

[image: Rspec 101]

 Rspec 101

 xdite

 This book is for sale at http://leanpub.com/rspec-101

 This version was published on 2013-06-01

 [image: publisher's logo]

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 2013 xdite

Table of Contents

 	本書內容

	本書練習專案

	建立一個新專案 groupme

	安裝 Rspec

	第一章：建立 Group

	TDD ：從寫 Group controller 開始

	功能 1.1 : 在 /groups 要能見到所有的 Group

	補充 1.1-1: 使用 Fabricator 生假資料

	補充 1.1-2: One assertion per test

	補充 1.1-3: DAMP Not DRY

本書內容

本書內容將涵蓋以下主題

	rspec-rails 的使用

 	TDD and Red / Green / Refactor

 	Unit Test, Functional Test, Integration Test

 	One Assertion Principle

 	Macros

 	Shared Examples

 	Feature specs with Capybara

 	Stub

 	Mock

 	Spy with mocha

 	Testing Time

 	Email Testing

會以一個完整的 Rails 討論區的開發作為 TDD 的 Example。

第一章示範如何以 TDD 進行 CRUD RESTful 的功能開發。
第二章示範如何以 Macros、Shared Examples。describe、it、let、subject。

….

本書練習專案

本書的練習專案會是一個以 Group 為主的討論區

	使用者可以建立、管理 Group。

 	使用者可以加入、退出社團。

 	使用者加入此社團後可以發表文章

 	使用者加入此社團後可以回覆他人文章

建立一個新專案 groupme

首先我們先使用 Bootstrapper 建立一個新專案 groupme。

1 $ bootstrappers groupme

安裝 Rspec

在本書裡面我們會使用 Rspec 這套測試工具作為示範。在 Rails 專案中是使用 rspec-rails 這套 gem。

修改 Gemfile

1 group :test, :development do
2 gem 'rspec-rails'
3 end

然後跑 bundle 安裝

1 $ bundle install

 	
 [image: information]
 	
 rspec-rails 的文件在 https://github.com/rspec/rspec-rails

接著執行

1 rails generate rspec:install

rails generate rspec:install 會產生兩個檔案 .rspec 與 spec/spec_helper.rb。

.rspec 作用

(TODO)

spec/spec_helper.rb 作用

(TODO)

第一章：建立 Group

本章的大綱是以 TDD 方式建立 Group 管理功能。

TDD ：從寫 Group controller 開始

本書寫 Test 的方式是以 TDD (Test-Driven Developer) 的方式進行。

首先產生 groups 這個 controller

1 rails g controller groups

這個指令會產生以下檔案，裝了 rspec-rails 時，在我們產生 controller 時也一併會幫我們產生其 spec 檔案。

 1 create app/controllers/groups_controller.rb
 2 invoke erb
 3 create app/views/groups
 4 invoke rspec
 5 create spec/controllers/groups_controller_spec.rb
 6 invoke helper
 7 create app/helpers/groups_helper.rb
 8 invoke rspec
 9 create spec/helpers/groups_helper_spec.rb
10 invoke assets
11 invoke coffee
12 create app/assets/javascripts/groups.js.coffee
13 invoke scss
14 create app/assets/stylesheets/groups.css.scss

功能 1.1 : 在 /groups 要能見到所有的 Group

編輯 spec/controllers/groups_controller_spec.rb

原先的檔案內容是：

1 require 'spec_helper'
2
3 describe GroupsController do
4 end

spec 的檔案結構通常是在第一行 require spec_helper，接著 describe 這個 class GroupsController 要作什麼。

index action 要作什麼？

通常我們期待 index action ，要撈出所有站上所有的 group，assigns 到 @groups 這個變數並顯示出來。

所以 Test 內容會是這樣：

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5 it "assigns @groups and render template" do
 6 group1 = Group.create(:title => "foo", :description => "bar")
 7 group2 = Group.create(:title => "bar", :description => "foo")
 8
 9 get :index
10 assigns[:groups].should == [group1,group2]
11 response.should render_template :index
12 end
13 end
14 end

 	
 [image: information]
 	
 通常建議在 Controller 寫的 Test 命名法是以 protocal + action_name 的方式命名，如：

 	GET index

 	POST create

 	PUT update

 	delete destroy

在 console 端執行 rspec spec/controllers/groups_controller_spec.rb 會得到以下成果。

 1 F
 2
 3 Failures:
 4
 5 1) GroupsController GET index assigns @groups and render template
 6 Failure/Error: group1 = Group.create(:title => "foo", :description => \
 7 "bar")
 8 NameError:
 9 uninitialized constant Group
10 # ./spec/controllers/groups_controller_spec.rb:6:in `block (3 levels) \
11 in <top (required)>'
12
13 Finished in 0.0046 seconds
14 2 examples, 1 failure, 1 pending
15
16 Failed examples:
17
18 rspec ./spec/controllers/groups_controller_spec.rb:5 # GroupsController GET\
19 index assigns @groups and render template

出現錯誤， rspec 告訴我們沒有 Group 這個 class。

嗯…我們的確還沒有建立這個 model。那趕緊來建立吧！

執行

 rails g model group title:string description:text

1 invoke active_record
2 create db/migrate/20130525121205_create_groups.rb
3 create app/models/group.rb
4 invoke rspec
5 create spec/models/group_spec.rb

然後跑 rake db:migrate。這樣應該可以了吧？

再次執行：rspec spec/controllers/groups_controller_spec.rb

 1 F
 2
 3 Failures:
 4
 5 1) GroupsController GET index assigns @groups and render template
 6 Failure/Error: group1 = Group.create(:title => "foo", :description => \
 7 "bar")
 8 ActiveRecord::StatementInvalid:
 9 Mysql2::Error: Table 'groupme_test.groups' doesn't exist: SHOW FULL \
10 FIELDS FROM `groups`
11 # ./spec/controllers/groups_controller_spec.rb:6:in `block (3 levels) \
12 in <top (required)>'
13
14 Finished in 0.02601 seconds
15 3 examples, 1 failure, 2 pending
16
17 Failed examples:
18
19 rspec ./spec/controllers/groups_controller_spec.rb:5 # GroupsController GET\
20 index assigns @groups and render template

出現了另外一個錯誤：table groups 沒有被產生？剛剛不是明明跑了 rake db:migrate 了嗎？怎麼 table 還沒被產生呢？

這是因為剛剛跑 migrate 的是 development 這個 database，如果你要讓測試資料庫也同步 db 欄位的話。你必須額外再打 rake db:test:prepare 這個指令。

rake db:test:prepare 這個指令是去 load db/schema.db 這個檔案，產生一個空結構的 db 給測試使用。

 	
 [image: information]
 	
 通常在新增 migration 後，測試跑不過，通常是因為 db 欄位不同步的關係，這時候再跑一次 rake db:test:prepare 通常就會正常了。

再次執行：rspec spec/controllers/groups_controller_spec.rb

然後它說沒有這個 routing

 1 Failures:
 2
 3 1) GroupsController GET index assigns @groups and render template
 4 Failure/Error: get :index
 5 ActionController::RoutingError:
 6 No route matches {:controller=>"groups"}
 7 # ./spec/controllers/groups_controller_spec.rb:9:in `block (3 levels) \
 8 in <top (required)>'
 9
10 Finished in 0.09475 seconds
11 1 example, 1 failure
12
13 Failed examples:
14
15 rspec ./spec/controllers/groups_controller_spec.rb:5 # GroupsController GET\
16 index assigns @groups and render template

補上 routing：

到 config/routes.rb 加入

1 resources :groups

再次執行：rspec spec/controllers/groups_controller_spec.rb

 1 F
 2
 3 Failures:
 4
 5 1) GroupsController GET index assigns @groups and render template
 6 Failure/Error: get :index
 7 AbstractController::ActionNotFound:
 8 The action 'index' could not be found for GroupsController
 9 # ./spec/controllers/groups_controller_spec.rb:9:in `block (3 levels) \
10 in <top (required)>'
11
12 Finished in 0.0468 seconds
13 1 example, 1 failure
14
15 Failed examples:
16
17 rspec ./spec/controllers/groups_controller_spec.rb:5 # GroupsController GET\
18 index assigns @groups and render template

這次換找不到 index 這個 action。

補上 action

到 app/controllers/groups_controller.rb 加入

1 def index
2 @groups = Group.all
3 end

再次執行：rspec spec/controllers/groups_controller_spec.rb

它又抱怨沒有 view 。

 1 F
 2
 3 Failures:
 4
 5 1) GroupsController GET index assigns @groups and render template
 6 Failure/Error: get :index
 7 ActionView::MissingTemplate:
 8 Missing template groups/index, application/index with {:locale=>[:en\
 9], :formats=>[:html], :handlers=>[:erb, :builder, :coffee]}. Searched in:
10 * "#<RSpec::Rails::ViewRendering::EmptyTemplatePathSetDecorator:0x\
11 007f9019c819e0>"
12 # ./spec/controllers/groups_controller_spec.rb:9:in `block (3 levels) \
13 in <top (required)>'
14
15 Finished in 0.05601 seconds
16 1 example, 1 failure
17
18 Failed examples:
19
20 rspec ./spec/controllers/groups_controller_spec.rb:5 # GroupsController GET\
21 index assigns @groups and render template

補上 view：

 touch app/views/groups/index.html.erb

 1 <div class="span12">
 2 <div class="group">
 3 <%= link_to("New group", new_group_path , :class => "btn btn-mini btn-p\
 4 rimary pull-right") %>
 5 </dib>
 6 <table class="table">
 7 <thead>
 8 <tr>
 9 <td> # </td>
10 <td> Title </td>
11 <td> Descroption </td>
12 </tr>
13 </thead>
14
15 <tbody>
16 <% @groups.each do |group| %>
17 <tr>
18 <td> # </td>
19 <td> <%= link_to(group.title, group_path(group)) %> </td>
20 <td> <%= group.description %> </td>
21 <td> <%= link_to("Edit", edit_group_path(group), :class => "btn btn\
22 -mini") %>
23 <%= link_to("Delete", group_path(group), :class => "btn btn-mini",\
24 :methpd => :delete, :confirm => "Are you sure?") %>
25 </td>
26 </tr>
27 <% end %>
28 </tbody>
29 </table>
30
31 </div>

再次執行：rspec spec/controllers/groups_controller_spec.rb

1 .
2
3 Finished in 0.06243 seconds
4 1 example, 0 failures

終於通過了！

補充 1.1-1: 使用 Fabricator 生假資料

在這個測試裡面，你可以見到直接產生了 group1 與 group2 兩個物件。

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5 it "assigns @groups and render template" do
 6 group1 = Group.create(:title => "foo", :description => "bar")
 7 group2 = Group.create(:title => "bar", :description => "foo")
 8
 9 get :index
10 assigns[:groups].should == [group1,group2]
11 response.should render_template :index
12 end
13 end
14 end

每次都要手動在測試裡面生假資料實在很麻煩。通常開發者會使用 FactoryGril 或 Fabrication 這種專門生測試資料的 Gem 來大量生例子。

在這本書裡面，是使用 Fabrication 這個 Gem 作為示範。

安裝 Fabrication

在 Gemfile 裡面的 test group 加入 gem 'fabrication'

1 group :test do
2 gem 'fabrication'
3 end

執行 bundle。

如何使用 Fabrication

Fabrication 的檔案慣例是放在 spec/fabricators/**/*fabricator.rb

如以 1-0 的 group 為示範，可生一個 group fabricator 檔案：

1 $ mkdir -p spec/fabricators/
2 $ touch spec/fabricators/group_fabricator.rb

內容

1 Fabricator(:group) do
2 title { "foo"}
3 description { "bar"}
4 end

這樣當在 test 裡面執行 Fabricate(:group) 時就會產生一個 group 的物件了（裡面 title 是 foo，description 是 bar）。

不過你也會注意到，這樣生出來的物件好像裡面都是 foo / bar。沒有亂數內容。

我們可以搭配另外一個 Gem Faker 來產生裡面的亂數內容。

安裝 Faker

在 Gemfile 裡面的 test group 加入 gem 'faker'

1 group :test do
2 gem 'faker'
3 end

執行 bundle。

Faker 提供了不少好用的假資料，如 Faker::Lorem.word （產生一個假字）、Faker::Lorem.sentence(10) 產生一段有 10 個字的 sentence、Faker::Internet.email(產生一個假 email)。

實務上通常會使用 Fabrication 搭配 Faker 產生假資料。

將 spec/fabricators/group_fabricator.rb 再次改成以下內容。

1 Fabricator(:group) do
2 title { Faker::Lorem.word }
3 description { Faker::Lorem.sentence(10) }
4 end

這樣每次生 group 時，就都會產生不同內容的 group 了。

翻修 group controller 的 spec

最後可以把 spec/controllers/groups_controller_spec.rb 改成以下內容

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5 it "assigns @groups and render template" do
 6 group1 = Fabricate(:group)
 7 group2 = Fabricate(:group)
 8
 9 get :index
10 assigns[:groups].should == [group1,group2]
11 response.should render_template :index
12 end
13 end
14 end

補充 1.1-2: One assertion per test

在寫測試的時候，有一個測試的黃金原則： One assertion per test，也就是一個測試一次只測一件事。
你可以注意到，1.1 的測試好像違反這個原則，一個測試裡面好像測了很多件事？

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5 it "assigns @groups and render template" do
 6 group1 = Fabricate(:group)
 7 group2 = Fabricate(:group)
 8
 9 get :index
10 assigns[:groups].should == [group1,group2]
11 response.should render_template :index
12 end
13 end
14 end

所以我們應該要把這個測試拆開，具體方向是把 assign 與 render view 拆開。

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5
 6 it "assigns @groups" do
 7 group1 = Fabricate(:group)
 8 group2 = Fabricate(:group)
 9
10 get :index
11 assigns[:groups].should == [group1,group2]
12 end
13
14 it "render template" do
15 group1 = Fabricate(:group)
16 group2 = Fabricate(:group)
17
18 get :index
19 response.should render_template :index
20 end
21
22 end
23 end

再跑一次 rspec spec/controllers/groups_controller_spec.rb，確認我們剛剛的改動沒有問題。

 	
 [image: information]
 	
 什麼時候建議要拆開 Test？通常是在你發現自己 test 的敘述裡面有了 and 這個字，這時候就有必要拆開 test 了。

補充 1.1-3: DAMP Not DRY

另外一個寫測試時建議的原則是：DAMP Not DRY。

在這個例子裡，我們看到了很多重複的 code。

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5
 6 it "assigns @groups" do
 7 group1 = Fabricate(:group)
 8 group2 = Fabricate(:group)
 9
10 get :index
11 assigns[:groups].should == [group1,group2]
12 end
13
14 it "render template" do
15 group1 = Fabricate(:group)
16 group2 = Fabricate(:group)
17
18 get :index
19 response.should render_template :index
20 end
21
22 end
23 end

身為 Rails Developer，看到重複的 code 我們就想手癢的 DRY 一下。有哪部分可以重構呢？

首先，我們可以先把 group1 與 group2 抽出來。

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5
 6
 7 group1 = Fabricate(:group)
 8 group2 = Fabricate(:group)
 9
10 it "assigns @groups" do
11
12 get :index
13 assigns[:groups].should == [group1,group2]
14 end
15
16 it "render template" do
17
18 get :index
19 response.should render_template :index
20 end
21
22 end
23 end

跑一下 rspec spec/controllers/groups_controller_spec.rb，嗯，看起來沒問題，測試會過…

接下來，把 get :index 抽出來？

不過這樣寫顯然是不會動的… describe 裡面顯然是不認得 get 的。

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5
 6
 7 group1 = Fabricate(:group)
 8 group2 = Fabricate(:group)
 9 get :index
10
11 it "assigns @groups" do
12 assigns[:groups].should == [group1,group2]
13 end
14
15 it "render template" do
16 response.should render_template :index
17 end
18
19 end
20 end

所以要改成用 befor block 包覆，跑每個 test 時都執行。

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5
 6 before do
 7 group1 = Fabricate(:group)
 8 group2 = Fabricate(:group)
 9 get :index
10 end
11
12 it "assigns @groups" do
13 assigns[:groups].should == [group1,group2]
14 end
15
16 it "render template" do
17
18 response.should render_template :index
19 end
20
21 end
22 end

但是又遇到另一個問題，group1 不見了！

為了解決這個問題，我們必須又把 group1 改成 @group1

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5
 6 before do
 7 @group1 = Fabricate(:group)
 8 @group2 = Fabricate(:group)
 9 get :index
10 end
11
12 it "assigns @groups" do
13 assigns[:groups].should == [@group1,@group2]
14 end
15
16 it "render template" do
17
18 response.should render_template :index
19 end
20
21 end
22 end

這樣測試就能通過了

在測試裡面 DRY 真的好嗎？

我們對這樣的成果很滿意，看起來真乾淨！

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5
 6 before do
 7 @group1 = Fabricate(:group)
 8 @group2 = Fabricate(:group)
 9 get :index
10 end
11
12 it "assigns @groups" do
13 assigns[:groups].should == [@group1,@group2]
14 end
15
16 it "render template" do
17
18 response.should render_template :index
19 end
20
21 end
22 end

但是這樣的測試真的好嗎？這樣的測試有幾個問題，

	在一般的測試裡面，我們是不建議裡面有 @group1 這樣的 instance variable 出現的。instance variable 容易混淆正在的對象是誰。但是為了寫出這麼 DRY 的 test，我們用到了 @

 	如果 index 的需求變更，Spec 改成：在 index 裡面還要再 assign 一個變數 latest_post，是最新的一個 group 的 post。

好，沒問題，再補一個 test。

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5
 6 before do
 7 @group1 = Fabricate(:group)
 8 @group2 = Fabricate(:group)
 9 get :index
10 end
11
12 it "assigns @groups" do
13 assigns[:groups].should == [@group1,@group2]
14 end
15
16 it "assigsn @latest_post" do
17 assigns[:latest_post].should == @group2.post
18 end
19
20 it "render template" do
21
22 response.should render_template :index
23 end
24
25 end
26 end

Spec 再度進行變更，index 裡的 groups 需要按照時間倒序排列。好，沒問題，我們再進行變更…

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5
 6 before do
 7 @group1 = Fabricate(:group)
 8 @group2 = Fabricate(:group, :created_at => 1.days.ago)
 9 get :index
10 end
11
12 it "assigns @groups" do
13 assigns[:groups].should == [@group1,@group2]
14 end
15
16 it "assigsn @latest_post" do
17 assigns[:latest_post].should == @group1.post
18 end
19
20 it "render template" do
21
22 response.should render_template :index
23 end
24
25 end
26 end

這時候我們原本心中預期應該只需要修正 it "assigns @groups" ，卻發現因為 DRY 的關係，當我們修正 before 裡的內容時，本來 it "assigsn @latest_post" 裡的內容也要被迫變更內容。

這好像哪裡不對了？

是的…寫 Test 跟寫一般程式碼的原則不一樣。

寫 Test 的原則是 DAMP (Descriptive And Meaningful Phrases)，儘量寫的越仔細越好。

且原則是，每一個測試的測試案例應該是獨立的。不應該 A 這個案例需要進行變更，卻會去影響 B 測試裡的內容。

在上面的測試裡面，犯的就是就是此類典型錯誤。本來的美意是將繁長的測試使用 DRY 手法簡化，卻嚴重破壞了各個測試間的獨立性。

那麼正確的測試應該怎麼寫呢？

其實你什麼都不用改，直接 git checkout . 回到最初的版本就可以了。

 1 require 'spec_helper'
 2
 3 describe GroupsController do
 4 describe "GET index" do
 5
 6 it "assigns @groups" do
 7 group1 = Fabricate(:group)
 8 group2 = Fabricate(:group)
 9
10 get :index
11 assigns[:groups].should == [group1,group2]
12 end
13
14 it "render template" do
15 group1 = Fabricate(:group)
16 group2 = Fabricate(:group)
17
18 get :index
19 response.should render_template :index
20 end
21
22 end
23 end

 	
 [image: information]
 	
 before 這個關鍵字儘量少用，通常出現 before 就很容易有 DRY 過頭的現象…

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/leanpub_leanpub_logo.png
Leanpub

OEBPS/images/leanpub_information.png
1

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/rspec-101-generated.png
Rspec 101

xdite

