Cache Line Utilization

Array of Structs (AoS) — Only need x, y, z but load everything
struct Particle { x: 32, y: 32, z: 32, vx: f32, vy: f32, vz: f32, mass: 32, charge: 32 }
Cache line 0 (64 bytes):

nn- e e - e oo - . o . e e

Particle 0 (32 bytes) Particle 1 (32 bytes)

Wasted (not read) [ 24 of 64 bytes useful = 37.5% ]

2 particles per cache line, 5 wasted fields each

\ J/

Struct of Arrays (SoA) — Only load the fields you need
struct Particles { x: Vec<f32>, y: Vec<f32>, z: Vec<f32>, vx: Vec<f32>, ... }
x array, cache line 0:
(o[-~~~ [~~~ ]~]-]~]

y array, cache line 0: e

[ 64 of 64 bytes useful =100%
Yo V1 Y2 Ys Va Ys Ve Y7 Ys VYo V1o Y11 Y1z Vas Yaa Vis

16 particles per cache line per array
he li :

z array, cache line O 3 cache lines for 16 particles (x,y,z)

[ Zo 21 22 25 Za Zs Zs Z7 Zs Zo Z1o Zn1 Z12 213 Z1a Z1s vs. 8 lines with AoS = 2.7x less traffic

. J

SoA bonus: 16 contiguous f32 values = perfect for SIMD (AVX2 loads 8 at once)
AoS has x values 32 bytes apart — stride too large for efficient SIMD gather

The speedup from SoA is directly proportional to the fraction of fields you access per
operation. If you access all fields, AoS and SoA perform similarly. If you access 2 of 8 fields, SoA can
be 3-4x faster.

SoA Enables SIMD

There's a second, equally important advantage: SoA layout is naturally SIMD-friendly (Chapter 15).
With 16 consecutive f32 values in a cache line, the compiler can load 4 (SSE), 8 (AVX2), or 16 (AVX-
512) values into a SIMD register with a single aligned load instruction and process them all
simultaneously.

// SoA: the compiler auto-vectorizes this easily
// Processes 8 x-values at once with AVX2
fn scale_positions(p: &mut Particles, factor: f32) {
for x in p.x.iter_mut() {
*x *= factor;

With AoS, the x values are 32 bytes apart (the stride of the struct). SIMD gather instructions exist for
strided access, but they're 3-5x slower than contiguous loads. The compiler typically won't auto-
vectorize strided access at all.



When to Use AoS vs. SOA

Better

i Wh
Scenario layout y

Access all fields per element AoS Al data. forone elementin 1-2
cache lines

Access few fields across many SoA Only load the fields you need

elements

SIMD processing SoA Contiguous data for vector loads

Random access by index AoS Ong element = one cache line
region

Sorted/shuffled by one field SoA Sort one array, rearrange others

Serialization/FFI AoS (repr(C)) Matches external data formats

Small structs (< 16 bytes) AoS Struct fits in cache line fraction

The hybrid approach — Array of Struct of Arrays (AoSoA) — groups data into small blocks (e.g., 8
or 16 elements), with each block using SoA layout internally:

// AoSoA: blocks of 8 particles, SoA within each block
struct ParticleBlock {

x: [f32; 8],

y: [f32; 8],

z: [f32; 8],

vx: [f32; 8],

vy: [f32; 8],

vz: [f32; 8],

mass: [f32; 8],

charge: [f32; 8],
}
// Size: 256 bytes = 4 cache lines
// x,y,z for 8 particles: 96 bytes (fits in 2 cache lines)
// SIMD-width aligned for AVX2

let blocks: Vec<ParticleBlock> = vec![/x ... x/; 125_000]; // 1M / 8
A0SoA gives you SIMD-friendly contiguous data within each block, while keeping related data (all

fields for 8 particles) close together in memory. This is the layout used by high-performance physics
engines and game ECS frameworks.

Practical Patterns for Cache-Friendly Rust

Pattern 1: Hot/Cold Splitting

If some fields are accessed frequently and others rarely, split them into separate structs:



// Before: one big struct
struct Entity {
// Hot: used every frame
x: 32,
y: 32,
velocity_x: f32,
velocity_y: f32,
// Cold: used occasionally
name: String,
description: String,
creation_time: u64,
metadata: HashMap<String, String>,
}
// ~120+ bytes per entity

// After: split hot and cold
struct EntityTransform {
x: 32,
y: 32,
velocity_x: f32,
velocity_y: f32,

}
// 16 bytes — 4 entities per cache line!

struct EntityInfo {
name: String,
description: String,
creation_time: u64,
metadata: HashMap<String, String>,

}

struct World {
transforms: Vec<EntityTransform>, // hot: +iterated every frame
info: Vec<EntityInfo>, // cold: accessed by index on demand

The physics update now iterates over a dense Vec<EntityTransform> at4 entities per cache line
instead of wading through Strings and HashMaps it doesn't need. Cache utilization goes from ~13%
to ~100% for the hot path.

Pattern 2: Indices Instead of Pointers

Pointers ( Box<T>, &T ) point to arbitrary heap locations. Following a pointer is a random memory
access — the prefetcher can't predict where the next element lives. Indices into a vec maintain
contiguity:



// Pointer-based: random memory access pattern
struct TreeNode {
value: 164,
left: Option<Box<TreeNode>>,
right: Option<Box<TreeNode>>,
}
// Each node at an unpredictable heap address
// Traversal: pointer chase > cache miss per node

// Index-based: nodes stored contiguously
struct Arena {
nodes: Vec<ArenaNode>,

}

struct ArenaNode {
value: 164,
left: Option<u32>, // index into arena.nodes
right: Option<u32>, // index into arena.nodes
}
// Size: 16 bytes per node (vs 24+ for Box version)
// Nodes are contiguous in memory
// BFS traversal often hits the same cache lines

The arena approach stores all nodes in a single vec, so they occupy contiguous memory. A breadth-
first traversal accesses nodes roughly sequentially — the prefetcher handles this well. The pointer-
based tree sends the processor on a random walk through the heap, missing the cache on nearly
every access.

The performance difference is dramatic for large trees:

Tree size Pointer-based traversal Arena-based traversal Speedup
1K nodes ~15 us ~4 ps 3.7x
100K nodes ~3.8ms ~0.4 ms 9.5x
10M nodes ~850 ms ~45 ms 19x

The speedup increases with size because the pointer-based tree's random accesses exceed the
cache capacity, while the arena's sequential accesses stay prefetcher-friendly.

Pattern 3: Shrink Your Structs

Every byte you remove from a hot struct packs more elements per cache line. Common techniques:



// Before: 24 bytes
struct GameUnit {

health: u32, // 0-1000 range
mana: u32, // 0-500 range

x: 32,

y: 32,

unit_type: u64, // only 12 variants

}

// After: 12 bytes — 2x cache density!
struct GameUnit {

health: ulé6, // 0-65535, plenty for 0-1000
mana: ulé6, // 0-65535, plenty for 0-500
x: 32,

y: 32,

unit_type: u8, // 256 variants, plenty for 12

// 3 bytes padding (alignment of f32 = 4)

Using smaller types where the value range permits halves the struct size. A vec<GameUnit> now fits

twice as many units per cache line, and the iteration speed nearly doubles for cache-bound
workloads.

Be mindful of the trade-off: u16 arithmetic on x86-64 requires a movzx (zero-extend) instruction
when used in expressions that expect u32/u64 . On ARM64, the extension is typically free (wrapped

into the next instruction). For hot loops, profile to verify the smaller type is actually faster.

Pattern 4: Iteration Order Matters

For multi-dimensional data, iteration order determines whether you access memory sequentially

(cache-friendly) or with large strides (cache-hostile):



let matrix: Vec<Vec<f64>> = vec![vec![0.0; 1000]; 1000];

// Row-major -iteration: sequential access
// Each row 1is contiguous in memory > prefetcher friendly
fn sum_row_major(matrix: &[Vec<f64>]) -> f64 {
let mut sum = 0.0;
for row in matrix {
for &val in row {
sum += val;

}

sum

}

// Column-major -iteration: strided access
// Jumps 8000 bytes between accesses (1000 x 8 bytes per f64)
fn sum_col_major(matrix: &[Vec<f64>]) -> f64 {
let mut sum = 0.0;
let cols = matrix[0].len();
for col in 0..cols {
for row in matrix {
sum += row[col]; // stride = 8000 bytes!
}

sum

On a 1000x1000 matrix of fe4:

Order Cache behavior Time
Row-major Sequential: 8 values per cache line, prefetcher active ~0.3 ms
Column-major Strided: 1 value per cache line, prefetcher confused ~2.5ms

The factor of ~8x matches the cache line utilization: row-major uses 8/8 of each loaded fe4 values
(100%), while column-major uses 1/8 (12.5%).

Rust's Vec<Vec<f64>> stores each inner Vec as a separate heap allocation, so even row-major
access has one indirection per row. For maximum performance, use a flat vVec<f64> with manual
indexing:

struct Matrix {
data: Vec<f64>,
rows: usize,
cols: usize,

}

impl Matrix {
fn get(&self, row: usize, col: usize) -> f64 {
self.data[row * self.cols + col]

}

// Iterate in memory order (row-major)
fn sum(&self) -> fe64 {
self.data.iter().sum() // one contiguous slice!

}



Now the entire matrix is one contiguous allocation. The sum() call iterates a single &[f64] slice —
the simplest possible access pattern for the prefetcher and the auto-vectorizer.

Pattern 5: Filtering Without Allocation

Iterator chains that filter elements avoid materializing intermediate collections — data flows through
the pipeline element by element, touching each cache line once:

// Good: lazy evaluation, single pass, no allocation
let result: f64 = particles.x.iter()
.zip(particles.y.iter())
.zip(particles.mass.iter())
filter(|&(_, &m)| m > 0.0)

-map(|((&x, &y), _)| (x x x +y % y).sqrt())
.sum();

// Bad: materializes intermediate Vec, touches data twice
let filtered: Vec<(f32, f32)> = particles.x.iter()
.zip(particles.y.iter())
.zip(particles.mass.iter())
filter(|&(_, &m)| m > 0.0)

'map(l((&x, &y), _)I (x, y))
.collect(); // ¢ heap allocation + copies

let result: f64 = filtered.iter()

-map(|&(x, y)| ((x * x +y *y) as f64).sqrt())
.sum();

The first version processes each element in L1 cache and never allocates. The second version writes
intermediate results to a new Vec, which may be large enough to evict the original data from cache.
When it then reads the intermediate Vec, the original data must be re-fetched for subsequent
operations.

Measuring Cache Performance

Knowing the theory is necessary but not sufficient. You must measure to find the actual bottlenecks.

perf stat (Linux)

perf stat -e cache-references,cache-misses,Ll-dcache-loads,Ll1-dcache-load-misses \
./target/release/my_program

Key metrics:

¢ L1 cache miss rate: below 5% is good, above 10% indicates layout problems

e LLC (Last-Level Cache) miss rate: below 1% is good for data that fits in L3

¢ Instructions per cycle (IPC): low IPC (< 1.0) on data-heavy code usually means cache misses
stalling the pipeline



cachegrind (Linux/macOS via Valgrind)

valgrind --tool=cachegrind ./target/release/my_program
cg_annotate cachegrind.out.*

Cachegrind simulates the cache hierarchy and reports miss rates per function and per source line.
It's slower than real execution but gives precise per-line attribution.

Instruments (macOS)

Use the Counters instrument in Xcode Instruments to record hardware performance counters on
Apple Silicon. The key counters are L1D_CACHE_MISS_LD and L1D_CACHE_MISS_ST.

Simple Benchmarking

For quick comparison, use Criterion:

use criterion::{black_box, criterion_group, criterion_main, Criterion};

fn bench_layouts(c: &mut Criterion) {
let aos = create_aos_data(1_000_000);
let soa = create_soa_data(1_000_000);

c.bench_function("AoS position sum", |b| {
b.iter (|| sum_positions_aos(black_box(&aos)))

s

c.bench_function("SoA position sum", |b| {
b.iter (|| sum_positions_soa(black_box(&soa)))

s

ARM64 Layout Considerations

The cache line size on Apple Silicon is 128 bytes — double the 64 bytes used by x86-64 (Intel and
AMD). This has direct implications:

Larger effective cache lines mean SoA is even more beneficial. A 128-byte cache line holds 32
f32 values, so SOA access patterns get twice the useful data per line.

But false sharing has a wider blast radius. Two independent atomic variables within 128 bytes of
each other cause contention on Apple Silicon, while on x86 they'd only conflict if within 64 bytes. The
CachePadded type from crossbeam uses 128-byte padding on Apple Silicon to avoid this.

Struct size thresholds shift. On x86, a 64-byte struct fits exactly in one cache line. On ARM64/Apple
Silicon, two such structs fit in one cache line — accessing the second one is free.



Aspect x86-64 (Intel/AMD) ARM64 (Apple Silicon)

Cache line size 64 bytes 128 bytes
f32 values per line 16 32

fe4 values per line 8 16

Hot struct target size < 64 bytes < 128 bytes
False sharing padding 64 bytes 128 bytes

Note: ARM Cortex cores (server and mobile) typically use 64-byte cache lines, similar to x86-64. The
128-byte line is an Apple Silicon design choice.

Putting It All Together

Data layout optimization follows a clear priority order:

1.

Access only the data you need. Hot/cold splitting and SoA ensure that every byte loaded from
memory is a byte your computation actually uses. This is the highest-impact change — often 2-
5x.

. Keep data contiguous. vec<T> over LinkedList<T>, arena allocation over scattered Box<T>,

flat matrices over vec<vec<T>> . The prefetcher rewards sequential access patterns with
effectively zero-latency loads.

. Minimize struct size. Smaller types where the value range permits, field reordering (automatic

in repr(Rust) , manual in repr(c) ), and removing unused fields. More elements per cache
line = fewer cache lines loaded = faster iteration.

. Iterate in memory order. Row-major for row-major-stored matrices. Sequential iteration of

slices. Avoid random-access patterns on large datasets.

. Use lazy iterator chains. Process data in a single pass without intermediate allocations. Let

iterator fusion keep data in L1 cache through the entire pipeline.

These aren't premature optimizations. For any code that processes large datasets — game engines,
scientific computing, data pipelines, web servers handling request batches — data layout is the
single biggest lever you have. The algorithms textbook says your 0(n) scan is optimal. Cache-aware
data layout makes that o(n) scan 5-10x faster.

Chapter Summary

1.

2.

Struct layout in Rust involves size, alignment, and padding. repr(Rust) reorders fields to
minimize padding; repr(c) preserves declaration order (sort by descending alignment to
minimize waste).

Padding wastes cache capacity. A struct with 10 bytes of data and 14 bytes of padding uses
only 42% of every cache line. Reordering fields or shrinking types reclaims this space.



10.

. The cache line (64 bytes on x86, 128 on Apple Silicon) is your fundamental budget. Data

within the same cache line is free to access; data in a different line may cost 4-200+ cycles.

. Array of Structs (AoS) is optimal when you access all fields of each element. Struct of Arrays

(SoA) is optimal when you access few fields across many elements — and it enables SIMD auto-
vectorization.

. Hot/cold splitting separates frequently-accessed fields from rarely-accessed ones. The hot

path iterates over smaller, denser data structures.

. Indices beat pointers for cache performance. Arena-allocated trees with index references can

be 10-20x faster than Box -based trees due to spatial locality.

. Iteration order on multidimensional data determines cache line utilization. Row-major

iteration on row-major storage achieves 100% utilization; column-major achieves ~12%.

. Iterator chains process data lazily — no intermediate allocations, single-pass access, data

stays in L1 cache through the pipeline.

. Smaller structs = more elements per cache line. Use ul6 instead of u32 where the value

range permits. The cache doesn't care about type safety — it cares about bytes.

Measure with hardware counters ( perf stat, Instruments, cachegrind) to identify cache
miss hotspots. Theory guides your changes; measurement proves they work.
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