
Part I: Core Language Mechanics

memory-ownership-patterns: Master ownership, borrowing, and
lifetimes as the foundation for safe Rust.
struct-enum-patterns: Model complex data with expressive structs,
enums, and pattern-centric APIs.
trait-design-patterns: Compose reusable behavior through carefully
scoped traits and idioms.
generics-polymorphism: Use generics and trait bounds to build flexible,
zero-cost abstractions.
builder-api-design: Design fluent builder types that validate
configuration before construction.
lifetime-patterns: Reason about lifetime annotations to uphold
reference safety without clutter.
functional-programming: Adopt iterator, closure, and declarative styles
for clearer logic.
pattern-matching-destructuring: Leverage match and destructuring to
unpack data cleanly.
iterator-patterns-combinators: Chain iterator adapters and
combinators for elegant data pipelines.
reference-binding: Handle borrowing, references, and iterator lifetimes
in tandem.
error-handling-architecture: Structure Result flows, bubbling, and
context-rich error types.

Part II: Collections & Data Structures

vec-slice-manipulation: Work efficiently with contiguous buffers via
Vec , slices, and views.

string-processing: Parse, transform, and construct UTF-8 strings without
needless copies.

Rust Patterns

file:///Users/littleworld/RustroverProjects/rust-course-pdf/book/html/print.html
file:///Users/littleworld/RustroverProjects/rust-course-pdf/book/html/print.html
file:///Users/littleworld/RustroverProjects/rust-course-pdf/book/html/print.html

hashmap-hashset-patterns: Choose and tune hash-based collections
for fast lookups.
advanced-collections: Employ specialized containers such as BTreeMap
and BinaryHeap .

Part III: Concurrency & Parallelism

threading-patterns: Launch threads, share state, and coordinate via
channels and locks.
async-runtime-patterns: Drive async tasks atop executors while
keeping latency predictable.
atomic-lock-free: Write lock-free data paths using atomics and correct
memory ordering.
parallel-algorithms: Apply Rayon-style abstractions for scalable data-
parallel workloads.

Part IV: Smart Pointers & Memory

smart-pointer-patterns: Employ Box , Rc , Arc , and custom pointers
for ownership control.
unsafe-rust-patterns: Encapsulate unsafe code responsibly with airtight
invariants.

Part V: I/O & Serialization

synchronous-io: Build blocking I/O services with the standard library’s
stream traits.
async-io-patterns: Structure non-blocking I/O stacks using async/await
primitives.
serialization-patterns: Encode and decode data via Serde and custom
formats.

Part VI: Macros & Metaprogramming

declarative-macros: Author macro_rules! DSLs that expand
ergonomically.
procedural-macros: Craft derive and attribute macros with syn and
quote .

Part VII: Systems Programming

ffi-c-interop: Bridge Rust with C interfaces while honoring safety
contracts.
network-programming: Implement network clients and servers with std
or Tokio.
database-patterns: Integrate SQL/NoSQL backends through Diesel,
SQLx, or lower-level APIs.
testing-benchmarking: Build resilient test suites, benches, and property
checks.
performance-optimization: Profile, measure, and tune for predictable
performance wins.
embedded-realtime-patterns: Apply Rust in no_std , RTIC, and real-
time control scenarios.

Appendices

appendix-a-quick-reference: Keep a handy cheat sheet of syntax,
commands, and patterns.
appendix-b-design-patterns: Browse a catalog of reusable Rust design
templates.
appendix-c-anti-patterns: Recognize and avoid common pitfalls and
code smells.

Memory & Ownership Patterns
Rust’s ownership system is best understood not as a single feature, but as a
foundation that enables a wide range of design patterns. This chapter focuses
on practical ownership-driven patterns that arise once you move beyond
the basics and start building real systems.

Rather than re‑explaining ownership rules, we explore how Rust
programmers use ownership, borrowing, and lifetimes to solve concrete
problems such as:

Conditional allocation and zero‑copy APIs
Safe mutation through shared references
Coordinating shared state across threads
Deterministic resource cleanup
Cache‑friendly memory layouts
High‑performance allocation strategies
Custom pointer abstractions

Each pattern in this chapter answers a recurring question:

“How do I express this design safely and efficiently within Rust’s ownership
model?”

This chapter assumes you already understand basic ownership, borrowing,
and lifetimes. The goal here is to help you recognize ownership patterns in the
wild—and to design your own—while keeping Rust’s core safety guarantees
intact.

Pattern 1: Zero-Copy with Clone-on-Write (Cow)

Problem: Functions that sometimes need to modify their input face a
dilemma: always clone the input (which is wasteful if no modification is

needed), or require a mutable reference (which makes the API less
ergonomic).
Solution: Use Cow<T> (Clone-on-Write). This is a smart pointer that can
enclose either borrowed data (Cow::Borrowed) or owned data
(Cow::Owned).
Why It Matters: This pattern enables a “fast path” for zero-allocation
operations. In high-throughput systems like web servers or parsers,
avoiding millions of unnecessary string allocations per second can lead
to significant performance gains.

Examples

Example: Conditional Modification

A common use for Cow is in functions that may or may not need to modify
their string-like input. This normalize_whitespace function provides a zero-
allocation “fast path”. It only allocates a new String and returns Cow::Owned
if the input text actually contains characters that need to be replaced.
Otherwise, it returns a borrowed slice Cow::Borrowed without any heap
allocation.

use std::borrow::Cow;

// Returns borrowed data when possible, owned only when necessary
fn normalize_whitespace(text: &str) -> Cow<str> {
 if text.contains(" ") || text.contains('\t') {
 // Only allocate if we need to modify
 let mut result = text.replace(" ", " ");
 result = result.replace('\t', " ");
 Cow::Owned(result)
 } else {
 // Zero-copy return
 Cow::Borrowed(text)
 }
}

Example: Lazy Mutation Chains

Cow can be used to build a chain of potential modifications. An allocation is
performed only on the first step that requires a change. This example
demonstrates how a path might be processed, first by expanding the tilde ~
and then by normalizing path separators. The Cow will only become Owned if
one of these conditions is met.

Example: In-Place Modification with to_mut()

The to_mut() method is a powerful tool for getting a mutable reference to
the underlying data. If the Cow is Borrowed , to_mut() will clone the data to
make it Owned and then return a mutable reference. If it’s already Owned , it
returns a mutable reference without any allocation. This is perfect for efficient
in-place modifications.

use std::borrow::Cow;

fn process_path(path: &str) -> Cow<str> {
 let mut result = Cow::Borrowed(path);

 // Expand tilde
 if path.starts_with("~/") {
 result = Cow::Owned(path.replacen("~", "/home/user", 1));
 }

 // Normalize separators (Windows)
 if result.contains('\\') {
 result = Cow::Owned(result.replace('\\', "/"));
 }

 // Only allocates if modifications were needed
 result
}

use std::borrow::Cow;

fn capitalize_first<'a>(s: &'a str) -> Cow<'a, str> {
 if let Some(first_char) = s.chars().next() {
 if first_char.is_lowercase() {
 let mut owned = s.to_string();

Use Case: Configuration with Defaults

Cow is excellent for handling configuration that involves default values. A
Config struct can hold borrowed string slices for default values, avoiding

allocations. If a user provides an override (an owned String), the Cow can
seamlessly switch to holding the owned data.

When to use Cow:

 owned[0..first_char.len_utf8()].make_ascii_uppercase();
 Cow::Owned(owned)
 } else {
 Cow::Borrowed(s)
 }
 } else {
 Cow::Borrowed(s)
 }
}

use std::borrow::Cow;

struct Config<'a> {
 host: Cow<'a, str>,
 port: u16,
 database: Cow<'a, str>,
}

impl<'a> Config<'a> {
 fn new(host: &'a str, port: u16) -> Self {
 Config {
 host: Cow::Borrowed(host),
 port,
 // 'default_db' is a &'static str, so it can be
borrowed safely.
 database: Cow::Borrowed("default_db"),
 }
 }

 fn with_database(mut self, db: String) -> Self {
 self.database = Cow::Owned(db);
 self
 }
}

Library APIs that accept string input and may need to modify it
Processing pipelines where some inputs need transformation, others
don’t
Configuration systems with optional overrides
Parsing where most tokens are substrings of input

Performance characteristics:

Zero allocation when borrowing
Single allocation when owned
Same size as a pointer + discriminant (24 bytes on 64-bit)

Pattern 2: Interior Mutability with Cell and
RefCell

Problem: Rust’s borrowing rules require &mut self for mutation, but
some designs need mutation through shared references (&self).
Examples: caching computed values, counters in shared structures,
graph nodes that need to update neighbors, observer patterns.
Solution: Use interior mutability types— Cell<T> for Copy types
(get/set without borrowing), RefCell<T> for non- Copy types (runtime-
checked borrows). These move borrow checking from compile-time to
runtime.
Why It Matters: Some data structures are impossible without interior
mutability. Doubly-linked lists, graphs with cycles, and the observer
pattern all require mutation through shared references.

The Problem: Experiencing the Borrow Checker

Let’s start by trying to implement a simple counter. We want to pass this
counter to multiple functions that can increment it, but we only have a shared
reference (&Counter). This code will not compile, because increment
requires a mutable reference &mut self , but process_item only has an
immutable one.

The Solution for Copy Types: Cell<T>

For types that are Copy (like usize), Cell<T> solves the problem. It allows
you to get() a copy of the value or set() a new value, even through a
shared reference. Notice the increment method now takes &self , and it
works perfectly.

// This is our first attempt - it seems reasonable!
struct Counter {
 count: usize,
}

impl Counter {
 fn new() -> Self { Counter { count: 0 } }
 fn increment(&mut self) { self.count += 1; }
 fn get(&self) -> usize { self.count }
}

fn process_item(counter: &Counter) {
 // Inside here, we only have &Counter, not &mut Counter
 // But we need to increment!
 // counter.increment(); // ❌ ERROR: cannot call `&mut self`
method with `&self`
}

use std::cell::Cell;

struct Counter {
 count: Cell<usize>, // Wrapped in Cell!
}

impl Counter {
 fn new() -> Self {
 Counter { count: Cell::new(0) }
 }

 fn increment(&self) { // ✅ Note: takes &self, not &mut self!
 self.count.set(self.count.get() + 1);
 }

 fn get(&self) -> usize {
 self.count.get()

Cell is safe because it never gives out references to the inner data; it only
moves Copy values in and out.

The Solution for Non-Copy Types: RefCell<T>

But what if the data isn’t Copy , like a Vec or HashMap ? You can’t use Cell .
The solution is RefCell<T> , which moves Rust’s borrow checking rules from
compile-time to run-time. You can ask to borrow() (immutable) or
borrow_mut() (mutable). If you violate the rules (e.g., ask for a mutable

borrow while an immutable one exists), your program will panic.

This example shows a cache that can be modified internally via &self .

 }
}

// Now this works!
fn process_item(counter: &Counter) {
 counter.increment(); // ✅ Works even with &self!
}

use std::cell::RefCell;
use std::collections::HashMap;

struct Cache {
 data: RefCell<HashMap<String, String>>,
}

impl Cache {
 fn new() -> Self {
 Cache { data: RefCell::new(HashMap::new()) }
 }

 fn get_or_compute(&self, key: &str, compute: impl FnOnce() ->
String) -> String {
 // Try to get from cache (immutable borrow)
 if let Some(value) = self.data.borrow().get(key) {
 return value.clone();
 }

 // Not found, compute and insert (mutable borrow)
 let value = compute();

RefCell Patterns and Pitfalls

Pattern: Careful Borrow Scoping

The most important pattern with RefCell is to keep borrow lifetimes as short
as possible to avoid panics. A common way to do this is to introduce a new
scope {} .

Pattern: Non-Panicking Borrows with try_borrow

If you’re not sure if a borrow will succeed, use try_borrow() or
try_borrow_mut() . These return a Result instead of panicking, allowing you

to handle the “already borrowed” case gracefully.

 self.data.borrow_mut().insert(key.to_string(),
value.clone());
 value
 }
}

use std::cell::RefCell;

fn process_cache(cache: &RefCell<Vec<String>>) {
 // Read operation in its own scope
 {
 let borrowed = cache.borrow();
 println!("Cache size: {}", borrowed.len());
 } // `borrowed` guard is dropped here, releasing the borrow

 // Write operation is now safe
 cache.borrow_mut().push("new_item".to_string());
}

use std::cell::RefCell;

fn safe_access(data: &RefCell<Vec<i32>>) -> Result<(), &'static
str> {
 if let Ok(mut borrowed) = data.try_borrow_mut() {
 borrowed.push(42);

Use Case: Graph Structures

Interior mutability is essential for graph data structures or any time you have
objects that point to each other and need to be modified, like a doubly-linked
list. Rc<RefCell<T>> is a very common pattern for creating graph-like
structures where nodes have shared ownership and can be mutated.

Summary: Cell vs. RefCell

Feature Cell<T> RefCell<T>

Works with Copy types only Any Sized type

API get() , set()
borrow() ,
borrow_mut()

Checking
Compile-time (enforced
by Copy trait)

Runtime (panics on
violation)

Overhead Zero
Small (a runtime borrow
flag)

 Ok(())
 } else {
 Err("Could not acquire lock: data is already borrowed.")
 }
}

use std::rc::Rc;
use std::cell::RefCell;

struct Node {
 value: i32,
 edges: RefCell<Vec<Rc<Node>>>,
}

impl Node {
 fn add_edge(&self, target: Rc<Node>) {
 self.edges.borrow_mut().push(target);
 }
}

Panics? No Yes, if rules are violated

Thread-
safe?

No No

Use For
Simple Copy data like
u32 , bool .

Complex data like Vec ,
HashMap .

Critical safety note:

RefCell is for single-threaded scenarios only. For multiple threads,
you need Mutex or RwLock .
Always keep borrow scopes as short as possible. Never hold a borrow
guard across a call to an unknown function.

Pattern 3: Thread-Safe Interior Mutability
(Mutex & RwLock)

Problem: RefCell<T> provides interior mutability but panics if used
incorrectly across threads. Multi-threaded code needs safe shared
mutable state—incrementing counters, updating caches, modifying
shared collections—without data races.

Solution: Use Mutex<T> for exclusive access (like RefCell but thread-
safe) or RwLock<T> for reader-writer patterns (multiple readers OR one
writer). Combine with Arc<T> to share across threads.

Why It Matters: Multi-threaded programming without data races is
notoriously difficult in C/C++. Rust’s type system makes it impossible to
compile racy code—you must use Mutex or RwLock for shared
mutation.

Use Cases: Shared counters in multi-threaded servers, concurrent
caches, thread pools with shared work queues, parallel data processing
with result aggregation, connection pools.

Examples

Example: Shared Counter Across Threads

To share mutable state across threads, you wrap it in Arc<Mutex<T>> . Arc is
the “Atomically Reference Counted” pointer that lets multiple threads “own”
the data. Mutex ensures that only one thread can access the data at a time.
When .lock() is called, it blocks until the lock is available. The returned
guard object automatically releases the lock when it goes out of scope.

Example: Reader-Writer Lock for Read-Heavy Workloads

A Mutex is exclusive. If you have a situation where many threads need to read
data and only a few need to write, a Mutex is inefficient. RwLock is the

use std::sync::{Arc, Mutex};
use std::thread;

fn parallel_counter() {
 let counter = Arc::new(Mutex::new(0));
 let mut handles = vec![];

 for _ in 0..10 {
 let counter_clone = Arc::clone(&counter);
 let handle = thread::spawn(move || {
 for _ in 0..100 {
 let mut num = counter_clone.lock().unwrap();
 *num += 1;
 } // lock automatically released when guard `num` is
dropped
 });
 handles.push(handle);
 }

 for handle in handles {
 handle.join().unwrap();
 }

 println!("Result: {}", *counter.lock().unwrap());
}

solution. It allows any number of readers to access the data simultaneously,
but write access is exclusive (it waits for all readers to finish).

Example: Minimize Lock Duration

Locks can become performance bottlenecks. A critical pattern is to hold the
lock for the shortest time possible. Perform expensive computations outside
the lock, and only acquire the lock when you are ready to quickly read or write
the shared data.

use std::sync::RwLock;
use std::collections::HashMap;

struct SharedCache {
 data: RwLock<HashMap<String, String>>,
}

impl SharedCache {
 fn get(&self, key: &str) -> Option<String> {
 // Multiple readers can hold read locks simultaneously.
 self.data.read().unwrap().get(key).cloned()
 }

 fn insert(&self, key: String, value: String) {
 // Write lock is exclusive. It will wait for all readers to
unlock.
 self.data.write().unwrap().insert(key, value);
 }
}

use std::sync::Mutex;

fn optimized_update(shared: &Mutex<Vec<i32>>, new_value: i32) {
 // Good: compute outside the lock
 let computed = expensive_computation(new_value);

 // Acquire lock only for the quick push operation
 shared.lock().unwrap().push(computed);
}

// Bad: holding the lock during a slow operation
fn unoptimized_update(shared: &Mutex<Vec<i32>>, new_value: i32) {
 let mut data = shared.lock().unwrap();

Example: Deadlock Prevention with Lock Ordering

A classic problem in concurrent programming is deadlock. If Thread 1 locks A
and waits for B, while Thread 2 locks B and waits for A, they will wait forever.
The solution is to ensure all threads acquire locks in a globally consistent
order. A simple way to achieve this is to order locks by their memory address.

 let computed = expensive_computation(new_value); // Don't do
this!
 data.push(computed);
}

fn expensive_computation(x: i32) -> i32 {
 std::thread::sleep(std::time::Duration::from_millis(50)); //
Imagine this is slow
 x * 2
}

use std::sync::Mutex;

struct Account {
 id: u32,
 balance: Mutex<i64>,
}

fn transfer(from: &Account, to: &Account, amount: i64) {
 // To prevent deadlock, we always acquire locks in a consistent
order.
 // Here, we use the account ID.
 let (lock1, lock2) = if from.id < to.id {
 (from.balance.lock().unwrap(), to.balance.lock().unwrap())
 } else {
 (to.balance.lock().unwrap(), from.balance.lock().unwrap())
 };

 // Now that locks are acquired, we can perform the logic.
 // Note: this logic is simplified and assumes the `if` branch
matches the original intent.
 // A real implementation would need to handle the amounts
correctly regardless of lock order.
}

Example: Non-Blocking Access with try_lock

Sometimes, you don’t want to wait for a lock. You’d rather do something else if
the data is currently locked. try_lock returns immediately with a Result . If
it acquires the lock, it returns Ok(Guard) ; if not, it returns Err .

Mutex vs RwLock trade-offs:

Mutex: Simpler, lower overhead, exclusive access
RwLock: Multiple readers, write-heavy can starve readers
RwLock ~3x slower for writes, but allows concurrent reads
Use Mutex unless >70% reads and contention is proven issue

Lock granularity strategies:

Fine-grained: More parallelism, higher overhead, deadlock risk
Coarse-grained: Less parallelism, simpler reasoning
Profile first, optimize second

Pattern 4: Custom Drop Guards

Problem: Manual resource cleanup is error-prone. Forgetting to close
files, release locks, or rollback transactions causes resource leaks,
deadlocks, and data corruption.
Solution: Implement the Drop trait to tie resource cleanup to scope.
Create guard types that acquire resources in their constructor and
release them in Drop .

use std::sync::Mutex;

fn try_update(data: &Mutex<Vec<i32>>) -> Result<(), &'static str> {
 if let Ok(mut guard) = data.try_lock() {
 guard.push(42);
 Ok(())
 } else {
 Err("Lock held by another thread, skipping update.")
 }
}

Why It Matters: RAII eliminates entire categories of bugs. You cannot
forget to unlock a Mutex — MutexGuard ’s Drop releases it automatically.

Examples

Example: Temporary File Guard

This TempFile struct creates a file upon construction. The Drop
implementation ensures that no matter how the function exits—success,
error, or panic—the file is guaranteed to be deleted.

use std::fs::File;
use std::io::{self, Write};
use std::path::{Path, PathBuf};

struct TempFile {
 path: PathBuf,
 file: File,
}

impl TempFile {
 fn new(path: impl AsRef<Path>) -> io::Result<Self> {
 let path = path.as_ref().to_path_buf();
 let file = File::create(&path)?;
 Ok(TempFile { path, file })
 }
}

impl Drop for TempFile {
 fn drop(&mut self) {
 // Cleanup happens automatically when TempFile goes out of
scope.
 println!("Dropping TempFile, deleting {}",
self.path.display());
 let _ = std::fs::remove_file(&self.path);
 }
}

Example: Custom Lock Guard

You can create your own guards that behave like MutexGuard . This
LockGuard uses a Cell<bool> to track the lock state. When the guard is

created, it sets the flag to true . When it’s dropped, it sets it back to false .
The Deref and DerefMut traits provide ergonomic access to the inner data.

use std::ops::{Deref, DerefMut};
use std::cell::Cell;

struct MyLock<T> {
 locked: Cell<bool>,
 data: T,
}

struct LockGuard<'a, T> {
 lock: &'a MyLock<T>,
}

impl<'a, T> LockGuard<'a, T> {
 fn new(lock: &'a MyLock<T>) -> Option<Self> {
 if lock.locked.get() {
 None // Already locked
 } else {
 lock.locked.set(true);
 Some(LockGuard { lock })
 }
 }
}

impl<T> Drop for LockGuard<'_, T> {
 fn drop(&mut self) {
 self.lock.locked.set(false);
 }
}

impl<T> Deref for LockGuard<'_, T> {
 type Target = T;
 fn deref(&self) -> &T {
 &self.lock.data
 }
}

Example: Panic-Safe State Restoration

A guard can be used to ensure state is restored, even in the case of a panic.
This StateGuard sets a boolean flag to a new value on creation and restores
the old value when it’s dropped. This is useful for things like a “processing”
flag.

Example: Generic Scope Guard

For arbitrary cleanup logic, a generic ScopeGuard can be used. It takes a
closure and executes it on drop . This is useful for things like database
transaction rollbacks. If the operation completes successfully, the guard can
be disarm ed to prevent the cleanup from running.

struct StateGuard<'a> {
 state: &'a mut bool,
 old_value: bool,
}

impl<'a> StateGuard<'a> {
 fn new(state: &'a mut bool, new_value: bool) -> Self {
 let old_value = *state;
 *state = new_value;
 StateGuard { state, old_value }
 }
}

impl Drop for StateGuard<'_> {
 fn drop(&mut self) {
 // Restore the original state, no matter what.
 *self.state = self.old_value;
 }
}

// Usage: State is restored even if a panic occurs
fn complex_operation(processing: &mut bool) {
 let _guard = StateGuard::new(processing, true);
 // If this panics, `_guard` is dropped and `processing` is
reset to its old value.
 // risky_operation();
}

RAII benefits:

Impossible to forget cleanup
Exception-safe (panic-safe in Rust)
Scope-based reasoning about resources
Composable (guards can be nested)

Common guard patterns:

struct ScopeGuard<F: FnOnce()> {
 cleanup: Option<F>,
}

impl<F: FnOnce()> ScopeGuard<F> {
 fn new(cleanup: F) -> Self {
 ScopeGuard { cleanup: Some(cleanup) }
 }

 fn disarm(mut self) {
 self.cleanup = None;
 }
}

impl<F: FnOnce()> Drop for ScopeGuard<F> {
 fn drop(&mut self) {
 if let Some(cleanup) = self.cleanup.take() {
 cleanup();
 }
 }
}

// Usage: Generic cleanup on scope exit
fn transactional_update() {
 println!("Starting transaction...");
 let guard = ScopeGuard::new(|| {
 println!("Rolling back transaction due to error or
panic.");
 });

 // perform_operations();

 // If we get here, the operation was successful.
 println!("Committing transaction.");
 guard.disarm(); // Don't run the rollback closure.
}

File handles (automatic close)
Locks (automatic release)
Transactions (automatic rollback)
Metrics/timers (automatic reporting)
State flags (automatic reset)

Pattern 5: Memory Layout Optimization

Problem: Naive struct definitions waste memory through padding and hurt
performance via poor cache utilization. False sharing in multi-threaded code
can cause 10-100x slowdowns.

Solution: Use #[repr(C)] for predictable layout (FFI), #[repr(align(N))] for
cache alignment, #[repr(packed)] to eliminate padding (with care). Order
struct fields from largest to smallest alignment.

Why It Matters: Modern CPUs are dominated by memory hierarchy—cache
misses cost 100-200 cycles while arithmetic costs 1-4 cycles. A cache miss is
50-100x slower than a cache hit.

Use Cases: High-frequency trading systems, game engines, scientific
computing, embedded systems, FFI with C libraries, SIMD optimization, lock-
free data structures.

What is Alignment? CPUs do not read memory one byte at a time. They fetch
it in chunks, typically the size of a machine word (e.g., 8 bytes on a 64-bit
system). Access is fastest when a data type of size N is located at a memory
address that is a multiple of N. For example, a u64 (8 bytes) should ideally
start at an address like 0, 8, 16, etc. This is its alignment requirement.
Accessing a u64 at an unaligned address (e.g., address 1) would be slow, as
the CPU might need to perform two memory reads instead of one.

What is Padding? To satisfy these alignment requirements, the Rust compiler
may insert invisible, unused bytes into a struct. This is called padding. The
goal is to ensure every field is properly aligned.

There are two rules for a struct’s layout:

1. Each field must be placed at an offset that is a multiple of its alignment.
2. The total size of the struct must be a multiple of the struct’s overall

alignment, which is the largest alignment of any of its fields.

Examples

Example: Field Ordering to Minimize Padding

By default, Rust reorders struct fields to minimize padding, but with #
[repr(C)] the order is fixed. Understanding the rules helps in all cases. By
ordering fields from largest to smallest, you can minimize wasted space.

// In this example, we use `#[repr(C)]` to disable the automatic
field
// reordering that Rust would normally perform. This lets us see
the
// effects of padding manually.

// Bad: 24 bytes due to padding
#[repr(C)]
struct Unoptimized {
 a: u8,
 b: u64,
 c: u8,
}
// How the compiler lays this out:
// - `a: u8` (size 1, align 1): offset 0.
// - 7 bytes of padding are added to align `b`.
// - `b: u64` (size 8, align 8): offset 8.
// - `c: u8` (size 1, align 1): offset 16.
// - 7 bytes of padding are added at the end to make the total size
a multiple of 8.
// - Total size = 24 bytes.

// Good: 16 bytes by reordering fields
#[repr(C)]
struct Optimized {
 b: u64, // Largest alignment first
 a: u8,
 c: u8,
}
// How this improves things:

Example: Layout Attributes #[repr(...)]

Rust provides attributes to control memory layout.

#[repr(C)] : Guarantees the same layout as a C struct. Essential for FFI.
#[repr(packed)] : Removes all padding. This can lead to unaligned-

access performance penalties or even crashes on some architectures.
Use with extreme care.
#[repr(align(N))] : Forces the struct’s alignment to be at least N bytes.
#[repr(u8)] : Specifies the memory representation for an enum’s

discriminant.

// - `b: u64`: offset 0.
// - `a: u8`: offset 8.
// - `c: u8`: offset 9.
// - 6 bytes of padding at the end makes the total size 16.
// - Total size = 16 bytes.

// Verify sizes
const _: () = assert!(std::mem::size_of::<Unoptimized>() == 24);
const _: () = assert!(std::mem::size_of::<Optimized>() == 16);

// For FFI compatibility
#[repr(C)]
struct Point {
 x: f64,
 y: f64,
}

// To eliminate padding (use carefully!)
#[repr(packed)]
struct Packed {
 a: u8,
 b: u32, // `b` may be at an unaligned address
}

// To align to a cache line (e.g., 64 bytes)
#[repr(align(64))]
struct CacheAligned {
 data: [u8; 64],
}

// To define an enum's size

Example: Preventing False Sharing

False sharing is a silent performance killer in multi-threaded code. It happens
when two threads write to different variables that happen to live on the same
CPU cache line. The CPU’s cache coherency protocol forces the cores to fight
over the cache line, serializing execution. The fix is to pad data to ensure
contended variables are on different cache lines.

Example: Optimizing Enum Size

An enum’s size is determined by its largest variant. If one variant is huge, the
whole enum becomes huge. To fix this, you can Box the large variant. This
makes the variant a pointer, and the enum’s size becomes the size of the
pointer plus a tag, which is much smaller.

#[repr(u8)]
enum Status {
 Idle = 0,
 Running = 1,
 Failed = 2,
}

use std::sync::atomic::AtomicUsize;

const CACHE_LINE_SIZE: usize = 64;

#[repr(align(CACHE_LINE_SIZE))]
struct Padded<T> {
 value: T,
}

// With this structure, counter1 and counter2 are guaranteed to be
on
// different cache lines, preventing false sharing when updated by
different threads.
struct SharedCounters {
 counter1: Padded<AtomicUsize>,
 counter2: Padded<AtomicUsize>,
}

Example: Data-Oriented Design (SoA vs. AoS)

For performance-critical loops, memory access patterns are key. “Array of
Structs” (AoS) is common but can be bad for cache performance if you only
need one field per iteration. “Struct of Arrays” (SoA) organizes the data by
field, ensuring that when you iterate over one field, all the data for that field is
contiguous in memory.

// Bad: Size is over 1024 bytes
enum LargeEnum {
 Small(u8),
 Big([u8; 1024]),
}

// Good: Size is the size of a Box (a pointer) + a tag.
enum OptimizedEnum {
 Small(u8),
 Big(Box<[u8; 1024]>),
}

// Bad: Array of Structs (AoS) - poor cache locality for single-
field access
struct ParticleAoS {
 position: [f32; 3],
 velocity: [f32; 3],
 mass: f32,
}

fn update_aos(particles: &mut [ParticleAoS]) {
 for p in particles {
 // When accessing p.position, the CPU loads the entire
struct (position,
 // velocity, mass) into the cache, even though we don't
need the other fields.
 p.position[0] += p.velocity[0];
 }
}

// Good: Struct of Arrays (SoA) - excellent cache locality
struct ParticlesSoA {
 positions_x: Vec<f32>,
 velocities_x: Vec<f32>,
 // ... and so on for other fields

Memory layout principles:

Order struct fields from largest to smallest alignment
Use #[repr(C)] when layout matters (FFI, serialization)
Pad to cache lines (64 bytes) to prevent false sharing
Box large enum variants to keep enum size small
Consider SoA over AoS for performance-critical loops

Performance characteristics:

False sharing can degrade performance by 10-100x
Proper alignment enables SIMD operations
Cache line is typically 64 bytes
L1 cache miss: ~4 cycles, L3 miss: ~40 cycles, RAM: ~200 cycles

Pattern 6: Arena Allocation

Problem: Allocating many small objects with Box::new() or
Vec::push() is slow. Each call invokes the system’s general-purpose

allocator (malloc), which involves locking and metadata overhead.
Solution: Use an arena allocator (also called a bump allocator). Pre-
allocate a large, contiguous chunk of memory.
Why It Matters: Arena allocation is 10-100x faster than general-purpose
allocators for scenarios involving many small objects. For applications
like compilers (which create millions of AST nodes) or web servers (which

}

impl ParticlesSoA {
 fn update_positions(&mut self) {
 // All the x positions are contiguous in memory. The CPU
can prefetch
 // them efficiently, leading to far fewer cache misses.
 for i in 0..self.positions_x.len() {
 self.positions_x[i] += self.velocities_x[i];
 }
 }
}

create objects per-request), this can dramatically improve performance
by reducing allocation bottlenecks.

Examples

//================================
// Pattern: Simple arena allocator
//================================
struct Arena {
 chunks: Vec<Vec<u8>>,
 current: Vec<u8>,
 position: usize,
}

impl Arena {
 fn new() -> Self {
 Arena {
 chunks: Vec::new(),
 current: vec![0; 4096],
 position: 0,
 }
 }

 fn alloc<T>(&mut self, value: T) -> &mut T {
 let size = std::mem::size_of::<T>();
 let align = std::mem::align_of::<T>();

 // Align position
 let padding = (align - (self.position % align)) % align;
 self.position += padding;

 // Check if we need a new chunk
 if self.position + size > self.current.len() {
 let old = std::mem::replace(&mut self.current, vec![0;
4096]);
 self.chunks.push(old);
 self.position = 0;
 }

 // Allocate
 let ptr = &mut self.current[self.position] as *mut u8 as
*mut T;
 self.position += size;

 unsafe {
 std::ptr::write(ptr, value);
 &mut *ptr
 }
 }
}

//===================================
// Use case: AST nodes during parsing
//===================================
struct AstArena {
 arena: Arena,
}

enum Expr<'a> {
 Number(i64),
 Add(&'a Expr<'a>, &'a Expr<'a>),
 Multiply(&'a Expr<'a>, &'a Expr<'a>),
}

impl AstArena {
 fn new() -> Self {
 AstArena { arena: Arena::new() }
 }

 fn number(&mut self, n: i64) -> &Expr {
 self.arena.alloc(Expr::Number(n))
 }

 fn add<'a>(&'a mut self, left: &'a Expr, right: &'a Expr) ->
&'a Expr<'a> {
 self.arena.alloc(Expr::Add(left, right))
 }
}

//==
// Pattern: Typed arena with better ergonomics
//==
use typed_arena::Arena as TypedArena;

struct Parser<'ast> {
 arena: &'ast TypedArena<Expr<'ast>>,
}

impl<'ast> Parser<'ast> {
 fn parse_number(&self, n: i64) -> &'ast Expr<'ast> {
 self.arena.alloc(Expr::Number(n))
 }

When to use arenas:

Compiler frontends (AST, IR nodes)
Request handlers in servers
Graph algorithms with temporary nodes
Game engine frame allocations

 fn parse_binary(&self, left: &'ast Expr<'ast>, right: &'ast
Expr<'ast>)
 -> &'ast Expr<'ast>
 {
 self.arena.alloc(Expr::Add(left, right))
 }
}

//==
// Pattern: Arena for temporary string allocations
//==
struct StringArena {
 arena: TypedArena<String>,
}

impl StringArena {
 fn new() -> Self {
 StringArena { arena: TypedArena::new() }
 }

 fn alloc(&self, s: &str) -> &str {
 let owned = self.arena.alloc(s.to_string());
 owned.as_str()
 }
}

//===
// Use case: Request-scoped allocations in web server
//===
struct RequestContext<'arena> {
 arena: &'arena TypedArena<Vec<u8>>,
}

impl<'arena> RequestContext<'arena> {
 fn allocate_buffer(&self, size: usize) -> &'arena mut Vec<u8> {
 self.arena.alloc(vec![0; size])
 }
}

Any scenario with bulk deallocation

Performance characteristics:

Allocation: O(1), just increment pointer
Deallocation: O(1), drop entire arena
10-100x faster than malloc/free for small objects
Better cache locality (allocated objects are contiguous)
Cannot free individual objects (trade-off)

Pattern 7: Custom Smart Pointers

Problem: The standard smart pointers (Box , Rc , Arc) are excellent
general-purpose tools, but they have limitations. Rc / Arc require a
separate heap allocation for their reference counts, and simple vector
indices can be invalidated by insertions or removals.
Solution: Build custom smart pointers using unsafe Rust primitives like
NonNull<T> , PhantomData , and the Deref , DerefMut , and Drop traits.

This allows for patterns like intrusive reference counting (where the
count is stored in the object itself) or generational indices (which prevent
use-after-free errors with vector-like containers).
Why It Matters: Custom smart pointers unlock performance and
memory layout patterns that are impossible with standard types. An
intrusive Rc can save one allocation per object, which is critical when
creating millions of them.

Examples

Example: Intrusive Reference Counting

Standard Rc and Arc perform two allocations: one for the object, and one
for the reference-count block. An intrusive counter stores the count inside the
object itself, saving an allocation. This is critical when you have millions of

small, reference-counted objects. This example shows a simplified intrusive
Rc .

use std::ptr::NonNull;
use std::marker::PhantomData;
use std::cell::Cell;
use std::ops::Deref;

// The data and its refcount live in the same heap allocation.
struct IntrusiveNode<T> {
 refcount: Cell<usize>,
 data: T,
}

struct IntrusiveRc<T> {
 ptr: NonNull<IntrusiveNode<T>>,
 _marker: PhantomData<T>,
}

impl<T> IntrusiveRc<T> {
 fn new(data: T) -> Self {
 let node = Box::new(IntrusiveNode {
 refcount: Cell::new(1),
 data,
 });
 IntrusiveRc {
 ptr: unsafe {
NonNull::new_unchecked(Box::into_raw(node)) },
 _marker: PhantomData,
 }
 }
}

impl<T> Clone for IntrusiveRc<T> {
 fn clone(&self) -> Self {
 let node = unsafe { self.ptr.as_ref() };
 let count = node.refcount.get();
 node.refcount.set(count + 1);
 IntrusiveRc { ptr: self.ptr, _marker: PhantomData }
 }
}

impl<T> Drop for IntrusiveRc<T> {
 fn drop(&mut self) {
 unsafe {
 let node = self.ptr.as_ref();

Example: Generational Arena for Stable Handles

When you store objects in a Vec , their indices are not stable. If you remove
an element from the middle, all subsequent indices change. A generational
arena solves this. It gives you a stable Handle (or ID) for an object. The
handle contains both an index and a “generation” number. When an object is
removed, its slot is marked free, and its generation is incremented. If old code
tries to use a stale handle, the generation numbers won’t match, preventing
use-after-free bugs. This is a cornerstone of modern Entity-Component-
System (ECS) game engines.

 let count = node.refcount.get();
 if count == 1 {
 // Last reference, so deallocate the whole Box.
 drop(Box::from_raw(self.ptr.as_ptr()));
 } else {
 // Decrement the refcount.
 node.refcount.set(count - 1);
 }
 }
 }
}

impl<T> Deref for IntrusiveRc<T> {
 type Target = T;
 fn deref(&self) -> &T {
 unsafe { &self.ptr.as_ref().data }
 }
}

#[derive(Clone, Copy, PartialEq, Eq)]
struct Handle {
 index: usize,
 generation: u64,
}

struct Slot<T> {
 value: Option<T>,
 generation: u64,
}

struct GenerationalArena<T> {
 slots: Vec<Slot<T>>,

 free_list: Vec<usize>,
}

impl<T> GenerationalArena<T> {
 fn new() -> Self {
 GenerationalArena { slots: Vec::new(), free_list:
Vec::new() }
 }

 fn insert(&mut self, value: T) -> Handle {
 if let Some(index) = self.free_list.pop() {
 let slot = &mut self.slots[index];
 slot.generation += 1;
 slot.value = Some(value);
 Handle { index, generation: slot.generation }
 } else {
 let index = self.slots.len();
 self.slots.push(Slot { value: Some(value), generation:
0 });
 Handle { index, generation: 0 }
 }
 }

 fn get(&self, handle: Handle) -> Option<&T> {
 self.slots.get(handle.index)
 .filter(|slot| slot.generation == handle.generation)
 .and_then(|slot| slot.value.as_ref())
 }

 fn remove(&mut self, handle: Handle) -> Option<T> {
 if let Some(slot) = self.slots.get_mut(handle.index) {
 if slot.generation == handle.generation {
 self.free_list.push(handle.index);
 slot.generation += 1; // Invalidate existing
handles
 return slot.value.take();
 }
 }
 None
 }
}

Example: Copy-on-Write Smart Pointer

This custom Immutable<T> pointer makes a type immutable by default, but
allows for cheap clones. Clones share the same underlying data. Only when
modify is called does the data get copied, ensuring that modifications don’t

affect other copies. This is a simplified, custom version of the standard
library’s Cow .

use std::rc::Rc;
use std::ops::Deref;

struct Immutable<T: Clone> {
 data: Rc<T>,
}

impl<T: Clone> Immutable<T> {
 fn new(data: T) -> Self {
 Immutable { data: Rc::new(data) }
 }

 fn modify<F>(&mut self, f: F)
 where
 F: FnOnce(&mut T),
 {
 // If the data is shared (more than one reference
exists)...
 if Rc::strong_count(&self.data) > 1 {
 // ...clone it to create a new, unique copy.
 self.data = Rc::new((*self.data).clone());
 }
 // Now we have the only reference, so we can safely get a
mutable one.
 let data_mut = Rc::get_mut(&mut self.data).unwrap();
 f(data_mut);
 }
}

impl<T: Clone> Deref for Immutable<T> {
 type Target = T;
 fn deref(&self) -> &T {
 &self.data
 }
}

impl<T: Clone> Clone for Immutable<T> {

When to build custom smart pointers:

Specialized allocation patterns (pools, arenas)
Intrusive data structures for cache efficiency
Game engines (generational indices)
Systems with unique ownership semantics
Performance-critical code where std overhead matters

Performance Summary

Pattern
Allocation

Cost
Access

Cost
Best Use Case

Box<T> O(1) heap O(1)
Heap allocation, trait
objects

Rc<T> O(1) heap
O(1) +
refcount

Shared ownership,
single-threaded

Arc<T> O(1) heap
O(1) +
atomic

Shared ownership,
multi-threaded

Cow<T>
O(0) or
O(n)

O(1) Conditional cloning

RefCell<T> O(0)
O(1) +
check

Interior mutability,
single-threaded

Mutex<T> O(0) O(lock)
Interior mutability,
multi-threaded

Arena O(1) bump O(1)
Bulk
allocation/deallocation

 fn clone(&self) -> Self {
 // Cloning is cheap: it just clones the Rc, incrementing
the ref count.
 Immutable {
 data: Rc::clone(&self.data),
 }
 }
}

Common Anti-Patterns

Rust’s ownership system is its defining feature, enabling memory safety
without garbage collection. This chapter explores advanced patterns that
leverage ownership, borrowing, and lifetimes to write efficient, safe code. For
experienced programmers, understanding these patterns is crucial for
designing high-performance systems where memory allocation, cache locality,
and zero-copy operations matter.

// ❌ Holding RefCell borrow across function call
let borrowed = data.borrow();
might_borrow_again(&data); // Runtime panic!

// ✓ Scope borrows tightly
{
 let borrowed = data.borrow();
 use_data(&borrowed);
} // Dropped here
might_borrow_again(&data); // Safe

// ❌ Arc<Mutex<T>> when single-threaded
let shared = Arc::new(Mutex::new(data)); // Unnecessary overhead

// ✓ Use Rc<RefCell<T>> for single-threaded
let shared = Rc::new(RefCell::new(data));

// ❌ Cloning Cow unnecessarily
fn process(s: Cow<str>) -> String {
 s.into_owned() // Always allocates
}

// ✓ Return Cow to defer cloning
fn process(s: &str) -> Cow<str> {
 if needs_modification(s) {
 Cow::Owned(modify(s))
 } else {
 Cow::Borrowed(s)
 }
}

fn needs_modification(_s: &str) -> bool { true }
fn modify(s: &str) -> String { s.to_uppercase() }

The ownership model enforces three fundamental rules at compile time:

1. Each value has exactly one owner
2. Values are dropped when their owner goes out of scope
3. References must never outlive their referents

These rules enable sophisticated zero-cost abstractions while preventing
entire classes of bugs: use-after-free, double-free, dangling pointers, and data
races.

Struct & Enum Patterns
Rust doesn’t just give you struct and enum as containers for data. This
chapter explores struct and enum patterns for type-safe data modeling:
choosing struct types, newtype wrappers for domain types, zero-sized types
for compile-time guarantees, enums for variants, and advanced techniques
for memory efficiency and recursion.

Pattern 1: Struct Design Patterns

Problem: It’s often unclear when to use a named-field struct, a tuple
struct, or a unit struct. Named fields can be verbose for simple types
(Point { x: f64, y: f64 }), while tuple structs can be ambiguous
(Point(1.0, 2.0)).
Solution: Use named-field structs for complex data models where clarity
is key. Use tuple structs for simple wrappers and the newtype pattern to
create distinct types from primitives.
Why It Matters: This choice enhances type safety and code clarity.
Named fields are self-documenting.

Example: Named Field Structs

#[derive(Debug, Clone)]
struct User {
 id: u64,
 username: String,
 email: String,
 active: bool,
}

impl User {
 fn new(id: u64, username: String, email: String) -> Self {
 Self {
 id,
 username,

Why this matters: Named fields provide self-documenting code. When you
see user.email , the intent is clear. They also allow field reordering without
breaking code.

Example: Tuple Structs

Tuple structs are useful when field names would be redundant or when you
want to create distinct types:

 email,
 active: true,
 }
 }

 fn deactivate(&mut self) {
 self.active = false;
 }
}

// Usage
let user = User::new(1, "alice".to_string(),
"alice@example.com".to_string());
println!("User {} is active: {}", user.username, user.active);

// Coordinates where position matters more than names
struct Point3D(f64, f64, f64);

// Type-safe wrappers (newtype pattern)
struct Kilometers(f64);
struct Miles(f64);

impl Point3D {
 fn origin() -> Self {
 Point3D(0.0, 0.0, 0.0)
 }

 fn distance_from_origin(&self) -> f64 {
 (self.0.powi(2) + self.1.powi(2) + self.2.powi(2)).sqrt()
 }
}

// Usage
let point = Point3D(3.0, 4.0, 0.0);

The pattern: Use tuple structs when the structure itself conveys meaning
more than field names would. They’re particularly powerful for the newtype
pattern.

Example: Unit Structs

Unit structs carry no data but can implement traits and provide type-level
information:

println!("Distance: {}", point.distance_from_origin());

// Type safety prevents mixing units
let distance_km = Kilometers(100.0);
let distance_mi = Miles(62.0);
// let total = distance_km.0 + distance_mi.0; // Compiles but
semantically wrong!

// Marker types for type-level programming
struct Authenticated;
struct Unauthenticated;

// Zero-sized types for phantom data
struct Database<State> {
 connection_string: String,
 _state: std::marker::PhantomData<State>,
}

impl Database<Unauthenticated> {
 fn new(connection_string: String) -> Self {
 Database {
 connection_string,
 _state: std::marker::PhantomData,
 }
 }

 fn authenticate(self, password: &str) ->
Result<Database<Authenticated>, String> {
 if password == "secret" {
 Ok(Database {
 connection_string: self.connection_string,
 _state: std::marker::PhantomData,
 })
 } else {

The insight: Unit structs enable compile-time state tracking without runtime
overhead. This is the typestate pattern in action.

Pattern 2: Newtype and Wrapper Patterns

Problem: Using raw primitive types like u64 for different kinds of IDs
(UserId , OrderId) can lead to bugs where they are accidentally mixed
up. Primitives can’t enforce invariants (e.g., a String that must be non-
empty) and lack domain-specific meaning.
Solution: Wrap primitive types in a tuple struct (e.g., struct
UserId(u64)). This creates a new, distinct type that cannot be mixed
with other types, even if they wrap the same primitive.
Why It Matters: This pattern provides compile-time type safety at zero
runtime cost. It prevents logical errors like passing an OrderId to a
function expecting a UserId .

 Err("Invalid password".to_string())
 }
 }
}

impl Database<Authenticated> {
 fn query(&self, sql: &str) -> Vec<String> {
 println!("Executing: {}", sql);
 vec!["result1".to_string(), "result2".to_string()]
 }
}

// Usage
let db = Database::new("postgres://localhost".to_string());
// db.query("SELECT *"); // Error! Can't query unauthenticated
database
let db = db.authenticate("secret").unwrap();
let results = db.query("SELECT * FROM users"); // Now this works

Example: Newtype

use std::fmt;

// Newtype for semantic clarity
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
struct UserId(u64);

#[derive(Debug, Clone, Copy)]
struct OrderId(u64);

// Prevent accidentally mixing IDs
fn get_user(id: UserId) -> User {
 println!("Fetching user {}", id.0);
 // ... fetch user
 unimplemented!()
}

// This won't compile:
// let order_id = OrderId(123);
// get_user(order_id); // Type error!

// Wrapper for adding functionality
struct PositiveInteger(i32);

impl PositiveInteger {
 fn new(value: i32) -> Result<Self, String> {
 if value > 0 {
 Ok(PositiveInteger(value))
 } else {
 Err(format!("{} is not positive", value))
 }
 }

 fn get(&self) -> i32 {
 self.0
 }
}

impl fmt::Display for PositiveInteger {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 write!(f, "{}", self.0)
 }
}

// Usage prevents invalid states

Why wrappers matter: They encode invariants in the type system. Once you
have a PositiveInteger , you know it’s valid. This eliminates defensive checks
throughout your codebase.

Example: Transparent Wrappers with Deref

For ergonomic access to the wrapped type:

let num = PositiveInteger::new(42).unwrap();
// let invalid = PositiveInteger::new(-5); // Returns Err

use std::ops::Deref;

struct Validated<T> {
 value: T,
 validated_at: std::time::Instant,
}

impl<T> Validated<T> {
 fn new(value: T) -> Self {
 Self {
 value,
 validated_at: std::time::Instant::now(),
 }
 }

 fn age(&self) -> std::time::Duration {
 self.validated_at.elapsed()
 }
}

impl<T> Deref for Validated<T> {
 type Target = T;

 fn deref(&self) -> &Self::Target {
 &self.value
 }
}

// Usage
let validated_string = Validated::new("hello".to_string());
println!("Length: {}", validated_string.len()); // Deref to String
println!("Age: {:?}", validated_string.age()); // Validated method

Pattern 3: Struct Memory and Update Patterns

Problem: Understanding struct update syntax (..other) can lead to
confusion about ownership and partial moves. Creating variations of a
struct immutably can feel clumsy, and the interaction between Copy and
non- Copy fields during updates is not always intuitive.
Solution: Use the struct update syntax ..other to create a new struct
instance from an old one. Be aware that this will move any non- Copy
fields, making the original struct partially unusable.
Why It Matters: This syntax enables ergonomic, immutable updates. A
clear understanding of the move semantics involved prevents surprising
compile-time ownership errors.

Note: For compile-time state checking with phantom types and typestate
patterns, see Chapter 4: Pattern 6 (Phantom Types) and Chapter 5:
Pattern 2 (Typestate Pattern).

Example: Struct Update Syntax

The struct update syntax .. is a convenient way to create a new instance of a
struct using the values from another instance. Fields that implement the Copy
trait are copied, while non- Copy fields are moved. Because a move occurs,
the original instance can no longer be used. To preserve the original, you must
clone() it.

#[derive(Debug, Clone)]
struct Config {
 host: String,
 port: u16,
 timeout_ms: u64,
}

// Usage with move (original is consumed)
let config1 = Config {
 host: "localhost".to_string(),
 port: 8080,

Example: Understanding Partial Moves

You can move specific fields out of a struct. If a field does not implement
Copy (like String), moving it means the original struct can no longer be fully

accessed, as it is now “partially moved”. You can still access the remaining
Copy fields, but you cannot move the struct as a whole.

 timeout_ms: 5000,
};

let config2 = Config {
 port: 9090,
 ..config1 // `config1.host` is moved, `timeout_ms` is copied.
};
// println!("{:?}", config1); // ERROR: `host` field was moved.

// Usage with clone (original is preserved)
let config3 = Config {
 host: "localhost".to_string(),
 port: 8080,
 timeout_ms: 5000,
};
let config4 = Config {
 port: 9090,
 ..config3.clone() // Clones the `host` string.
};
println!("Original: {:?}", config3); // OK
println!("New: {:?}", config4);

struct Data {
 copyable: i32, // Implements Copy
 moveable: String, // Does not implement Copy
}

let data = Data {
 copyable: 42,
 moveable: "hello".to_string(),
};

// Move the non-Copy field out of the struct.
let s = data.moveable;
println!("Moved string: {}", s);

The pattern: When building fluent APIs or config builders, be mindful of
moves. Consider consuming self and returning Self , or use &mut self for
in-place updates. For full builder pattern coverage, see Chapter 5: Builder &
API Design.

Pattern 4: Enum Design Patterns

Problem: Representing a value that can be one of several related kinds
is difficult with structs alone. Using Option for optional fields can create
invalid states (e.g., a “shipped” order with no shipping address).
Solution: Use an enum to define a type that can be one of several
variants. Each variant can have its own associated data.
Why It Matters: Enums make impossible states unrepresentable. The
compiler’s exhaustive checking for match statements prevents bugs
from forgotten cases.

Example: Basic Enum with Pattern Matching

// You can still access the Copy field.
println!("Copyable field: {}", data.copyable);

// But you cannot use the whole struct anymore, as it's partially
moved.
// let moved_data = data; // ERROR: use of partially moved value:
`data`

// Model HTTP responses precisely
enum HttpResponse {
 Ok { body: String, headers: Vec<(String, String)> },
 Created { id: u64, location: String },
 NoContent,
 BadRequest { error: String },
 Unauthorized,
 NotFound,
 ServerError { message: String, details: Option<String> },
}

impl HttpResponse {

The power: Each variant carries exactly the data it needs. No null or
undefined—if a variant needs an ID, it has one.

Example: Enum State Machines

Enums model state machines with exhaustive matching:

 fn status_code(&self) -> u16 {
 match self {
 HttpResponse::Ok { .. } => 200,
 HttpResponse::Created { .. } => 201,
 HttpResponse::NoContent => 204,
 HttpResponse::BadRequest { .. } => 400,
 HttpResponse::Unauthorized => 401,
 HttpResponse::NotFound => 404,
 HttpResponse::ServerError { .. } => 500,
 }
 }

 fn is_success(&self) -> bool {
 matches!(self, HttpResponse::Ok { .. } |
HttpResponse::Created { .. } | HttpResponse::NoContent)
 }
}

// Usage
fn handle_request(path: &str) -> HttpResponse {
 match path {
 "/users" => HttpResponse::Ok {
 body: "[{\"id\": 1}]".to_string(),
 headers: vec![("Content-Type".to_string(),
"application/json".to_string())],
 },
 "/users/create" => HttpResponse::Created {
 id: 123,
 location: "/users/123".to_string(),
 },
 _ => HttpResponse::NotFound,
 }
}

enum OrderStatus {
 Pending { items: Vec<String>, customer_id: u64 },
 Processing { order_id: u64, started_at: std::time::Instant },

Note: For compile-time enforced state machines using types (typestate
pattern), see Chapter 5: Pattern 2 (Typestate Pattern).

Pattern 5: Advanced Enum Techniques

Problem: Enums can have issues with memory usage if one variant is
much larger than the others. Recursive enums (like a tree where a node
contains other nodes) are impossible to define directly.
Solution: Use Box<T> to heap-allocate the data for large or recursive
variants. This makes the size of the variant a pointer size, not the size of
the data itself.

 Shipped { order_id: u64, tracking_number: String },
 Delivered { order_id: u64, signature: Option<String> },
 Cancelled { order_id: u64, reason: String },
}

impl OrderStatus {
 fn process(self) -> Result<OrderStatus, String> {
 match self {
 OrderStatus::Pending { items, .. } => {
 if items.is_empty() {
 return Err("Cannot process empty
order".to_string());
 }
 Ok(OrderStatus::Processing {
 order_id: 12345,
 started_at: std::time::Instant::now(),
 })
 }
 _ => Err("Order is not in pending state".to_string()),
 }
 }

 fn can_cancel(&self) -> bool {
 matches!(self, OrderStatus::Pending { .. } |
OrderStatus::Processing { .. })
 }
}

Why It Matters: Boxing variants is crucial for two reasons: it makes
recursive enum definitions possible, and it makes enums with large
variants memory-efficient, improving cache performance. Implementing
methods and conversion traits on enums leads to cleaner, more
idiomatic, and more reusable code.

Example: Recursive Enums with Box

// Binary tree - recursive enum needs Box to break infinite size
enum Tree<T> {
 Leaf(T),
 Node {
 value: T,
 left: Box<Tree<T>>,
 right: Box<Tree<T>>,
 },
}

impl<T: std::fmt::Debug> Tree<T> {
 fn depth(&self) -> usize {
 match self {
 Tree::Leaf(_) => 1,
 Tree::Node { left, right, .. } => {
 1 + left.depth().max(right.depth())
 }
 }
 }
}

// AST nodes often use Box for recursion
enum Expr {
 Number(i32),
 Add(Box<Expr>, Box<Expr>),
 Mul(Box<Expr>, Box<Expr>),
}

impl Expr {
 fn eval(&self) -> i32 {
 match self {
 Expr::Number(n) => *n,
 Expr::Add(l, r) => l.eval() + r.eval(),
 Expr::Mul(l, r) => l.eval() * r.eval(),
 }

Example: Memory-Efficient Large Variants

Pattern 6: Visitor Pattern with Enums

Problem: You have a complex, tree-like data structure, such as an
Abstract Syntax Tree (AST). You want to perform various operations on
this structure (e.g., pretty-printing, evaluation, type-checking) without
cluttering the data structure’s definition with all of this logic.
Solution: Define a Visitor trait with a visit method for each variant
of your enum-based data structure. Each operation is then implemented
as a separate struct that implements the Visitor trait.
Why It Matters: This pattern decouples the logic of an operation from
the data structure it operates on. This makes it easy to add new

 }
}

// Without Box: enum size = size of largest variant (LargeData)
enum Inefficient {
 Small(u8),
 Large([u8; 1024]), // 1KB - every variant takes this space
}

// With Box: enum size = size of pointer (8 bytes on 64-bit)
enum Efficient {
 Small(u8),
 Large(Box<[u8; 1024]>), // Only allocates when this variant is
used
}

fn check_sizes() {
 println!("Inefficient: {} bytes", std::mem::size_of::
<Inefficient>());
 println!("Efficient: {} bytes", std::mem::size_of::<Efficient>
());
}

operations (just add a new visitor struct) without modifying the
(potentially complex) data structure code.

The visitor pattern in Rust leverages enums for traversing complex structures.
It involves three parts: the data structure, the visitor trait, and one or more
visitor implementations.

1. The Data Structure (AST)

First, define the enum that represents the tree-like structure. For a simple
expression language, this is the Abstract Syntax Tree (AST). Note the use of
Box<Expr> to handle recursion.

// AST for a simple expression language
enum Expr {
 Number(f64),
 Variable(String),
 BinaryOp {
 op: BinOp,
 left: Box<Expr>,
 right: Box<Expr>,
 },
 UnaryOp {
 op: UnOp,
 expr: Box<Expr>,
 },
}

enum BinOp {
 Add,
 Subtract,
 Multiply,
 Divide,
}

enum UnOp {
 Negate,
 Abs,
}

2. The Visitor Trait

Next, define the ExprVisitor trait. It has a visit method for each variant of
the Expr enum. The visit method on the trait itself handles dispatching to
the correct specific method.

// AST for a simple expression language
enum Expr {
 Number(f64),
 Variable(String),
 BinaryOp {
 op: BinOp,
 left: Box<Expr>,
 right: Box<Expr>,
 },
 UnaryOp {
 op: UnOp,
 expr: Box<Expr>,
 },
}

enum BinOp {
 Add,
 Subtract,
 Multiply,
 Divide,
}

enum UnOp {
 Negate,
 Abs,
}
// Visitor trait
trait ExprVisitor {
 type Output;

 fn visit(&mut self, expr: &Expr) -> Self::Output {
 match expr {
 Expr::Number(n) => self.visit_number(*n),
 Expr.Variable(name) => self.visit_variable(name),
 Expr::BinaryOp { op, left, right } => {
 self.visit_binary_op(op, left, right)
 }
 Expr::UnaryOp { op, expr } => {
 self.visit_unary_op(op, expr)
 }

3. Visitor Implementations

Finally, implement the visitors. Each visitor is a separate struct that
implements the ExprVisitor trait, providing concrete logic for each visit_*
method. This separates the concerns of pretty-printing and evaluation from
the data structure itself.

 }
 }

 fn visit_number(&mut self, n: f64) -> Self::Output;
 fn visit_variable(&mut self, name: &str) -> Self::Output;
 fn visit_binary_op(&mut self, op: &BinOp, left: &Expr, right:
&Expr) -> Self::Output;
 fn visit_unary_op(&mut self, op: &UnOp, expr: &Expr) ->
Self::Output;
}

// Pretty printer visitor
struct PrettyPrinter;

impl ExprVisitor for PrettyPrinter {
 type Output = String;

 fn visit_number(&mut self, n: f64) -> String { n.to_string() }
 fn visit_variable(&mut self, name: &str) -> String {
name.to_string() }

 fn visit_binary_op(&mut self, op: &BinOp, left: &Expr, right:
&Expr) -> String {
 let op_str = match op {
 BinOp::Add => "+", BinOp::Subtract => "-",
 BinOp::Multiply => "*", BinOp::Divide => "/",
 };
 format!("({} {} {})", self.visit(left), op_str,
self.visit(right))
 }

 fn visit_unary_op(&mut self, op: &UnOp, expr: &Expr) -> String
{
 let op_str = match op { UnOp::Negate => "-", UnOp::Abs =>
"abs" };

The pattern: Visitors separate traversal logic from data structure. You can
add new operations without modifying the enum definition.

 format!("{}({})", op_str, self.visit(expr))
 }
}

// Evaluator visitor
struct Evaluator {
 variables: std::collections::HashMap<String, f64>,
}

impl ExprVisitor for Evaluator {
 type Output = Result<f64, String>;

 fn visit_number(&mut self, n: f64) -> Self::Output { Ok(n) }

 fn visit_variable(&mut self, name: &str) -> Self::Output {
 self.variables.get(name).copied().ok_or_else(|| format!
("Undefined variable: {}", name))
 }

 fn visit_binary_op(&mut self, op: &BinOp, left: &Expr, right:
&Expr) -> Self::Output {
 let left_val = self.visit(left)?;
 let right_val = self.visit(right)?;
 match op {
 BinOp::Add => Ok(left_val + right_val),
 BinOp::Subtract => Ok(left_val - right_val),
 BinOp::Multiply => Ok(left_val * right_val),
 BinOp::Divide => Ok(left_val / right_val),
 }
 }

 fn visit_unary_op(&mut self, op: &UnOp, expr: &Expr) ->
Self::Output {
 let val = self.visit(expr)?;
 match op {
 UnOp::Negate => Ok(-val),
 UnOp::Abs => Ok(val.abs()),
 }
 }
}

Summary

This chapter covered struct and enum patterns for type-safe data modeling:

1. Struct Design Patterns: Named fields for clarity, tuple for
newtypes/position, unit for markers

2. Newtype and Wrapper Patterns: Domain IDs, validated types, invariant
enforcement, orphan rule workaround

3. Struct Memory and Update Patterns: Struct update syntax, partial
moves, builder-style transformations

4. Enum Design Patterns: Variants for related types, exhaustive matching,
state machines, error types

5. Advanced Enum Techniques: Box for large/recursive variants, methods
on enums, memory optimization

6. Visitor Pattern: Separating traversal logic from data structure with
enums

Key Takeaways:

Struct choice is semantic: named for data models, tuple for wrappers,
unit for markers
Newtype pattern: UserId(u64) vs OrderId(u64) prevents mixing at zero
cost
Enums enforce exhaustiveness: adding variant causes compile errors in
incomplete matches
Box breaks infinite size for recursive enums and reduces memory for
large variants

Design Principles:

Use named fields when clarity matters, tuple when type itself is
meaningful
Wrap primitives in domain types (UserId not u64) for type safety
Encode invariants in types (PositiveInteger guaranteed positive)
Enums for “one of” types, structs for “all of” types
Box large/recursive enum variants for memory efficiency

Performance Characteristics:

Newtype: zero runtime cost, same representation as wrapped type
Enum size: largest variant + discriminant (usually 1 byte)
Boxing: reduces enum to pointer size, adds indirection

Memory Layout:

Named struct: fields in declaration order (subject to alignment)
Tuple struct: same as tuple with same types
Unit struct: 0 bytes
Enum: size_of(largest variant) + discriminant
Box: size_of pointer (8 bytes on 64-bit)

Pattern Decision Matrix:

Multiple types, all fields present: Named struct
Simple wrapper, distinct type: Tuple struct (newtype)
No data, marker only: Unit struct
One of several types: Enum
Recursive structure: Enum with Box
Validated type: Newtype with smart constructor
Domain-specific ID: Newtype (struct UserId(u64))

Anti-Patterns to Avoid:

Using u64 for IDs instead of newtypes (loses type safety)
Multiple Option fields instead of enum (unclear which combinations
valid)
Large enum variants without Box (wastes memory)
Missing exhaustive match (non-exhaustive pattern use _)
Type aliases for distinct types (type UserId = u64 doesn’t prevent
mixing)

	Rust Patterns
	Part I: Core Language Mechanics
	Part II: Collections & Data Structures
	Part III: Concurrency & Parallelism
	Part IV: Smart Pointers & Memory
	Part V: I/O & Serialization
	Part VI: Macros & Metaprogramming
	Part VII: Systems Programming
	Appendices

	Memory & Ownership Patterns
	Pattern 1: Zero-Copy with Clone-on-Write (Cow)
	Examples
	Example: Conditional Modification
	Example: Lazy Mutation Chains
	Example: In-Place Modification with to_mut()
	Use Case: Configuration with Defaults

	Pattern 2: Interior Mutability with Cell andRefCell
	The Problem: Experiencing the Borrow Checker
	The Solution for Copy Types: Cell<T>
	The Solution for Non-Copy Types: RefCell<T>
	RefCell Patterns and Pitfalls
	Pattern: Careful Borrow Scoping
	Pattern: Non-Panicking Borrows with try_borrow
	Use Case: Graph Structures

	Summary: Cell vs. RefCell

	Pattern 3: Thread-Safe Interior Mutability(Mutex & RwLock)
	Examples
	Example: Shared Counter Across Threads
	Example: Reader-Writer Lock for Read-Heavy Workloads
	Example: Minimize Lock Duration
	Example: Deadlock Prevention with Lock Ordering
	Example: Non-Blocking Access with try_lock

	Pattern 4: Custom Drop Guards
	Examples
	Example: Temporary File Guard
	Example: Custom Lock Guard
	Example: Panic-Safe State Restoration
	Example: Generic Scope Guard

	Pattern 5: Memory Layout Optimization
	Examples
	Example: Field Ordering to Minimize Padding
	Example: Layout Attributes #[repr(...)]
	Example: Preventing False Sharing
	Example: Optimizing Enum Size
	Example: Data-Oriented Design (SoA vs. AoS)

	Pattern 6: Arena Allocation
	Examples

	Pattern 7: Custom Smart Pointers
	Examples
	Example: Intrusive Reference Counting
	Example: Generational Arena for Stable Handles
	Example: Copy-on-Write Smart Pointer

	Performance Summary
	Common Anti-Patterns

	Struct & Enum Patterns
	Pattern 1: Struct Design Patterns
	Example: Named Field Structs
	Example: Tuple Structs
	Example: Unit Structs

	Pattern 2: Newtype and Wrapper Patterns
	Example: Newtype
	Example: Transparent Wrappers with Deref

	Pattern 3: Struct Memory and Update Patterns
	Example: Struct Update Syntax
	Example: Understanding Partial Moves

	Pattern 4: Enum Design Patterns
	Example: Basic Enum with Pattern Matching
	Example: Enum State Machines

	Pattern 5: Advanced Enum Techniques
	Example: Recursive Enums with Box
	Example: Memory-Efficient Large Variants

	Pattern 6: Visitor Pattern with Enums
	1. The Data Structure (AST)
	2. The Visitor Trait
	3. Visitor Implementations
	Summary

